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Abstract. The graded Hecke algebra for a finite Weyl group is intimately related to the geome-
try of the Springer correspondence. A construction of Drinfeld produces an analogue of a graded
Hecke algebra for any finite subgroup of GL(V ). This paper classifies all the algebras obtained
by applying Drinfeld’s construction to complex reflection groups. By giving explicit (though non-
trivial) isomorphisms, we show that the graded Hecke algebras for finite real reflection groups
constructed by Lusztig are all isomorphic to algebras obtained by Drinfeld’s construction. The
classification shows that there exist algebras obtained from Drinfeld’s construction which are not
graded Hecke algebras as defined by Lusztig for real as well as complex reflection groups.
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0. Introduction

This paper is motivated by a general effort to generalize the theory of Weyl groups
and their relation to groups of Lie type to the setting of complex reflection groups.
One natural question is whether there are affine Hecke algebras corresponding
to complex reflection groups. If they exist then it might be possible to use these
algebras to build an analogue of the Springer correspondence for complex reflection
groups.

A priori, one knows how to construct affine Hecke algebras corresponding only
to Weyl groups since both a finite real reflection group W and a W -invariant
lattice (the existence of which forces W to be a Weyl group) are needed in the
construction. Our search for analogues of graded Hecke algebras for complex re-
flection groups was motivated by Lusztig’s results [Lu2] showing that the geometric
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information contained in the affine Hecke algebra can be recovered from the cor-
responding graded Hecke algebra. Lusztig [Lu] defines the graded Hecke algebra
for a finite Weyl group W with reflection representation V . Let tg, g ∈ W , be a
basis for the group algebra CW of W and let kα ∈ C be “parameters” indexed by
the roots in the root system of W such that kα depends only on the length of the
root α. Then the graded Hecke algebra Hgr depending on the parameters kα is
the (unique) algebra structure on S(V )⊗ CW such that

(a) the symmetric algebra of V , S(V ) = S(V )⊗ 1, is a subalgebra of Hgr,
(b) the group algebra CW = 1⊗ CW = span-{1⊗ tg | g ∈ W} is a subalgebra

of Hgr, and
(c) tsi

v = (siv)tsi
− kαi

〈v, α∨i 〉 for all v ∈ V and simple reflections si in the
simple roots αi.

This definition applies to all finite real reflection groups W since the simple roots
and simple reflections are well defined. Unfortunately, the need for simple reflec-
tions in the construction makes it unclear how to define analogues for complex
reflection groups.

For finite real reflection groups, the graded Hecke algebra Hgr is a “semidirect
product” of the polynomial ring S(V ) and the group algebra CW . Drinfeld [Dr]
defines a different type of semidirect product of S(V ) and CW , and Drinfeld’s
construction applies to all finite subgroups G of GL(V ). In this paper, we

(1) classify all the algebras obtained by applying Drinfeld’s construction to finite
complex reflection groups G,

(2) show that every graded Hecke algebra Hgr (as defined by Lusztig) for a
finite real reflection group is isomorphic to an algebra obtained by Drinfeld’s
construction by giving explicit isomorphisms between these algebras.

The results from (2) show how Drinfeld’s construction is a true generalization of
Lusztig’s construction of graded Hecke algebras, something which is not obvious.
Our classification in (1) gives a complete solution to the problem of finding all
graded Hecke algebras for finite reflection groups.

A consequence of our classification is that there exist graded Hecke algebras
for finite real reflection groups which are not obtained with Lusztig’s construc-
tion. In this sense, Drinfeld’s construction is a strict generalization of the algebras
Hgr. These new algebras, and the algebras corresponding to complex reflection
groups that are not real reflection groups, deserve further study and probably have
interesting representation theories.

For us, one surprising result of our classification is that no nontrivial graded
Hecke algebra structures exist for many complex reflection groups. In some sense,
this is disappointing, as we would have liked to find nontrivial and interesting
structures for each complex reflection group.

It might be that we have not yet hit upon the “right” definition of graded
Hecke algebras. For example, we show that there do not exist nontrivial graded
Hecke algebra structures, according to Drinfeld’s definition, for any of the complex
reflection groups G(r, 1, n) = (Z/rZ) o Sn when r > 2 and n > 3. On the other



310 A. Ram and A. V. Shepler CMH

hand, in the last section of this paper we are able to construct algebras that “look”
like they ought to be graded Hecke algebras corresponding to these groups. Is it
possible that there is a “better” definition of graded Hecke algebras which applies
to complex reflection groups and which includes the algebras that we introduce in
Section 5 as examples?

Acknowledgements. We thank C. Kriloff for numerous stimulating conversa-
tions during our work on this paper. A. Ram thanks the Newton Institute for
the Mathematical Sciences at Cambridge University for hospitality and support
(EPSRC Grant No. GR K99015) during Spring 2001 when the writing of this
paper was completed.

1. Graded Hecke algebras

In this section, we define the graded Hecke algebra following Drinfeld [Dr]. Our
main result in this section is Theorem 1.9c, which determines exactly how many
degrees of freedom one has in defining a graded Hecke algebra.

Let V be an n dimensional vector space over C and let G be a finite subgroup
of GL(V ). The group algebra of G is

CG = C-span{tg | g ∈ G}, with tgth = tgh.

Let ag:V ×V −→ C be skew symmetric bilinear forms indexed by the elements of
G and let A be the associative algebra generated by V and CG with the additional
relations

thvth−1 = hv and [v, w] =
∑
g∈G

ag(v, w) tg, for h ∈ G and v, w ∈ V ,

(1.1)
where [v, w] = vw − wv. These relations allow every element a ∈ A to be written
in the form

a =
∑
g∈G

pgtg, pg ∈ S(V ), (1.2)

where S(V ) is the symmetric algebra of V . More precisely, one must fix a section
of the canonical surjection T (V ) → S(V ) from the tensor algebra of V to S(V )
and take the elements pg to be in the image of this section.

The structure of A depends on the choices of the “parameters” ag(v, w) ∈ C.
Our goal is to determine when the algebra A will be a “semidirect product” of
S(V ) and CG. This idea motivates the following definition [Dr].

The algebra A is a graded Hecke algebra for G if

A ∼= S(V )⊗ CG as a vector space,
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or, equivalently, if the expression in (1.2) is unique for each a ∈ A. A general
element a ∈ A is a linear combination of products of elements tg and ui, where
{u1, u2, . . . , un} is a basis of V . There are two straightening operations needed to
put a in the form (1.2):

(a) moving th’s to the right, and (b) putting uiuj pairs in the correct order.

These two straightening operations correspond to the two identities in (1.1). Note
that the “correct order” of uiuj is determined by the choice of the section of the
projection T (V ) → S(V ). Let v1, v2, v3 be arbitrary elements of V and let h ∈ G.
Applying the straightening operations to thv1v2 gives

thv1v2 = th[v1, v2] + thv2v1

= th[v1, v2] + (hv2)(hv1)th
(rearrange v1 and v2)
(move th to the right),

and applying the straightening operations in a different order gives

thv1v2 = (hv1)(hv2)th
= [hv1, hv2]th + (hv2)(hv1)th.

(move th to the right)

Setting these two expressions equal gives the relation

th[v1, v2]th−1 = [hv1, hv2], for all h ∈ G, v1, v2 ∈ V . (1.3)

Similarly, applying the straightening operations to v1v2v3 gives

v1v2v3 = [v1, v2]v3 + v2v1v3

= [v1, v2]v3 + v2[v1, v3] + v2v3v1

= [v1, v2]v3 + v2[v1, v3] + [v2, v3]v1 + v3v2v1

(moving v1 past v2)
(moving v1 past v3)

(straightening v2 and v3),

and applying the straightening operations in a different order gives

v1v2v3 = v1[v2, v3] + v1v3v2

= v1[v2, v3] + [v1, v3]v2 + v3v1v2

= v1[v2, v3] + [v1, v3]v2 + v3[v1, v2] + v3v2v1

(moving v2 past v3)
(moving v1 past v3)

(straightening v1 and v2).

