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Abstract. In this paper, we give a complete description of the deformation classes of real
structures on minimal ruled surfaces. In particular, we show that these classes are determined
by the topology of the real structure, which means, using the terminology of [5], that real minimal
ruled surfaces are quasi-simple. As an intermediate result, we obtain the classification, up to
conjugation, of real structures on decomposable ruled surfaces.
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0. Introduction

Let X be a smooth compact complex surface. A real structure on X is an antiholo-
morphic involution cX : X → X. The real part of (X, cX) is by definition the fixed
point set of cX . If X admits a holomorphic submersion on a smooth compact com-
plex irreducible curve B whose fibers have genus zero, then it is called a minimal
ruled surface. These surfaces are all algebraic, minimal – with the exception of the
blown-up projective plane – and of Kodaira dimension −∞ (see [2]). Real minimal
ruled surfaces are one of the few examples of real algebraic surfaces of special type
whose classification under real deformation is not known, see the recent results [5],
[4], [3] and the survey [6] for detailed history and references. The purpose of this
paper is to fill this gap. Since all the ruled surfaces considered in this paper will
be minimal, from now on we will call them “ruled” rather than “minimal ruled”.

Rational surfaces are well known (see [5]), so we can restrict ourselves to non-
rational ruled surfaces. The ruling p : X → B is then unique and any real structure
cX on X is fibered over a real structure cB on B in the sense that cB ◦ p = p ◦ cX .
The topology of the real part of X as well as the topology of the real curve
(B, cB) provide us with a topological invariant under real deformation which we
call the topological type of the surface. This invariant is encoded by a quintuple of
integers: the number of tori and Klein bottles of RX, the genus of B, the number
of components of RB and the type of (B, cB) (see §3.2). The main result of this
paper is the following (see theorem 3.7 and proposition 3.4):
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Theorem 0.1. Two real (minimal) non-rational ruled surfaces are in the same
real deformation class if and only if they have the same topological type and home-
omorphic quotients. Moreover, any allowable quintuple of integers is realized as
the topological type of a real non-rational ruled surface.

Remember that in the case of rational ruled surfaces, the analogous result is
(see [5] or [6]):

Theorem 0.2. There are four deformation classes of real structures on rational
ruled surfaces, one for which the real part is a torus, one for which the real part
is a sphere and two for which the real part is empty. These two latter have non-
homeomorphic quotients. ¤

Note that as soon as the bases of the surfaces have non-empty real parts,
the condition on the quotients in theorem 0.1 can be removed. A quintuple of
integers is called allowable when it satisfies the few obvious conditions satisfied by
topological types of real non-rational ruled surfaces, see §3.2 for a precise definition.
Remember that any compact complex surface lying in the deformation class of a
non-rational ruled surface is itself a non-rational ruled surface (see, for example,
[1]). A definition of real deformation classes can be given as follows. Equip the
Poincaré’s disk ∆ ⊂ C with the complex conjugation conj. A real deformation of
surfaces is a proper holomorphic submersion π : Y → ∆ where Y is a complex
manifold of dimension 3 equipped with a real structure cY and π satisfies π ◦ cY =
conj ◦ π. Then, when t ∈] − 1, 1[∈ ∆, the fibers Yt = π−1(t) are invariant under
cY and hence are compact real surfaces. Two real surfaces X ′ and X ′′ are said to
be in the same deformation class if there exists a chain X ′ = X0, . . . , Xk = X ′′ of
compact real surfaces such that for every i ∈ {0, . . . , k − 1}, the surfaces Xi and
Xi+1 are isomorphic to some real fibers of a real deformation.

Remember that every ruled surface is the projectivization P (E) of a rank two
complex vector bundle E over B (see [2]). Moreover P (E) and P (E′) are isomor-
phic if and only if E′ = E ⊗ L where L is a complex line bundle over B. A ruled
surface is said to be decomposable if E is decomposable, that is if E is the direct
sum of two complex line bundles. The paper is organized as follows. In the first
section, we give constructions of some particular real structures on decomposable
ruled surfaces. In the second section we obtain a classification, up to conjugation,
of real structures on decomposable ruled surfaces (see theorem 2.3). This result,
of independent interest, plays a crucial rôle in the proof of theorem 0.1. In this
section is also given a result independent of real algebraic geometry, which con-
cerns the lifting of automorphisms of the ruled surface X to automorphisms of
the rank two vector bundle E, see proposition 2.1. Finally, the third section is
devoted to the proof of theorem 0.1. This gives a complete description of the de-
formation classes of real structures on ruled surfaces. In particular, it shows that
these classes are determined by the topology of the real structure, which means,
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using the terminology of [5], that real ruled surfaces are quasi-simple.

Acknowledgements. I am grateful to V. Kharlamov for the useful remarks he
made on this paper. In particular, remark 3.13 is due to him.

1. Construction of some particular real structures

1.1. Meromorphic functions and real structures

Let B be a smooth compact complex irreducible curve. Denote by Pic(B) the
group of complex line bundles over B. This group is identified with the group
of divisors modulo principal ones. Let φ : B → B be a holomorphic or anti-
holomorphic automorphism, and let D =

∑k
i=1 nipi, ni ∈ Z, pi ∈ B, be a divisor on

B. Then we denote by φ∗(D) the divisor
∑k

i=1 niφ
−1(pi) and by φ(D) the divisor∑k

i=1 niφ(pi). The morphism on the quotient Pic(B) of the group of divisors
induced by φ∗ will also be denoted by φ∗. We denote by L0 the trivial line bundle
over B and by L∗ the line bundle dual to L, so that L⊗ L∗ = L0.

Suppose from now on that B is equipped with a real structure cB , that is an
anti-holomorphic involution cB .

Lemma 1.1. Let L ∈ Pic(B) be a line bundle such that c∗B(L) = L. Then, for
every divisor D associated to L, there exists a meromorphic function fD on B
such that div(fD) = cB(D)−D and fDfD ◦ cB = ±1.

Proof. By assumption, D and cB(D) are linearly equivalent. As a consequence,
there exists a meromorphic function f such that div(f) = cB(D) − D. Then,
h = f ◦ cB is a meromorphic function on B satisfying div(h) = D− cB(D). So fh
is a holomorphic function on B. This means that there exists a constant λ ∈ C∗
such that f f ◦ cB = λ.

But for all x ∈ B,

λ = (f f ◦ cB)(cB(x)) = f ◦ cB(x)f(x) = f(x)f ◦ cB(x) = λ.

Thus λ ∈ R∗, and we define fD = 1√
|λ|f . ¤

Remark 1.2. As soon as RB is non-empty, fDfD ◦ cB = +1, since for every
x ∈ RB we have fDfD ◦ cB(x) = |f(x)|2 ≥ 0. Nevertheless, when RB = ∅, there
always exists a divisor D on B, of degree congruent to g(B) − 1 mod (2) where
g(B) is the genus of B, such that fDfD ◦ cB = −1 (see [7], proposition 2.2).

Note also that the function fD given by lemma 1.1 is not unique, since for every
constant λ ∈ C such that |λ| = 1, the function λfD has the same properties.
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Lemma 1.3. Let L ∈ Pic(B) be a line bundle such that c∗B(L) = L∗. Then, for
every divisor D associated to L, there exists a meromorphic function fD on B
such that div(fD) = D + cB(D) and fD = fD ◦ cB.

Proof. By assumption, cB(D) and −D are linearly equivalent. As a consequence,
there exists on B a meromorphic function f such that div(f) = D+ cB(D). Then,
h = f ◦ cB is a meromorphic function on B satisfying div(h) = cB(D) + D =
div(f). Thus there exists a constant λ ∈ C∗ such that h = λf . But,

λ =
h ◦ cB

f ◦ cB
=

f

f ◦ cB
=

( f

f ◦ cB

)
=

1
λ

.

Hence there exists θ∈R such that λ=exp(2iθ), and we define fD =exp(iθ)f .¤

Remark 1.4. The function fD given by lemma 1.3 is not unique: for every λ ∈ R∗,
the function λfD has the same properties. Note that every zero or pole of fD on
RB has even order, so that the sign of fD is constant on every component of RB.

1.2. Some particular real structures

Let D =
∑k

i=1 nipi be a divisor on B, where pi ∈ B and ni ∈ Z (i ∈ {1, . . . , k}).
We can assume that the set {pi | 1 ≤ i ≤ k} is invariant under cB (add some
points with zero coefficients to D if necessary). Denote by U0 = B \ {pi | 1 ≤
i ≤ k} and for every i ∈ {1, . . . , k}, choose a holomorphic chart (Upi

, φpi
) such

that Upi
∩ Upj

= ∅ if i 6= j, cB(Upi
) = UcB(pi) and φpi

: Upi
→ ∆ = {z ∈

C | |z| < 1} is a biholomorphism. Require in addition that φpi
(pi) = 0 ∈ ∆ and

φcB(pi) ◦ cB ◦φ−1
pi

(z) = z for all z ∈ ∆ and i ∈ {1, . . . , k} (such charts always exist,
see [12]). Such an atlas is called compatible with the divisor D and the group
< cB >.

For every i ∈ {1, . . . , k}, denote by ψi the morphism:

(Upi
\ pi)× C → U0 × C

(x, z) 7→ (x, φpi
(x)−niz).

The morphisms ψi allow to glue together the trivializations Upi
×C, i ∈ {0, . . . , k},

in order to define the line bundle L associated to D. Such trivializations are called
compatible with the divisor D and the group < cB >.

Let L (resp. X) be a line bundle (resp. a ruled surface) over B. The real
structure cL on L (resp. cX on X) is said to be fibered over cB , or that it lifts cB ,
if p ◦ cL = cB ◦ p (resp. p ◦ cX = cB ◦ p) where p is the projection L → B (resp.
X → B).

