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Hyperbolic Coxeter groups of large dimension

Tadeusz Januszkiewicz and Jacek Świa̧tkowski

Abstract. We construct examples of Gromov hyperbolic Coxeter groups of arbitrarily large
dimension. We also extend Vinberg’s theorem to show that if a Gromov hyperbolic Coxeter
group is a virtual Poincaré duality group of dimension n, then n ≤ 61.

Coxeter groups acting on their associated complexes have been extremely useful source of
examples and insight into nonpositively curved spaces over last several years. Negatively curved
(or Gromov hyperbolic) Coxeter groups were much more elusive. In particular their existence in
high dimensions was in doubt.

In 1987 Gabor Moussong [M] conjectured that there is a universal bound on the virtual
cohomological dimension of any Gromov hyperbolic Coxeter group. This question was also raised
by Misha Gromov [G] (who thought that perhaps any construction of high dimensional negatively
curved spaces requires nontrivial number theory in the guise of arithmetic groups in an essential
way), and by Mladen Bestvina [B2].

In the present paper we show that high dimensional Gromov hyperbolic Coxeter groups
do exist, and we construct them by geometric or group theoretic but not arithmetic means.
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Theorem 1. For any n there exists a right angled Coxeter group (W,S) of virtual
cohomological dimension vcd(W ) = n which does not contain Z ⊕ Z and thus is
Gromov hyperbolic.

It is known by work of Mike Davis [D2] and Moussong [M] that this theorem
reduces to the existence of a simplicial complex Ln which is (i) flag, (ii) contains
no empty square and (iii) satisfies certain homological condition (which is implied
by say requiring that Ln is an oriented pseudomanifold of dimension n−1). Such a
complex gives rise to the Coxeter group (W,S) with generators indexed by vertices
of Ln and relations (xixj)2 = 1 iff vertices i, j are connected by an edge. Then (i)
implies that the nerve of (W,S) is Ln, (ii) implies hyperbolicity and (iii) implies
that vcd(W ) = n.

Both authors were supported by a KBN grant 5 P03A 035 20.
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We construct simplicial complexes required for the proof of Theorem 1 using
complexes of groups technique of [BH]. The resulting spaces are interesting on their
own right and we study them further in a forthcoming paper. Let us mention here
only that the Ln we construct turn out to be K(π, 1) spaces.

Gromov hyperbolic Coxeter groups of large dimension are very different from
fundamental groups of closed aspherical manifolds. For example we have

Theorem 2. If (W,S) is a virtual Poincaré duality Coxeter group of dimension
n which does not contain Z ⊕ Z as a subgroup (equivalently, which is Gromov
hyperbolic) then n ≤ 61. Moreover, if (W,S) is right angled, the bound improves
to n ≤ 4 and is sharp.

This theorem is an extension of a result of Ernest Borisovich Vinberg [V] (which
motivated Moussong’s question) which states that if there is a cocompact reflection
group action on the Lobačevski space of dimension n then n ≤ 29. Vinberg
presents also a significantly easier proof of a weaker bound n ≤ 61, which we
follow closely. It was observed already by Moussong [M] that Vinberg’s result uses
only Gromov hyperbolicity. The new ingredient we use to obtain the present form
of the Theorem is a recent result of Davis on virtual Poincaré duality Coxeter
groups [D1].

The right angled case of Vinberg theorem has the following corollary dealing
with arbitrary cubical complexes.

Corollary. If M is a manifold of dimension greater than 4, then it does not admit
a negatively curved piecewise hyperbolic cubical metric.

The content of the paper is as follows.
Section 1 contains a necessary background on Coxeter groups.
Section 2 deals with the nonexistence results. We prove Theorem 2 following

closely Vinberg’s paper, discussing only points which are specific to our situation.
We do not claim much originality here. The reader should be ready to consult [V].
We also establish a slightly stronger version of the Corollary.

In Section 3 we recall the simplex of groups construction in the form we need.
We focus on the properties of (multi-) simplicial complexes arising as developments
(coverings) of simplices of groups.

In Section 4 we define (and establish properties of) special complexes of groups
which we call retractible. This is done by enriching the structure of a complex
of groups with additional maps: retractions. We found functorial language very
convenient here.