These are equal if

[v1, [v2, v3]] + [v2, [v3, v1]] + [v3, [v1, v2]] = 0, for all v1, v2, v3 ∈ V . (1.4)

Conversely, the identities (1.3) and (1.4) are exactly what is needed to guaran-
tee that any order of application of the straightening operations (a) and (b) will
produce the same normal form (1.2) for the element a. Thus we have

Lemma 1.5. Let A be an algebra defined as in (1.1). Then A is a graded Hecke
algebra if and only if the identities (1.3) and (1.4) hold in A.
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Using (1.1), the relations (1.3) and (1.4) can be rewritten in terms of the bilinear
forms ag:V × V → C as

ag(v1, v2) = ahgh−1(hv1, hv2) and (1.6)

ag(v3, v1)(gv2 − v2) + ag(v2, v3)(gv1 − v1) + ag(v1, v2)(gv3 − v3) = 0 (1.7)

for v1, v2, v3 ∈ V and g, h ∈ G.
Let 〈 , 〉 : V × V → C be a G-invariant nondegenerate Hermitian form on V .

For each g ∈ G, set

V g = {v ∈ V | gv = v},
(V g)⊥ = {v ∈ V | 〈v, w〉 = 0 for all w ∈ V g}, and
ker ag = {v ∈ V | ag(v, w) = 0 for all w ∈ V }.

Lemma 1.8. Let G be a finite subgroup of GL(V ) and let g ∈ G.
(a) (V g)⊥ = {v − gv | v ∈ V }.
(b) Suppose g 6= 1. If codim(V g) = 2 and a:V × V → C is a skew symmetric

bilinear form such that ker a = V g, then a satisfies (1.7).
Let A be a graded Hecke algebra for G defined by skew symmetric bilinear forms
ag:V × V → C.

(c) If g 6= 1 then ker ag ⊇ V g.
(d) If g 6= 1 and ag 6= 0 then ker ag = V g and codim(V g) = 2.
(e) If g 6= 1 and ag 6= 0 then, for all h ∈ G,

ah−1gh(b1, b2) = det(h⊥)ag(b1, b2),

where {b1, b2} is a basis of (V g)⊥ and h⊥: (V g)⊥ → (V g)⊥ is the composi-
tion of h restricted to (V g)⊥ with the canonical projection V → V/V g.

Proof. (a) Consider the map φ:V → V given by φ(v) = v − gv. Then kerφ = V g

and imφ ⊆ (V g)⊥ since, if v ∈ V,w ∈ V g, then

〈v − gv, w〉 = 〈v, w〉 − 〈gv, w〉 = 〈v, w〉 − 〈gv, gw〉 = 〈v, w〉 − 〈v, w〉.
Since dim(imφ) = codim(kerφ) = codim(V g) it follows that imφ = (V g)⊥.

(b) Let v1, v2, v3 ∈ V . If any vi ∈ V g, then (1.7) holds trivially for the skew
symmetric form a. So assume each vi 6∈ V g and write each vi as v+

i + v−i where
v+

i ∈ V g and v−i ∈ (V g)⊥. Then

a(vi, vj) = a(v−i , v−j ) and vi − gvi = v−i − gv−i .

Since dim(V g)⊥ = 2, at least one of the v−i is a linear combination of the other
two. Say v−1 = c2v

−
2 + c3v

−
3 with c2, c3 ∈ C. Substituting vi − gvi = v−i − gv−i

and v−1 = c2v
−
2 + c3v

−
3 then yields

a(v3, v1)(gv2 − v2) + a(v2, v3)(gv1 − v1) + a(v1, v2)(gv3 − v3)

= a(v−3 , v−1 )(gv−2 − v−2 ) + a(v−2 , v−3 )(gv−1 − v−1 ) + a(v−1 , v−2 )(gv−3 − v−3 ) = 0,



Vol. 78 (2003) Graded Hecke algebras 313

and so (1.7) holds.
(c) Let v3 ∈ V g and v2 ∈ V .
If v2 ∈ V g, then ag(v2, v3)(gv1−v1) = 0 for all v1 ∈ V by (1.7). Since V g 6= V ,

there is some v1 such that gv1 6= v1 and so ag(v2, v3) = 0.

If v2 6∈ V g, let v1 =
r−1∑
k=1

gkv2, where r is the order of g. By (1.6), ag(v3, g
kv2) =

ag(g−kv3, v2) = ag(v3, v2), for any k, and so

0 = ag(v3, v1)(gv2 − v2) + ag(v2, v3)(gv1 − v1)
= (r − 1)ag(v3, v2)(gv2 − v2) + ag(v3, v2)(gv2 − v2) = rag(v3, v2)(gv2 − v2).

Thus ag(v3, v2) = 0. Hence, for all v2 ∈ V , ag(v3, v2) = 0 and so V g ⊆ ker ag.
(d) By (c), codim(V g) ≥ codim(ker ag). Since ag 6= 0, there exist v, w ∈ V

with ag(v, w) 6= 0 and so codim(ker ag) ≥ 2. Let v1 − gv1 and v2 − gv2 be
linearly independent elements of (V g)⊥. Then (1.7) implies that any element
v3 − gv3 ∈ (V g)⊥ is a linear combination of v1 − gv1 and v2 − gv2, and so

2 ≥ dim((V g)⊥) = codim(V g) ≥ codim(ker ag) ≥ 2.

Thus V g = ker ag and codim(V g) = 2.
(e) Write hb1 = h11b1 + h21b2 + (hb1)g and hb2 = h12b1 + h22b2 + (hb2)g with

hij ∈ C and (hbi)g ∈ V g. Then

ah−1gh(b1, b2) = ag(hb1, hb2)

= ag(h11b1 + h21b2 + (hb1)g, h12b1 + h22b2 + (hb2)g)

= (h11h22 − h21h12)ag(b1, b2) = det(h⊥)ag(b1, b2)

since ag is skew symmetric and V g ⊆ ker ag. ¤

The following theorem is a slightly strengthened version of statements (given
without proof) in [Dr].

Theorem 1.9. Let G be a finite subgroup of GL(V ) and let ZG(g) = {h ∈
G | hg = gh} denote the centralizer of an element g in G.

(a) If A is a graded Hecke algebra for G, then the values of ah−1gh are deter-
mined by the values of ag via the equation

ah−1gh(v1, v2) = ag(hv1, hv2), for all g, h ∈ G, v1, v2 ∈ V .

(b) For g 6= 1, there is a graded Hecke algebra A with ag 6= 0 if and only if

ker ag = V g, codim(V g) = 2, and det(h⊥) = 1, for all h ∈ ZG(g),
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where h⊥ is h restricted to the space (V g)⊥. In this case, ag is determined
by its value ag(b1, b2) on a basis {b1, b2} of (V g)⊥.

(c) Let d be the number of conjugacy classes of g ∈ G such that codim(V g) = 2
and det(h⊥) = 1 for all h ∈ ZG(g), where h⊥ is h restricted to the space
(V g)⊥. The sets {ag}g∈G corresponding to graded Hecke algebras A form a
vector space of dimension d + dim((

∧2
V )G).

Proof. (a) is simply a restatement of (1.6).
(b) =⇒: If A is a graded Hecke algebra and ag 6= 0 then by Lemma 1.8d,

codim(V g) = 2 and ker ag = V g. So ag is determined by its value ag(b1, b2) on a
basis b1, b2 of (V g)⊥. Suppose h ∈ ZG(g). Then, by Lemma 1.8e,

ag(b1, b2) = ahgh−1(hb1, hb2) = ag(hb1, hb2) = det(h⊥) ag(b1, b2),

and so det(h⊥) = 1. Note that h(V g) = V g and h(V g)⊥ = (V g)⊥ since, for each
v ∈ V g, h(v) = hg(v) = gh(v).

⇐=: If codim(V g) = 2 then, up to constant multiples, there is a unique skew
symmetric form on V which is nondegenerate on (V g)⊥ and which has ker ag = V g.
Fix such a form and then define forms ah, h ∈ G, by

ah(v1, v2) =
{

ag(kv1, kv2) if h = k−1gk,
0 otherwise,

(1.10)

for v1, v2 ∈ V . Let a1 be any G-invariant skew symmetric form on V . Then this
collection {ag}g∈G of skew symmetric bilinear forms satisfies (1.6) by definition
and (1.7) by Lemma 1.8b. Thus (by Lemma 1.5), it determines a graded Hecke
algebra A via (1.1).