Lemma 1.5. There exists a real structure on L ∈ Pic(B) which lifts cB if and only
if c∗B(L) = L and for every couple (D, fD) given by lemma 1.1, fDfD ◦ cB = +1.
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Proof. =⇒: Let s be a meromorphic section of L and D = div(s). Let cL be a real
structure on L and s̃ = cL◦s◦cB . Then s̃ is another meromorphic section of L. This
implies that div(s̃) and div(s) are linearly equivalent. Since div(s̃) = cB(div(s)),
we deduce that c∗B(L) = L. Moreover, s̃ = fs where f is a meromorphic function
on B satisfying div(f) = cB(D) − D. Since s = cL ◦ s̃ ◦ cB = cL ◦ (fs) ◦ cB =
(f ◦ cB)s̃ = (f ◦ cB)fs, we have (f ◦ cB)f = +1. Changing the section s, the same
is obtained for any couple (D, fD) given by lemma 1.1.

⇐=: Let L be a line bundle such that c∗B(L) = L and (D, fD) a couple given
by lemma 1.1 such that fDfD ◦ cB = +1. Denote D =

∑k
i=1 nipi and let U0 =

B \ {pi | 1 ≤ i ≤ k} and (Upi
, φpi

), i ∈ {1, . . . , k}, be an atlas compatible with the
divisor D and the group < cB >.

The maps
U0 × C → U0 × C

(x, z) 7→ (cB(x), fD ◦ cB(x)z),

and for every i ∈ {1, . . . , k},
Upi

× C → UcB(pi) × C
(x, z) 7→ (cB(x), fD ◦ cB(x)φpi

(x)
ncB(pi)−npi z)

glue together to form an antiholomorphic map cL on L. This map lifts cB and is
an involution, hence the result. ¤

Proposition 1.6. Let L ∈ Pic(B) be a line bundle such that c∗B(L) = L∗. Then to
every couple (D, fD) given by lemma 1.3 is associated a real structure cfD

on the
ruled surface X = P (L⊕L0) which lifts cB. The real part of (X, cfD

) is orientable
and consists of t+ tori, where t+ is the number of components of RB on which fD

is non-negative (see remark 1.4).

Remark 1.7. For the sake of simplicity, when there will not be any ambiguity on
the choice of the function fD, we will denote by c+

X (resp. c−X) the real structure
cfD

(resp. c−fD
). The real part of (X, c−fD

) consists of t− tori, where t− is the
number of components of RB on which fD ≤ 0. Obviously, t+ + t− = µ(RB),
where µ(RB) is the number of components of RB. Thus, when µ(RB) is odd,
the real structures c+

X and c−X on X cannot be conjugated, since the numbers of
components of their real parts do not have the same parity. Nevertheless, these
two real structures may sometimes be conjugated. This situation will be studied
in the next section, proposition 2.6.

Proof. Let (D, fD) be a couple given by lemma 1.3, so that fD = fD ◦ cB and
div(fD) = D + cB(D). Let pi ∈ B and ni ∈ Z, i ∈ {1, . . . , k}, be such that
D =

∑k
i=1 nipi. We can assume that the set {pi | 1 ≤ i ≤ k} is invariant under cB .

Let U0 = B \ {pi | 1 ≤ i ≤ k} and (Upi
, φpi

), i ∈ {1, . . . , k}, be an atlas compatible
with the divisor D and the group < cB >.
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The morphisms:

(Upi
\ pi)× CP 1 → U0 × CP 1

(x, (z1 : z0)) 7→ (x, (φpi
(x)−niz1 : z0))

(i ∈ {1, . . . , k}) allow to glue together the trivializations Upi
×CP 1, i ∈ {0, . . . , k},

in order to define the ruled surface X.
Now, the maps

U0 × CP 1 → U0 × CP 1

(x, (z1 : z0)) 7→ (cB(x), (z0 : fD ◦ cB(x)z1)),

and for every i ∈ {1, . . . , k},
Upi

× CP 1 → UcB(pi) × CP 1

(x, (z1 : z0)) 7→ (cB(x), (z0 : fD ◦ cB(x)φpi
(x)

−ncB(pi)−npi z1)

glue together to form an antiholomorphic map cfD
on X. This map lifts cB and

is an involution. The first part of proposition 1.6 is proved.
Now, the fixed point set of cfD

in U0 × CP 1 is:

{(x, (θ :
√

fD(x))) ∈ U0 × CP 1 |x ∈ RB, fD(x) ≥ 0 and θ ∈ C, |θ| = 1}.
The connected components of this fixed point set are then tori or cylinders de-
pending on whether the corresponding component of RB is completely included
in U0 or not. Similarly, the fixed point set of cfD

in Upi
× CP 1 is:

{(x, (θi :
√

fD(x)x−2ni
i )) ∈ Upi

× CP 1 |x ∈ RB, fD(x) ≥ 0 and θi ∈ C, |θi| = 1},
where xi = φpi

(x). This fixed point set is a cylinder if pi ∈ RB and is empty
otherwise.

The gluing maps between these cylinders are given by θ = −θi if xi = φpi
(x) <

0 and by θ = θi if xi = φpi
(x) > 0. Since both id and −id preserve the orientation

of the circle U1 = {z ∈ C | |z| = 1}, the results of these gluings are always tori.
Thus, the real part of (X, cfD

) consists only of tori and the number of such tori is
the number of components of RB on which fD ≥ 0, that is t+. ¤

2. Conjugacy classes of real structures on decomposable ruled
surfaces

2.1. Lifting of automorphisms of X

I could not find the following proposition in the literature, so I give it here.

Proposition 2.1. Let L be a complex line bundle over B and X be the ruled
surface P (E), where E = L⊕ L0.
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If L 6= L∗ or if L = L0, then every automorphism of X fibered over the identity
of B lifts to an automorphism of E. If L = L∗ and L 6= L0, then the auto-
morphisms of X fibered over the identity of B which lift to automorphisms of E
form an index two subgroup of the group of automorphisms of X fibered over the
identity. In that case, the automorphisms of X which do not lift are of the form

φλ =
[

0 λs
s 0

]
,

where λ ∈ C∗ and s is a non-zero meromorphic section of L.

Remark 2.2. The automorphims φλ introduced in proposition 2.1 are holomor-
phic involutions of X.

Proof. Denote by O∗B the sheaf of holomorphic functions on B which do not vanish
and byAut(E) (resp.Aut(X)) the sheaf of automorphisms of E (resp. of X) fibered
over the identity. These sheaves satisfy the exact sequence:

1 → O∗B → Aut(E) → Aut(X) → 1.

We deduce the following long exact sequence:

1 → H0(B,O∗B) → H0(B,Aut(E)) → H0(B,Aut(X))

→ H1(B,O∗B) → H1(B,Aut(E))

We are searching for the image of the morphism H0(B,Aut(E)) → H0(B,Aut(X)).
To compute this image, let us study the kernel of the map i∗ : H1(B,O∗B) →
H1(B,Aut(E)).

Remember that the group H1(B,O∗B) is isomorphic to Pic(B). Such an isomor-
phism can be defined as follows: fix a divisor

∑t
j=1 rjqj , where for j ∈ {1, . . . , t},

rj ∈ Z and qj ∈ B. Denote by U0 = B\{qj | 1 ≤ j ≤ t} and for every j ∈ {1, . . . , t},
choose a holomorphic chart (Uqj

, φqj
) of B such that Uqj

∩ Uqj′ = ∅ if j 6= j′,
φqj

: Uqj
→ ∆ = {z ∈ C | |z| < 1} is a biholomorphism and φqj

(qj) = 0 ∈ ∆.
Denote by U the covering of B defined by U0, . . . , Ut and consider the following
sections of O∗B (j ∈ {1, . . . , t}):

l10j : U0 ∩ Uj → C∗

x 7→ φqj
(x)rj = x

rj

j ,

where by definition xj = φqj
(x) ∈ ∆. These sections define a 1-cocycle of B with

coefficient in O∗B and we denote with the same letter l1 its cohomology class in
H1(U ,O∗B) and in H1(B,O∗B). This construction defines an isomorphism between
Pic(B) and H1(B,O∗B).

So let l1 ∈ H1(B,O∗B) be associated to the divisor
∑t

j=1 rjqj . Then m1 = i∗(l1)
is the cohomology class of the 1-cocycle with coefficient in Aut(E) defined by the
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following sections (j ∈ {1, . . . , t}):
m1

0j : U0 ∩ Uj → Aut(E)

x 7→
[

x
rj

j 0
0 x

rj

j

]
.

Suppose that m1 = 0 ∈ H1(B,Aut(E)). Then
∑t

j=1 rjqj is of degree zero, since
0 = det(m1) = 2l1 ∈ H1(B,O∗B). Moreover, since the map H1(U ,Aut(E)) →
H1(B,Aut(E)) is injective (see [10], lemma 3.11, p. 294), m1 is the coboundary
of a 0-cochain given in the covering U by the following sections (j ∈ {0, . . . , t}):

m0
j : Uj → Aut(E)

x 7→
[

aj(x) cj(x)
bj(x) dj(x)

]
,

where aj , dj are 0-cochains with coefficients inOB , cj is a 0-cochain with coefficient
in OB(L), dj is a 0-cochain with coefficient in OB(L∗) and ajdj − bjcj does not
vanish. Then, the equality m1 = δm0 can be written:

∀j ∈ {1, . . . , t}, m1
0j = m0

0(m
0
j )
−1,

which rewrites as m0
0 = x

rj

j m0
j (j ∈ {1, . . . , t}). Hence, we deduce that for j ∈

{1, . . . , t}, a0 = x
rj

j aj , d0 = x
rj

j dj , b0 = x
rj

j bj and c0 = x
rj

j cj . As soon as a0 (resp.
d0) is non-zero, this implies that a0 (resp. d0) is a meromorphic function over
B satisfying div(a0) ≥

∑t
j=1 rjqj (resp. div(d0) ≥

∑t
j=1 rjqj). Since these two

divisors are of degree zero, they are equal. So
∑t

j=1 rjqj is a principal divisor and
l1 = 0. When a0 = d0 = 0, we deduce that b0 (resp. c0) is a meromorphic section of
L∗ (resp. of L) satisfying div(b0) ≥

∑t
j=1 rjqj (resp. div(c0) ≥

∑t
j=1 rjqj). Since

deg(L) = −deg(L∗), these divisors are equal. We then deduce that L = L∗ and
that this line bundle is associated to the divisor

∑t
j=1 rjqj .