Section 5 contains the discussion of a further restriction on the complexes of
groups. It is a secondary form of retractibility and we call it extra retractibility.
The main result is Proposition 4.12 stating that extra retractibility implies the
no-square condition on the associated complexes L.
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Section 6 contains a construction of extra retractible complexes of groups in
arbitrary dimension, thus concluding the proof of Theorem 1.

The final three short sections contain variations and applications of the main
result. In Section 7 we show how to construct many CAT (−1) cubical complexes
by a hyperbolization procedure which uses complexes Ln constructed in the pre-
vious section.

Section 8 shows how to obtain non right-angled Gromov hyperbolic Coxeter
groups from right-angled ones without changing dimension.

Finally, Section 9 addresses the issue of complexity. The complexes Ln we
construct are strikingly large. We establish a lower bound on the complexity of
simplicial flag no-square pseudomanifold of dimension n in general. While this is
much smaller than the complexity of our examples, it is still fairly large.

We also want to call readers attention to [MS], where CAT (−1) pseudomani-
folds of large dimensions are constructed by a different (but related) method.

Acknowledgements. We thank Jan Dymara for useful discussions and the ref-
eree for careful reading of the manuscript.

1. Background on Coxeter groups

We present the necessary material concisely, since all of it is well documented in
the literature, see for example [D2].

1.1. Generalities

Let M = (mst)s,t∈S be a symmetric matrix with diagonal entries equal 1 and off
diagonal entries in {2, 3, . . . ,∞}. We associate with M a Coxeter system (W,S),
where W is a group, S is the set of involutions s2 = 1 generating W and the
nontrivial relations are (st)mst = 1. If mst = ∞, there is no relation between s
and t implied.

Let A be a finite graph, that is a symmetric, anti-reflexive relation on the vertex
set S. Define a matrix

MA = (mA
st)s,t∈S =


1 if s = t,
2 if s, t are connected by an edge in A,
∞ otherwise.

The Coxeter system (WA, S) thus obtained is called the right angled Coxeter
system associated with the graph A. When using the usual notation of Coxeter–
Dynkin diagrams for Coxetex systems, one obtains A as the dual to the Coxeter–
Dynkin diagram of MA, which has an edge marked ∞ for any pair of non-
commuting generators.
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1.2. The nerve and the Davis complex

Subgroups generated by subsets of S are called standard parabolic subgroups. The
parabolic subgroup generated by T ⊂ S is denoted WT . Finite standard parabolics
(excluding the trivial group) ordered by inclusion form a partially ordered set. Its
geometric realization [BH, p. 370] is called the nerve and denoted N(W,S). A
coarser simplicial structure on the nerve will be useful: its vertices are elements of
S while a subset T ⊂ S spans a simplex iff T generates a finite subgroup of W .

For right angled systems the nerve has a simple description in terms of the
graph A. Namely form a simplicial complex Af for which A is the one skeleton,
and whose higher dimensional simplices correspond to complete subgraphs in A.
Thus one completes A by filling in (inductively) a simplex if we see its boundary
in the part of the complex already constructed. The result is the coarse simplicial
structure of the nerve. The nerve N(W,S) is the barycentric subdivision of Af .

A simplicial complex K = (K(1))
f obtained as above from its one skeleton K(1)

is called a flag complex.
There is a related poset, consisting of left cosets gWT of all finite parabolics

(this time including the trivial one), ordered again by inclusion. Its geometric
realization is called the Davis complex of (W,S) and is denoted by |W |. It is a
truncated version of the Coxeter complex of (W,S). Clearly W acts on |W | on
the left (with a strict fundamental domain, [BH, p. 372]). The quotient of |W | by
W is the cone over the nerve N(W,S).

1.3. Nonpositive and negative curvature

Since the simplicial cone over the barycentric subdivision of any simplicial complex
carries a natural cubical structure, the Davis complex of a Coxeter group can be
considered as a cubical complex. Thus it carries a geodesic metric, obtained by
declaring each k-cube to be isometric with [0, 1]k.

