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On Waring’s problem for several algebraic forms

Enrico Carlini and Jaydeep Chipalkatti

Abstract. We reconsider the classical problem of representing a finite number of forms of degree
d in the polynomial ring over n+1 variables as scalar combinations of powers of linear forms. We
define a geometric construct called a ‘grove’, which, in a number of cases, allows us to determine
the dimension of the space of forms which can be so represented for a fixed number of summands.
We also present two new examples, where this dimension turns out to be less than what a näıve
parameter count would predict.
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1. Introduction

Waring’s problem for algebraic forms is formulated in analogy with the number-
theoretic version. Assume that F1, . . . , Fr are homogeneous forms of degree d in
variables x0, . . . , xn. We would like to find linear forms Q1, . . . , Qs, such that
each Fi is expressible as a linear combination of Qd

1, . . . , Q
d
s . This problem, and

especially the case r = 1, has received a great deal of attention classically. Indeed,
since the representation

F = c1Q
d
1 + · · ·+ csQ

d
s (1)

is computationally easy to work with, geometric results about the hypersurface
F = 0 are sometimes more easily proved by reducing F to such an expression by
a linear change of variables. For instance, the classical texts of Salmon [19, 18]
frequently use this device.

Typically the forms Fi were assumed general, and the goal of the enquiry was
to find the smallest s for which the problem is solvable. An elementary parameter
count gives an expected value of s, which usually turns out to be correct. However,
there are exceptional cases when the expected value does not suffice, and of course
they are the ones of more interest. Here we consider a more general version of the
problem, i.e., we fix s and ask for the dimension of the family of forms (Fi) which
can be so expressed. See [10, 14] for an overview of the problem.
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The formal set-up is as follows. Let V be a C-vector space of dimension
n + 1, and consider the symmetric algebra S =

⊕
d≥0

Symd V . Choosing a basis

{x0, . . . , xn} for V , an element in Sd may be written as a degree d form in the xi.
Fix two positive integers r ≤ s. Let Q = {Q1, . . . , Qs} denote a typical point

of Syms(PS1), and consider the set

Us = {Q : Qd
1, . . . , Q

d
s are linearly independent over C}.

This is an open set of Syms(PS1), and if s ≤ dimSd, then it is nonempty. (Indeed,
if the Qi are chosen generally, then Qd

i are linearly independent–see [14, p. 12 ff].)
Henceforth we assume s ≤ dimSd.

Let G(r, Sd) denote the Grassmannian of r-dimensional subspaces of Sd and
Λ ∈ G(r, Sd) a typical point. Now consider the incidence correspondence Ξ ⊆
G(r, Sd)× Us, defined to be

Ξ = {(Λ, Q) : Λ ⊆ span (Qd
1, . . . , Q

d
s)}. (2)

Let Σ denote the image of the first projection π1 : Ξ −→ G(r, Sd). The chief
preoccupation of this paper is calculating the dimension of Σ.

Remark 1.1. In general Σ may not be a quasiprojective variety. E.g., let
(n, d, r, s) = (1, 3, 1, 2). A binary cubic F lies in Σ, iff it is either a cube of a
linear form, or has three distinct linear factors. Identify the set of cubes in PS3

with a twisted cubic curve C. Then its tangential developable TC (i.e. the union
of tangent lines to C) consists of forms which can be written as Q2

1Q2, (Qi ∈ S1).
Hence

Σ = (PS3 \ TC) ∪ C.

In particular, the map π1|Ξ may be dominant without being surjective. It is in
general difficult to determine the smallest s such that it is surjective, and we do
not address this problem here.

Definition 1.2. If Q ∈ Us and Λ ⊆ span(Qd
1, . . . , Q

d
s), then Q is called a polar

s-hedron1 of Λ.

Thus an element Λ ∈ G(r, Sd) lies in Σ iff it admits a polar s-hedron. If
F1, . . . , Fr span Λ, then we will speak of a polar s-hedron of the Fi.

The projection π2 : Ξ −→ Us is a Grassmann bundle of relative dimension
r(s − r), hence N1 := dim Ξ = sn + r(s − r). This is the number of parame-
ters implicit in the right hand side of expression (1). Let N2 := dim G(r, Sd) =
r(

(
n+d

d

)− r), then
dim Σ ≤ min{N1, N2}. (3)

We define the deficiency δ(Σ) as the difference min{N1, N2} − dim Σ. As we will
see, positive deficiency is a rare phenomenon. A necessary condition for Σ to be
1 If n = 2, we will of course say polar triangle, quadrilateral etc.
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dense in G(r, Sd) is N1 ≥ N2, i.e.,

s ≥ r

n + r

(
n + d

d

)
. (4)

If Σ is dense in G, then the general fibre of π1 : Ξ −→ Σ has dimension N1−N2.
An interesting case is N1 = N2 = dim Σ, when a general Λ admits finitely many
polar s-hedra. But in very few cases we know how many.

When r = 1, a complete answer to the problem of calculating dim Σ is known.
Using apolarity (or equivalently Macaulay–Matlis duality), the question is reduced
to a calculation of the Hilbert function of general fat points in Pn. The final
theorem is due to Alexander and Hirschowitz [1]. See [10, 14, 17] for further
discussion and references.

Theorem 1.3 (Alexander–Hirschowitz). Assume r = 1 and d ≥ 3. Then equality
holds in (3) except when

(n, d, s) = (2, 4, 5), (3, 4, 9), (4, 3, 7) or (4, 4, 14).

For all exceptions, δ(Σ) = 1.

The case r = 1, d = 2 is anomalous, in the sense that Σ is then almost always
deficient. (See [12, Ch. 22] for the exact calculation.) Clebsch’s discovery of
the example (2, 4, 5) (see [4]) was a surprise, as it showed that merely counting
parameters was not sufficient to solve the problem. Thus a general planar quartic
does not admit a polar pentagon, but a quartic which admits one (called a Clebsch
quartic), admits at least ∞1 of them. See [6] for some beautiful results on Clebsch
quartics.

In this paper we consider the case r > 1, which remains open in general.
Terracini’s paper [21] addresses this problem, but it is not easy to follow. We
know of only four examples when r > 1 and (3) is not an equality, viz.

(n, d, r, s) = (2, 3, 2, 5), (3, 2, 3, 5), (3, 2, 5, 6), (5, 2, 3, 8), (5)

with δ(Σ) = 1 in every case. The first two examples were classically known, see
[16] for the first, and [5, p. 353], [22] for the second. The last two were found by
the authors using a computer search.

The paper is organised as follows. In the next section we construct a morphism
µ whose image is Σ. Then we differentiate the expression for µ to get a formula
for the dimension of Σ (see Theorem 2.1). This motivates the definition of a
geometric construct called a ‘grove’, which is, roughly speaking, a linear system
of hypersurfaces with assigned singularities. In Theorem 2.6, we reinterpret the
codimension of Σ as the dimension of a family of groves. In §3, we give several
examples to show how geometic arguments can used to calculate dim Σ. In the
last section, we try to prove the deficiency of the four examples above using this
method. For the last example, we do not succeed entirely.
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2. Groves and the dimension of Σ

2.1. An analytic representation of Σ

Let Mat◦(1, r;Sd) be the set of matrices of size 1 × r with entries in Sd, and
columns independent over C. (Similar definitions are understood below.) Then
G(r, Sd) is the quotient Mat◦(1, r;Sd)/GLr(C). If CΣ denotes the inverse image
of Σ in Mat◦(1, r;Sd), then dim Σ = dimCΣ− r2.