In conclusion, when L 6= L∗, the morphism i∗ is injective and when L = L∗,
L 6= L0, the kernel of i∗ is included into the subgroup of H1(B,O∗B) = Pic(B)
generated by L, which is of order two. In that case, it is not difficult to check that
the kernel of i∗ is exactly this subgroup of order two. Indeed, with the preceding
notations, it suffices to let a0 and d0 be equal to 0 and let b0 and c0 be equal
to a same meromorphic section of L. This constructs a 0-cochain m0 such that
δm0 = i∗(L). The first part of the proposition is proved.

To check the second part of the proposition, note that when L = L∗ 6= L0,
H0(B,L) = H0(B,L∗) = 0, so that the automorphisms of E = L ⊕ L0 fibered
over the identity of B are of the form[

a 0
0 d

]
,

where a, d ∈ C∗. The automorphisms of X fibered over the identity which lift to
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E are then of the form [
1 0
0 λ

]
(λ ∈ C∗).

It follows that the automorphisms φλ do not lift to automorphims of E and that
they are the only ones with this property. ¤

2.2. The conjugation theorem

Denote by cL0 the real structure on L0 defined by:

B × C → B × C
(x, z) 7→ (cB(x), z).

This real structure lifts cB .

Theorem 2.3. Let L be a line bundle over a smooth compact complex irreducible
curve B equipped with a real structure cB and let X = P (L⊕L0) be the associated
decomposable ruled surface.

1. Suppose that L 6= L∗ and that there exists a real structure cL on L which
lifts cB. Then there exists, up to conjugation by a biholomorphism of X, one and
only one real structure on X which lifts cB. It is the real structure induced by
cL ⊕ cL0 .

2. Suppose that c∗B(L) = L∗. If L 6= L∗, then every real structure on X which
lifts cB is conjugated to one of the two structures c+

X or c−X given by proposition
1.6. The same result occurs when L = L0 or when L = L∗ and there is no real
structure on L which lifts cB.

3. Suppose that c∗B(L) = L = L∗, that L 6= L0 and that there exists a real
structure cL on L which lifts cB. Then every real structure on X which lifts cB is
conjugated to the real structure cL⊕ cL0 , or to one of the two structures c+

X or c−X
given by proposition 1.6.

In any other case, X does not admit real structures fibered over cB.

Remark 2.4. It follows from lemma 1.5 and remark 1.2 that when RB 6= ∅, there
exists a real structure on L which lifts cB if and only if c∗B(L) = L.

Note that in the third case, the real structures c+
X and c−X are not conjugated

to cL⊕cL0 , since they are exchanging the two disjoint holomorphic sections of zero
square of X and cL ⊕ cL0 does not. Note also that when X = B × CP 1, or when
µ(RB) is odd, the real structures c+

X and c−X on X are not conjugated (see remark
1.7). Nevertheless, these two real structures may sometimes be conjugated, see
proposition 2.6.

Proposition 2.5. Let L be a line bundle over (B, cB) and let X = P (L ⊕ L0).
Then there exists a real structure on X which lifts cB if and only if there exists a
real structure on L which lifts cB or c∗B(L) = L∗.
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Proof. =⇒: To begin with, suppose that deg(L) 6= 0. Then, without loss of gen-
erality, we can assume that d = deg(L) > 0. The holomorphic section e of X
associated to L satisfy e ◦ e = −d < 0, since its normal bundle is L∗. Any other
section ẽ of X is homologous to e+kv, where k ∈ Z and v is the integer homology
class of a fiber. When ẽ 6= e, we have ẽ ◦ e ≥ 0, which means that k ≥ d. Then
ẽ◦ ẽ ≥ d and this proves that e is the only holomorphic section of X with negative
square. Thus this section is invariant under the real structure of X, and so is its
normal bundle. This implies that there exists a real structure on L∗ which lifts
cB . Using duality, there exists one on L which lifts cB .

Suppose now that deg(L) = 0. If L is the trivial bundle, then X = B × CP 1

and nothing has to be proved. Otherwise, the sections of X associated to L and
L0 are the only ones with zero squares. Indeed, a third holomorphic section with
zero square should be disjoint from them and these three sections would give a
trivialization of X. This would contradict the assumption that X 6= B×CP 1. As
a consequence, we deduce the following alternative: either the real structure cX

preserves these two sections, or it exchanges them. In the first case, cX preserves
the normal bundles and we conclude as before. In the second case, cX exchanges
the normal bundles and so defines a morphism ĉX : L∗ → L, fibered over cB .
Let s be a meromorphic section of L∗, so that div(s) = −D where D is a divisor
associated to L. Then ĉX◦s◦cB is a meromorphic section of L and div(ĉX◦s◦cB) =
c∗B(div(s)) = −c∗B(D). Hence c∗B(L) = L∗.

⇐=: If there exists a real structure on L which lifts cB , then taking the direct
sum with cL0 we get a real structure on L ⊕ L0 which lifts cB . This structure
induces on X = P (L ⊕ L0) a real structure which lifts cB . If c∗B(L) = L∗, the
result follows from proposition 1.6. ¤

Proof of theorem 2.3. When X = B×CP 1, the second part of theorem 2.3 is clear.
Indeed, in this case every real structure on X which lifts cB is the direct sum of cB

and a real structure on CP 1. Moreover, the group of automorphisms of X fibered
over the identity is then equal to {id}×Aut(CP 1). So the second part of theorem
2.3 follows from the well known fact that, up to conjugation, there are two real
structures on CP 1. Thus, from now on, we can assume that L 6= L0. It follows
from proposition 2.5 that if there exists a real structure on X which lifts cB, then
either there exists a real structure cL on L which lifts cB , or c∗B(L) = L∗. This
already proves the last line of theorem 2.3. We will show the theorem in three
steps.

In the first step, we will prove that if there exists a real structure cL on L which
lifts cB , then every real structure on X of the form cX ◦ φ, where cX is the real
structure of X induced by cL ⊕ cL0 and φ is an automorphism of X fibered over
the identity of B which lifts to an automorphism of E = L⊕ L0, is conjugated to
cX . In the second step, we will prove that if c∗B(L) = L∗, then every real structure
on X of the form c+

X ◦ φ, where φ is an automorphism of X fibered over the
identity of B which lifts to an automorphism of E = L⊕ L0, is conjugated either
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to c+
X or to c−X . Finally, in the third step, we will prove that if c∗B(L) = L∗ = L,

then every real structure on X of the form c+
X ◦ φ, where φ is an automorphism

of X fibered over the identity of B which does not lift to an automorphism of
E = L⊕ L0, is conjugated to a real structure of the form cL ⊕ cL0 , where cL is a
real structure on L which lifts cB . Furthermore, this conjugation is given by an
automorphism of X fibered over the identity of B which lifts to an automorphism
of E = L ⊕ L0. In particular, when there is no real structure on L which lifts
cB , every antiholomorphic map of the form c+

X ◦ φ, where φ is an automorphism
of X fibered over the identity of B which does not lift to an automorphism of
E = L⊕L0, is not an involution. The theorem follows from these three steps and
proposition 2.1.

First step: Suppose that there exists a real structure cL on L which lifts
cB and let cX be the real structure of X induced by cL ⊕ cL0 . Let c̃X be another
real structure on X which is of the form cX ◦ φ, where φ is an automorphism of
X fibered over the identity of B which lifts to an automorphism of E = L ⊕ L0.
The aim of this first step is to prove that cX and c̃X are conjugated.

Let Φ be an automorphism of E = L⊕ L0 which lifts φ. Then Φ ∈ End(E) =
E ⊗ E∗ = L ⊕ L∗ ⊕ L0 ⊕ L0. Thus there exist a, d ∈ C∗, b ∈ H0(B,L∗) and
c ∈ H0(B,L) such that

Φ =
[

a c
b d

]
.

By assumption, the line bundle L is not trivial, so that either L or L∗ has no
non-zero holomorphic section. Without loss of generality, we can assume that it
is L, so that c = 0 and

Φ =
[

a 0
b d

]
.

By assumption, c̃2
X = id, which implies that cX ◦ φ ◦ cX = φ−1. So there exists

λ ∈ C∗ such that cE ◦ Φ ◦ cE = λΦ−1. But

Φ−1 =
1
ad

[
d 0
−b a

]
,

and

cE ◦ Φ ◦ cE =
[

a 0
cL0 ◦ b ◦ cL d

]
.

Put λ̃ = 1
adλ, we have λ̃d = a, λ̃a = d and −λ̃b = cL0 ◦ b ◦ cL. The two first

conditions imply that |λ̃| = 1. Thus there exists θ ∈ R such that λ̃ = exp(2iθ).
So the previous conditions can be rewritten as exp(iθ)d = exp(iθ)a, exp(iθ)a =
exp(iθ)d and − exp(iθ)b = cL0 ◦ (exp(iθ)b) ◦ cL. Hence we can assume that

Φ =
[

a 0
b d

]
,

where d = a and b = −cL0 ◦ b ◦ cL (replace Φ by exp(iθ)Φ which also lifts φ).
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Now, denote by Ψ the automorphism of E defined by

Ψ =
[

1 0
1
2b a

]
.