A fundamental observation, due to Gromov, is that a cubical complex is locally
CAT (0) (that is it is nonpositively curved in the comparison sense of Alexandrov
and Toponogov) iff the link of any vertex is a flag complex. Moussong [M] am-
plified this observation, and showed what is the right choice of metrics on cubes
yielding a CAT (0) metric for an arbitrary Coxeter group. Morevover, he showed
that if there is no “obvious” obstruction then this metric can be modified to a
(W -invarint) CAT (−1) metric on |W |. The obvious obstruction arises when ei-
ther (W,S) contains an affine Coxeter system of rank at least 2 as a standard
parabolic subgroup, or it contains a standard parabolic which is a product of two
infinite Coxeter systems. Thus a right angled Coxeter group acts isometrically
and cocompactly on a CAT (−1) space iff it does not contain a product of two
infinite dihedral groups as a standard parabolic. This condition is equivalent to
the following combinatorial fact: If a, b, c, d are vertices of A forming a square, ie.
there are edges ab, bc, cd, da in A, then at least one of the edges ac, bd is in A.

We say that a flag simplicial complex Af as above contains no empty square
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or that it is a no-square complex.

1.4. The virtual cohomological dimension

The virtual cohomological dimension of a Coxeter group, denoted vcd(W ), has
been computed by Bestvina [B1], in the form of an inductive algorithm giving
the answer. A clearer formulation is due to Davis [D1], who gave a formula for
cohomology of W with coefficients in the group ring (which gives the dimension).
Namely

vcd(W,S) = max{n : Hn(D,DT ;Z) 6= 0} = 1 + max{n : H̃n(DT ;Z) 6= 0}

Here the maximum is taken over all T ⊂ S such that WT is finite, D denotes the
cone over the nerve N(W,S), and DT is the union of closed simplices of N(W,S)
which contain as a vertex a singleton s ∈ S − T . The maximum over the empty
set is −1.

If T spans a finite parabolic subgroup of W , DT is homotopy equivalent to the
nerve of the parabolic subgroup spanned by S − T . The homotopy equivalence is
obtained by deformation retraction of DT onto the full subcomplex in the nerve
N(W,S) (with respect to the coarse simplicial stucture on this nerve) spanned by
the subset S − T of vertices.

Thus

vcd(W,S) = 1 + max{n : H̃n(N(WS−T , S − T );Z) 6= 0}.

Notice that if (W,S) is a right angled Coxeter group, whose nerve is a closed
orientable pseudomanifold of dimension n (that is if each simplex of dimension
(n − 1) is contained in exactly two simplices of dimension n, and the manifold
obtained by removing simplices of codimension 2 is orientable), then vcd(W ) =
n + 1.

The discussion above shows that to construct a hyperbolic Coxeter group of
dimension n+1 it is sufficient to construct a simplicial flag complex with no empty
squares, which is an orientable pseudomanifold of dimension n. This will be done
in Sections 3–6.

2. An extension of Vinberg’s theorem

2.1. Coxeter groups and Poincaré duality

A group Γ is a virtual Poincaré duality group of dimension n, if for some finite
index subgroup Γ0, the cohomology of BΓ0 satisfies the Poincaré duality [D1].

A simplicial complex N is a generalized homology sphere (GHS) of dimension
k if it has the same homology as Sk and if the link of each simplex in N is a
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generalized homology sphere of appropriate dimension. In particular, each simplex
is contained in a simplex of dimension k, and N is a pseudomanifold.

Let (W,S) be a Coxeter system such that W is a virtual Poincaré duality group
of dimension n. It is a theorem of M. W. Davis [D1] that (W,S) decomposes into
a product of Coxeter systems (W,S) = (W1, S1)× (W2, S2), so that W2 is a finite
group and the nerve of (W1, S1) is a generalized homology sphere of dimension
n− 1.

2.2. Combinatorics of triangulations of generalized homology spheres

Let N be a finite simplicial complex of dimension (n − 1) and let fi denote the
number of (i− 1)-dimensional simplices in N (f0 = 1). Define numbers hi by the
polynomial equation

n∑
i=0

hit
i =

n∑
i=0

fi−1(t− 1)n−i.

