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Elementary modifications and line configurations in P2
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Abstract. Associated to a projective arrangement of hyperplanes A ⊆ Pn is the module D(A),
which consists of derivations tangent to A. We study D(A) when A is a configuration of lines in
P2. In this setting, we relate the deletion/restriction construction used in the study of hyperplane
arrangements to elementary modifications of bundles. This allows us to obtain bounds on the
Castelnuovo–Mumford regularity of D(A). We also give simple combinatorial conditions for the
associated bundle to be stable, and describe its jump lines. These regularity bounds and stability
considerations impose constraints on Terao’s conjecture.
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1. Introduction

In this paper we investigate the connection between a standard construction in al-
gebraic geometry (elementary modifications of bundles) and a standard construc-
tion in the study of hyperplane arrangements (the deletion/restriction operation).
In the setting of line configurations in P2, it turns out that they are the same
thing. Given a two bundle V and line L, if V sits in a modification

0 −→ W −→ V −→ i∗OL(a) −→ 0,

then understanding V means understanding W and a (here i is the inclusion of L in
P2). For line configurations, the twist a has a simple combinatorial meaning, and
the long exact sequence in cohomology yields information about the arrangement.
In particular, it gives a bound on the Castelnuovo–Mumford regularity of the
module of derivations tangent to A.

In §2 we give a quick review of the fundamental objects: syzygy modules and
hyperplane arrangements. The module of A derivations is denoted D(A), it con-
sists of derivations of Pn tangent to A. The syzygy module on the Jacobian ideal
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of the singular hypersurface A is a summand of D(A), hence the connection. In §3
we discuss elementary modifications and Castelnuovo–Mumford regularity, and in
§4 turn our attention to stability. We close with an application of these results to
Terao’s conjecture that the freeness of D(A) depends only on the combinatorics
of the arrangement.

2. Zero dimensional subschemes and line configurations

Let R = k[x0, x1, x2] and I = 〈s1, . . . , sk〉 ⊆ Rm a codimension two ideal; I defines
a map:

Ok
P2

I−→ OP2(m).

Let D denote the sheaf associated to the module of syzygies on I. D ' ⊕O(γi)
iff I is saturated. Since D is a second syzygy sheaf, D is locally free. Let Z be
the scheme defined by I; the following lemma follows from standard properties of
Chern classes:

Lemma 2.1. The Chern classes of D are c1(D) = −m, c2(D) = m2 − deg(Z).

In [18], Serre describes a method of constructing a rank two vector bundle F
on Pn from a codimension two local complete intersection Y with ideal sheaf IY .
If the determinant bundle of the normal bundle of Y extends to a bundle on Pn:

det NY/Pn ' OPn(m)|Y ,

then there is a rank two bundle F on Pn with section s, which induces the short
exact sequence:

0 −→ OPn
·s−→ F −→ IY (m) −→ 0.

The Chern classes of F are given by c1(F) = m and c2(F) = degY . If Z is a
local complete intersection and the bundle F exists, then the bundles D and F
are related by the exact sequence:

0 −→ D −→ Ok+1 −→ F −→ 0.

Let char k = 0 and let Q ∈ Rm+1 be a reduced polynomial; the role of I will be
played by the Jacobian ideal of Q. For the remainder of the paper we restrict our
attention to the case where Q is a product of distinct linear forms, although many
of the results can be generalized. We begin with some facts about hyperplane
arrangements; for more information see Orlik and Terao [14].

A hyperplane arrangement A is a finite collection of codimension one linear
subspaces of a fixed vector space V. A is central if each hyperplane contains the
origin 0 of V. The intersection lattice LA of A consists of the intersections of the
elements of A; the rank of x ∈ LA is simply the codimension of x. V is the lattice
element 0̂; the rank one elements are the hyperplanes themselves. A is called
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essential if rank LA = dim V . Henceforth, A will be an essential, central three
arrangement with |A| = d; i.e. a set of d lines in P2

k.

Definition 2.2. The Möbius function µ : LA −→ Z is defined by

µ(0̂) = 1
µ(t) = −

∑
s<t

µ(s), if 0̂ < t

Definition 2.3. The Poincaré polynomial π(A, t) =
∑

x∈LA
µ(x) · (−t)rank(x).

It follows directly from the definitions above that for such an arrangement,

π(A, t) = (1 + t)
(

1 + (d− 1)t +
( ∑

x∈LA
rank(x)=2

µ(x)− d + 1
)

t2
)

.