Then

Ψ−1 =
1
a

[
a 0
− 1

2b 1

]
, and

Ψ−1 ◦ cE ◦Ψ =
1
a

[
acL 0

− 1
2b ◦ cL + 1

2cL0 ◦ b acL0

]

=
1
a

[
acL 0

cL0 ◦ b acL0

]

=
1
a
cE ◦ Φ.

(For the second equality, we used the relation −b ◦ cL = cL0 ◦ b.) Denote by ψ the
automorphism of X induced by Ψ, we then deduce that ψ−1 ◦ cX ◦ψ = c̃X , which
was the aim of this first step.

Second step: Suppose that c∗B(L) = L∗ and fix a real structure c+
X on X

given by proposition 1.6 (see remark 1.7). Let c̃X be another real structure on X
which is of the form c+

X ◦ φ, where φ is an automorphism of X fibered over the
identity of B which lifts to an automorphism of E = L ⊕ L0. The aim of this
second step is to prove that c̃X is conjugated either to c+

X or to c−X . Let Φ be an
automorphism of E = L ⊕ L0 which lifts φ. Since deg(L) = 0 and since L is not
trivial, we know that H0(B,L) = H0(B,L∗) = 0. As a consequence, there exists
a, d ∈ C∗ such that

Φ =
[

a 0
0 d

]
.

Since c̃2
X = id, we know that a

d ∈ R∗ and we can assume that a = 1, d ∈ R∗
(replace Φ by 1

aΦ). Let ψ be the automorphism of X defined by

ψ =
[

1 0
0 δ

]
,

where δ = 1√
|d| . Then ψ conjugates c̃X to one of the two real structures c+

X or c−X .

Third step: Suppose that c∗B(L) = L∗ and fix a real structure c+
X on X given

by proposition 1.6. Let c̃X be another real structure on X which is of the form
c+
X ◦φ, where φ is an automorphism of X fibered over the identity of B which does

not lift to an automorphism of E = L⊕L0. The aim of this third step is to prove
that c̃X is conjugated to a real structure of the form cL ⊕ cL0 where cL is a real
structure on L which lifts cB . Note that the automorphism φ and the involution
c+
X both exchange the sections of X associated to L and L0. Thus c̃X preserves

these two sections. As a consequence, it preserves also the normal bundles of
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these sections and so induces a real structure on the line bundle L which lifts cB .
Consider then the real structure cL ⊕ cL0 on X, it follows from the first and the
second steps that it is conjugated to c̃X by an automorphism of X which lifts to
an automorphism of E. ¤

2.3. When are c+
X and c−X conjugated?

In this subsection, a sufficient condition for c+
X and c−X to be conjugated is given

(see proposition 2.6). One important example where this occurs is given by corol-
lary 2.8.

Proposition 2.6. Let L be a line bundle over (B, cB) such that c∗B(L) = L∗ and
let X = P (L ⊕ L0) be the associated ruled surface. Let (D, fD) be a couple given
by lemma 1.3 and cfD

, c−fD
be the associated real structures of X (see proposition

1.6). Suppose that there exists ϕ ∈ Aut(B) of finite order such that ϕ◦cB = cB ◦ϕ
and:

a. either ϕ∗(L) = L and there exists a meromorphic function g on B such that
div(g) = ϕ(D)−D and (fD ◦ ϕ)(g ◦ ϕ)g ◦ cB ◦ ϕ = −fD,

b. or ϕ∗(L) = L∗ and there exists a meromorphic function h on B such that
div(h) = ϕ(D) + D and (h ◦ ϕ)h ◦ cB ◦ ϕ = −fDfD ◦ ϕ.

Then, the real structures cfD
and c−fD

are conjugated in X.

Remark 2.7. When RB 6= ∅, the conditions a and b can be replaced by ϕ∗(L) ∈
{L,L∗} and there exists x ∈ RB such that (fDfD ◦ ϕ)(x) < 0. Indeed, it is
not difficult to check that in the situation a, there always exists a meromorphic
function g on B such that div(g) = ϕ(D)−D and (fD ◦ϕ)(g ◦ϕ)g ◦ cB ◦ ϕ = εfD

where ε = ±1. Similarly, in the situation b, there always exists a meromorphic
function h on B such that div(h) = ϕ(D) + D and (h ◦ ϕ)h ◦ cB ◦ ϕ = εfDfD ◦ ϕ,
where ε = ±1. Hence, conditions a or b are equivalent to require that ε = −1,
which is equivalent, when RB 6= ∅, to require that there exists x ∈ RB such that
(fDfD ◦ ϕ)(x) < 0.

Note that when g(B) ≥ 2, the conditions given by proposition 2.6 are in fact
necessary and sufficient for cfD

and c−fD
to be conjugated, but this will not be

needed in what follows.

Corollary 2.8. Let g ≥ 1 be an odd integer. Then there exists a smooth compact
irreducible real algebraic curve (B, cB) of genus g and empty real part together
with a complex line bundle L over B satisfying c∗B(L) = L∗, such that the real
structures c+

X and c−X on X = P (L⊕ L0) are conjugated.

Proof. Let us consider first the case g = 1. Let B be the elliptic curve C/Z[i]
equipped with the real structure cB(z) = z + 1

2 , so that RB = ∅. Let p0 = 0,
q0 = 1

2 , p1 = i
2 and q1 = 1

2 + i
2 .
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Let D = p1 − p0 and denote by L the associated complex line bundle over B.
Then c∗B(L) = L = L∗. Denote by ϕ the involutive automorphism of B defined by
ϕ(z) = z + 1

2 . Then ϕ ◦ cB = cB ◦ϕ and ϕ∗(L) = L. We will prove that ϕ satisfies
condition a of proposition 2.6.

For this, let f be a meromorphic function on B given by lemma 1.3, such
that f ◦ cB = f and div(f) = D + cB(D). Then f ◦ ϕ = f . Indeed, there
exists a holomorphic section s of the line bundle L such that div(s) = D and
s ⊗ (s ◦ ϕ) = f . Thus f ◦ ϕ = (s ◦ ϕ) ⊗ s = s ⊗ (s ◦ ϕ) = f . Now let g be a
meromorphic function on B such that div(g) = ϕ(D)−D = q1 − p1 − q0 + p0 and
g(g ◦ cB) = −1. Such a function is given by lemma 1.1 and [7], proposition 2.2,
since D belong to the nontrivial component of the real part of (Jac(B), cB). Then
(f ◦ϕ)(g◦ϕ)g ◦ cB ◦ ϕ = −f , so that the condition a of proposition 2.6 is satisfied.
We deduce that the real structures c+

X and c−X on X = P (L ⊕ L0) defined by f
and −f (see proposition 1.6) are conjugated.

Now, let us consider the case g = 2k +1, k ≥ 1. For j ∈ {0, . . . , 2k−1}, denote
by p̃j = j

2k i ∈ B and q̃j = 1
2 + j

2k i ∈ B (so that p1 = p̃k and q1 = q̃k). Denote by
Bk the double covering of B ramified over the 4k points p̃j , q̃j , j ∈ {0, . . . , 2k−1}.
This covering can be chosen so that its characteristic class in H1(B \ {p̃j , q̃j | j ∈
{0, . . . , 2k− 1}}; Z/2Z) is Poincaré dual to the sum of the 2k segments {(0, t) | t ∈
] 2j
2k , 2j+1

2k [, j ∈ {0, . . . , k − 1}} and {(1
2 , t) | t ∈] 2j

2k , 2j+1
2k [, j ∈ {0, . . . , k − 1}}.

Denote by πk : Bk → B the projection associated to the covering. The auto-
morphism ϕ of B lifts to an automorphism ϕk of Bk such that ϕ ◦ πk = πk ◦ ϕk.
Similarly, the real structure cB lifts to a real structure cBk

on Bk such that
cB ◦ πk = πk ◦ cBk

and RBk = ∅. Denote by Lk = π∗k(L). This bundle sat-
isfies c∗Bk

(Lk) = Lk = L∗k = ϕ∗k(Lk). Finally, denote by fk = f ◦ πk and
gk = g ◦ πk. Then fk = fk ◦ cBk

and gkgk ◦ cBk
= −1. Moreover, div(fk) =
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c∗Bk
(Dk) + Dk, where Dk = π∗k(D) = 2p1 − 2p0, and div(gk) = ϕ∗k(Dk)−Dk. We

have, (fk ◦ϕk)(gk ◦ϕk)gk ◦ cBk
◦ ϕk = −fk, so that the condition a of proposition

2.6 is satisfied. We deduce that the real structures c+
Xk

and c−Xk
on Xk = P (Lk⊕L0)

defined by fk and −fk (see proposition 1.6) are conjugated. ¤

Proof of proposition 2.6. Denote D =
∑k

i=1 nipi, where pi ∈ B and ni ∈ Z, i ∈
{1, . . . , k}. We can assume that the set {pi | 1 ≤ i ≤ k} is invariant under ϕ (add
some points with zero coefficients to D if necessary). Denote by U0 = B \ {pi | 1 ≤
i ≤ k} and for every i ∈ {1, . . . , k}, choose some holomorphic chart (Upi

, φpi
) such

that Upi
∩ Upj

= ∅ if i 6= j, ϕ(Upi
) = Uϕ(pi) and φpi

: Upi
→ ∆ = {z ∈ C | |z| < 1}

is a biholomorphism. We require in addition that φpi
(pi) = 0 and

φϕ(pi) ◦ ϕ ◦ φ−1
pi

: ∆ → ∆
x 7→ exp( 2iπ

mi
)x if pi is a fixed point of order mi of ϕ.

(We put mi = 1 if ϕ(pi) 6= pi. This atlas and these trivializations are compatible
with D and the group < ϕ >. It always exists, see [12].)