A theorem of Richard Stanley [S] asserts that if N is a generalized homology sphere
of dimension (n− 1) then

hi = hn−i and hi ≥ 0.

V. V. Nikulin (see [V, Prop. 6.1]) showed that these restrictions on hi imply
that (

n

2

)
fn−1

fn−3
<

{
4(n−1)

n−2 for n even
4n

n−1 for n odd.

The quantity on the left hand side is the average number of (n − 1)-simplices
containing given (n− 3)-simplex. If n ≥ 5 the inequality implies that there exists
an (n− 3)-simplex in N contained in three or four (n− 1)-simplices.

Suppose A = σn−3 is contained in three (n − 1)-simplices. Since N is a pseu-
domanifold, any two of these three simplices intersect along an (n − 2)-simplex
(otherwise we would have more than three top dimensional simplices containing
A). In other words, the simplex A contained in three (n − 1)-simplices produces
a subcomplex Y3(A) ⊂ N on (n − 2) + 3 = n + 1 vertices. The three additional
vertices are called “black” vertices.

Similarly, if A = σn−3 is contained in four (n − 1)-simplices σ0, σ1, σ2, σ3,
the argument above implies that (up to renumbering) simplices σi, σi+1 intersect
along an (n − 1)-simplex (taking indices mod 4). Thus we have a subcomplex
Y4(A) ⊂ N . Four vertices of Y4(A) outside A are again called “black”, and we see
that they form a square.

Proof of the right angled case of Theorem 2. Let (W,S) be a right angled Coxeter
system whose nerve N = N(W,S) is a generalized homology sphere of dimension
(n− 1) ≥ 4. Recall that (by the construction of the nerve) N is a flag complex.
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If N contains Y3, it contains the one skeleton of n dimensonal simplex, hence
it is not of dimension (n− 1).

If N contains Y4, then it contains an empty square, since any additional edge
between black vertices in Y4 would produce a n-simplex. Thus the group W
contains Z ⊕ Z generated by the black vertices in Y4 and is not hyperbolic.

To see that the bound is sharp, one uses the 120 cell. ¤

Proof of the general case of Theorem 2. Vinberg considers weights w(A,B) asso-
ciated to flags f = (A ⊂ B) of a codimension 2 and top dimensional simplex in a
GHS of dimension n − 1. If the following conditions are met with some constant
c, for all simplices A,B:

w(B) =
∑

A|A⊂B

w(A,B) ≤ cn (1)

w(A) =
∑

B|B⊃A

w(A,B) ≥ 5− |A|, (2)

then n < 8c+6 (Prop 6.2 of [V]). Here |A| denotes the number of top dimensional
simplices containing A.

Choose the weights as follows: look at the two “black” (that is not contained
in A) vertices of B and compute their distance in the Dynkin diagram of (W,S);
if the distance is at most 7, the weight is 1, otherwise it is 0.

In [V, Lemma 6.1] condition (1) is checked with c = 7. It is a fact about any
finite Coxeter system, thus holds in the present generality.

Condition (2) has to be checked only for A such that |A| = 3, 4.
If |A| = 3, first note that the subgroup WY generated by the vertices of Y3(A)

is infinite (otherwise N would contain an n-simplex). Take a minimal infinite
parabolic subgroup L < WY containing all black vertices and denote the generating
set inherited from WY by l. Removing a black vertex from l yields a finite subgroup
by construction of Y3(A). Removing a white vertex yields a finite subgroup by
minimality of L. The subsystem (L, l) is irreducible since otherwise it would
contain an infinite factor. Thus L is either affine or hyperbolic since its associated
quadratic form contains a positive definite subspace of codimension one. Since L
has at least 3 generators, it cannot be affine: an irreducible affine Coxeter group
on k + 1 generators contains a subgroup isomorphic to Zk. Thus L is one of the
Lanner groups (i.e. cocompact reflection groups on a Lobačevskii space, whose
fundamental domain is a simplex), and Vinberg showed that w(A) ≥ 2 = 5− |A|.