Consider the morphism of varieties

Mat◦(1, s;S1)×Mat◦(s, r;C)
µ−→ Mat◦(1, r;Sd)

([Q1, . . . , Qs], A) −→ [Qd
1, . . . , Q

d
s ]A = ([Z1, . . . , Zr]).

(6)

The image of µ is CΣ, hence dim CΣ is the rank of the Jacobian matrix of µ at a
general point in the domain of µ.

We can use this setup for a machine computation of dim Σ. Write

Qi =
n∑

j=0

qijxj , A = (αij), Zk =
∑
|I|=d

zk,I xI ,

where the q, α are indeterminates and zk,I polynomial functions in q, α. The
Jacobian

∂(zk,I)/∂(q, α)

is then easily written down, and in order to find its rank, we substitute random
numbers for the q and α. We programmed this in Macaulay-2 to search for deficient
examples. The search shows that in the intervals below, there are no examples of
deficiencies other than those already mentioned.

◦ n = 2, 2 ≤ d ≤ 6, all possible r, s (recall that s < dim Sd),
◦ n = 3, 2 ≤ d ≤ 3, all possible r, s,
◦ n = 4, d = 2, all possible r, s,
◦ n = 4, d = 3, r ≤ 14, s ≤ 23,
◦ n = 5, d = 2, all possible r, s,
◦ n = 5, d = 3, r ≤ 9, s ≤ 34.
A. Iarrobino pointed out that the deficient examples tend to occur for s =

n + 2, n + 3, and when N1, N2 are close. However there are no further such
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examples in the following range:

2 ≤ n ≤ 10, 2 ≤ d ≤ 5, s = n + 2, n + 3, r =

⌊
ns(

n+d
d

)− s

⌋
,

⌈
ns(

n+d
d

)− s

⌉
.

The source code for the Macaulay–2 routine is available upon request, for which
the reader should write to the second author.

2.2. A formula for dim Σ

We will now use the morphism µ to describe a formula for dim Σ. Let R =⊕
d≥0

Symd V ∗, so that PS1 = ProjR. If X ⊆ PS1(= Pn) is a closed subscheme,

then IX denotes its ideal and I
(2)
X the second symbolic power of IX .

Let Q = {Q1, . . . , Qs} be a set of s points in PS1. Given an s × r matrix
A = (αij) over C, we have a morphism

η : Mat(1, r; (IQ)d) −→
s⊕

i=1

Rd/(I(2)
Qi

)d

[u1, . . . , ur] −→
[

. . . ,
r∑

j=1

αij .uj + (I(2)
Qi

)d, . . .

]
1≤i≤s

(7)

Of course η depends on the choice of A,Q, but we will write ηA,Q only if
confusion is otherwise likely.

Theorem 2.1. With notation as above, assume that the points Q and the matrix
A are general. Then

codim(Σ, G(r, Sd)) = dim ker(η). (8)

The proof uses the classical notion of apolarity. We introduce the essentials,
see e.g. [8, 10, 11, 14] for details.

2.3. Apolarity

Recall that
R =

⊕
d≥0

Symd V ∗, S =
⊕
d≥0

Symd V.

Let {x0, ..., xn} and {∂0, ..., ∂n} be the dual bases of V and V ∗ respectively. We
interpret a polynomial u(∂0, ..., ∂n) in R as the differential operator u( ∂

∂x0
, ..., ∂

∂xn
).
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Then we have maps Rp ◦ Sq −→ Sq−p, and thus S acquires the structure of an
R–module.

For a subspace W ⊆ Sd, let

W⊥ = {u ∈ Rd : u ◦ F = 0 for every F ∈ W},
which is a subspace of Rd, such that dimW⊥ + dimW = dim Sd. In classical
terminology, if u ◦ F = 0 and deg u ≤ deg F , then u, F are said to be apolar to
each other. Thus W⊥ is the set of differential operators in Rd, which are apolar
to all forms in W .

In the following two instances W⊥ can be concretely described (see [14, Lemma
2.2]). Let Q ∈ S1 be a nonzero linear form, or equivalently a point in PS1.

i. If W = span (Qd), then W⊥ = (IQ)d.
ii. If W = {Qd−1Q′ : Q′ ∈ S1}, then W⊥ = (I(2)

Q )d.

Proof of Theorem 2.1. We will calculate the map on tangent spaces for the mor-
phism µ in (6). Fix a general point ([Q1, . . . , Qs], A). Given arbitrary forms
Q′

1, . . . , Q
′
s ∈ S1 and B ∈ Mat(s, r;C), we have

µ([Q1 + εQ′
1, . . . , Qs + εQ′

s], A + εB)− µ([Q1, . . . , Qs], A)

= ε{[Qd
1, . . . , Q

d
s ]B + d[Qd−1

1 Q′
1, . . . , Q

d−1
s Q′

s]A}+ O(ε2).

Hence the tangent space to CΣ at the point µ([Q1, . . . , Qs], A) is described as

T = {[Qd
1, . . . , Q

d
s ]B + [Qd−1

1 Q′
1, . . . , Q

d−1
s Q′

s]A :
Q′

1, . . . , Q
′
s ∈ S1, B ∈ Mat(s, r;C)}.

Now dim T = dimCΣ = dim Σ + r2. Define maps

α : Mat(1, s;S1) −→ Mat(1, r;Sd)

[Q′
1, . . . , Q

′
s] −→ [Qd−1

1 Q′
1, . . . , Q

d−1
s Q′

s]A, and
β : Mat(s, r;C) −→ Mat(1, r;Sd)

B −→ [Qd
1, . . . , Q

d
s ]B,

so that T = image α + image β. After dualising, we have a diagram

Mat(1, r;Rd)
α∗−−−−→Mat(1, s;R1)

β∗

y
Mat(s, r;C)

Now u = [u1, . . . , ur] ∈ ker β∗ ⇐⇒ for every [F1, . . . , Fr] ∈ image β, we have
ui ◦ Fi = 0 for all i. For any pair of indices 1 ≤ i1, i2 ≤ r, one can certainly
arrange B such that Fi1 = Qd

i2
. Thus u ∈ ker β∗ iff each ui lies in ∩j span(Qd

j )
⊥ =

∩j (IQj
)d = (IQ)d. Hence ker β∗ = Mat(1, r; (IQ)d).
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By analogous reasoning, an element u ∈ ker β∗ will be in kerα∗ iff it annihilates

all elements in imageα, i.e., iff for every i, the operator
r∑

j=1

αij .uj is apolar to

{Qi.Q
′ : Q′ ∈ S1}. Thus with the natural inclusion

Mat(1, r; (IQ)d) ⊆ Mat(1, r;Rd),

we have ker η = kerα∗ ∩ kerβ∗. Finally

dim ker η = dim kerα∗ + dim kerβ∗ − dim(kerα∗ + ker β∗)
= (r dimRd − dim imageα) + (r dimRd − dim image β)
−(r dim Rd − dim(image α ∩ image β))
= r dim Rd − dim(image α + image β)

= r dim Rd − dim T = r dimRd − dim Σ− r2 = dim G(r, Sd)− dim Σ.

The theorem is proved. ¤

If r = 1, then ker η = (I(2)
Q )d. Hence we recover the formula (see [10, Theorem

6.1])
dim Σ = dim (R/I

(2)
Q )d − 1. (9)

Remark 2.2. Since dim ker η is upper semicontinuous in the variables A,Q (see
[13, p. 125, exer. 5.8])

dim ker η ≥ codim Σ ≥ max{0, N2 −N1}
for any choice of A and Q. Hence if the first and the last terms coincide for some
choice, then it follows that Σ is not deficient.