For every i ∈ {1, . . . , k}, denote by ψi the morphism:

(Upi
\ pi)× CP 1 → U0 × CP 1

(x, (z1 : z0)) 7→ (x, (φpi
(x)−niz1 : z0)).

The morphisms ψi allow to glue together the trivializations Upi
× CP 1, i ∈

{0, . . . , k}, in order to define the ruled surface X.
Now suppose we are in the case a. Let g be the meromorphic function on B

such that div(g) = ϕ(D)−D and (fD ◦ ϕ)(g ◦ ϕ)g ◦ cB ◦ ϕ = −fD. Consider the
maps:

U0 × CP 1 → U0 × CP 1

(x, (z1 : z0)) 7→ (ϕ(x), (g ◦ ϕ(x)z1 : z0)),

and for every i ∈ {1, . . . , k},
Upi

× CP 1 → Upj
× CP 1

(x, (z1 : z0)) 7→ (ϕ(x), (g ◦ ϕ(x)φpi
(x)nj−ni exp(2iπ

mi
)z1 : z0)),

where pj denotes the point ϕ(pi). These maps glue together to form an element
Φg ∈ Aut(X) fibered over ϕ.

The map Φ−1
g is given by:

U0 × CP 1 → U0 × CP 1

(x, (z1 : z0)) 7→ (ϕ−1(x), (z1 : g(x)z0)).

And the map c−X is given by:

U0 × CP 1 → U0 × CP 1

(x, (z1 : z0)) 7→ (cB(x), (z0 : −fD ◦ cB(x)z1)).

Thus Φ−1
g ◦ c−X ◦ Φg is given in this trivialization by:

U0 × CP 1 → U0 × CP 1

(x, (z1 : z0)) 7→ (cB(x), (z0 : −(fD ◦ cB ◦ ϕ)(g ◦ ϕ)(g ◦ cB ◦ ϕ)(x)z1)).
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Since (fD ◦ ϕ)(g ◦ ϕ)g ◦ cB ◦ ϕ = −fD, we conclude that Φ−1
g ◦ c−X ◦ Φg = c+

X .
Suppose now we are in the case b. Let h be the meromorphic function on B

such that div(h) = ϕ(D) + D and (h ◦ ϕ)h ◦ cB ◦ ϕ = −fDfD ◦ ϕ. Consider then
the maps:

U0 × CP 1 → U0 × CP 1

(x, (z1 : z0)) 7→ (ϕ(x), (z0 : h ◦ ϕ(x)z1))

and for all i ∈ {1, . . . , k},
Upi

× CP 1 → Upj
× CP 1

(x, (z1 : z0)) 7→ (ϕ(x), (z0 : h ◦ ϕ(x)φpi
(x)−ni−nj exp(− 2iπ

mi
)z1)),

where pj denotes the point ϕ(pi). These maps glue together to form an element
Φh ∈ Aut(X) fibered over ϕ.

The map Φ−1
h is given by:

U0 × CP 1 → U0 × CP 1

(x, (z1 : z0)) 7→ (ϕ−1(x), (z0 : h(x)z1)).

And the map c−X is given by:

U0 × CP 1 → U0 × CP 1

(x, (z1 : z0)) 7→ (cB(x), (z0 : −fD ◦ cB(x)z1)).

Thus Φ−1
h ◦ c−X ◦ Φh is given in this trivialization by:

U0 × CP 1 → U0 × CP 1

(x, (z1 : z0)) 7→ (cB(x), (−fD ◦ cB ◦ ϕ(x)z0 : h ◦ ϕ(x)(h ◦ cB ◦ ϕ)(x)z1)).

Since (h ◦ ϕ)h ◦ cB ◦ ϕ = −fDfD ◦ ϕ, we conclude that Φ−1
h ◦ c−X ◦ Φh = c+

X . ¤

3. Deformation classes of real structures on ruled surfaces

3.1. The real part of (Jac(B),−c∗B)

Remember the following well known result (see, for instance, [7], propositions 3.2
and 3.3):

Proposition 3.1. Let (B, cB) be a smooth compact irreducible real algebraic curve.
The Jacobian Jac(B) of B is equipped with the real structure −c∗B. Then if RB 6= ∅,
the real part of (Jac(B),−c∗B) has 2µ(RB)−1 connected components, where µ(RB)
is the number of components of RB. If RB = ∅, the real part of (Jac(B),−c∗B) is
connected if g(B) is even and consists of two connected components otherwise. ¤

(Note that multiplication of c∗B by −1 does not change the topology of the real
part of Jac(B).)
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Let L be a complex line bundle over B such that c∗B(L) = L∗, that is an element
of the real part of (Jac(B),−c∗B), where Jac(B) is identified with the part of Pic(B)
of degree zero. Let (D, fD) be a couple given by lemma 1.3. The function fD is
real and of constant sign on every component of RB, thus it induces a partition of
RB in two elements RB∩f−1

D (R∗+) and RB∩f−1
D (R∗−). It follows from theorem 2.3

that this partition only depends on the bundle L and not on the choice of (D, fD),
since it corresponds to the projections on RB of the real parts of (P (L⊕L0), c+

X)
and (P (L ⊕ L0), c−X). For the same reason, this partition actually only depends
on the connected component of the real part of (Jac(B),−c∗B) and hence is an
invariant associated to these components. Note that when RB 6= ∅ has µ(RB)
components, the number of partitions of RB in two elements is 2µ(RB)−1.

Lemma 3.2. When RB 6= ∅, the partitions associated to the real components of
(Jac(B),−c∗B) establish a bijection between the set of these components and the set
of partitions of RB in two elements.

Proof. Let L and L′ be two complex line bundles which belong to R Jac(B) and
such that their associated partitions of RB are the same. We will prove that they
belong to the same component of R Jac(B). The result follows, since the “partition
map” is then injective and hence bijective for cardinality reasons.

Let D (resp. D′) be a divisor associated to L (resp. L′). Let fD (resp. fD′) be
a non-zero meromorphic function on B such that fD ◦ cB = fD (resp. fD′ ◦ cB =
fD′) and div(fD) = D + cB(D) (resp. div(fD′) = D′ + cB(D′)). It follows from
lemma 1.3 that such meromorphic functions exist. Since the partitions of L and
L′ are the same, we can assume that fD and fD′ have the same signs on every
components of RB (replace fD′ by −fD′ otherwise). For every t ∈ [0, 1], let
gt = (1−t)fD +tfD′ . Then g0 = fD, g1 = fD′ and for every t ∈ [0, 1], gt ◦ cB = gt.
Moreover, for every t ∈ [0, 1], gt is non-zero and of constant sign on each component
of RB. Thus every real zero and real pole of gt is of even order. This implies that
there exists a continuous path (Dt)t∈[0,1] of divisors such that D0 = D and for
every t ∈ [0, 1], div(gt) = Dt + cB(Dt). In particular, L and L1 are in the same
component of R Jac(B), where L1 is the complex line bundle associated to D1. It
suffices then to prove that L1 and L′ lie in the same component of R Jac(B).

Now D1 + cB(D1) = D′ + cB(D′) = div(g1). So the divisor E = D1 − D′

satisfy cB(E) = −E. Thus there exist k ∈ N and p1, . . . , pk ∈ B such that E =∑k
i=1 ni(pi−cB(pi)). For every i ∈ {1, . . . , k}, choose a continuous path (pi

τ )τ∈[0,1]

such that pi
0 = pi and pi

1 ∈ RB. For every τ ∈ [0, 1], let Eτ =
∑k

i=1 ni(pi
τ−cB(pi

τ )).
Then E0 = E, E1 = 0 and for every τ ∈ [0, 1], cB(Eτ ) = −Eτ . The path
Fτ = D′ + Eτ is a continuous path of divisors such that F0 = D1, F1 = D′ and
for every τ ∈ [0, 1], Fτ + cB(Fτ ) = div(g1). This implies that the bundles L1 and
L′ belong to the same component of R Jac(B), hence the result. ¤

Remark 3.3. Actually, the surjectivity of the “partition map” follows from a
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theorem of Witt (see [17] or [16], p. 101–102).

3.2. The topological type of a real ruled surface

Remember that to every smooth compact irreducible real algebraic curve (B, cB)
is associated a triple (g, µ, ε), called the topological type of (B, cB), where g is the
genus of B, µ is the number of connected components of RB and ε = 1 (resp. ε = 0)
if B is dividing (resp. if B is non-dividing). Two smooth compact irreducible real
algebraic curves are in the same deformation class if and only if they have the same
topological type (see [11]). Moreover, there exists a smooth compact irreducible
real algebraic curve of topological type (g, µ, ε) if and only if ε = 0 and 0 ≤ µ ≤ g
or ε = 1, 1 ≤ µ ≤ g + 1 and µ = g + 1 mod (2).

With the exception of the ellipsoid, that is CP 1 ×CP 1 equipped with the real
structure (x, y) 7→ (y, x), for every real structure cX on a ruled surface p : X → B,
there exists a real structure cB on the base B such that p◦cX = cB◦p. In particular,
the connected components of RX are tori or Klein bottles. Note also that in the
case of CP 1 × CP 1, the ruling given by the projection p is not unique, whereas
it is for any other ruled surface. Since real structures on rational ruled surfaces
are well known (see theorem 3.6), we will assume from now on that the genus of
the base is non-zero. So let (X, cX) be a real non-rational ruled surface of base
(B, cB). The topological type of (X, cX) is by definition the quintuple (t, k, g, µ, ε),
where (g, µ, ε) is the topological type of (B, cB), k is the number of Klein bottles
of RX and t the number of tori of RX. Obviously t, k ≥ 0 and t + k ≤ µ. A
quintuple (t, k, g, µ, ε) is called allowable if t, k ≥ 0, t + k ≤ µ, g ≥ 1 and either
ε = 0 and 0 ≤ µ ≤ g or ε = 1, 1 ≤ µ ≤ g + 1 and µ = g + 1 mod (2).