If |A| = 4, an argument similar to the one above shows that a minimal infinite
parabolic subgroup of Y4(A) containing two opposite black vertices, and not con-
taining the other pair of black vertices, is a Lanner group, and hence Vinberg’s
argument estimating the sum of weights w(A) ≥ 1 = 5− |A| goes through.

Since c = 7, the bound n < 8c + 6 = 62 follows and the proof is complete. ¤
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2.3. Examples and comments

There are some issues related to Theorem 2 which still should be addressed. First,
there is a question if the bound proved is sharp. Vinberg provides a better bound
n ≤ 29 for cocompact reflection groups acting on Lobačevski hyperbolic space; we
did not try to adapt his argument to the present context.

It is quite conceivable that the maximum dimension of a Gromov hyperbolic
Poincaré duality group is not attained on a Lobačevski hyperbolic group. Anyway
there are many more Gromov hyperbolic Poincaré Duality Coxeter groups than
Lobačevski hyperbolic.

Example 2.3.1. Let W be a cocompact right angled Coxeter group on H4 with
fundamental domain (and the quotient) the simple polytope P . Thus faces of P
correspond to generators of W , and the relations are s2 = 1 and (st)2 = 1 iff faces
corresponding to s, t intersect. Let mst be the Coxeter matrix of (W,S)

We change the orbifold structure on P , by choosing a face of codimension 2
(thus two faces of codimension 1, s0 and t0, containing it), and declaring the
dihedral angle along that face to be π

n . In other words we take the Coxeter system
(Wn, S) which has the same system of generators as W , and the Coxeter matrix
is

ns,t =
{

ms,t if (s, t) 6= (s0, t0),
n otherwise.

.

Coxeter systems (W,S) and (Wn, S) have isomorphic nerves, thus the Davis
complex of Wn is homeomorphic to R4. The fundamental domain for Wn, denoted
Pn, is combinatorially isomorphic to P .

Using Moussong’s theorem we see that Wn is Gromov hyperbolic (an elemen-
tary smoothing argument shows that there exists a Wn invariant smooth Rie-
mannian metric of negative curvature on |Wn|). We claim that Wn does not act
discretely cocompactly by isometries on H4.

Suppose it does. Since the argument becomes simpler for n = 2k, we assume
that. First, since the ideal boundaries of |Wn| and H4 are Wn-equivariantly home-
omorphic (uniqueness of the boundary of a hyperbolic group), Wn acts on H4 as
a reflection group and H4 is equivariantly homeomorphic to |Wn|.

Consider a generator s and the action of the centralizer of s on the Fix(s) = H3;
we easily see that ZWn

(s) is isomorphic to ZW (s) (this is where the condition
n = 2k is useful), and their actions on H3 are isometric.

Thus the polytopes P, Pn are combinatorially equivalent, and their correspond-
ing faces are isometric. This implies the fundamental domains, hence the Coxeter
systems (W,S) and (Wn, S) are isomorphic, a contradiction.

This example essentially comes from [GT], where the smoothing to negatively
curved metric is described. The change of the orbifold structure of the quotient
is analogous to taking a ramified cover. The argument we used is an elementary
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substitute to Mostow rigidity. One can produce many more examples of this
kind by changing dihedral angles along the set of disjoint codimension 2 faces
of P . These variations seem to give an enormous supply of negatively curved 4
dimensional reflection groups.

Example 2.3.2. Higher dimensional examples are harder to construct. The
largest known dimension of a cocompact Lobačevski hyperbolic Coxeter group
is eight and it has been found in [Bu]. On the other hand we have the following
easy example of an eight dimensional Gromov hyperbolic Coxeter group.

Consider a Coxeter group W with 10 generators, whose Dynkin diagram is
an interval with labels (5, 3, 3, 3, 3, 3, 3, 3, 5) on the edges. One readily checks with
Moussong theorem that it is Gromov hyperbolic. The Davis complex is homeomor-
phic to R8 (if instead of the 3 in the middle one puts 2, ie. if one cuts the middle
edge, the resulting group is the product of two 4-dimensional hyperbolic Lanner
groups, and the two groups have the same poset of finite parabolic subgroups).