Let Q be a reduced polynomial defining A and JQ the Jacobian ideal of Q. The
next lemma gives an easy proof of the main result of [16]:

Lemma 2.4. The Jacobian ideal of a line arrangement in P2 is a local complete
intersection.

Proof. Localization, the product rule, and Euler’s relation. ¤

Theorem 2.5. If A is a line arrangement defined by Q and D is the syzygy bundle
of JQ, then

π(A, t) = (1 + t) · ct(D∨),

where ct is the Chern polynomial.

Proof. Lemma 2.1 implies that

ct(D∨) = 1 + (d− 1)t + ((d− 1)2 − deg JQ)t2,

and by Lemma 2.4 we have

deg JQ =
∑

x∈LA
rank(x)=2

µ(x)2.

Now use the identity: (
d

2

)
=

∑
x∈LA

rank(x)=2

(
µ(x) + 1

2

)
.

¤

The motivation for the previous theorem is Terao’s celebrated freeness theo-
rem [20]. Let A ⊆ Pn be an arrangement with defining polynomial Q ∈ R =
k[x0, . . . , xn]; the module of derivations tangent to A is defined as:
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Definition 2.6.
D(A) = {θ ∈ Derk(R) | θ(Q) ∈ 〈Q〉}.

Terao’s theorem is that if D(A) is free, then the Poincaré polynomial factors
as Πn

i=0(1 + ait), where ai are the degrees of a set of homogeneous generators of
D(A). If char k = 0 then D(A) ' D0 ⊕R(−1), where R(−1) is generated by the
Euler derivation and D0 is the module of syzygies on JQ. Henceforth, D will be
the sheaf associated to D0.

3. Elementary modifications and Castelnuovo–Mumford regular-
ity

A triple of arrangements (A′,A,A′′) consists of an arrangement A and choice of
distinguished hyperplane H ∈ A such that A′ = A−H and A′′ = A|H . A′ is called
the deletion of A and A′′ the restriction of A with respect to H. Of course, the
invariants of the elements of a triple are closely related, and deletion-restriction is
often a valuable tool for inductive proofs. For the module of derivations, we have:

Proposition 3.1. (Proposition 4.45 of [14].) There is an exact sequence:

0 −→ D(A′)(−1) ·H−→ D(A) −→ D(A′′)

Orlik and Terao give an example of a line arrangement for which the above
sequence is not right exact (see example 4.56 of [14] – this is example I in the
next section, with the role of H played by {z = 0}). Recall the definition of an
elementary modification (see [8]): Let X be a smooth variety, Y an effective divisor

on X, Y
i

↪→ X. Let V be a rank two bundle on X, L a line bundle on Y , and
suppose V → i∗L → 0. Then the kernel W of the map is also a rank two bundle
on X, with c1(W ) = c1(V )− Y and c2(W ) = c2(V )− c1(V ) · Y + i∗c1(L).

Theorem 3.2. Let A be an arrangement of lines in P2. If (A′,A,A′′) is a triple,
and i : H ' P1 ↪→ P2, then the sequence of sheaves corresponding to Proposi-
tion 3.1 (with Euler derivations pruned off ) is an elementary modification, i.e.

0 −→ D′(−1) −→ D −→ i∗D′′ −→ 0

is exact.

Proof. This follows since
i∗D′′ ' OH(1− |A′′|).

Now use the Hirzebruch–Riemann–Roch theorem and Serre vanishing to convert
the Chern polynomials to Hilbert polynomials, and compute. ¤
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An important measure of the complexity of a coherent sheaf on Pn is the
Castelnuovo–Mumford regularity:

Definition 3.3. A coherent sheaf F on Pn is m-regular (reg(F) = m) if

Hi(F(m− i)) = 0 ∀i ≥ 1.

The exact sequence 0 −→ D′(−1) −→ D −→ i∗D′′ −→ 0 gives us a good way
to bound the Castelnuovo–Mumford regularity of line arrangements.

Theorem 3.4. For a triple (A′,A,A′′) of line arrangements,

reg(D) ≤ max{reg(D′) + 1, |A′′| − 1}.

Proof. Follows from the long exact sequence in cohomology. ¤

Corollary 3.5. For an arrangement on d lines, reg(D) ≤ d− 2. This is tight for
generic arrangements.

Since the sheaf D is reflexive, it corresponds to a bundle on P2 and ([12])

D0 '
⊕

i

H0(D(i)).