Proposition 3.4. There exists a real ruled surface of topological type (t, k, g, µ, ε)
if and only if the quintuple (t, k, g, µ, ε) is allowable.

Proof. If (t, k, g, µ, ε) is the topological type of a real ruled surface, then the quin-
tuple (t, k, g, µ, ε) is clearly allowable. Now, let (t, k, g, µ, ε) be an allowable quin-
tuple. It is well known (see [11] for instance) that there exists a smooth compact
connected real algebraic curve (B, cB) whose topological type is (g, µ, ε). If µ = 0,
the ruled surface (B × CP 1, cB × conj), where conj is a real structure on CP 1,
is of topological type (0, 0, g, 0, 0). If µ 6= 0, choose a partition P of RB in two
elements such that one of them contains t + k components of RB and the other
one µ − t − k. It follows from lemma 3.2 that there exists a line bundle L over
B such that c∗B(L) = L∗ and the partition associated to L is P. Thus, it follows
from proposition 1.6 that there exists a real structure c+

X on the ruled surface
X = P (L ⊕ L0) such that the real part of X consists of t + k tori. Choose k of
these tori and make an elementary transformation on each of them, that is the
composition of the blowing up at one point and the blowing down of the strict
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transform of the fiber passing through this point. The result is still a real ruled
surface of base (B, cB) and the real part of this ruled surface consists of t tori and
k Klein bottles, hence the result. ¤

3.3. The deformation theorem

Let ∆ ⊂ C be the Poincaré’s disk equipped with the complex conjugation conj. A
real deformation of surfaces is a proper holomorphic submersion π : Y → ∆ where
(Y, cY ) is a real analytic manifold of dimension 3 and π satisfies π ◦ cY = conj ◦π.
When t ∈]− 1, 1[∈ ∆, the fibers Yt = π−1(t) are invariant under cY and are then
compact real analytic surfaces. Two real analytic surfaces X ′ and X ′′ are said to
be in the same deformation class if there exists a chain X ′ = X0, . . . , Xk = X ′′ of
compact real analytic surfaces such that for every i ∈ {0, . . . , k − 1}, the surfaces
Xi and Xi+1 are isomorphic to some real fibers of a real deformation.

Proposition 3.5. The topological type of a real non-rational ruled surface is in-
variant under deformation.

Proof. Let (X, cX) → (B, cB) be a real ruled surface of topological type (t, k, g, µ, ε)
with g ≥ 1. Let π : Y → ∆ be a real deformation of surfaces such that (Y0, cY |Y0) =
(X, cX). Then every fiber of π is a ruled surface with base of genus g (see [1] for
instance). Now since the deformation is trivial from the differentiable point of
view, the topology of the real part and the topology of the involution on the base
are invariant under deformation, hence the result. ¤

For the sake of completeness, let us recall the following well known result, see
[5] or [6]:

Theorem 3.6. There are four deformation classes of real structures on rational
ruled surfaces, one for which the real part is a torus, one for which the real part
is a sphere and two for which the real part is empty. These two latter have non-
homeomorphic quotients. ¤

Remember that the real structure for which the real part is a sphere is very
special. It only exists on CP 1 × CP 1 and is fibered over no real structure on the
base CP 1. This comes from the existence of two rulings on CP 1 × CP 1 and the
involution (x, y) 7→ (y, x) reversing them. This is the main reason why we do not
include the case of rational ruled surfaces in theorem 3.7.

Theorem 3.7. Two real non-rational ruled surfaces are in the same deformation
class if and only if they have the same topological type (t, k, g, µ, ε), except when
µ = 0. There are two deformation classes of real non-rational ruled surfaces of
topological type (0, 0, g, 0, 0). For one such class of ruled surfaces (X, cX), the
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quotient X ′ = X/cX is spin, for the other one it is not.

This theorem 3.7 is a reformulation of the theorem 0.1 mentioned in the intro-
duction. Using the terminology introduced in [5], it means that real ruled surfaces
are quasi-simple. The definition of the topological type of a real ruled surface is
given in §3.2. Note that every allowable quintuple is the topological type of a real
ruled surface (see proposition 3.4).

Remark 3.8. If X = P (E) is a real non-rational ruled surface of topological type
(t, k, g, µ, ε) with t + k < µ and k 6= 0, then X is not decomposable, whereas any
other topological type is realized by a decomposable real ruled surface. Remember
also that the deformation classes of complex ruled surfaces are described by the
genus of the base and by whether the surface is spin or not (see [14], theorem 5).
Then, real structures for which k is even only exist on spin ruled surfaces and real
structures for which k is odd only exist on non-spin ruled surfaces.

Let us sketch the proof of theorem 3.7.
Let (X, cX) be a real ruled and non-decomposable surface with base (B, cB). If

X admits a real holomorphic section, then we will prove that (X, cX) is in the same
deformation class that a real decomposable ruled surface (see proposition 3.9). If
X does not admit a real holomorphic section, then we will prove that there exists
a complex line bundle L ∈ Pic(B) satisfying c∗B(L) = L∗, such that (X, cX) is in
the same deformation class that the surface obtained from (P (L ⊕ L0), c±X) after
at most one elementary transformation on each component of its real part (see
proposition 3.10).

After these two steps, it is possible to reduce the study of deformation classes
of real structures on ruled surfaces to the study of deformation classes of real
structures on decomposable ruled surfaces. It suffices then to check the theorem
3.7 for decomposable real ruled surfaces.

Proposition 3.9. Let (X, cX) be a real ruled surface of base (B, cB) which admits
a real holomorphic section. Then there exists a real deformation π : Y → ∆ such
that for every t ∈ R∗ ∩ ∆, (Yt, cY |Yt

) is isomorphic to (X, cX) and such that
(Y0, cY |Y0) is isomorphic to (P (L ⊕ L0), cL ⊕ cL0) where L ∈ Pic(B) and cL is a
real structure on L which lifts cB.

Proof. Let E be a rank two complex vector bundle over B such that X = P (E).
The real holomorphic section of X is given by a complex sub-line bundle M of E.
Denote by N the quotient line bundle E/M so that the bundle E is an extension
of N by M . Let µ ∈ H1(B,M ⊗N∗) be the extension class of this bundle and let
µ1 be a 1-cocycle with coefficients in the sheaf OB(M⊗N∗), defined on a covering
U = (Ui)i∈I of B, realizing the cohomology class µ ∈ H1(B,M⊗N∗). The bundle
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E is then obtained as the gluing of the bundles (M ⊕N)|Ui
by the gluing maps:

(M ⊕N)|Ui∩Uj
→ (M ⊕N)|Uj∩Ui

(m,n) 7→
[

1 µij

0 1

](
m
n

)
= (m + µijn, n).

We can assume that for every open set Ui of U , there exists ı ∈ I such that
Uı = cB(Ui) (add these open sets to U if not). We can also assume that there
exists J ⊂ I such that the open sets (Ui)i∈J cover B and such that the real
structure cX : X|Ui

→ X|Uı lifts to an antiholomorphic map E|Ui
→ E|Uı (take a

refinement of U if not). Since by hypothesis the section of X associated to M is
real, these antiholomorphic maps are of the form:

(M ⊕N)|Ui
→ (M ⊕N)|Uı

(x, (m,n)) 7→ (cB(x),
[

ai bi

0 di

] (
m
n

)
),

where ai (resp. bi, resp. di) is an antiholomorphic morphism M |Ui
→ M |Uı (resp.

N |Ui
→ M |Uı , resp. N |Ui

→ N |Uı) which lifts cB . Since cX is an involution, we
have for every i ∈ J , aı◦ai = dı◦di ∈ O∗B |Ui

and aı◦bi+bı◦di = 0 ∈ OB(N∗⊗M)|Ui
.

Moreover, for i, j ∈ J such that Ui∩Uj 6= ∅, the gluing conditions are the following:
ai = λaj , di = λdj and bi + µı ◦ di = λ(aj ◦ µij + bj) where λ ∈ O∗B |Ui∩Uj

.
Now let Y be the complex analytic manifold of dimension three defined as the

gluing of the charts C× P (M ⊕N)|Ui
, i ∈ J , with change of charts given by the

maps:

C× P (M ⊕N)|Ui
→ C× P (M ⊕N)|Uj

(t, x, (m : n)) 7→ (t, x,

[
1 tµij

0 1

] (
m
n

)
) = (t, x, (m + tµijn : n)).

The projection on the first coordinate defines a holomorphic submersion π : Y →
C. The surface π−1(0) is isomorphic to the decomposable ruled surface P (M⊕N),
whereas, as soon as t ∈ C∗, the fiber Yt = π−1(t) is isomorphic to the ruled surface
X = P (E). Such an isomorphism ψt : Yt → X is given in the charts P (M⊕N)|Ui

,
i ∈ J , by:

P (M ⊕N)|Ui
→ P (M ⊕N)|Uj

(x, (m : n)) 7→ (x, (m : tn)).

Denote by cY the real structure on Y defined on charts C× P (M ⊕N)|Ui
by:

C× P (M ⊕N)|Ui
→ C× P (M ⊕N)|Uı

(t, x, (m : n)) 7→
(

t, cB(x),
[

ai tbi

0 di

](
m
n

))
.