(c) From (a) and (b) it follows that the sets {ag}g∈G, running over all graded
Hecke algebras A for G, form a vector space. Since each of the collections {ag}g 6=1

constructed by (1.10) has its support on a single conjugacy class, these collections
form a basis of the vector space of sets {ag}g 6=1. The only condition on the form a1

is that it satisfies (1.6), which means that it is a G-invariant element of (
∧2

V )∗.
¤

The following consequence of Theorem 1.9 will be useful for completing the
classification of graded Hecke algebras for complex reflection groups.

Corollary 1.11. Assume that G contains h = ξ · 1 for some ξ ∈ C \ {±1}. If A
is a graded Hecke algebra for G, then ag = 0 for all g 6= 1.

Proof. If h = ξ · 1 ∈ G, then h ∈ ZG(g) for every g ∈ G and det(h⊥) = ξ2 if
codim(V g) = 2. The statement then follows from Theorem 1.9b. ¤
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2. The classification for reflection groups

A reflection is an element of GL(V ) that has exactly one eigenvalue not equal to 1.
The reflecting hyperplane of a reflection is the (n− 1)-dimensional subspace which
is fixed pointwise. A complex reflection group G is a finite subgroup of GL(V )
generated by reflections. The group G is irreducible if V cannot be written in the
form V = V1 ⊕ V2 where V1 and V2 are G-invariant subspaces. The group G is a
real reflection group if V = C⊗R VR for a real vector space VR and G ⊆ GL(VR).

The following facts about reflection groups are well known.

Lemma 2.1. Let G be an irreducible reflection group.
(a) [ST, Theorem 5.3] The number of elements g ∈ G such that codim(V g) = 2

is
∑

i<j mimj where m1, . . . ,mn are the exponents of G.
(b) [Ca, Lemma 2] If G is a real reflection group and g ∈ G with codim(V g) = 2,

then g is the product of two reflections.
(c) [OT, Theorem 6.27] For any g ∈ G, the space V g is the intersection of

reflecting hyperplanes.

Remark. The statement of Lemma 2.1b does not hold for complex reflection
groups. Consider the exceptional complex reflection group G4 of rank 2, in the
notation of Shephard and Todd [ST]. All the reflections have order 3 and −1 ∈ G4.
Suppose −1 = rs for two reflections r and s. If s has eigenvalues 1 and ω, where
ω is a primitive cube root of unity, then r−1 = −s has eigenvalues −1 and −ω,
a contradiction to the assumption that r is a reflection. Thus −1 ∈ G4 is not a
product of two reflections.

Lemma 2.2. Let G ⊆ GL(V ) be a complex reflection group. Let A be a graded
Hecke algebra for G and let g ∈ G. Let V G = {v ∈ V | gv = v for all g ∈ G} be
the invariants in V .

(a) If g = 1 and dim V G ≤ 1, then ag = 0.
(b) If the order of g is 2, then ag = 0.

Proof. (a) Let 〈 , 〉:V ×V → C be a nondegenerate G-invariant Hermitian form on
V and write V = V G⊕(V G)⊥ where (V G)⊥ = {v ∈ V | 〈v, w〉 = 0 for all w ∈ V G}.
Since dim(V G) ≤ 1 and a1 is skew symmetric, a1 restricted to V G is 0. There is
a basis α1, . . . , αk of (V G)⊥ and constants ξ1, . . . , ξk ∈ C, ξi 6= 1, such that the
reflections s1, . . . , sk given by

siv = v + (ξi − 1)
〈v, αi〉
〈αi, αi〉αi, for v ∈ V ,

are in G. Equation (1.6) implies that, for any v ∈ V ,

a1(αi, v) = a1(siαi, siv) = a1

(
ξiαi, v + (ξi − 1)

〈v, αi〉
〈αi, αi〉αi

)
= ξia1(αi, v),
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since a1(αi, αi) = 0 (as a1 is skew symmetric). Since ξi 6= 1, a1(αi, v) = 0 for
1 ≤ i ≤ k. Thus ker a1 = V .

(b) Since g2 = 1, all eigenvalues of g are ±1. If codim(V g) 6= 2, then ag = 0
by Theorem 1.9b. If codim(V g) = 2, then

g = idV g ⊕ (−id(V g)⊥)

as a linear transformation on V . By [St1, Theorem 1.5], [Bou V, §5 Ex. 8], the
stabilizer, Stab(V g), of V g is a reflection subgroup of G and so there is a reflection
s ∈ Stab(V g) that is the identity on V g. So s ∈ ZG(g) and det(s) = det(s⊥) 6= 1,
where s⊥ is s restricted to (V g)⊥. Thus, by Theorem 1.9b, ag = 0. ¤

2A. Real reflection groups

If G ⊆ GL(V ) is a real reflection group then V = C⊗R VR and G ⊆ GL(VR), where
VR is a real vector space. We shall assume that G is irreducible.

Let us recall some basic facts about real reflection groups which can be found
in [Hu] or [Bou]. The action of G on VR has fundamental chambers wC indexed
by w ∈ G. The roots for G are vectors α ∈ VR such that the reflections in G are
the reflections sα in the hyperplanes

Hα = {v ∈ VR | 〈v, α〉 = 0}.

For each fundamental chamber C, the reflections s1, s2, . . . , sn in the hyperplanes
Hα1 ,Hα2 , . . . ,Hαn

that bound C form a set of simple reflections for G. The
simple reflections obtained from a different choice of fundamental chamber wC
are ws1w

−1, . . . , wsnw−1.

Theorem 2.3. Let G ⊆ GL(VR) be a real reflection group. Let s1, . . . , sn be a set
of simple reflections in G and let mij be the order of sisj. Then g ∈ G satisfies
g2 6= 1, codim(V g) = 2, and det(h⊥) = 1 for all h ∈ ZG(g) (the conditions in
Theorem 1.9c) if and only if g is conjugate to

(sisj)k, with 0 < k <
mij

2 ,

for some 1 ≤ i, j ≤ n.

Proof. =⇒: Let α and β be two roots such that V g = Hα ∩Hβ (see Lemma 2.1c).
Then Hα ∩Hβ has nontrivial intersection with some fundamental chamber C for
W , and we may assume that Hα and Hβ are walls of the chamber C (since C is a
cone in Rn). Since choosing simple reflections with respect to a different chamber
wC corresponds to conjugation by w, we may assume that the reflections in the
hyperplanes Hα and Hβ are simple reflections and α = α1 and β = α2.
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The element g is an element of the stabilizer Stab(V g), which is a reflection
group by [St1, Theorem 1.5]. Since codim(V g) = 2, Stab(V g) is a rank two real
reflection group, and therefore a dihedral group. This dihedral group is generated
by the two simple reflections s1 and s2 in the hyperplanes Hα1 and Hα2 (restricted
to (V g)⊥) and all reflections have determinant −1. Let g⊥ be the element g
restricted to (V g)⊥. Since g ∈ ZG(g), det(g⊥) = 1, and so g must be a product
of an even number of reflections. Thus g = (s1s2)k or g = (s2s1)k, for some
0 < k ≤ m/2, where m is the order of s1s2. Since g2 6= 1, k 6= m/2, and so g is
conjugate to (s1s2)k for some 0 < k < m/2.

⇐=: Assume that g = (sisj)k for some 0 < k < mij/2. Then V g = Hαi
∩Hαj

and so codim(V g) = 2. Since g is a product of an even number of reflections,
det(g⊥) = 1. The only elements of O(VR) ∼= O2(R) that are diagonalizable in
GL(VR) ∼= GL2(R) are ±1 and elements with determinant −1. Thus, the eigen-
vectors of the element g⊥ (which has distinct eigenvalues since it is not ±1) do
not lie in VR, only in V = C ⊗R R. Let h ∈ ZG(g) and let h⊥ ∈ O(VR) ∼= O2(R)
denote h restricted to (V g)⊥. Since h⊥ commutes with g⊥ and g⊥ has distinct
eigenvalues, g⊥ and h⊥ have the same eigenvectors. Hence, deth⊥ = 1. ¤

Using Theorem 2.3 and Theorem 1.9b, we can read off the graded Hecke alge-
bras for the irreducible real reflection groups from the Dynkin diagrams. For each
irreducible real reflection group, label a set of simple reflections s1, . . . , sn using
the Dynkin diagrams below. If nodes i and j and nodes j and k are connected by
single edges, then sisj is conjugate to sjsk via the element sisjsk.