For an arrangement of d lines, this means that the minimal free resolution of D0

is:

0 −→
m−2⊕
j=1

R(−βj) −→
m⊕

i=1

R(−αi) −→ D0 −→ 0,

where the αi are at most d−2 and the βj are at most d−1. In [26], Ziegler obtains
results on the generators for D∨

0 . For hypersurfaces with only isolated singularities,
Choudary and Dimca [3] give a bound; for a (reduced, singular) degree d curve in
P2, the regularity of D0 is at most 2d− 4. Thus, for line arrangements, the bound
above is better than existing results.

The entire free resolution of D0 for a generic arrangement is given in [15] and
[22]. In [24], Yuzvinsky gives a set of generators for a submodule of D∨

0 ; these
generators are determined by L2(A). When the third relation space vanishes,
they actually generate the entire module (this generalizes the results of Ziegler
mentioned earlier). Even in the case of line configurations, there are examples
(e.g. the Braid arrangement) where this space does not vanish. However, the
maximal number of generators of D0 is bounded by d − 1 (which is attained by
generic arrangements). For one proof of this, see Jiang and Feng [11], §4.2. Finally,
we note that Derksen and Sidman [4] have recently obtained regularity bounds on
D(A) for higher dimensional arrangements.
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4. Stability and jump loci

In this section, we consider the stability and jump loci of the bundle D obtained
from an arrangement of d lines; the point is that we can often construct stable
bundles with prescribed jumping lines. For generic arrangements these questions
were studied by Dolgachev and Kapranov in [5], [6]. We want to investigate D
when the arrangement is nongeneric; the tool will be the short exact sequence of
the last section. We first recall a few standard results about vector bundles on Pn,
referring for proofs to the book of Okonek, Schneider and Spindler [13].

Definition 4.1. Let M be a bundle on Pn. The slope of M is defined as

slope(M) =
c1(M)
rk M .

A key concept in the study of bundles on Pn is stability:

Definition 4.2. A bundle M on Pn is stable if for all subsheaves N ⊆ M with
0 < rk N < rk M,

slope(N ) < slope(M),

and semistable if
slope(N ) ≤ slope(M).

If M is a stable two bundle on P2, then Schwarzenberger [17] showed that
c1(M)2 < 4c2(M) (this was generalized by Bogomolov [2]). Thus, a necessary
condition for stability of D is that degree JQ < 3

4 (d − 1)2. The degree of the
Jacobian ideal ranges from

(
d
2

)
(achieved for generic line arrangements) to d2 −

3d + 3 (achieved for arrangements with d− 1 lines through a point, and one other
line in general position, this class of arrangements has D ' O(−1)⊕O(−d + 2)).
Basically, as the degree of the Jacobian ideal gets large, D has less chance of being
stable.

For generic arrangements A in Pn, Dolgachev and Kapranov prove that the
bundle of meromorphic one forms with logarithmic pole along A is stable (in the
setting of generic line arrangements this bundle is dual to a twist of D, see [12]),
they also prove that the map which associates to a set of d generic hyperplanes the
corresponding bundle is generically injective if d ≥ 2n+3. Since dimMP2(c1, c2) =
4c2 − c2

1 − 3 this map has no chance of having Zariski dense image if the number
of lines is large (if d = 6 Dolgachev and Kapranov show that it is). First, a few
definitions. The normalization Fnorm of a rank two bundle F is F(i), where i is
chosen so that c1(F(i)) ∈ {0,−1}, i.e.

Definition 4.3. Let F be a rank two bundle on P2. Then Fnorm = F(kF ), where
kF = −c1(F)

2 if c1(F) is even, and − c1(F)+1
2 if c1(F) is odd.
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Lemma 4.4. A reflexive sheaf F of rank two over Pn is stable iff H0(Fnorm) = 0.
If c1(F) is even, then F is semistable iff H0(Fnorm(−1)) = 0. If c1(F) is odd,
semistable and stable coincide.

Theorem 4.5. Let A be an arrangement of d lines in P2, H any line in A, and
(A′,A,A′′) the corresponding triple (notice that the restriction to H ignores mul-
tiplicities, so |A′′| = |A′ ∩H|). Then

If d is odd, then D is stable if D′ is stable and |A′′| > d+1
2 .

If d is odd, then D is semistable if D′ is semistable and |A′′| > d−1
2 .