This real structure satisfies π◦cY = conj◦π where conj is the complex conjugation
on C. Moreover, when t ∈ R∗, φt gives an isomorphism between the real ruled
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surfaces (Yt, cY |Yt
) and (X, cX). Hence, the restriction of π : Y → C over ∆ ⊂ C

is a real deformation which satisfies proposition 3.9. ¤

Proposition 3.10. Let (X, cX) be a real ruled surface of base (B, cB), which does
not admit any real holomorphic section. Then, there exists L ∈ Pic(B) satisfying
c∗B(L) = L∗ and a ruled surface (X ′, cX′) obtained from (P (L ⊕ L0), c±X) after
at most one elementary transformation on each of its real components, such that
(X, cX) and (X ′, cX′) are in the same deformation class.

Remember that an elementary transformation on the ruled surface X is by
definition the composition of a blowing up of X at one point and the blowing
down of the strict transform of the fiber passing through this point.

Lemma 3.11. Let X = P (L⊕L0) be a decomposable ruled surface of base B. Let
s : B → X be the section defined by L and D be a divisor associated to L. Then
the ruled surface obtained from X after an elementary transformation at the point
s(x), x ∈ B, is the surface P (L(x) ⊕ L0) where L(x) is the complex line bundle
associated to the divisor D + x. ¤

Lemma 3.12. Let (X, cX) be a real ruled surface of base (B, cB), which does not
admit any real holomorphic section. Then X has a very ample holomorphic section
S which is transversal to its image under cX .

Proof. Let us first construct a very ample section on X. Let E be a rank two
complex vector bundle over B such that X = P (E), and let A be an ample line
bundle over B. Then by definition, for sufficiently large n, the bundle E∗ ⊗ An

is generated by its global sections. Choosing N such global sections, it provides
a surjective morphism of bundles B × CN → E∗ ⊗ An. This induces an injective
morphism between the dual bundles E⊗ (A∗)n → B×CN and thus an embedding
X → B × CPN−1. Fixing an embedding B → CP 3, we deduce an embedding
X → CP 3 × CPN−1. Finally, combining this with Segre embedding, we obtain
an embedding X → CP 4N−1 associated to a very ample linear system of sections
on X.

Now, let us prove that in this linear system, there exists a smooth section
S transversal to cX(S). From Bertini’s theorem (see [8], theorem 8.18) there
exists, in this linear system, a smooth section S associated to a hyperplane H of
CP 4N−1 transversal to X. By hypothesis, S cannot be real, so that the intersection
cX(S) ∩ S consists of a finite number of points. We will prove that after a small
perturbation of H, this intersection can be assumed transversal. Indeed, let x ∈
cX(S) ∩ S. If x ∈ RX, the intersection of H with TxX is a line, which is the
tangent of S at X. The section S is transverse to cX(S) at x if and only if this line
is not fixed by the differential dxcX . Since the fixed point set of this involution is
of half dimension, the intersection of S and cX(S) at x can be made transversal
after a small perturbation of H, keeping the intersection point x. Now, if x /∈ RX,
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then since the section S is smooth, the points x and cX(x) belong to two different
fibers of X and in particular to non-real ones. Suppose that the line Dx ⊂ CP 4N−1

joining them is transversal to both the planes TxX and TcX(x)X. Then there exists
a pencil P of hyperplanes of CP 4N−1 containing H and parametrized both by the
lines of TxX ⊂ CP 4N−1 and the lines of TcX(x)X ⊂ CP 4N−1. This means that each
line of TxX passing through x, and similarly each line of TcX(x) passing through
cX(x), is contained in one and only one hyperplane of P. Also, P contains no
other hyperplane.

This pencil P thus provides us with a holomorphic identification between the
projective lines P (TxX) and P (TcX(x)X). Under this identification, the differential
dxcX reads as an anti-holomorphic involution of TxX and once more, the section
S is transversal to cX(S) at x if and only its tangent line is not fixed by this
involution dxcX . This can always be guaranteed after a small perturbation of H.
Since small perturbations do not perturb the transversality of transversal points,
this process strictly increases the number of transversal points between S and
cX(S) and so gives the result after a finite number of steps. It thus only remains
to prove that the line Dx can indeed be assumed transverse to both the planes
TxX and TcX(x)X, after a small perturbation of H if necessary.

For this, note that the embedding B → CP 3 can be chosen real. The set of
points of B whose tangent is not a real line of CP 3 is a dense open subset U ⊂ B
(for the usual topology, not the Zariski’s one), invariant under cB . The set U
is in fact the complementary of the real part of the dual curve. Let x ∈ X be
a point such that y = p(x) ∈ U where p is the projection X → B. Since the
line joining y to cB(y) is real, it is not tangent to B at y and cB(y). Let H1 be
a hyperplane of CP 3 passing through y and cB(y) and transverse to B. Then
H1 × CPN−1 is transverse to X in CP 3 × CPN−1. Let H2 be a hyperplane of
CPN−1 such that CP 3 ×H2 does contain neither x nor cX(x). Then the divisor
(H1 ×CPN−1) + (CP 3 ×H2) is associated to a hyperplane H0 of CP 4N−1, which
contains both x and cX(x) and which is transverse to X at these points. Then H0

contains the line Dx and since by construction it also contains the fibers through x
and cX(x), its transversality with X at x and cX(x) implies the one of Dx. Hence
for any point x belonging to the open set p−1(U) of X, the line Dx is transverse
to X at x and cX(x). Since it is not hard to observe that any non-real intersection
point of S and cX(S) can be moved to p−1(U) after a small perturbation of H,
this completes the proof of lemma 3.12. ¤
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Remark 3.13. To prove the transversality part of lemma 3.12, the following sim-
pler argument has been communicated to me by V. Kharlamov. First notice that
once you have two very ample line bundles and a generic couple of sections of these
bundles, the zero sets of these sections intersect transversally. Now take L1 to be
the line bundle associated to the constructed very ample section S and L2 to be
the bundle associated to cX(S). On the space of couples of holomorphic sections of
these bundles, we have the following real structure: (s1, s2) 7→ (s2 ◦ cX , s1 ◦ cX).
We are exactly interested in couples which belong to the real locus of this real
structure. The result follows from the standard fact that there are generic points
on this (non-singular) real locus.

Proof of proposition 3.10. Let S ⊂ X be a very ample holomorphic smooth sec-
tion, transverse to its image under cX . Such a section is given by lemma 3.12. The
set cX(S) ∩ S is finite and invariant under cX . Denote by X1 the ruled surface
obtained from X after an elementary transformation on every point of this set.
Since it is invariant under cX , the real structure cX induces a real structure cX1

on X1. Moreover, the strict transform S1 of S satisfies cX1(S1)∩S1 = ∅. Thus X1

is a decomposable ruled surface, and cX1 exchanges the two holomorphic sections
S1 and cX(S1). The inverse of an elementary transformation is still an elementary
transformation, so we deduce that (X, cX) is obtained from the real decompos-
able ruled surface (X1, cX1) after performing elementary transformations on points
{x1, . . . , xk, y1, . . . , yl, y1, . . . , yl} where cX1(xi) = xi and cX1(yj) = yj . Note that
all the points {x1, . . . , xk, y1, . . . , yl, y1, . . . , yl} belong to different fibers of X1. It
remains to see that this number of points can be reduced to one at most for each
component of RX1, changing the decomposable real ruled surface X1 if necessary.

For every j ∈ {1, . . . , l}, choose a piecewise analytic path yj(t), t ∈ [0, 1],
such that yj(0) = yj , yj(1) ∈ S1 and p(yj(t)) is constant, which means that
yj(t) stays in a same fiber of X1. Let yj(t) = cX1(yj(t)) and denote by X2 the
ruled surface obtained from X1 after elementary transformations in the points
y1(1), . . . , yl(1), y1(1), . . . , yl(1). The real structure cX1 induces a real structure
cX2 on X2. The surface (X2, cX2) is in the same deformation class that (X1, cX1).
Moreover, X2 is also a decomposable ruled surface. Indeed, the strict transform S2

of S1 is a holomorphic section of X2 satisfying cX2(S2)∩S2 = ∅. Thus (X, cX) is in
the same deformation class that the surface obtained from the real decomposable
ruled surface (X2, cX2) after performing elementary transformations on the strict
transforms of the points x1, . . . , xk ∈ RX1, still denoted by x1, . . . , xk ∈ RX2.
Now for each pair of points x1, x2 lying in a same connected component of RX2,
we can make the elementary transformation on the point x2. Then, the image of
the fiber passing through x2 is a real point x′2 in the new surface X ′

2 obtained. So
we can choose an analytic path from x1 to x′2 in the real part of X ′

2 and we deduce
that the surface obtained from X2 after making the elementary transformations
on the points x1, x2 is in the same deformation class that the one obtained from
X ′

2 after an elementary transformation on x′2, which is X2 itself. Hence each pair
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of points lying in a same connected component of RX2 can be removed and so
(X, cX) is in the same deformation class that the surface obtained from the real
decomposable ruled surface (X2, cX2) after performing at most one elementary
transformation on each of its real components. Since cX2 exchanges two disjoint
holomorphic sections of X2, it follows from theorem 2.3 that (X2, cX2) is of the
form (P (L⊕ L0), c+

X) where L ∈ Pic(B) and c∗B(L) = L∗. ¤

Lemma 3.14. Let g ≥ 1 be an odd integer and (B, cB) be a smooth compact
irreducible real algebraic curve of genus g and empty real part. Let L be a complex
line bundle over B satisfying c∗B(L) = L∗. Then the real ruled surfaces (P (L ⊕
L0), c+

X) and (P (L⊕ L0), c−X) are in the same deformation class.

(In lemma 3.14, the real structures c+
X and c−X on X = P (L ⊕ L0) are those

given by proposition 1.6.)

Proof. Without changing the deformation class of X = P (L⊕L0), we can assume
that the base of this surface is the real algebraic curve (B, cB) given by corollary
2.8. Then, if L belong to the same real component of (Jac(B),−c∗B) that the
bundle given by corollary 2.8, we can assume, without changing the deformation
class of X = P (L ⊕ L0), that L is exactly this bundle. In that case, the result
comes from corollary 2.8.