We will reformulate this theorem geometrically. In the sequel, assume that
Q = {Q1, . . . , Qs} are points in a fixed copy of Pn (PS1 if you will) and similarly
p = {p1, . . . , ps} are points in Pr−1. Moreover, assume that the pi span Pr−1.

Definition 2.3. A grove2 for the data (p,Q) consists of a triple (Γ, L, γ) such that

◦ Γ ⊆ PH0(Pn,OP(d)) is a linear system of dimension (say) t ≤ r − 1,
◦ L ⊆ Pr−1 is a linear space of dimension r−(t+2) (thus defining a projection

πL : Pr−1− → Pt), and
◦ γ : Pt ∼−→ Γ is an isomorphism,

satisfying the following conditions:
◦ all the Qi belong to the base locus of Γ,
◦ for every i, either pi ∈ L or the hypersurface γ ◦ πL(pi) is singular at Qi.

2 After some fitful experimentation, we decided to choose a name devoid of any mathematical
associations.
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We denote the collection of all groves by q (p,Q). By the proposition below,
it has a natural structure of a projective space.

Remark 2.4. To make the definition of πL canonical, identify Pt with the set of
linear subspaces of dimension r − (t + 1) containing L, and then let πL(p) = Lp.
By our assumption, L misses at least one pi.

If t = r − 1, then L is empty and πL the identity map. Then Γ is an (r − 1)-
dimensional system of degree d hypersurfaces passing through Q, such that γ(pi)
is singular at Qi. (In the applications, almost always this will be the case.) If
r = 1, then necessarily t = 0, L = ∅ and all pi are the same point. Then a grove is
a solitary hypersurface of degree d singular at all Qi.

For the next proposition, we identify Pr−1 with PMat(1, r;C). If A ∈
Mat(s, r;C) is a matrix with no zero rows, then we identify its i-th row as the
point pi ∈ Pr−1.

Proposition 2.5. Fix points Q1, . . . , Qs in Pn, and assume that the pi span Pr−1

(hence rankA = r). Then with identifications as above, we have a bijection
P(ker ηA,Q) ' q (p,Q).

Proof. Let u = [u1, . . . , ur] be a nonzero element of ker η. Let Γ be the linear
system generated by the ui, and

L = {X ∈ Mat(1, r;C) : [u1, . . . , ur]Xt = 0}.
Then πL appears as the map

PMat(1, r;C)− → P(Mat(1, r;C)/L)(= Pt).

Define
γ : Pt ∼−→ Γ, X + (L) −→ [u1, . . . , ur]Xt.

By hypothesis, the form αi1u1 + . . . αirur lies in (I(2)
Qi

)d. Hence, unless it is iden-
tically zero (i.e., pi = [αi1, . . . , αir] ∈ L), the hypersurface it defines (which is
γ ◦ πL(pi)) is singular at Qi.

Alternately, let (Γ, L, γ) be a grove for p,Q. Since Γ contains Q in its base
locus, we can lift γ : P(Mat(1, r)/L) ∼−→ Γ to an inclusion γ̂ : Mat(1, r)/L −→
(IQ)d. Let uj = γ̂([0, . . . , 1, 0, . . . ]) (the 1 in j−th place), for 1 ≤ j ≤ r. By
hypothesis, if πL(pi) is defined, then γ ◦ πL(pi) is singular at Qi. This is to say

that
r∑

j=1

αijuj = γ̂(pi) lies in I
(2)
Qi

, i.e., u = [u1, . . . , ur] ∈ ker η. Since the lift

is unique up to a global scalar, u is well-defined as a point of P(ker η). (Since
rankA = r, u 6= 0.) This defines the required bijection. ¤

The next result follows directly from Theorem 2.1. Nearly all subsequent results
are based on this reformulation.
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Theorem 2.6. Let points p1, . . . , ps ∈ Pr−1 and Q1, . . . , Qs ∈ Pn be chosen gen-
erally. Then Σ has codimension c in G(r, Sd) if and only if, there are exactly ∞c−1

groves for (p,Q). In particular, Σ is dense in G(r, Sd) if and only if, the points
(p,Q) do not admit a grove.

In the paper of Terracini cited above, he states something which resembles
the last statement in the theorem. Unfortunately, neither his statement nor the
argument leading to it are clear.

In the case r = 1, we recover the criterion of Ehrenborg and Rota [8, Theorem
4.2].

Corollary 2.7 (Ehrenborg, Rota). A general form in Sd cannot be written as a
sum of d-th powers of s linear forms if and only if, given general points Q1, . . . , Qs

in Pn, there exists a hypersurface of degree d singular at all of them.

Now consider the collection

q◦ (p,Q) = {(Γ, L, γ) : L contains none of the pi}.

Lemma 2.8. Assume that the points (p,Q) are general. Then q◦ (p,Q) is a
nonempty Zariski open subset of q (p,Q).

Hence for purposes of calculating dim Σ, we can assume that our groves lie
in q◦.

Proof. Let qi ∈ P(ker η) be the open set of groves where pi 6∈ L, then q◦ = ∩iqi.
Thus q◦ fails to be dense only if some qi is empty. But then by symmetry (here
is where the generality is used) each qi is empty, implying that every L contains
all the pi. Since the set p spans Pr−1, this is impossible. ¤

From Remark 2.2, we know that

dim q (p,Q) ≥ codim Σ− 1 ≥ max{0, N2 −N1} − 1,

for any choice of points (p,Q). If the end terms are equal for some configuration
of points, then Σ is not deficient.

3. Examples

In this section we give a rather large number of examples illustrating the use of
Theorem 2.6. All the results follow the same plan: we choose specific values of
(n, d, r, s), then calculate the dimension of q and hence that of Σ. The choice
of quadruples (n, d, r, s) does not follow any definite pattern, but we have given
examples which we think are geometrically interesting. Some of the results proved



Vol. 78 (2003) Waring’s problem 503

here are known, and the novelty lies in the method used to obtain them.
We refer to [12] for the miscellaneous geometric facts needed. We mention two

which will be used frequently. Recall that a set of points in PN is said to be in
linearly general position if no subset of m points (m ≤ N + 1) is contained in a
Pm−2.

◦ Given two sequences {A1, . . . , An+2}, {B1, . . . , Bn+2} ⊆ Pn in linearly gen-
eral position, there is a unique automorphism γ of Pn, such that γ(Ai) = Bi

for all i.
◦ Given n + 3 points of Pn in linearly general position, there is a unique

rational normal curve passing through all of them.
For every case treated in this section, dim Σ will coincide with the expected

value min{N1, N2}. The deficient examples are the subject of the next section.
The following result should be classically known, but we have been unable to

trace a reference.

Theorem 3.1. If n = 1, then Σ is not deficient for any d, r, s.

Proof. Let Q1, . . . , Qs and A = (αi,j) be as above. Consider the composite map
of vector bundles on P1:

ρA :
{
OP1

(
dH −

∑
Qi

)}⊕r

−→ {OP1(dH)}⊕r η̃−→
s⊕

i=1

O2Qi
(dH)

Here H denotes the hyperplane divisor on P1. The map on the left is the
canonical inclusion, and the one on the right is induced by A. On local sections,

(η̃[u1, . . . , ur])i =
r∑

j=1

αijuj , modulo functions vanishing to

order at least 2 at Qi.