If d is even, then D is stable if D′ is semistable and |A′′| > d
2 .

Proof. The proofs are similar so we prove the first statement. Since d is odd,
kD = d−1

2 and kD′ = kD − 1. By Lemma 4.4 D is stable iff H0(Dnorm) = 0 so it is
necessary that H0(D′(−1) ⊗ O(kD)) = H0(D′norm) = 0. The simplest sufficiency
criterion is then that H0(i∗D′′ ⊗O(kD)) = 0; from the exact sequence

0 −→ O(−|A′′|) −→ O(1− |A′′|) −→ i∗D′′ −→ 0

we have that H0(i∗D′′ ⊗O(kD)) = 0 iff |A′′| > d+1
2 . ¤

An iff criterion for stability can be formulated in the obvious fashion: D is stable
iff H0(D′(−1) ⊗ O(kD)) = 0 and the connecting map H0(i∗D′′ ⊗ O(kD)) −→
H1(D′(−1) ⊗ O(kD)) is an inclusion. This can be computed in any particular
instance, but is not a criterion which is easy to apply; the point of Theorem 4.5
is that if one adds a line H to a configuration A′ for which D′ is stable, then as
long as no more than (roughly) half of the lines become redundant on restricting
to H, the new configuration is also stable.

Next, we study the jump loci of these bundles. By a theorem of Grothendieck,
any bundle on P1 splits as a direct sum of line bundles; in particular, for a rank
two bundle V on P2 and line L

V |L ' OL(a1)⊕OL(a2).

In the Grassmannian of lines on P2 ' P2∨ , there is a nonempty, Zariski open
subset where (a1, a2) is constant; the complement of this subset is the jump locus
jV of V . By semicontinuity and the Grauert–Mülich theorem, we have

Definition 4.6. For a normalized, semistable two bundle V on P2

jV = {L ∈ P2∨ | H0(V (−1)|L) 6= 0}.

We now describe the jump lines of D. The method works in general if we have
a modification V −→ i∗OL(a) −→ 0. In, [1], Barth proved that if V is a semistable
two bundle on Pn with c1(V ) = 0, then jV is purely one codimensional, and is
supported on a divisor of degree c2(V ). If c1(V ) = −1, then in general V has only
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a finite number of jump lines; in [10] Hulek introduced the notion of a jump line
of the second kind:

j2
V = {L ∈ P2∨ | H0(V |L2) 6= 0},

and proved that if V is a semistable two bundle on Pn with c1(V ) = −1, then j2
V

is a curve of degree 2(c2(V )− 1), and jV ⊆ Sing(j2
V ). We begin by asking which of

the lines of the arrangement are contained in jD. Let (A′,A,A′′) be a triple with
respect to a line H, put L = H.

Theorem 4.7. Let A be an arrangement of d lines, L ∈ A and A′′ = A|L.

If d is odd, L ∈ jD iff either |A′′| ≥ d+3
2 or det αL = 0; where

H0(OL

(
d− 1

2
− |A′′|

)
) αL→ H1(OL

(
|A′′| − d + 3

2

)
).

If d is even, L ∈ jD iff either |A′′| ≥ d+4
2 or rank αL < d

2 − |A′′|; where

H0(OL

(
d− 2

2
− |A′′|

)
) αL→ H1(OL

(
|A′′| − d + 4

2

)
).

Proof. We prove the first statement. Since

i∗D′′(kD − 1)|L ' D′′(kD − 1) ' OL

(
d− 1

2
− |A′′|

)
,

and a1 + a2 = −2, we have an exact sequence:

0 −→ OL

(
|A′′| − d + 3

2

)
−→ OL(a1)⊕OL(a2) −→ OL

(
d− 1

2
− |A′′|

)
−→ 0.

From the long exact sequence in cohomology, it is obvious that H0(Dnorm(−1)|L) 6=
0 iff one of the two conditions of the theorem holds. ¤

Example 4.8. Consider the following set of arrangements (where {z = 0} is the
line at infinity):
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I II III

IV V

Arrangement I consists of the coordinate lines and the lines {y + z = 0}, {x +
z = 0}; D ' O(−2)2 (which can be proved using Theorem 4.51 of [14]) so D is
semistable. Arrangements II through V are obtained by adding (successively) the
lines {x+y = 0}, {x+2z = 0}, {x+2y = 0}, {y+2z = 0}. Theorem 4.5 implies that
the bundles associated to arrangements II, IV, and V are stable and the bundle
associated to arrangement III is semistable. We can compute the Chern classes
using Theorem 2.5:

c1(Dnorm) c2(Dnorm)
I. 0 0
II. −1 1
III. 0 1
IV. −1 2
V. 0 3

The normalized bundles fit into exact sequences:

I. 0 −→ O2 −→ Dnorm −→ 0
II. 0 −→ O(−2) −→ O(−1)3 −→ Dnorm −→ 0
III. 0 −→ O(−2) −→ O(−1)2 ⊕O −→ Dnorm −→ 0
IV. 0 −→ O(−3) −→ O(−1)2 ⊕O(−2) −→ Dnorm −→ 0
V. 0 −→ O(−3) −→ O(−1)3 −→ Dnorm −→ 0

An easy application of the Beilinson spectral sequence [13] shows that a stable
bundle with c1 = −1 and c2 = 1 must be Ω1

P2(1), so for arrangement II, the jump
locus of D is empty. For arrangement III, Barth’s theorem implies that the support
of jD is of degree one; by Theorem 4.7 {x + y = 0} and {y + z = 0} are jumping
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lines, hence jD is the line {x−y+z = 0} ⊆ P2∨ . For arrangement IV, Theorem 4.7
shows that {y + z = 0} is a jumping line. In fact (Hulek, Prop. 8.2) a semistable
two bundle V with c1(V ) = −1, c2(V ) = 2 has only a single jump line, so this is
it!

Finally, for arrangement V, Barth’s theorem implies that the jump locus is a
cubic curve; Theorem 4.7 gives six lines of the arrangement which are jump lines.
A computation shows that {x − y = 0}, {x − 2z = 0}, and {y − z = 0} are also
jump lines, so we have nine points in P2∨ , which unfortunately only impose eight
conditions on cubics. However, a final computation shows that the coordinate
lines are not jump lines, which allows us to determine that the jump locus is a
smooth cubic curve:

4x3 − 2x2y − 4xy2 + 2y3 − 4x2z − y2z − xz2 − 2yz2 + z3 = 0.

In [6], Dolgachev and Kapranov show that for generic arrangements in any
dimension, a line contained in one of the hyperplanes of the arrangement is a
jumping line; for line arrangements this also follows from Theorem 4.7. In fact,
Dolgachev and Kapranov prove that for a generic arrangement with an odd number
of lines, the points of the jump locus corresponding to the lines of the arrangement
are singular points of fairly high multiplicity, which is an interesting contrast to
the example above.

If L 6= H, then since T or1(i∗D′′,OL) = 0, we obtain an exact sequence:

0 −→ D′(−1)|L −→ D|L −→ i∗D′′|L −→ 0,

with i∗D′′|L torsion. If d is odd, normalizing, restricting to L, and taking coho-
mology shows that jD′ ⊆ jD. In fact, we can do better. Let L be a line which is
not a line of the arrangement. Think of the arrangement as A′, |A′| = d, and put
A = A′ ∪ L. Restricting to L yields a long exact sequence

0 −→ T or1(i∗D′′,OL) −→ D′(−1)|L −→ D|L −→ i∗D′′|L −→ 0.

In the previous theorem we studied a short exact sequence pruned from the right
end of this type of complex; pruning a short exact sequence from the left end yields
exact sequences:

0 −→ OL

(
d− 1

2
− |A′′|

)
−→ OL(b1)⊕OL(b2) −→ OL

(
|A′′| − d + 3

2

)
−→ 0,

when d is odd; in this case b1 + b2 = −2.

0 −→ OL

(
d− 2

2
− |A′′|

)
−→ OL(a1)⊕OL(a2) −→ OL

(
|A′′| − d + 4

2

)
−→ 0,

when d is even; in this case a1 + a2 = −3.

Theorem 4.9. Let A be an arrangement of d lines, L a line with L /∈ A and
A′′ = A|L.
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If d is odd, then L ∈ jD iff either d−1
2 ≥ |A′′| or det αL = 0; where

H0(OL

(
|A′′| − d + 3

2

)
) αL→ H1(OL

(
d− 1

2
− |A′′|

)
).

If d is even, then L ∈ jD iff either d−2
2 ≥ |A′′| or rank αL ≤ (|A′′| − d+4

2 );
where

H0(OL

(
|A′′| − d + 4

2

)
) αL→ H1(OL

(
d− 2

2
− |A′′|

)
).