Let X = P (L⊕L0) be the ruled surface given by corollary 2.8, and Φ : X → X
be the automorphism conjugating c+

X and c−X . Let x1 be a point on the section of
X associated to L and y1 = c+

X(x1) = c−X(x1). Let x2 = Φ(x1) and y2 = Φ(y1) =
c+
X(x2) = c−X(x2). Denote by Y1 (resp. Y2) the ruled surface obtained from X after

one elementary transformation on the points x1 and y1 (resp. x2 and y2). Then
the real structures c+

X and c−X lift to the real structures c±Y1
(resp. c±Y2

) on Y1 (resp.
Y2), and Φ lifts to a biholomorphism Ψ : Y1 → Y2 such that c+

Y1
= Ψ−1◦c−Y2

◦Ψ and
c−Y1

= Ψ−1 ◦c+
Y2
◦Ψ. But the real ruled surface (Y1, c

−
Y1

) is in the same deformation
class that (Y2, c

−
Y2

). Indeed, it suffices to choose an analytic path xt linking x1

to x2 in the section of X associated to L and to consider the surfaces (Yt, c
−
Yt

)
obtained from (X, c−X) after an elementary transformation on the points xt and
c−X(xt).

Hence the real ruled surfaces (Y1, c
−
Y1

) and (Y1, c
+
Y1

) are in the same deforma-
tion class. To conclude, it remains to see that they do not come from the same
connected component of (Jac(B),−c∗B) that (X, c±X). This follows from the fact
that the quotients Y1/c±Y1

and X/c±X are not homeomorphic. Indeed, these two
quotients are sphere bundles over the non-orientable surface B′ = B/cB . But
Y1/c±Y1

is obtained from X/c±X after one elementary transformation in one point.
Thus one of these two quotient is spin, and one is not. Hence the result. ¤

Proof of theorem 3.7. Let (X1, cX1) and (X2, cX2) be two real non-rational ruled
surfaces of bases (B1, cB1) and (B2, cB2) respectively, which have the same topo-
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logical type (t, k, g, µ, ε). We have to prove that they are in the same deformation
class, as soon as µ 6= 0.

Let us first consider the case of decomposable ruled surfaces, that is let us
assume that X1 and X2 are decomposable. If t + k < µ, it follows from theorem
2.3 that X1 = P (L1 ⊕ L0) (resp. X2 = P (L2 ⊕ L0)), where L1 ∈ Pic(B1) (resp.
L2 ∈ Pic(B2)) and c∗B1

(L1) = L∗1 (resp. c∗B2
(L1) = L∗2). Moreover, it follows from

proposition 1.6 that in this case k = 0. The partition P1 (resp. P2) in two elements
of RB1 (resp. RB2) associated to L1 (resp. L2) consists of one element containing
t components of RB1 (resp. RB2) and one element containing µ − t components
of RB1 (resp. RB2) (see §3.1 for the definition of the partition). Since (B1, cB1)
and (B2, cB2) have same topological type (g, µ, ε), there exists a piecewise analytic
path of smooth real algebraic curves connecting them (see [11]). Moreover, this
path can be chosen such that the t components of RB2, which form an element of
the partition P2, deform into the t components of RB1 which form an element of
the partition P1. This follows from the presentation in [11] of a real algebraic curve
as the gluing of a Riemann surface with boundary with its conjugate, the gluing
maps being either identity or antipodal. Thus (X2, cX2) is in the same deformation
class that a ruled surface (X̃2, cX̃2

) of base (B1, cB1). Moreover, X̃2 = P (L̃2⊕L0)
where L̃2 ∈ Pic(B1), c∗B1

(L̃2) = L̃∗2 and the partitions associated to L̃2 and L1 are
the same. From lemma 3.2, it follows that L̃2 and L1 are in the same component
of the real part of (Jac(B1),−c∗B1

) and hence the surfaces (X̃2, cX̃2
) and (X1, cX1)

are in the same deformation class.
If t + k = µ, it follows from theorem 2.3 that X1 = P (L1 ⊕ L0) (resp. X2 =

P (L2 ⊕ L0)), where L1 ∈ Pic(B1) (resp. L2 ∈ Pic(B2)) and either c∗B1
(L1) = L∗1

(resp. c∗B2
(L1) = L∗2), or c∗B1

(L1) = L1 (resp. c∗B2
(L1) = L2). In the first case,

L1 (resp L2) is in the same component of the real part of (Jac(B1),−c∗B1
) (resp.

(Jac(B2),−c∗B2
)) that L0, since t + k = µ. Thus (X1, cX1) (resp. (X2, cX2)) is in

the same deformation class that (B1×CP 1, c±X) (resp. (B2×CP 1, c±X)). Moreover,
when µ 6= 0, only one of the two real structures c±X , say c+

X , satisfies t + k = µ.
In the second case, denote by D+ − D− a divisor associated to L1, where D+,
D− are positive divisors and invariant under cB1 . Then X1 = P (LD+ ⊕LD−) and
cX1 = cLD+

⊕ cLD− . Thus, it follows from lemma 3.11 that (X1, cX1) is obtained
from (B1 × CP 1, cL0 ⊕ cL0) after performing elementary transformations on the
points of the section associated to LD+ (resp. LD−) over the locus of D+ ∈ B1

(resp. D− ∈ B1). Without changing the deformation class of the surface, we can
assume that the elementary transformations are only done on real points of (B1×
CP 1, cL0⊕cL0) with at most one on each of its real components. Indeed, the extra
real points can be removed as in proposition 3.10 and every couple of conjugated
imaginary points can be moved to real points following a standard deformation:
embed the disk (∆, conj) in a real section of X, and for every t ∈ ∆, denote by
Yt the surface obtained from X after an elementary transformation on the points
t and −t in ∆ (we still denote by ∆ its image in X by the chosen embedding).
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The dimension 3 complex manifold Y obtained gets two real structures, one which
lifts conj in ∆ and one which lifts −conj. This thus define two real deformations
of ruled surfaces and shows that the real ruled surfaces obtained from X after
making elementary transformations on the points ±1

2 ∈ ∆ or ± i
2 ∈ ∆ are in the

same deformation class. Hence, without changing the deformation class of the
surface (X1, cX1), we can assume that the elementary transformations are done
only on real points of (B1 × CP 1, cL0 ⊕ cL0) with at most one on each of its real
components. The total number of such elementary transformations is then k since
the topological type of (X1, cX1) is (t, k, g, µ, ε). If X1 and X2 are two such surfaces,
there exists a piecewise analytic path of smooth real algebraic curves connecting
(B1, cB1) and (B2, cB2), such that the k components of RB2 over which are done
the elementary transformations deform on the k components of RB1 over which are
done the elementary transformations. Hence in both cases, (X1, cX1) and (X2, cX2)
are in the same deformation class. Since the real structures c+

X and cL0 ⊕ cL0 are
conjugated on B1 ×CP 1, which follows from theorem 2.3 for instance, we deduce
that the real decomposable ruled surfaces (X1, cX1) and (X2, cX2) are in the same
deformation class if and only if they have the same topological type (t, k, g, µ, ε),
except when µ = 0. In that case, if g is even, it follows from proposition 3.1 that
the same method as before leads to the fact that (X1, cX1) and (X2, cX2) are in the
same deformation class that (B × CP 1, c+

X) or (B × CP 1, c−X). But the quotient
(B×CP 1)/c+

X is spin and (B×CP 1)/c−X is not, so the surfaces (B×CP 1, c+
X) and

(B × CP 1, c−X) are not in the same deformation class. If g is odd, it follows from
proposition 3.1 that the same method as before leads to the fact that (X1, cX1)
and (X2, cX2) are in the same deformation class that (P (L ⊕ L0), c±X), where L
belongs to one of the two components of the real part of (Jac(B),−c∗B). But it
follows from lemma 3.14 that (P (L⊕ L0), c+

X) and (P (L⊕ L0), c−X) are in a same
deformation class. The result follows from the fact that (B × CP 1)/c±X is spin
and P (L⊕L0)/c±X is not when L is not in the same component of the real part of
(Jac(B),−c∗B) that L0.

Now let us prove the theorem in the general case, which means that we no
more assume that X1 and X2 are decomposable. From propositions 3.9 and 3.10,
it follows that these surfaces are either in the same deformation class that some
real decomposable ruled surfaces, or in the same deformation class that some
ruled surface obtained from a decomposable one of the form (P (L⊕L0), c±X) after
at most one elementary transformation on each of its real components. In this
second case, we can assume that L does not belong to the same component of
the real part of (Jac(B),−c∗B) that L0 (otherwise the surface can be deformed
to a decomposable ruled surface). Since the topological types of these surfaces
are different from those realized by decomposable ruled surfaces, we can assume
that either X1 and X2 are both decomposable, or that they are both from this
second class. In the first case, the theorem follows from what we have already
done. Let us assume we are in the second case. Then there exists L1 ∈ Pic(B1)
(resp. L2 ∈ Pic(B2)) such that c∗B1

(L1) = L∗1 (resp. c∗B2
(L2) = L∗2) and (X1, cX1)
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is obtained from (P (L1 ⊕ L0), c+
X) after making k elementary transformations in

k disjoint real components. The surfaces (P (L1 ⊕ L0), c+
X) and (P (L2 ⊕ L0), c+

X)
have same topological type (t + k, 0, g, µ, ε), with µ > 0. Thus they are in the
same deformation class. Moreover, in the same way as before, this deformation
can be chosen so that the k marked real components of (P (L2 ⊕ L0), c+

X) deform
to the k marked real components of (P (L1 ⊕ L0), c+

X). It follows that (X1, cX1)
and (X2, cX2) are in the same deformation class. ¤
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