The map H0(P1, ρA) is identical to η in formula (7). Hence if E = ker ρA, then
h0(E) = codim Σ. The image of ρA is the skyscraper sheaf⊕

i

ker (O2Qi
(dH) −→ OQi

(dH)) =
⊕

i

OQi
(dH −Qi)

with degree s, hence E is a rank r-vector bundle of degree ε = r(d− s)− s.
Now specialise A to the following matrix: write s = rα+β, with 0 ≤ β ≤ r− 1

and let
At = [B1| . . . |Br−β |Cr+1−β | . . . |Cr] , where

◦ the Bi (resp. Ci) are blocks of size r × α (resp. r × (α + 1)),
◦ each Bi or Ci is made of all 1’s in the i-th row and zeros elsewhere.

Then E splits as a direct sum

OP1(d− α− s)⊕(r−β) ⊕OP1(d− α− s− 1)⊕β . (10)
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Now N1 = s+r(s−r) and N2 = r(d−r+1), so N2−N1 = ε+r. If N2 ≤ N1, then
all twists in (10) are negative, so h0(E) = 0. If N2 > N1, then all twists are at
least −1, so h0(E) = N2 −N1. In either case codim Σ = max{0, N2 −N1}, hence
by Remark 2.2 we are through. ¤

Remark 3.2. Fix points Q, and think of E as moving in a family parametrised
by A. By Grothendieck’s theorem, E splits into a direct sum of line bundles. The
point of the theorem is that if A is general, then its splitting type is balanced, i.e.,
it deviates from the sequence (deg E/rank E , . . . ,deg E/rank E) as little as possible.
Once the splitting type is known, h0(E) is known.

Example 3.3. This example might give some insight into the construction of A.
Let r = 3, s = 7, so α = 2, β = 1. Then

At =


 1 1 0 0 0 0 0

0 0 1 1 0 0 0
0 0 0 0 1 1 1




and η̃([u1, u2, u3]) = [u1, u1, u2, u2, u3, u3, u3]. Thus a local section [u1, u2, u3] will
lie in ker ρA iff u1 (resp. u2 and u3) vanishes doubly at Q1, Q2 (resp. at Q3, Q4

and Q5, Q6, Q7). Hence E is a direct sum

OP1

(
dH −Q1 −Q2 −

∑
Qi

)
⊕OP1

(
dH −Q3 −Q4 −

∑
Qi

)
⊕

OP1

(
dH −Q5 −Q6 −Q7 −

∑
Qi

)
.

Henceforth we use the same notation for a form F ∈ Sd and the hypersurface
in PR1 which it defines.

Proposition 3.4. Two general plane conics have a unique polar triangle. (N1 =
N2 = 8.)

Firstly we will show that dim Σ(2, 2, 2, 3) = 8. Choose general points p1, p2, p3 ∈
P1, Q1, Q1, Q3 ∈ P2, and let (Γ, L, γ) ∈ q◦ be a grove. Since there is no conic
singular at all Qi, dim Γ = 1 and L = ∅. Now γ(p1) must be the line pair
Q1Q2 +Q1Q3 and similarly for other pi. Since any two elements γ(pi), γ(pj) span
Γ, all the three lines QiQj are in the base locus of Γ. This is absurd, hence there
is no such grove.

Consequently, two general conics F1, F2 admit at least one polar triangle–say
{Q1, Q2, Q3}.3 Now the pencil generated by the Fi contains a member belonging to
span(Q2

1, Q
2
2), and this member must be singular at the point Q1 ∩Q2. Hence the

points Qi ∩Qj must be the vertices of the three line pairs contained in the pencil.

3 These Qi are unrelated to those in the previous paragraph. By the nature of our arguments,
the Qi lead a double life: they are alternately linear forms and points.
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This gives a geometric construction of the polar triangle and simultaneously shows
that it is unique:

Let F1, F2 intersect in {Z1, . . . , Z4}. Let A1 be the point of intersection of the
lines Z1Z2, Z3Z4, and similarly A2 = Z1Z3∩Z2Z4, A3 = Z1Z4∩Z2Z3. Define lines
Q1 = A2A3, Q2 = A1A3, Q3 = A1A2. Then {Q1, Q2, Q3} is the required triangle.

¤

Proposition 3.5. Four general plane conics F1, . . . , F4 have a unique polar quadri-
lateral. (N1 = N2 = 8.)

Proof. Firstly let us show that Σ (2, 2, 4, 4) is dense in G(4, S2). Let p1, . . . , p4 ∈
P3, Q1, . . . , Q4 ∈ P2 be chosen generally, and (Γ, L, γ) ∈ q◦(p,Q). Since there
is no conic singular at all Qi, we must have dim Γ = 1. Then Γ is the pencil of
conics through Q, which has no members singular at any Qi. This precludes any
possibility of defining γ.

Thus four general conics F1, . . . , F4 admit at least one polar quadrilateral,
say {Q1, . . . , Q4}. We may assume that Qi are in linearly general position. Let
A = [α0, α1, α2] be the point of intersection of the lines Q1, Q2. (Thus as an
element of PR1, A = α0∂0 + α1∂1 + α2∂2 up to a scalar). By hypothesis,

F1 = c1Q
2
1 + · · ·+ c4Q

2
4, for some constants ci.

Operate by A on the equality above, then

A ◦ F1 =
∑

2ciQi(A)Qi.

Now Q1(A) = Q2(A) = 0, hence A ◦ F1 (the polar line of F1 with respect to A)
belongs to the pencil generated by lines Q3, Q4. An identical argument applies to
all Fi, hence we deduce that the four lines A ◦F1, . . . , A ◦F4 are concurrent at the
point Q3 ∩Q4. The line A ◦ Fi has equation

∂Fi

∂x0
(A)x0 +

∂Fi

∂x1
(A)x1 +

∂Fi

∂x2
(A)x2 = 0,

hence the Jacobian matrix J = ∂(F1, . . . , F4)/∂(x0, x1, x2), has rank at most two
at A.

Now consider the locus X = {rank J ≤ 2} ⊆ P2. It is easily seen that X must
be a finite set. Hence we have a Hilbert–Burch (or Eagon–Northcott) resolution

0 −→ S(−4)3 −→ S(−3)4 −→ S −→ S/IX −→ 0.

From the resolution (or the Porteous formula), we have deg X = 6. By the argu-
ment above X contains the points Qi ∩Qj , so it can contain no others.

We claim that this forces the polar quadrilateral to be unique. Indeed let M1

be a side of such a quadrilateral. The argument shows that M1 must contain three
of the points from X. This is impossible unless M1 coincides with one of the Qi.

¤
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Proposition 3.6. The variety Σ(2, 2, 3, 3) has dimension 6. (N1 = 6, N2 = 9.)

Proof. Let p1, p2, p3, Q1, Q2, Q3 be general points in P2. We will show that p,Q

admit exactly ∞2 groves. Let (Γ, L, γ) ∈ q◦. Let G1 be the line pair Q1Q2 +
Q1Q3, and similarly for G2, G3. Evidently each Gi belongs to Γ, hence Γ =
span(G1, G2, G3) and L = ∅. Thus the only moving part of the grove is γ, and q◦
is isomorphic to the variety

{γ : P2 ∼−→ Γ such that γ(pi) = Gi for i = 1, 2, 3}.
Fix a point Z ∈ P2 such that p1, p2, p3, Z are in linearly general position. Then γ
is entirely determined by γ(Z), so q◦ is isomorphic to an open set of P2. ¤

We will frequently use Bézout’s theorem in the following form: if a hypersurface
of degree d intersects a curve of degree e in a scheme of length > de, then it must
contain the curve. In such a circumstance we will loosely say that the hypersurface
contains at least de + 1 points of the curve.

Theorem 3.7 (Sylvester’s pentahedral theorem). A general cubic surface in P3

has a polar pentahedron. (N1 = N2 = 19.)