One checks with an argument similar to that in Example 2.3.1 that W is not
Lobačevski hyperbolic.

2.4. Nonexistence of cubical CAT (−1) metrics

Proof of the Corollary. A piecewise hyperbolic metric on a cubical complex is a
geodesic metric obtained by declaring each cube to be isometric to the symmetric
cube in the Lobačevskii space of curvature −1, of some given edge length.

It is a theorem of Gromov, (a more general result is proved in [M]) that for a
cubical complex X, there exists an edge length of the cube such that the cubical
metric is locally CAT (−1) iff the link of any vertex in the complex is a flag complex
which satisfies the no-square condition. By the discussion in Section 1 existence of
such a metric on a manifold of dimension n ≥ 5 implies the existence of a CAT (−1)
right-angled Coxeter group, for which the Davis complex is an n-manifold. This
contradicts Theorem 2. ¤

Observe that we indeed proved a stronger result:

Proposition. 2.4.1. Let X be a CAT (−1) cubical complex and let c be a cube of
codimension (k +1) (so that the link of c has dimension k). If k ≥ 4, then the link
of c is not a generalized homology sphere. ¤

Proposition 2.4.1 shows that not every link can arise in a CAT (−1) cubical
complex. Simple arguments with subdivision [Dr] show there is no such obstruction
for links of dimension ≤ 2. It is unclear to us what happens for links of dimension
3. It would also be interesting to obtain further restrictions on links in higher
dimensions.

Remark. One should not become too enthusiastic about the Corollary. It is very
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likely that many manifolds with locally CAT (0) cubical metrics have Gromov hy-
perbolic fundamental groups and carry (noncubical) CAT (−1) metrics. Examples
of this kind are known to us in low dimensions.

3. Simple complexes of groups

We will construct complexes required for the proof of Theorem 1 as normal covers
of certain simple complexes of groups. Such complexes are necessarily fairly large,
and we view their symmetry groups as an efficient bookkeeping device. Recall first
quickly the formalism of simple complexes of groups [BH, II.12].

Let (Q,≤) be a partially ordered set; consider it as a small category with an
object for each element in Q and a unique morphism S → T for any pair of
elements with S ≤ T . A simple complex of groups over Q, denoted G(Q), is
a functor from Q to the category of groups and injective maps. A complex is
developable if all the groups GS inject into the direct limit Ĝ(Q).

For a developable complex together with a homomorphism φ : Ĝ(Q) → G,
injective on local groups GS , one performs The Basic Construction ([BH, II.12.18]).
It gives a space D(Q, φ) called the development of G(Q) associated to φ. The group
G acts on D(Q, φ) with a strict fundamental domain |Q|, which is isomorphic to
the geometric realization of the poset Q. The isotropy subgroups of points in the
fundamental domain are the local groups GS .

3.1. Developable simplices of groups

For a finite set S, let ∆S be the simplex dual to S, i.e. the simplex of dimension
|S|−1, with codimension one faces labeled by elements of S and denoted σs : s ∈ S.
For a nonempty subset T ⊂ S we put σT = σS

T := ∩s∈T σs. We also use the
convention that σ∅ = σS

∅ := ∆S . For vertices σS−s we use shorter notation vs.
In this notation, the vertex vs is opposite to the face σs, so that ∆S = vs ∗ σs.
Moreover, any face σT of ∆S is spanned by the vertices vs : s ∈ S−T . For a point
p ∈ ∆S , denote by S(p) the (unique) subset of S such that p ∈ int σS(p).

Let Q = P (S) be the poset of all subsets of S and let F be a simple complex of
groups over Q. In other words, to any T ⊂ S assign a group FT , so that if U ⊂ T ,
then FU ⊂ FT . Groups of the form F{s} will be called singleton groups.

Restricting F to the subposet Q \ {S} we obtain a simplex of groups F (∆S)
equipped with the homomorphism φS : F̂ (∆S) → FS induced by inclusions FT →
FS .