The following table gives representatives of the conjugacy classes of g ∈ G that
may have ag 6= 0 for some graded Hecke algebra A. We assume that the reflection
group G is acting on its irreducible reflection representation V . When G is the
symmetric group Sn acting on an n-dimensional vector space V by permutation
matrices, then dim(V G) = 1 and, by Lemma 2.2a and Theorem 2.3, ag 6= 0 for
some graded Hecke algebra A only if g is conjugate to the three cycle (1, 2, 3) = s1s2

(this example is analyzed in Section 3).

Type Representative g
with ag 6= 0

An−1 s1s2

Bn s1s2, s2s3

Dn s2s3

E6, E7, E8 s1s4

F4 s1s2, s2s3, s3s4

H3,H4 s1s2, (s1s2)2, s2s3

I2(m) (s1s2)k, 0 < k < m/2

Table 1. Graded Hecke algebras for real reflection groups
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An−1 Bn
1◦ 2◦–– –– –– –– –– –– –– –– ––

n−2◦ n−1◦ 1◦ 2◦ 3◦–– –– –– –– –– ––
n−1◦ n◦

Dn E6
2

1

3 4◦– – – – – –– – – – – –
n−1◦ n◦ 2◦ 3◦ 4◦ 5◦ 6◦∣∣∣∣

1 ◦
E7 E8

2◦ 3◦ 4◦ 5◦ 6◦ 7◦∣∣∣∣
1 ◦

2◦ 3◦ 4◦ 5◦ 6◦ 7◦ 8◦∣∣∣∣
1 ◦

F4 H3
1◦ 2◦ 3◦ 4◦ 1◦ 5 2◦ 3◦

H4 I2(m)
1◦ 5 2◦ 3◦ 4◦ 1◦ m 2◦

Figure 1. Coxeter–Dynkin diagrams for real reflection groups

2B. Complex reflection groups G(r,p,n)

The irreducible complex reflection groups were classified by Shephard and Todd
[ST]. There is one infinite family denoted G(r, p, n) and a list of exceptional com-
plex reflection groups denoted G4, . . . , G35. In this subsection, we classify the
graded Hecke algebras for the groups G(r, p, n).

Let r, p and n be positive integers with p dividing r and let ξ = e2πi/r. Let Sn

be the symmetric group of n× n matrices and let

ξj = diag(1, 1, . . . , 1, ξ, 1, . . . , 1),

where ξ appears in the jth entry. Then

G(r, p, n) = {ξλ1
1 · · · ξλn

n w | w ∈ Sn, 0 ≤ λi ≤ r − 1, λ1 + · · ·+ λn = 0 mod p}.

For λ = (λ1, . . . , λn) ∈ (Z/rZ)n, let ξλ = ξλ1
1 · · · ξλn

n . Then the multiplication in
G(r, p, n) is described by the relations

ξλξµ = ξλ+µ and wξλ = ξwλw, for λ, µ ∈ (Z/rZ)n, w ∈ Sn,

where Sn acts on (Z/rZ)n by permuting the factors. Let vi be the column vector
with 1 in the ith entry and all other entries 0. The group G(r, p, n) acts on V := Cn

with orthonormal basis {v1, . . . , vn} as a complex reflection group.
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Every real reflection group is a complex reflection group and several of these
are special cases of the groups G(r, p, n). In particular,

(a) G(1, 1, n) is the symmetric group Sn,
(b) G(2, 1, n) is the Weyl group WBn of type Bn,
(c) G(2, 2, n) is the Weyl group WDn of type Dn, and
(d) G(r, r, 2) is the dihedral group I2(r) of order 2r.
The reflections in G(r, p, n) are

ξkp
i , 1 ≤ i ≤ n, 0 ≤ k ≤ (r/p)− 1, and

ξk
i ξ−k

j (i, j), 1 ≤ i < j ≤ n, 0 ≤ k ≤ r − 1,

where (i, j) is the transposition in Sn that switches i and j.

Conjugacy in G(r, p, n). Each element of G(r, p, n) is conjugate by elements of
Sn to a disjoint product of cycles of the form

ξλi
i · · · ξλk

k (i, i + 1, . . . , k).

By conjugating this cycle by ξ−c
i ξλi

i+1ξ
λi+λi+1

i+2 · · · ξλi+···+λk−1
k ∈ G(r, r, n), we have

ξ−c
i ξc+λi+···+λk

k (i, . . . , k), where c = (k− i)λi + (k− i− 1)λi+1 + · · ·+ λk−1.

If i1, i2, . . . , i` denote the minimal indices of the cycles and c1, . . . , c` are the num-
bers c for the various cycles, then after conjugating by ξc1

i1
· · · ξc`−1

i`−1
ξ
−(c1+···+c`−1)
i`

∈
G(r, r, n), each cycle becomes

ξλi+···+λk

k (i, . . . , k) except the last, which is ξ−a
i`

ξb
n(i`, . . . , n),

where a = c1 + · · ·+ c` and b = a + λi`
+ · · ·+ λn. If k = n− i` + 1 is the length

of the last cycle, then conjugating the last cycle by ξk−1
i`

ξ−1
i`+1 · · · ξ−1

n ∈ G(r, r, n)
gives

ξ−a+k
i`

ξb−k
n (i`, . . . , n).

If we conjugate the last cycle by ξp
i`
∈ G(r, p, n), we have

ξ−a+p
i`

ξb−p
n (i`, . . . , n).

In summary, any element g of G(r, p, n) is conjugate to a product of disjoint cycles
where each cycle is of the form

ξa
k(i, i + 1, . . . , k), 0 ≤ a ≤ r − 1, (2.4a)

except possibly the last cycle, which is of the form

ξa
i`

ξb
n(i`, i` + 1, . . . , n), with 0 ≤ a ≤ gcd(p, k)− 1, (2.4b)
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where k = n− i` + 1 is the length of the last cycle.

Centralizers in G(r, p, n). Let ZG(r,p,n)(g) = {h ∈ G(r, p, n) | hg = gh} denote
the centralizer of g ∈ G(r, p, n). Since G(r, p, n) is a subgroup of G(r, 1, n),

ZG(r,p,n)(g) = ZG(r,1,n)(g) ∩G(r, p, n),

for any element g ∈ G(r, p, n). Suppose that g is an element of G(r, 1, n) which is a
product of disjoint cycles of the form ξa

k(i, . . . , k) and that h ∈ G(r, 1, n) commutes
with g. Conjugation by h effects some combination of the following operations on
the cycles of g:

(a) permuting cycles of the same type, ξa
k(i, . . . , k) and ξb

m(j, . . . ,m) with b = a
and k − i = m− j,

(b) conjugating a single cycle ξa
k(i, . . . , k) by powers of itself, and

(c) conjugating a single cycle ξa
k(i, . . . , k) by ξb

i · · · ξb
k, for any 0 ≤ b ≤ r − 1.

Furthermore, the elements of G(r, 1, n) which commute with g are determined by
how they “rearrange” the cycles of g and a count (see [Mac, p. 170]) of the number
of such operations shows that if g ∈ G(r, 1, n) and ma,k is the number of cycles of
type ξa

i+k(i, i + 1, . . . , i + k) for g, then

Card(ZG(r,1,n)(g)) =
∏
a,k

(ma,k! · kma,k · rma,k) . (2.5)

Determining the graded Hecke algebras for G(r, p, n). It follows from
Lemma 1.8a that if g = ξa+b

i ξ−a
k (i, . . . , k), then (V g)⊥ has basis

{vk − vk−1, vk−1 − vk−2, . . . , vi+1 − ξavi} if b = 0, and {vi, . . . , vk} if b 6= 0.

Thus, if g ∈ G(r, p, n) and codim(V g) = 2, then g is conjugate to one of the
following elements:

b = ξa
1ξ−a

3 (1, 2, 3), 0 ≤ a ≤ gcd(p, 3)− 1,

c = ξa+`
1 ξ−a

2 (1, 2), ` 6= 0 (so r 6= 1),

d = ξ`1
1 ξ`2

2 , `1 6= 0, `2 6= 0 (so r 6= 1),

e = (1, 2)ξ`
3, ` 6= 0,

f = (1, 2)ξa
3ξ−a

4 (3, 4).

It is interesting to note that these elements are also representatives of the conjugacy
classes of elements in G(r, p, n) which can be written as a product of two reflections.