The statement says that Σ (3, 3, 1, 5) is dense in P19, and it is covered by the
Alexander–Hirschowitz theorem. We give a short geometric proof.

Proof. Choose general points Q1, . . . , Q5 in P3 and assume that a cubic F is
singular at all of them. Choose a sixth general point Z and let C be the unique
twisted cubic through Q1, . . . , Q5, Z. Since F contains at least 10 points of C
(counting each Qi as two points), it must contain C by Bézout’s theorem. This
implies the absurdity that F contains a general point of P3. Hence there is no
such F and the claim is proved. ¤

In [20], Sylvester asserted that a general quaternary cubic has a unique polar
pentahedron, and adduced some cryptic remarks in support. See [17] for a proof
of the uniqueness.

The next result is a direct generalisation of Proposition 3.4.

Theorem 3.8. The variety Σ(n, 2, 2, n + 1) is dense in G(2, S2), moreover two
general quadrics in Pn admit a unique polar (n + 1)-hedron. (N1 = N2 = n2 +
3n− 2.)

Proof. Choose general points p1, . . . , pn+1 ∈ P1, and Q1, . . . , Qn+1 ∈ Pn and let
(Γ, L, γ) ∈ q◦. There is no quadric singular at all Qi (since the singular locus
of a quadric is a linear space, and the Q are not contained in any proper linear
subspace), hence dim Γ = 1 and L = ∅. The quadric γ(pi) contains at least three
points of the line QiQj (viz. Qi twice and Qj), so it must contain the line. Since
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any two quadrics γ(pi), γ(pj) span Γ, it follows that all the lines QiQj lie in the
base locus of Γ.

Let F ∈ Γ and F (−,−) its associated bilinear form. By what we have said,
F (Qi +λQj , Qi +λQj) = 0 for all λ ∈ C, hence F (Qi, Qj) = 0. Since the Qi span
Pn, we have F ≡ 0. This is absurd, so (p,Q) do not admit a grove.

The proof of uniqueness is similar to Proposition 3.5. Let F1, F2 be general
quadrics in Pn admitting a polar (n + 1)-hedron {Q1, . . . , Qn+1}. Define points
Ai =

⋂
j 6=i

Qj ∈ Pn for 1 ≤ i ≤ n+1. For any i, the polar hyperplanes Ai◦F1, Ai◦F2

coincide, hence the Jacobian matrix J = ∂(F1, F2)/∂(x0, . . . , xn) must have rank
one at each Ai. Now let X = {rank J ≤ 1}, and use Hilbert–Burch together with
Porteous to show that X = {A1, . . . , An+1}. Then Qi is uniquely determined as
the linear span of the points Aj (j 6= i). ¤

Remark 3.9. Before proceeding we record a small construction for later use. Let
C be a twisted cubic in P3, and let Ψ ⊆ PH0(P3,OP(2)) be the two-dimensional
linear system of quadrics containing C. For every x ∈ C, there is a unique quadric
(say ψx) in Ψ singular at x. Thus we have an imbedding

τ : C −→ Ψ, x −→ ψx.

Its image τ(C) is a smooth conic in Ψ.
This notation will come in force only when we explicitly refer to this remark.

Otherwise C,Ψ etc may have unrelated meanings.

The following technical result will be useful later.

Lemma 3.10. Let f, v : P1 −→ P2 be two morphisms. Assume that f is birational
onto its image which is a curve of degree m, and v is an imbedding onto a smooth
conic. Assume moreover, that there are m + 2 points λ1, . . . , λm+2 in P1, such
that f(λi) = v(λi) for all i. Then v = f .

Proof. Choose a coordinate x on P1 such that λm+2 = ∞. We may choose co-
ordinates on P2 such that v(x) = [1, x, x2]. Then f(x) = [A0, A1, A2], such that
Ai are polynomials in x with no common factor and deg Ai ≤ m. By hypothesis,
f(∞) = [0, 0, 1], hence deg A2 > deg A1,deg A0. In particular, deg A0 ≤ m − 1.
Now the polynomial A1−xA0 (which is of degree ≤ m), vanishes for m+1 values
λ1, . . . , λm+1, hence it vanishes identically. But then deg A0 ≤ m−2. By the same
argument, A2 − x2A0 vanishes identically, hence [A0, A1, A2] = [1, x, x2]. ¤

Remark 3.11. If C is a curve isomorphic to P1 and A1, . . . , A4 distinct points
on C, then 〈A1, A2, A3, A4〉C will denote their cross-ratio as calculated on C. Of
course, it depends on the choice C, for instance four points in P2 have different
cross-ratios as calculated on different smooth conics passing through them.
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In 1870, Darboux claimed that the case Σ(3, 2, 4, 6) is deficient (see [5, p. 357]).
In [21], Terracini states (without proof) that Darboux’s claim is wrong, and in
fact there is no deficiency. Here we substantiate Terracini’s statement.

Proposition 3.12. The variety Σ(3, 2, 4, 6) is dense in G(4, S2). (N1 = 26, N2 =
24.)

Proof. Choose general points (p,Q) as usual, where p and Q lie in nominally
distinct copies of P3. We can identify the copies in such a way that the following
holds: p1, . . . , p6, Q1, . . . , Q6 are in the same P3 so that pi = Qi for 1 ≤ i ≤ 5 and
p6, Q6 are distinct general points.

Let (Γ, L, γ) ∈ q◦(p,Q), and let C be the unique twisted cubic through the Q.
The quadric γ ◦ πL(pi) intersects C in at least seven points, so must contain C.
Hence necessarily γ ◦ πL(pi) = ψQi

in the notation of Remark 3.9. Thus Γ = Ψ
and L is a point in P3. Let P2

〈L〉 be the set of lines through L (cf. Remark 2.4),

so we have a map P2
〈L〉

γ−→ Ψ .
Now there are two maps C −→ P2

〈L〉, namely πL and γ−1 ◦ τ . The image of the
latter (say D) is a smooth conic. Moreover, deg image (πL) ≤ 3 and the two maps
coincide on points p1, . . . , p5 (= Q1, . . . , Q5). Hence by Lemma 3.10, they must be
the same. In particular, deg πL(C) = 2 which is only possible if L is a point on
C. We claim that πL(p6) = πL(Q6). Indeed, since πL is an isomorphism on C,

〈πL(p1), πL(p2), πL(p3), πL(p6)〉D
= 〈ψQ1 , ψQ2 , ψQ3 , ψQ6〉τ(C),

= 〈Q1, Q2, Q3, Q6〉C
= 〈πL(Q1), πL(Q2), πL(Q3), πL(Q6)〉D

which shows the claim. This implies that the chord LQ6 (in case L 6= Q6) or the
tangent to C at L (in case L = Q6) passes through p6. Now for a fixed Q6, the
chords {LQ6}L∈C fill only a surface in P3. Hence if we choose p6 off this surface,
then no such configuration can exist. Thus general points (p,Q) do not admit a
grove, which proves the proposition. It follows that four general space quadrics
have ∞2 polar 6-hedra. ¤

Proposition 3.13. The variety Σ(4, 2, 2, 4) has dimension 20. (N1 = 20, N2 =
26.)

Proof. Choose general points p1, p2, p3, p4 ∈ P1 and Q1, . . . , Q4 ∈ P4. We will
show that there are exactly ∞5 groves for these data. Let Π denote the 3–space
spanned by the Qi, and choose (Γ, L, γ) ∈ q◦. If dim Γ = 0, then Γ is Π doubled,
and L any point on P1. Since this is only a one-dimensional family, we may assume
dim Γ = 1, L = ∅.