Notice that the three jump lines of arrangement V which are not lines of the
arrangement are characterized by the first condition of the theorem. It seems
reasonable to expect that the jump locus of the second kind is related to multiar-
rangements, about which very little is known (see Ziegler [25], or Solomon–Terao
[19] for recent progress). We plan to return to this question in a later paper.

5. Terao’s conjecture

One of the major open conjectures in the study of hyperplane arrangements is the
following:

Conjecture 5.1. (Terao.) In characteristic zero, freeness of D(A) depends only
on the combinatorics of A.

In [23], Yuzvinsky proves that for a fixed intersection lattice the set of free
arrangements is Zariski open. In this section, we show that the vector bundle
viewpoint has implications for Terao’s conjecture. As noted earlier, D(A) decom-
poses as R(−1)⊕D0, and the module D0 has a minimal free resolution of the form
(with m ≤ d− 1):

0 −→
m−2⊕
j=1

R(−βj) −→
m⊕

i=1

R(−αi) −→ D0 −→ 0.

If there is an αi = 1, then the arrangement is a “near pencil”, and we ignore this
case, since such an arrangement is supersolvable [14]. The results of §3 imply

2 ≤ αi ≤ d− 2

3 ≤ βj ≤ d− 1.

Now fix an arrangement with intersection lattice LA (which also fixes π(A, t)).
For Terao’s conjecture we’ll be interested in the situation where

π(A, t) = (1 + t)(1 + at)(1 + (d− 1− a)t).

The results on the Jacobian ideal in §2 impose the additional conditions on the
resolution: ∑

αi −
∑

βj = d− 1
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deg JQ =
∑

x∈LA
rank(x)=2

µ(x)2 = (d− 1)2 − a(d− 1− a).

An easy computation shows the condition on degJQ is equivalent to
(

d− 2
2

)
−

m∑
i=1

(
αi − 1

2

)
+

m−2∑
j=1

(
βj − 1

2

)
+ 1 = a(d− 1− a).

There are constraints on any free resolution of the form above; for example, if
α1 = min{αi} then

min{βi} ≥ min{α2, . . . , αm}+ 1.

This follows since any relation involves at least two generators, and must be a
positive degree multiple of both. So if a counterexample to Terao’s conjecture
exists, it must be an integral solution of the above inequalities. Another constraint
is the following, which follows easily by localization.

Lemma 5.2. There is a syzygy of degree ≥ max{µ(x)|x ∈ L2(A)}.

Example 5.3. Let A be an arrangement consisting of five lines through a point,
and two additional lines in general position.

A quick check shows that π(A, t) = (1 + t)(1 + 3t)2. This is the simplest example
of a nonfree arrangement where π(A, t) factors. Failure of freeness can be ex-
plained using the Addition-Deletion theorem of [14]; Lemma 5.2 provides another
explanation. We combine the results above into

Theorem 5.4. Let A be an arrangement on d lines with intersection lattice LA,
M = max{µ(x)|x ∈ L2(A)} and π(A, t) = (1 + t)(1 + at)(1 + (d− 1− a)t). For

{α1 ≤ α2 ≤ · · · ≤ αm} ∈ Nm and {β1 ≤ β2 ≤ · · · ≤ βm−2} ∈ Nm−2,

a unique integral solution to the following inequalities implies that Terao’s conjec-
ture holds for arrangements with intersection lattice LA.

1. The bound on the number of generators of D0:

2 ≤ m ≤ d− 1
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2. Global geometric constraints on the Jacobian ideal:
m∑

i=1

αi −
m−2∑
j=1

βj = d− 1

(
d− 2

2

)
−

m∑
i=1

(
αi − 1

2

)
+

m−2∑
j=1

(
βj − 1

2

)
+ 1 = a(d− 1− a).

3. Regularity constraints:
2 ≤ αi ≤ d− 2

3 ≤ βj ≤ d− 1.

4. Resolution constraints:
β1 ≥ α2 + 1.

5. Local geometric constraints:

∃ αi ≥ M.

Example 5.5. The non-Fano arrangement is an arrangement of seven lines with
π(A, t) = (1 + t)(1 + 3t)2:

It is the smallest free arrangement which is not supersolvable. Applying Theo-
rem 5.4, we find that there are nineteen different numerical possibilities for the
free resolution of D0. To shorten this list, we employ stability.