We determine conditions on the above elements and on r, p, and n to give
nontrivial graded Hecke algebras:
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(z) The center of G(r, p, n) is

Z(G(r, p, n)) = {ξ`
1 · · · ξ`

n | n` = 0 mod p}.

Since ξp
1 · · · ξp

n ∈ Z(G(r, p, n)), it follows that p = r or p = r/2 whenever
Z(G(r, p, n)) ⊆ {±1} = {ξ0

1 · · · ξ0
n, ξ

r/2
1 · · · ξr/2

n }.
(b1) If n ≥ 4, the element ξ1ξ2ξ3ξ

−3
4 ∈ ZG(b) and has determinant ξ2 on (V b)⊥ =

span-{v3 − v2, v2 − ξav1}.
(b2) If n = 3 and p = 0 mod 3, the element ξ

p/3
1 ξ

p/3
2 ξ

p/3
3 ∈ ZG(b) and has

determinant ξ2p/3 on (V b)⊥.
(c1) If n ≥ 3, the element ξ1ξ2ξ

−2
3 ∈ ZG(c) and has determinant ξ2 on (V c)⊥ =

span-{v1, v2}.
(c2) If n = 2, p = r/2 and p is odd, the element ξ

p/4
1 ξ

p/4
2 ∈ ZG(c) and has

determinant ξr/2 on (V c)⊥.
(d1) If n ≥ 3, the element ξ1ξ

−1
3 ∈ ZG(d) and has determinant ξ on (V d)⊥ =

span-{v1, v2}.
(d2) If p = r/2, the element ξ

r/2
1 ∈ ZG(d) and has determinant ξr/2 on (V d)⊥.

(ef) The elements e and f have order 2.

Thus, it follows from Corollary 1.11, Theorem 1.9b, and Lemma 2.2b that if A is
a graded Hecke algebra for G(r, p, n), then

ab = 0 unless (i) r = 1, or
(ii) r = 2, or
(iii) n = 3 and p 6= 0 mod 3,

ac = 0 unless (i) r = 2 and p = 1, or
(ii) n = 2 and p = r/2,

ad = 0 unless p = r, n = 2 and p 6= 0 mod 2,

ae = 0 always, and

af = 0 always.

In the remaining cases, one uses the description of ZG(g) given just before (2.5) to
check that all elements of ZG(g) have determinant 1 on (V g)⊥. Note that n = 3
and p 6= 0 mod 3 imply that ab = 0 for the elements b = ξa

1ξ−a
3 (1, 2, 3).

We arrive at the following enumeration of the nontrivial graded Hecke algebras
for complex reflection groups. (The tensor product algebra S(V ) ⊗ CG always
exists and corresponds to the case when all of the skew symmetric forms ag are
zero). The table below gives representatives of the conjugacy classes of g ∈ G that
may have ag 6= 0 for some graded Hecke algebra A.
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Group Representative g
with ag 6= 0

G(1, 1, n) = Sn (1, 2, 3)
G(2, 1, n) = WBn, n ≥ 3 ξ1(1, 2), (1, 2, 3)
G(2, 2, n) = WDn, n ≥ 3 (1, 2, 3)
G(r, r, 2) = I2(r) ξk

1ξr−k
2 , 0 < k < r/2

G(r, r/2, 2), r/2 odd ξ
r/2
2 (1, 2)

G(r, r, 3), r 6= 0 mod 3 (1, 2, 3)
G(r, r/2, 3), r/2 6= 0 mod 3, r 6= 2 (1, 2, 3)

Table 2. Graded Hecke algebras for the groups G(r, p, n)

2C. Exceptional complex reflection groups

The irreducible exceptional complex reflection groups G are denoted G4, . . . , G35

in the classification of Shephard and Todd. From Table VII in [ST], one sees that
the center of G is ±1 only in the cases G4, G12, G24 and G33. By Schur’s lemma,
the center of an irreducible complex reflection group consists of multiples of the
identity. Thus, by Corollary 1.11, the only exceptional complex reflection groups
that could have a nontrivial graded Hecke algebra (i.e., with some ag 6= 0) are G4,
G12, G24 and G33 (we exclude the real groups). We determine the graded Hecke
algebras for these groups using Theorem 1.9b and Lemma 2.2.

The rank 2 group G4 has order 24 and seven conjugacy classes. The following
data concerning these conjugacy classes are obtained from the computer software
GAP [S+] using the package CHEVIE [G+]. In the following table, ω is a primitive
cube root of unity and C(g) denotes the conjugacy class of g.

Conjugacy class representatives for G4

Order(g) 1 4 3 6 6 3 2

det(g) 1 1 ω ω ω−1 ω−1 1

|C(g)| 1 6 4 4 4 4 1

|ZG(g)| 24 4 6 6 6 6 24

The elements with determinant 1 and order more than 2 in G4 all have order 4.
If g is an element of order 4, then |ZG(g)| = 4 and every element of ZG(g) has
determinant 1 since ZG(g) is generated by g. Hence, by Theorem 1.9b and Lemma
2.2, ag can be nonzero for a graded Hecke algebra for G4 exactly when g has order
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4. Thus, the dimension of the space of parameters for graded Hecke algebras of
G4 is 1.

The rank 2 group G12 has order 48. The computer software GAP provides the
following information about the conjugacy classes of G12.

Conjugacy class representatives for G12

Order(g) 1 2 8 6 8 2 3 4

det(g) 1 −1 −1 1 −1 1 1 1

|C(g)| 1 12 6 8 6 1 8 6

|ZG(g)| 48 4 8 6 8 48 6 8

If g is an element in G12 with order more than 2 and determinant 1, then g has
order 3, 4, or 6. Let h be any element of order 8. Then h has determinant −1
and commutes with h2 of order 4. Hence, by Theorem 1.9b, if g has order 4,
then ag = 0. Let g6 be a representative from the class of elements of order 6.
Since |ZG(g6)| = 6, ZG(g6) is generated by g6 and hence every element of ZG(g6)
has determinant 1. We can choose g2

6 as a representative for the conjugacy class
of elements of order 3. As g6 and g2

6 commute, 〈g6〉 ⊂ ZG(g2
6). But |〈g6〉| =

6 = |ZG(g3)|, so ZG(g2
6) is generated by g6 and every element of ZG(g3) has

determinant 1. Thus, ag can be nonzero for a graded Hecke algebra A for G12

exactly when g has order 3 or 6. Thus, the dimension of the space of parameters
of graded Hecke algebras for G12 is 2.

The rank 3 group G24 has order 336. Note that −1 ∈ G24 since Z(G) = {±1}.
Up to G-orbits, there are two codimension 2 subspaces, L and M , that are equal to
V g for some g ∈ G24 (see [OT, App. C, Table C.5]). Furthermore, Stab(L) ∼= A2

and Stab(M) ∼= B2. We need only consider elements of order 3 in Stab(L) ∼= A2

and of order 4 in Stab(M) ∼= B2 (as the rest have order 1 or 2). In G24, there is
only one conjugacy class of elements of order 3 and only one conjugacy class of
elements of order 4 and determinant 1. The table below (obtained using GAP)
records information about these classes.

Certain classes of G24

Order(g) 3 4

det(g) 1 1

|C(g)| 56 42

|ZG(g)| 6 8

If g has order 3, ZG(g) must contain 1, g, g2, and −1, and hence ZG(g) is generated
by these elements since |ZG(g)| = 6. Thus all elements of ZG(g) have determinant 1
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on (V g)⊥. If g has order 4 and determinant 1, then ZG(g) must contain 1, g, g2, g3,
and −1, elements which all have determinant 1 on (V g)⊥. Since |ZG(g)| = 8,
these elements generate ZG(g) and so every element of ZG(g) has determinant 1
on (V g)⊥. Hence, ag can be nonzero for a graded Hecke algebra of G24 exactly
when g has order 3 or g has order 4 and determinant 1. Thus, the dimension of
the space of parameters for graded Hecke algebras for G24 is 2.

The group G33 is the only exceptional complex reflection group of rank 5. It
has order 72 · 6! and degrees 4, 6, 10, 12, 18. There are 45 reflecting hyperplanes
and the corresponding reflections all have order 2. Up to G-orbits, there are two
codimension 2 subspaces, L and M , that are equal to V g for some g ∈ G33 (see
[OT, App. C, Table C.14]). Furthermore, Stab(L) ∼= A1×A1 and Stab(M) ∼= A2.
We need not consider the case where V g = L since then g has order 2 and hence
ag = 0 for any graded Hecke algebra by Proposition 2.2b.