Each of the quadrics γ(pi), γ(pj) contains three points of the line QiQj , hence
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contains the line. Since these quadrics span Γ, all six lines QiQj are in the base
locus of Γ. This forces Π to be in the base locus. Hence there exists a unique
2-plane ΨΓ ⊆ P4, such that

Γ = Π (fixed component) + pencil of 3-planes through ΨΓ.

This leads to the following construction: let Ψ ∈ G(3, 5) be a 2–plane in P4

away from the Qi and let ψ1, . . . , ψ4 be the 3–planes through Ψ containing the
points Q1, . . . , Q4 respectively. Now we have a rational map

f : G(3, 5)− → P1, Ψ −→ 〈ψ1, ψ2, ψ3, ψ4〉.
It is easy to see that f is nonconstant, hence dominant. Now if Ψ belongs to the
fibre f−1(〈p1, p2, p3, p4〉), then (and only then) we can define

γ : P1 ∼−→ Γ, pi −→ Π + ΨQi for i = 1, . . . , 4.

Thus q◦ is birational to the fibre f−1(〈p1, p2, p3, p4〉), which is five dimensional.
¤

Proposition 3.14 (London [16]). The variety Σ(2, 3, 3, 6) is dense in G(3, S3),
i.e., three general plane cubics admit a polar hexagon. (N1 = N2 = 21.)

London’s proof is laborious, and it may be doubted whether it meets modern
standards of rigour.

Proof. It is enough to show that for some configuration (p,Q), there is no grove
(cf. Remark 2.2).

Let p1, . . . , p6 be general points in P2. Fix a line M in P2, take Q4, Q5, Q6 to
be general points on M and Q1, Q2, Q3 general points in P2 (away from M). Let
(∆, L, δ) be4 in q◦(p,Q). Since there is no cubic singular at all Qi, dim ∆ ≥ 1.
Now L is either a point or empty, in either case the cubics δ ◦ πL(pi) (i = 4, 5, 6)
must span ∆. Now any of them intersects M in at least four points, so must
contain it. Thus M lies in the base locus of ∆, and ∆ = M (fixed component)
+Γ, where Γ is a system of conics through Q1, Q2, Q3. Since each of Q1, Q2, Q3

is a singular point of some member of Γ, we have

Γ = span(G1, G2, G3),

following the notation used in the proof of Proposition 3.6. In particular L = ∅.
Composing the isomorphism ∆ −→ Γ with δ, we have an isomorphism γ : P2 −→ Γ
such that (Γ, ∅, γ) is a grove of conics for (p1, p2, p3, Q1, Q2, Q3). Think of γ as
belonging to the two–dimensional family in Proposition 3.6.

For i = 4, 5, 6, if λi ⊆ Γ be the line consisting of conics passing through Qi, then
by hypothesis γ(pi) ∈ λi. But the conditions γ(p4) ∈ λ4, γ(p5) ∈ λ5 determine γ
uniquely. (To see this point, choose coordinates on P2,Γ such that

p1, G1 = [1, 0, 0], p2, G2 = [0, 1, 0], p3, G3 = [0, 0, 1], p4 = [1, 1, 1]
4 The change in notation is of course deliberate.
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and λ4 has line coordinates [1, 1, 1]. Then the matrix of γ is diagonal, say equal

to


 a 0 0

0 b 0
0 0 c


. Since γ(p4) ∈ λ4, we have a + b + c = 0, and γ(p5) ∈ λ5 forces

another independent condition. But then the matrix is uniquely determined up to
a scalar.)

We conclude that the grove (∆, L, δ) is entirely determined by the data p1, . . . ,
p5, Q1, . . . , Q5. This is absurd, since one can certainly choose p6, Q6 such that
γ(p6) /∈ λ6. Hence (p,Q) do not admit a grove. ¤

After a lengthy analysis, London concludes that three general cubics admit two
polar hexagons. It would be worthwhile to re-examine his argument. We hope to
take it up elsewhere.

4. Exceptional cases

In this section we will construct groves showing that Σ is deficient for the four
quadruples mentioned in the introduction. Part I of our construction for the case
(3, 2, 3, 5) is built on a hint in Terracini [21]. The rest we believe to be new. As
we confessed earlier, we have only partial success in the last case.

Theorem 4.1. The variety Σ(2, 3, 2, 5) has codimension 1 in G(2, S3). (N1 =
N2 = 16.)

Part I (construction of the grove). Choose general points 0, 1,∞, α, β in P1, and
Q0, Q1, Q∞, Qα, Qβ in P2. Let C be the unique (smooth) conic through the Q.
The proposed construction is as follows: let Z be a point in P2 and

Γ = C (fixed component) + pencil of lines through Z.

Then we define

γ : P1 ∼−→ Γ, ? −→ C + line ZQ? for ? = 0, 1,∞, α, β.

Of course, for such a γ to exist, the cross–ratios must agree. Hence the position
of Z is crucial.

Let Dα denote the unique smooth conic through Q0, Q1, Q∞, Qα such that
〈Q0, Q1, Q∞, Qα〉Dα

= α. Similarly, let Dβ be the unique smooth conic through
Q0, Q1, Q∞, Qβ such that 〈Q0, Q1, Q∞, Qβ〉Dβ

= β.
Let Dα ∩Dβ = {Q0, Q1, Q∞, Z}. Since Z lies on Dα, we have

〈ZQ0, ZQ1, ZQ∞, ZQα〉 = α

and similarly for β. Hence the sequences

{0, 1,∞, α, β}, {ZQ0, ZQ1, ZQ∞, ZQα, ZQβ},
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are projectively equivalent. This ensures that γ is well-defined and we are through.

Part II (uniqueness of the grove). In part I, we have shown that dimq ≥ 0 for
general (p,Q), hence this is true of any (p,Q). If we show that the grove is unique
for some configuration, it will follow that dimq = 0 for general (p,Q).

Let M,N be distinct lines in P2. Choose general points Q0, Q1, Q∞ on M and
Qα, Qβ on N . Let 0, 1,∞, α, β be general points of P1, and assume that (Γ, L, γ) is
a grove for these data. Since there is no cubic singular at all Qi, dim Γ = 1, L = ∅.
By Bézout, the cubics γ(0), γ(1) contain M , hence M is in the base locus of Γ.
Now Γ \ M is a pencil of conics, which, by the same argument on γ(α), γ(β),
contains N in its base locus. Hence

Γ = M + N (fixed components) + pencil of lines through a point Z.

Now map P1 to M , by sending 0, 1,∞ to Q0, Q1, Q∞ respectively, and via this
map, think of α, β as points on M . Then Z is forced to be the point of intersection
of the lines α.Qα, β.Qβ . The grove is thus uniquely determined. The theorem is
proved. ¤

Remark 4.2. There is a simple explanation for the deficiency of Σ. Let F1, F2 be
two plane cubics admitting a polar pentagon {Q1, . . . , Q5}. Since span(F1, F2) ⊆
span(Q3

1, . . . , Q
3
5), we deduce that the six partial derivatives ∂Fi/∂xj (i = 1, 2, j =

0, 1, 2) lie in span(Q2
1, . . . , Q

2
5). Hence they must be linearly dependent, which

amounts to a nontrivial algebraic condition on the Fi. It is easy to write this
condition as the vanishing of a 6 × 6 determinant whose entries are functions in
the coefficients of Fi (see [16]).

For the next two theorems the notation of Remark 3.9 will remain in force.

Theorem 4.3. The variety Σ(3, 2, 3, 5) has codimension 1 in G(3, S2). (N1 =
N2 = 21.)