Write A ≡ B if A and B have isomorphic intersection lattices, and let DA,
DB be the bundles associated to arrangements A and B. Call a split two bundle
F balanced if F ' O2

P2(a); a rank two bundle which splits is semistable iff it is
balanced. It is obvious that the only free line arrangements which can be semistable
are those with an odd number of lines, so for the remainder of this section we’ll
assume the number of lines is odd. Finally, note that the normalization of a
balanced split two bundle is just OP2 ; so both Chern classes of the normalized
bundle are zero.

Lemma 5.6. Suppose DA is balanced, and B ≡ A is a counterexample to Terao’s
conjecture. Then DB is not semistable. In particular, there must be a syzygy on
the Jacobian ideal of B of degree < (d− 1)/2.
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Proof. Once we’ve fixed a lattice, we have also fixed the Chern classes. Thus, a
counterexample to Terao’s conjecture, if semistable, would have a jump locus of
degree c2 = 0 by Barth’s theorem, so a semistable counterexample would be a
uniform bundle. But a uniform two bundle on P2 which does not split is T 1(a)
([21]), and these possibilities are excluded simply by considering the Chern classes.
So we know that a counterexample must be unstable. Now from Lemma 4.4 we
see that H0(DBnorm(−1)) 6= 0, which implies the result about the syzygies. ¤

Lemma 5.7. Any counterexample B (≡ A with DA balanced) to Terao’s conjec-
ture must have a syzygy on the Jacobian ideal of B of degree > (d− 1)/2.

Proof. If not, then DBnorm would be generated by global sections. But a globally
generated bundle with c1 = 0 is trivial ([13] p. 53). ¤

Combining these lemmas yields the following theorem. Notice that since having
syzygies of low degree corresponds to being in special position, this is consistent
with Yuzvinsky’s results.

Theorem 5.8. Suppose a free arrangement A on d lines has DA ' O2((d−1)/2).
A counterexample B ≡ A to Terao’s conjecture must have a syzygy of degree <
(d− 1)/2, and also a syzygy of degree > (d− 1)/2.

Example 5.9. We return to case where A is the non-Fano arrangement. Of the
nineteen numerically possible free resolutions for D0, one corresponds to the case
where A is free. Theorem 5.8 allows us to rule out fifteen of the other possibilities.
Thus, there are only three numerical types of resolution possible if A is not free:

0 −→ R(−6) −→ R2(−5)⊕R(−2) −→ D0 −→ 0.

0 −→ R(−6)⊕R3(−3) −→ R(−5)⊕R3(−4)⊕R2(−2) −→ D0 −→ 0.

0 −→ R2(−6)⊕R2(−3) −→ R4(−5)⊕R2(−2) −→ D0 −→ 0.

If there are only two quadratic first syzygies, as in the last two cases, there can
be at most one linear second syzygy, so these resolutions cannot occur. The first
possibility actually does occur as the free resolution for an arrangement on seven
lines with Poincaré polynomial π(A, t) = (1+t)(1+3t)2 – it is the free resolution for
the arrangement in Example 5.3. However, it cannot be the free resolution for the
non-Fano arrangement. To see this, start out with arrangement I from last section,
and apply Theorem 3.4 twice. The regularity can be at most four, whereas this
resolution has regularity five. Hence, any arrangement combinatorially equivalent
to the non-Fano arrangement must be free. Remark: Theorem 4.51 of [14] and a
similar sequence of subarrangements can also be used to obtain this result.



Vol. 78 (2003) Elementary modifications and line configurations in P2 461

Acknowledgement. I thank two anonymous referees for useful suggestions. The
Macaulay2 software package was used to perform all computations.

References

[1] W. Barth, Some properties of stable rank two vector bundles on Pn, Mathematische Annalen
226 (1977), 125–150.

[2] F. Bogomolov, Unstable vector bundles and curves on surfaces, Proceedings of the Interna-
tional Congress of Mathematicians (Helsinki, 1978), 517–524, Acad. Sci. Fennica, Helsinki,
1980.

[3] A. Choudary and A. Dimca, Koszul complexes and hypersurface singularities, Proc. Amer.
Math. Soc. 121 (1994), 1009–1016.

[4] H. Derksen and J. Sidman, Castelnuovo–Mumford regularity by approximation,
math.AC/0211279.

[5] I. Dolgachev and M. Kapranov, Schur quadrics, cubic surfaces, and rank two vector bundles
over the Projective Plane, Astérisque 218 (1993), 111–144.
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