We use a presentation for G33 in six coordinates from [ST]: Let V = C6 with
standard coordinate functions xi and consider the group generated by order 2
reflections about the hyperplanes H1 = {x2 − x3 = 0}, H2 = {x3 − x4 = 0},
H3 = {x1−x2 = 0}, H4 = {x1−ωx2 = 0}, H5 = {x1+x2+x3+x4+x5+x6 = 0},
where ω is a primitive cube root of unity. The fixed point space of this (reducible)
group is Y = H1 ∩ · · · ∩ H5 = {(0, 0, 0, 0, x,−x) | x ∈ C}, and G33 is just the
restriction to Y ⊥. Let si be the order 2 reflection about Hi. Let g = s1s3. Then
V g = H1 ∩ H3 and Stab(V g) ∼= A2. Let h = (s1s3s4)2, the diagonal matrix
with diagonal {ω, ω, ω, 1, 1, 1}. Then h acts as ω times the identity on (V g)⊥

as (V g)⊥ ⊆ C-span{x1, x2, x3}. Hence, h commutes with g. But (V g)⊥ has
dimension 2 and h has determinant ω2 6= 1 on (V g)⊥. Thus, by Theorem 1.9b and
Lemma 2.2, ag = 0 for any graded Hecke algebra. The same argument applied
to Y ⊥ shows that G33 has no nontrivial graded Hecke algebras. In summary, the
dimension of the space of parameters for graded Hecke algebras for G33 is zero.

Group g with ag 6= 0

G4 Order(g) = 4
G12 Order(g1) = 3 and Order(g2) = 6
G24 Order(g1) = 3 and Order(g2) = 4,det(g2) = 1

Table 3. Graded Hecke algebras for exceptional complex reflection groups

3. The graded Hecke algebras Hgr

In [Lu], Lusztig gives a definition of graded Hecke algebras for real reflection groups
which is different from the definition in Section 1, which applies to more general
groups. It is not obvious that Lusztig’s algebras are examples of the graded Hecke
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algebras defined in Section 1. In this section, we show explicitly how the definition
of Section 1 includes Lusztig’s algebras.

Let W be a finite real reflection group acting on V and let R be the root system
of W . Let α1, . . . , αn be a choice of simple roots in R and let s1, . . . , sn be the
corresponding simple reflections in W . Let sα be the reflection in the root α so
that, for v ∈ V ,

sαv = v − 〈v, α∨〉α, where α∨ = 2α/〈α, α〉.

Let R+ = {α > 0} denote the set of positive roots in R.
Let kα be fixed complex numbers indexed by the roots α ∈ R satisfying

kwα = kα, for all w ∈ W , α ∈ R. (3.1)

This amounts to a choice of either one or two “parameters”, depending on whether
all roots in R are the same length or not. As in Section 1, let CW = C-span{tg | g ∈
W}, with tgth = tgh, and let S(V ) be the symmetric algebra of V . Lusztig [Lu]
defines the “graded Hecke algebra” with parameters {kα} to be the unique algebra
structure Hgr on the vector space S(V )⊗ CW such that

S(V ) = S(V )⊗ 1 is a subalgebra of Hgr, (3.2a)
CW = 1⊗ CW is a subalgebra of Hgr, (3.2b)

and

tsi
v = (siv)tsi

− kαi
〈v, α∨i 〉,

for all v ∈ V and simple reflections si in the simple roots αi.
(3.2c)

We shall show that every algebra Hgr as defined by (3.2a–c) is a graded Hecke
algebra A for a specific set of skew symmetric bilinear forms ag.

Let kα ∈ C as in (3.1). Use the notation

h = 1
2

∑
α>0

kαα∨tsα
, so that 〈v, h〉 = 1

2

∑
α>0

kα〈v, α∨〉tsα
(3.3)

for v ∈ V . The element h should be viewed as an element of V ⊗ CW , and
〈v, h〉 ∈ CW . With this notation, let A be the algebra (as in Section 1) generated
by V and CW with relations

tgv = (gv)tg and [v, w] = −[〈v, h〉, 〈w, h〉], for v, w ∈ V , g ∈ W .
(3.4)
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Note that A is defined by the bilinear forms

ag(v, w) = 1
4

∑
α, β > 0
g = sαsβ

kαkβ (〈v, β∨〉〈w,α∨〉 − 〈v, α∨〉〈w, β∨〉) .

The following theorem shows that the algebra A satisfies the defining conditions
(3.2a–c) of the algebra Hgr.

Theorem 3.5. Let W be a finite real reflection group and let A be the algebra
defined by (3.4).

(a) As vector spaces, A ∼= S(V )⊗CW (and hence, A is a graded Hecke algebra).
(b) If ṽ = v − 〈v, h〉 for v ∈ V , then

[ṽ, w̃] = 0 and tsi
ṽ = (s̃iv)tsi

− kαi
〈v, α∨i 〉,

for all v, w ∈ V and simple reflections si in W .

Proof. First note that if u, v ∈ V then

[u, 〈v, h〉] = 1
2

∑
α>0

kα〈v, α∨〉〈u, α∨〉αtsα
= [v, 〈u, h〉]. (∗)

Thus, for u, v, w ∈ V ,

[u, [v, w]]+[w, [u, v]] + [v, [w, u]]
= [u, [〈w, h〉, 〈v, h〉]] + [w, [〈v, h〉, 〈u, h〉]] + [v, [〈u, h〉, 〈w, h〉]]
= [[u, 〈w, h〉], 〈v, h〉] + [〈w, h〉, [u, 〈v, h〉]] + [[w, 〈v, h〉], 〈u, h〉]

+ [〈v, h〉, [w, 〈u, h〉]] + [[v, 〈u, h〉], 〈w, h〉] + [〈u, h〉], [v, 〈w, h〉]]
= [[w, 〈u, h〉], 〈v, h〉] + [〈w, h〉, [v, 〈u, h〉]] + [[v, 〈w, h〉], 〈u, h〉]

+ [〈v, h〉, [w, 〈u, h〉]] + [[v, 〈u, h〉], 〈w, h〉] + [〈u, h〉, [v, 〈w, h〉]]
= 0.

(3.6)
For v ∈ V , h ∈ W , and si a simple reflection,

tsi
〈v, h〉tsi

=
1
2

∑
α>0

kα〈v, α∨〉tssiα
=

(
1
2

∑
α>0

kα〈v, siα
∨〉tsα

)
+ kαi

〈v, α∨i 〉tsi

=

(
1
2

∑
α>0

kα〈siv, α∨〉tsα

)
+ kαi

〈v, α∨i 〉tsi
= 〈siv, h〉+ kαi

〈v, α∨i 〉tsi
.

(3.7)
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Using this equality, we obtain

tsi
[v, w]tsi

= −tsi
[〈v, h〉, 〈w, h〉]tsi

= −[〈siv, h〉+ kαi
〈v, α∨i 〉tsi

, 〈siw, h〉+ kαi
〈w,α∨i 〉tsi

]
= [siv, siw]− kαi

〈v, α∨i 〉[tsi
, 〈siw, h〉]− kαi

〈w,α∨i 〉[〈siv, h〉, tsi
]

= [siv, siw]− kαi
〈v, α∨i 〉(tsi

〈siw, h〉tsi
− 〈siw, h〉)tsi

+ kαi
〈w,α∨i 〉(tsi

〈siv, h〉tsi
− 〈siv, h〉)tsi

= [siv, siw]− kαi
〈v, α∨i 〉(〈w, h〉tsi

+ kαi
〈siw,α∨i 〉 − 〈siw, h〉tsi

)
+ kαi

〈w,α∨i 〉(〈v, h〉tsi
+ kαi

〈siv, α∨i 〉 − 〈siv, h〉tsi
)

= [siv, siw]− kαi
〈v, α∨i 〉〈w,α∨i 〉〈αi, h〉tsi

− k2
αi
〈v, α∨i 〉〈w, siα

∨
i 〉

+ kαi
〈w,α∨i 〉〈v, α∨i 〉〈αi, h〉tsi

+ k2
αi
〈w,α∨i 〉〈v, siα

∨
i 〉

= [siv, siw].