Proof. Choose general points p1, . . . , p5 in P2 and Q1, . . . , Q5 in P3. Let E be the
smooth conic through the pi, and consider the imbedding

E −→ Sym3E, p −→ 3p.

Abstractly Sym3E ' P3, hence there is a unique isomorphism β : Sym3 E −→ P3,
such that β(3pi) = Qi. Let C be the twisted cubic obtained as the image of the

composite E −→ Sym3 E
β−→ P3.

Part I (construction of the grove). Let Γ = Ψ (in the notation of Remark 3.9) and
define

γ : P2 ∼−→ Γ, pi −→ ψQi
for 1 ≤ i ≤ 4.
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The sequences {p1, . . . , p5} ⊆ E, {ψQ1 , . . . , ψQ5} ⊆ τ(C) are such that the cross-
ratios of any two corresponding subsequences of four points are equal. Hence
γ(E) = τ(C) and γ(p5) = ψQ5 , implying that (Γ, ∅, γ) is a grove.

Part II (uniqueness of the grove). We now show that q◦ = q◦(p,Q) is a singleton
set. The plan of the proof is to choose a general element g ∈ (Γ, L, γ) ∈ q◦, and
then to show that the generality forces it to be the same as the grove constructed
above. By construction, the functions

q◦ −→ dimL, q◦ −→ rank γ ◦ πL(pi) = ρi

are respectively upper and lower semicontinuous. (We mean the rank of γ(−) as a
quadric in P3.) Let Ui ⊆ q◦ be the open set where ρi is maximal, and let g ∈ ∩Ui.
By symmetry, all ρi equal the same number ρ, which is either 2 or 3. (It cannot
be 1 since no plane can contain all Qi.)

Case ρ = 3. Each quadric Si = γ ◦πL(pi) is a cone with its vertex at Qi. Then

Si ∩ Sj = (line QiQj) ∪ Cij ,

where Cij is a twisted cubic through Q1, . . . , Q5. For any three indices i, j, k, the
quadrics Si, Sj , Sk span Γ. Hence the base locus of Γ equals Si ∩Sj ∩Sk, which is
set-theoretically just Cij ∩ Cik ∩ Cjk.

Assume that the base locus of Γ is zero dimensional, then it is supported only
on Q1, . . . , Q5 (since two twisted cubics can have at most five points in common).
Moreover the Si intersect transversally at each Qj , so each Qj is a reduced point
of the base locus. This is a contradiction, since by Bézout, the base locus is a
scheme of length 8. Hence the base locus is positive dimensional, i.e., all Cij are
the same twisted cubic C.

It follows that Γ = Ψ in the notation of Remark 3.9. Then γ(pi) must equal
ψQi

for each i, which determines γ uniquely. Hence q = q◦ is a singleton set
whose “general” element is the one we have constructed in Part I.

Case ρ = 2. We will show that this case is impossible. Our claim is: the base
locus of Γ contains a line.

Let us grant the claim for the moment. Let Uij ⊆ q◦ be the open set of groves
which do not contain the line QiQj in their base locus. If (say) U12 is nonempty,
then by symmetry each Uij is nonempty. Then a general element g ∈ ∩Uij (which
by hypothesis has ρ = 2) can contain none of the lines, which is a contradiction.
Thus Uij = ∅, implying that a general Γ must contain all ten lines QiQj in the
base locus. This is surely impossible, hence ρ 6= 2.

It remains to prove the claim. We will assume that no line is common to three
of the Si and deduce a contradiction. Each Si = γ ◦ πL(pi) consists of two planes
both of which pass through Qi. Since S1, S2 contain the line Q1Q2, none of the
other Si can contain it. Then S3 is either the union of planes Q1Q3Q4 ∪Q2Q3Q5,
or Q1Q3Q5 ∪ Q2Q3Q4. In the former case, S1, S3, S4 all contain Q1Q4; and in
the latter case, S1, S3, S5 all contain Q1Q5. The claim is proved, and so is the
theorem. ¤
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Example 4.4. Now let Π be a plane in P3, and Q1, . . . , Q4 general points in Π.
Choose Q5 ∈ P3 generally (away from Π) and p1, . . . , p5 general points in P2.
We know that this configuration admits a grove, let (Γ, L, γ) be one. The quadric
γ ◦ πL(p1) is singular at Q1, moreover by Bézout, it contains the four lines Q1Qi.
This would be impossible if the quadric were of rank 3, hence it must contain Π.
The same argument applies to Q2, Q3, Q4, hence Γ = Π (as a fixed component) +
a system of planes through Q5. But then no member of Γ can be singular at Q5,
hence πL(p5) is undefined, i.e., L = p5. The base locus of the system of planes is a
line, say N . This leads to the following construction: let P2

〈Q5〉 denote the variety
of lines through Q5, and define

f : P2
〈Q5〉− → P1, N −→ 〈NQ1, NQ2, NQ3, NQ4〉.

Let λ denote the cross-ratio 〈p5p1, p5p2, p5p3, p5p4〉. Now if N ∈ f−1(λ), then (and
only then) we can define a grove as above. Thus q (p,Q) is a one-dimensional
family, which demonstrates the upper-semicontinuity of dimq. Secondly, Lemma
2.8 fails for this set of points.

Remark 4.5. The following explanation of the deficiency is given by Salmon ([19,
vol. I, Ch. IX, §235]). Let F1, F2, F3 be quadratic forms in x0, . . . , x3. Introduce
indeterminates a, b, c, and let G = aF1 + bF2 + cF3. Then the discriminant ∆ of G
(as a quadratic form in the xi) is a quartic in a, b, c. As Fi move through general
quadrics, ∆ assumes values over a dense set of planar quartics. However, if the Fi

admit a polar pentahedron, then ∆ is necessarily a Lüroth quartic (see [6]). Since
Lüroth quartics form a hypersurface in PS4, this imposes an algebraic condition
on Fi.

Theorem 4.6. The variety Σ(3, 2, 5, 6) has codimension 3 in G(5, S2). (N1 =
23, N2 = 25.)

Proof. Choose general points p1, . . . , p6 ∈ P4 and Q1, . . . , Q6 ∈ P3. Let C be the
unique twisted cubic through the Qi. There is a unique imbedding

α : C −→ P4, α(Qi) = pi for 1 ≤ i ≤ 6.

Part I (construction of the groves). We will show that there are at least ∞2 groves
for these data. Let Γ = Ψ in the notation of Remark 3.9. Let L be a chord or
a tangent of the rational normal quartic α(C). Let P2

〈L〉 denote the collection of
2–planes in P4 containing L, and

πL : P4− → P2
〈L〉, p −→ Lp

the natural projection. Now πL is defined everywhere on α(C), and πL(α(C)) =
DL is a smooth conic in P2

〈L〉. The sequences

{Q1, . . . , Q6} ⊆ C, {πL(p1), . . . , πL(p6)} ⊆ DL
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are such that any corresponding subsequences of four points have the same cross-
ratio. Define

γL : P2
〈L〉

∼−→ Γ, πL(pi) −→ ψQi
for 1 ≤ i ≤ 4.

By what we have said, γL(DL) = τ(C) and γL ◦ πL(pi) = ψQi
for i = 5, 6. Thus

(Γ, L, γL) is a two-dimensional family of groves.