(3.8)

The two identities (3.6) and (3.8), as in (1.3) and (1.4), show that the algebra A
is isomorphic to S(V )⊗ CW .

(b) This can now be proved by direct computation. If v, w ∈ V then

[ṽ, w̃] = [v−〈v, h〉, w−〈w, h〉] = [v, w]+ [〈v, h〉, 〈w, h〉]− [v, 〈w, h〉]+ [w, 〈v, h〉] = 0,

by equation (3.4) and equation (∗) in the proof of Theorem 3.5. If v ∈ V and si

is a simple reflection then, by (3.7),

tsi
ṽtsi

= tsi
vtsi

− tsi
〈v, h〉tsi

= siv− 〈siv, h〉 − kαi
〈v, α∨i 〉tsi

= s̃iv− kαi
〈v, α∨i 〉tsi

.
¤

Theorem 3.5b shows that if A is the graded Hecke algebra defined by (3.4),
then the elements ṽ, for v ∈ V , generate a subalgebra of A isomorphic to S(V )
and these elements together with the tsi

satisfy the relations of (3.2c). Since part
(a) of Theorem 3.5 shows that A is isomorphic to S(V )⊗CW as a vector space, it
follows that A satisfies the conditions (3.2a–c), relations which uniquely define the
graded Hecke algebra A. Thus, Lusztig’s algebras are special cases of the graded
Hecke algebras defined in Section 1. Furthermore, by comparing the dimensions
of the parameter spaces, we see that there are graded Hecke algebras that are not
isomorphic to algebras defined by Lusztig for the Coxeter groups F4, H3, H4, and
I2(m).
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4. Examples

4A. The symmetric group G(1, 1, n) = Sn

Let V be an n dimensional vector space with orthonormal basis v1, . . . , vn and let
Sn act on V by permuting the vi. Let A be a graded Hecke algebra for Sn. Any
element which is a product of two reflections is conjugate to (1, 2, 3) or (1, 2)(3, 4).
The element (1, 2)(3, 4) has order 2 and so, in the algebra A,

[vi, vj ] =
∑

k 6=i,j

(a(i,j,k)(vi, vj)t(i,j,k) + a(j,i,k)(vi, vj)t(j,i,k)),

since vi or vj is in V g = ker ag for all other three cycles g. Since, by (1.6),
a(j,i,k)(vi, vj) = a(i,j,k)(vj , vi) = −a(i,j,k)(vi, vj), the graded Hecke algebra A is
defined by the relations

[vi, vj ] = β
∑

k 6=i,j

(t(i,j,k) − t(j,i,k)) and twvi = vw(i)tw, (4.1)

where w ∈ Sn, 1 ≤ i, j ≤ n, i 6= j, and β = a(1,2,3)(v1, v2).
Let k ∈ C. Then, with h as in (3.3),

〈vi, h〉 =
1
2

∑
`<m

k〈vi, v` − vm〉t(`,m)

=
k

2

(∑
i<`

t(i,`) −
∑
i>`

t(`,i)

)
=

k

2

∑
i6=`

sgn(`− i)t(i,`).
(4.2)

If f ∈ CSn, let f
∣∣
tg

denote the coefficient of tg in f . Let A be the graded Hecke
algebra defined by the relations in (4.1) with

β = a(i,j,`)(vi, vj) = [〈vi, h〉, 〈vj , h〉]
∣∣
t(i,j,`)

= (k2/4)(t(i,`)t(j,`) + t(i,j)t(i,`) − t(j,`)t(i,j))
∣∣
t(i,j,`)

= k2/4.
(4.3)

If ṽi = vi − 〈vi, h〉 and si is the simple reflection (i, i + 1) then, by Theorem 3.5,

ṽiṽj = ṽj ṽi, tsi
ṽi = ṽi+1tsi

+ k, tsi
ṽi+1 = ṽitsi

− k, and
tsj

ṽi = ṽitsj
, for |i− j| > 1,

(4.4)

and the algebra A is the graded Hecke algebra Hgr for Sn which is defined in
Section 3. When k = 1, the map

A −→ CSn

tw 7−→ tw

vi 7−→ 1
2

∑
` 6=i

t(i,`)

(4.5)

is a surjective algebra homomorphism.
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4B. The hyperoctahedral group G(2, 1, n) = WBn

We use the notation from Section 2B so that the group G(2, 1, n) is acting by
orthogonal matrices on the n dimensional vector space V with orthonormal basis
{v1, . . . , vn}. In this case, ξi denotes the diagonal matrix with all ones on the
diagonal except for −1 in the (i, i)th entry.

Let A be a graded Hecke algebra for G(2, 1, n). If β1 = a(i,j,k)(vi, vj) and
β2 = aξ1(1,2)(v1, v2), then, in the algebra A,

[vi, vj ] = β2(tξ1(1,2) − tξ2(1,2))

+ β1

∑
` 6=i,j

(
t(i,j,`) − tξiξ`(i,j,`) − tξiξj(i,j,`) + tξjξ`(i,j,`)

+tξiξj(j,i,`) + tξjξ`(j,i,`) − tξiξ`(j,i,`) − t(j,i,`)

)
.

(4.6)

Let ks, k` ∈ C. Then, with h as in (3.3),

〈vi, h〉 =
ks

2

∑
`

〈vi, 2v`〉tξ`
− k`

2

∑
`<m

〈vi, v` − vm〉t(`,m) −
k`

2

∑
`<m

〈vi, v` + vm〉tξ`(`,m)

= kstξi
− k`

2

(∑
i<`

(t(i,`) + tξiξ`(i,`)) +
∑
i>`

(−t(i,`) + tξiξ`(i,`))

)
.

(4.7)
If f ∈ CG(2, 1, n), let f

∣∣
tg

denote the coefficient of tg in f . With notation as in
(4.6), let A be the graded Hecke algebra for G(2, 1, n) with

β1 = a(i,j,`)(vi, vj) = [〈vi, h〉, 〈vj , h〉]
∣∣
t(i,j,`)

= (k2
` /4)(t(i,`)t(j,`) + t(i,j)t(i,`) − t(j,`)t(i,j))

∣∣
t(i,j,`)

= k2
` /4, and

β2 = [〈vi, h〉, 〈vj , h〉]
∣∣
tξi(i,j)

= (1/2)ksk`(−tξi
t(i,j) + t(i,j)tξj

− tξj
tξiξj(i,j) − tξiξj(i,j)tξi

)
∣∣
tξi(i,j)

= −ksk`.

If ṽi = vi − 〈vi, h〉, then, by Theorem 3.5, the ṽi commute and the algebra A is
the algebra Hgr for WBn defined in Section 3.

4C. The type Dn Weyl group G(2, 2, n) = WDn

We shall use the notation from Section 2B so that the group G(2, 2, n) is acting by
orthogonal matrices on the n dimensional vector space V with orthonormal basis
{v1, . . . , vn}. This is an index 2 subgroup of G(2, 1, n), and our notation is the
same as used above for WBn.

Let A be a graded Hecke algebra for G(2, 2, n). If β = a(i,j,k)(vi, vj) then, in
the algebra A,

[vi, vj ] = β
∑
` 6=i,j

(
t(i,j,k) − tξiξ`(i,j,`) − tξiξj(i,j,`) + tξjξ`(i,j,`)

+tξiξj(j,i,`) + tξjξ`(j,i,`) − tξiξ`(j,i,`) − t(j,i,`)

)
. (4.8)
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Let k ∈ C. Then, with h as in (3.3),

〈vi, h〉 =
k

2

(∑
i<`

(t(i,`) + tξiξ`(i,`)) +
∑
i>`

(−t(i,`) + tξiξ`(i,`))

)
. (4.9)

If f ∈ CG(2, 2, n), let f
∣∣
tg

denote the coefficient of tg in f . With notation as in
(4.8), let A be the graded Hecke algebra for G(2, 2, n) with

β = a(i,j,`)(vi, vj) = [〈vi, h〉, 〈vj , h〉]
∣∣
t(i,j,`)

= (k2/4)(t(i,`)t(j,`) + t(i,j)t(i,`) − t(j,`)t(i,j))
∣∣
t(i,j,`)

= k2/4.

If ṽi = vi − 〈vi, h〉, then, by Theorem 3.5, the ṽi commute and the algebra A is
the algebra Hgr for WDn defined in Section 3.

4D. The dihedral group I2(r) = G(r, r, 2) of order 2r

We shall use the notation for G(r, r, 2) from Section 2B so that the group G(r, r, 2)
is acting by unitary matrices on the 2 dimensional vector space V with orthonormal
basis {v1, v2}. The group G(r, r, 2) is realized as a real reflection group by using
the basis

ε1 =
1√
2
(v1 + v2), ε2 =

−1
i
√

2
(v1 − v2).

This basis is also orthonormal and, with respect to this basis, G(r, r, 2) acts by
the matrices (

cos(2πm/r) ∓ sin(2πm/r)
sin(2πm/r) ± cos(2πm/r)

)
, 0 ≤ m ≤ r − 1.

Let A be a graded Hecke algebra for G(r, r, 2). The conjugacy classes of el-
ements which are products of two reflections are {ξk

1ξ−k
2 , ξ−k

1 ξk
2}, 0 < k < r/2.

Then, in the algebra A,

[ε1, ε2] =
∑

0<k<r/2

βk(tξk
1
ξ−k

2
− tξ−k

1
ξk
2
), where βk = aξk

1
ξ−k

2
(ε1, ε2). (4.10)

When r is even, there are two conjugacy classes of reflections

{ξ2k
1 ξ−2k

2 (1, 2) | 0 ≤ k < r/2} and {ξ2k+1
1 ξ

−(2k+1)
2 (1, 2) | 0 ≤ k < r/2}.

The reflection ξm
1 ξ−m

2 (12) is the reflection in the line perpendicular to the vector

αm = sin(−2πm/2r)ε1 + cos(−2πm/2r)ε2,
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and the vectors αm can be taken as a root system for G(r, r, 2). With h as in (3.3)
and ks, k` ∈ C,

〈ε1, h〉 =
∑

0≤k<r/2

(
ks sin(−2k 2π/2r)t

ξ2k
1

ξ−2k

2
(1,2)

+k` sin(−(2k + 1) 2π/2r)t
ξ2k+1
1

ξ
−(2k+1)
2

(1,2)

)
,

〈ε2, h〉 =
∑

0≤k<r/2

(
ks cos(−2k 2π/2r)t

ξ2k
1

ξ−2k

2
(1,2)

+k` cos(−(2k + 1) 2π/2r)t
ξ2k+1
1

ξ
−(2k+1)
2

(1,2)

)
.

(4.11)

If f ∈ CG(r, r, 2), let f
∣∣
tg

denote the coefficient of tg in f . With notation as in
4.10, let A be the graded Hecke algebra for G(r, r, 2) with

βk = aξk
1
ξ−k

2
(ε1, ε2) = [〈ε1, h〉, 〈ε2, h〉]

∣∣
t
ξk
1

ξ
−k

2

=


sin(k 2π/2r)rksk` if k is odd

sin(k 2π/2r) r
2 (k2

s + k2
` ) if k is even.

(4.12)

If ε̃i = εi− 〈εi, h〉, then by Theorem 3.5, the ε̃i commute and the algebra A is the
algebra Hgr for I2(r) defined in Section 3.

When r is odd, all aspects of the calculation in (4.11) and (4.12) are the same
as for the case r even except that there is only one conjugacy class of reflections,
{ξk

1ξ−k
2 (1, 2) | 0 ≤ k ≤ r − 1}, and so ks = k`.

4E. The group G(r, r/2, 2), r/2 odd

We use the notation from Section 2B, or from above for the group G(r, r, 2). In
this case, the group is not a real reflection group, hence G(r, r/2, 2) acts by unitary
matrices but not by orthogonal matrices.

Let A be a graded Hecke algebra for G(r, r/2, 2). The only conjugacy class for
which ag can be nonzero is {t

ξk
1
ξ

r/2−k

2
(1,2)

| 0 ≤ k < r}. Thus, in the algebra A,

[v1, v2] = β
∑

k

(t
ξ2k
1

ξ
r/2−2k

2
(1,2)

−t
ξ

r/2−2k

1
ξ2k
2

(1,2)
), where β = a

ξ
r/2
2

(1,2)
(v1, v2).
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5. A different graded Hecke algebra for G(r, 1, n)

The classification of graded Hecke algebras for complex reflection groups in Sec-
tion 2 shows that there do not exist graded Hecke algebras A ∼= S(V ) ⊗ CG for
the groups G = G(r, 1, n), r > 2, n > 3. In this section, we define a different
“semidirect product” of the symmetric algebra S(V ) and the group algebra CG
for the groups G(r, 1, n). These algebras are not graded Hecke algebras in the
sense of Section 1, but they do have a structure similar to what we would expect
from experience with graded Hecke algebras for real reflection groups. Is it possi-
ble that there is a general definition of graded Hecke algebras, different from that
given in Section 1, which includes the algebras defined below as examples for the
groups G(r, 1, n)?

We shall use the notation for the groups G(r, 1, n) as in Section 2B so that the
group G(r, 1, n) is acting by monomial matrices on a vector space V of dimension
n with orthonormal basis {v1, . . . , vn}. Let si denote the permutation (i, i + 1) ∈
G(r, 1, n).

Define H∗
r,1,n to be the algebra generated by the group algebra CG(r, 1, n) and

V with relations

vivj = vjvi, for all 1 ≤ i, j ≤ n,

tξi
vj = vjtξi

, for all 1 ≤ i, j ≤ n,

tsi
vk = vktsi

, if k /∈ {i, i + 1},

tsi
vi+1 = vitsi

+
r−1∑
`=0

tξ`
i
ξ−`

i+1
, for 1 ≤ i ≤ n− 1.

(5.1)

The following proposition establishes an “evaluation homomorphism” for the al-
gebras H∗

r,1,n which is a generalization of the homomorphism in (4.5).

Proposition 5.2. Define elements v̄k in the group algebra CG(r, 1, n) by setting
v̄1 = 0 and

v̄k =
1
r

∑
i<k

∑
0≤`≤r−1

tξ`
i
ξ−`

k
(i,k), for 2 ≤ k ≤ n.

Then there is a surjective algebra homomorphism

H∗
r,1,n −→ CG(r, 1, n)
tg 7−→ tg
vk 7−→ v̄k

Proof. We must check that the defining relations (5.1) of H∗
r,1,n hold with the vk

replaced by the v̄k.
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For each 1 ≤ k ≤ n, let

z̄k = v̄1 + · · ·+ v̄k =
1
r

∑
1≤i<j≤k
0≤`≤r−1

tξ`
i
ξ−`

j
(i,j).

Then, for each k, z̄k ∈ Z(CG(r, 1, k)) since it is the sum of the elements of the con-
jugacy class of reflections tξ`

i
ξ−`

j
(i,j) in G(r, 1, k). So z̄k commutes with z̄1, . . . , z̄k

and therefore z̄1, . . . , z̄n commute. Since v̄k = z̄k− z̄k−1, it follows that v̄1, . . . , v̄n

also commute.
If m > k then tξm

clearly commutes with z̄k. If m ≤ k then tξm
commutes

with z̄k since z̄k ∈ Z(G(r, 1, k)). So tξm
commutes with z̄1, . . . , z̄n and hence with

v̄1, . . . , v̄n.
Since

tsk
v̄ktsk

= tsk

 ∑
i<k

0≤`≤r−1

tξ`
i
ξ−`

k
(i,k)

 tsk
=

∑
i<k

0≤`≤r−1

tξ`
i
ξ−`

k+1
(i,k+1)

=
∑

i<k+1
0≤`≤r−1

tξ`
i
ξ−`

k+1
(i,k+1) −

∑
0≤`≤r−1

tξ`
k
ξ−`

k+1
(k,k+1)

= v̄k+1 −
∑

0≤`≤r−1

tξ`
k
ξ−`

k+1
tsk

,

it follows that

v̄ktsk
= tsk

v̄k+1 −
∑

0≤`≤r−1

tsk
tξ`

k
ξ−`

k+1
tsk

= tsk
v̄k+1 −

∑
0≤`≤r−1

tξ−`
k

ξ`
k+1

= tsk
v̄k+1 −

∑
0≤`≤r−1

tξ`
k
ξ−`

k+1
.

¤
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