Part II (bounding the dimension of q). We will show that we have already con-
structed a dense set of possible groves. Let (Γ, L, γ) ∈ q◦(p,Q). Each γ ◦ πL(pi)
contains at least seven points of C, hence contains C by Bézout. Thus C is in
the base locus of Γ, i.e., Γ ⊆ Ψ. Since Ψ contains a unique element singular at
pi, Γ = Ψ which in turn implies dimL = 1. Let P2

〈L〉 have the same meaning as

above, so we have an isomorphism P2
〈L〉

γ−→ Ψ.
Now there are two maps α(C) −→ P2

〈L〉, namely πL and γ−1 ◦ τ ◦ α−1. The
image of the latter is a smooth conic. Moreover, deg image (πL) ≤ 4 and the two
maps coincide on points p1, . . . , p6. Hence by Lemma 3.10, they must be the same.
In particular, deg image (πL) = 2 which is only possible if L intersects α(C) twice.
This implies that the grove belongs to the family constructed above. The theorem
is proved. ¤

Remark 4.7. Here is an alternate explanation for the deficiency. Assume that
Λ ∈ G(5, S2) admits a polar 6-hedron Q = {Q1, . . . , Q6} ⊆ PS1, with the Qi in
linearly general position. (This will be true of a general Λ in Σ.) Let C be the
twisted cubic through the Qi, with ideal IC < R. Then Λ⊥ ⊇ (IC)2 ⊇ (IQ)2.

Let C be the 12-dimensional space of twisted cubics in P3, and consider the
correspondence Φ ⊆ C ×G(5, S2) defined as

Φ = {(C,Λ) : (IC)2 ⊆ Λ⊥}.
Now π1 : Φ −→ C is a G(2, 7)-bundle, so dim Φ = 22. Since Φ dominates Σ, we
have dim Σ ≤ 22.

The case (5, 2, 3, 8) is perhaps more surprising than the rest of the exceptions.
By counting parameters, we expect three general quadrics in P5 to have ∞1 polar
octahedra, but they do not have any.

4.1. The Segre–Gale transform

Consider the variety (P1)8 with the group Aut(P1) acting componentwise. Let
U ⊆ (P1)8 be the open set of semistable points and Y = U/Aut(P1) the GIT
quotient.
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In the sequel, σ : P1 × P2 −→ P5 denotes the Segre imbedding. Let A =
A1, . . . , A8 ∈ P1, p = p1, . . . , p8 ∈ P2 be general points, and C the unique rational
normal quintic through the eight points σ(Ai × pi). Choosing an isomorphism
α : C −→ P1, we get a point

B = (α ◦ σ(A1 × p1), . . . , α ◦ σ(A8 × p8)) ∈ Y,

which we call the Segre–Gale transform of (A, p). The passage via α between eight
general points in P5 and eight points in P1 is an instance of the Gale transform–see
[7, 9].

Lemma 4.8. Fix eight general points p ∈ P2. Then the rational map

ω(p) : Y− → Y, A −→ B

is dominant. (The reader should check that it is well-defined.)

Proof. This is a direct computation using coordinates (and was done in Maple).
Let

A = (0, 1,∞, a1, . . . , a5), pi = [1, ci, di].

Then B = (0, 1,∞, b1, . . . , b5), where the rational functions bi are easy to calcu-
late. The Jacobian determinant |∂(b1, . . . , b5)/∂(a1, . . . , a5)| is not identically zero,
hence it is not zero for general ci, di. This implies that the image of ω(p) must be
dense in Y . ¤

Theorem 4.9. The variety Σ(5, 2, 3, 8) has codimension at least one in G(3, S2).
(N1 = 55, N2 = 54).

The machine computation shows that the codimension is exactly one, but we
have not been able to prove this.

Proof. Let z0, . . . , z5 be the coordinates on P5. Consider the matrix
[

z0 z1 z2

z3 z4 z5

]
and its minors

G0 = z1z5 − z2z4, G1 = z2z3 − z0z5, G2 = z0z4 − z1z3.

The locus G0 = G1 = G2 = 0 is the Segre threefold σ(P1 ×P2).
For [a, b, c] ∈ P2, the quadric aG0 + bG1 + cG2 is of rank 4, and singular

exactly along the line joining the points [a, b, c, 0, 0, 0], [0, 0, 0, a, b, c]. Denote this
line by M[a,b,c].

Choose general points p1, . . . , p8 ∈ P2 and Q1, . . . , Q8 ∈ P5. By the lemma,
there are points A1, . . . , A8 ∈ P1 such that ω(p)(A) is the Gale transform of Q.
Hence we may as well assume that Qi = σ(Ai × pi), i.e., Qi ∈ Mpi

.
Let Γ be the net {[a, b, c] ∈ P2 : aG0 + bG1 + cG2}, and define

γ : P2 ∼−→ Γ, [a, b, c] −→ aG0 + bG1 + cG2.
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By construction, γ(pi) is singular at Qi, hence (Γ, ∅, γ) is a grove. ¤

5. Questions

In this area, the open problems are certainly not in short supply. However, there
are four specific themes which we find especially appealing.

1. One would like to have an analogue of the Alexander–Hirschowitz theorem,
at least for a reasonably broad range of (n, d, r, s). In [21], Terracini claims the
following result:

Assume n = r = 2, d ≥ 4 and s ≥ (d2 + 3d + 2)/4 (this is the bound in (4)).
Then Σ is dense in G(2, Sd).

We do not understand his proof and a clarification would be welcome.
2. Since the imbedding Σ ⊆ G(r, Sd) is GLn+1 equivariant, the equations defin-

ing the closure of Σ in G are in principle expressible in the language of classical
invariant theory. For small values, there are results making these equations ex-
plicit. For instance, in the case (2, 3, 1, 3) the hypersurface Σ ⊆ P9 is defined by
the Aronhold invariant of ternary cubics. Toeplitz [22] gives such a combinant for
(3, 2, 3, 5), which turns out to be a Pfaffian. One would like to have some general
theoretical machinery for such problems.

3. Given Λ ∈ G(r, Sd), the locus π2(π−1
1 (Λ)) (as defined in the introduction) is

called the variety of its polar s-hedra. It has a very rich geometry, see e.g. [6, 15, 17]
for some old and new results. If n = 1, then it is an open subset of a projective
space (see [2]), but much remains unknown for more than two variables.

4. We need interesting examples where the class of Σ in the cohomology ring
H∗(G,Z) can be calculated. For n = 1, such calculations can be done using the
Porteous formula (see [3]) but in general it is not clear how to proceed.
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165 (1988).

[8] R. Ehrenborg and G. Rota, Apolarity and canonical forms for homogeneous polynomials,
Euro. J. of Combinat. 14 3 (1993), 157–181.



Vol. 78 (2003) Waring’s problem 517

[9] D. Eisenbud and S. Popescu, The projective geometry of the Gale transform, J. of Algebra
230, 1 (2000), 127–173.

[10] A. V. Geramita, Inverse Systems of Fat Points, Queen’s Papers in Pure and Applied Math-
ematics, Vol. X. Queen’s University, 1995.

[11] J. H. Grace and A. Young, The Algebra of Invariants, 1903. Reprinted by Chelsea Publish-
ing Co., New York.

[12] J. Harris, Algebraic Geometry, A First Course. Graduate Texts in Mathematics, Springer-
Verlag, New York, 1992.

[13] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics. Springer-Verlag, New
York, 1977.

[14] A. Iarrobino and V. Kanev, Power Sums, Gorenstein Algebras and Determinantal Loci,
Springer Lecture Notes in Mathematics No. 1721, 1999.

[15] A. Iliev and K. Ranestad, K3 surfaces of genus 8 and varieties of sums of powers of cubic
fourfolds, Transactions of the A.M.S. 353, 4 (2001), 1455–1468.
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