Define an equivalence relation ∼ on ∆S × FS by

(p, γ) ∼ (q, η) iff p = q and γ−1η ∈ FS(p);

denote by [p, η] the equivalence class of (p, η), let

LS = ∆S × FS/∼.
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This is the Basic Construction of [BH, II.12] applied to the pair (F (∆S), φS),
except that we insist on using a coarser simplicial structure than [BH] (who use
the barycentric subdivisions of our simplices).

Proposition 3.2.
(1) LS is a pure1(|S| − 1)-dimensional multisimplicial2complex.
(2) The group FS acts on LS by γ[p, η] = [p, γη], and the quotient map is equal

to the map induced by the projection onto the first factor. The stabilizer of
the point [p, 1] is FS(p).

(3) LS is finite iff the index [FS : F∅] is finite. LS is locally finite iff all indices
[FR : F∅] for proper subsets R ⊂ S are finite.

(4) LS is a closed pseudomanifold iff [F{s} : F∅] = 2 for all singleton groups
F{s}.

(5) LS is gallery connected3 iff the singleton subgroups F{s} generate FS.
(6) LS is an orientable pseudomanifold iff in addition to (4) there is a homo-

morphism ρ : FS → Z2 whose restriction ρs : F{s} → Z2 has kernel equal
to F∅ for each s ∈ S.

(7) LS is a simplicial complex iff FR ∩ FT = FR∩T for all subsets of S.

Proof. Assertions (1) and (2) are obvious. The first part of (3) follows by observing
that top dimensional simplices in LS are indexed by cosets FS/F∅. Similarly, if
σ is a simplex in LS whose image under the quotient map LS → ∆S is σT , then
the set of top dimensional simplices containing σ is indexed by the cosets FT /F∅.
This implies the second part of (3). The same argument applied to simplices σ of
codimension 1 proves (4).

Assertion (5) follows by observing that simplices [∆S , g1] and [∆S , g2] share a
codimension 1 face iff g2 = g1g for some g in one of the singleton groups F{s}.

To prove (6), suppose that LS is a pseudomanifold. Pulling back a fixed ori-
entation of ∆S by the quotient map LS → ∆S , we equipped top dimensional
simplices of LS with orientations which are opposite for any pair of adjacent (i.e.
sharing a codimension 1 face) simplices. Homomorphism ρ as in (6) induces the
map from top dimensional simplices to Z2 with a similar property: its values at
any pair of adjacent simplices are distinct. Modify the induced orientations by
reversing them on simplices assigned with the nonzero value in Z2. This makes
the orientations consistent and proves one of the implications in (6). The converse
follows by a similar argument.

1 X is pure n-dimensional if any x ∈ X is in a closure of an n-dimensional simplex.
2 In a multisimplicial complex there may be more than one simplex with a given vertex set,

but the complex is still a sum of embedded closed simplices intersecting along sums of their faces.
3 A pure complex X is gallery connected if for any two top dimensional simplices ∆1, ∆2 there

is a sequence of top dimensional simplices ∆1 = y1, y2 . . . yk = ∆2, so that yi has a common face
of codimension 1 with yi+1.
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To prove (7), observe that k-dimensional simplices in LS are indexed by cosets
of the form FS/FS−K , where K is a k-element subset of S. Assignment of the
set of its vertices to a k-simplex gFS−K can be viewed as a map FS/FS−K →∏

s∈K FS/FS−{s} mapping gFS−K to gFS−{s}. Clearly this map is equivariant
with respect to the left action of FS . A simplex is uniquely determined by the
set of its vertices iff the map FS/FS−K → ∏

s∈K FS/FS−{s} is injective. This
happens iff FS−K =

⋂
s∈K FS−{s}. The last equality is satisfied for all nonempty

subsets K iff FR ∩ FT = FR∩T for all subsets. ¤

4. Retractibility

We start by enriching the category P (S) with additional morphisms. Consider an
element 1 /∈ S, called a basepoint, and put T∗ := T ∪ {1} for each T ∈ P (S). As
the set of morphisms from R to T declare the set of all maps m : R∗ → T∗ with
the property that m(s) ∈ {1, s}. Denote the new category by Pr(S).

Observe that for each morphism m : R → T we have m(1) = 1 and m(s) = 1
for all s ∈ R− T .

For any pair R, T there is a distinguished morphism mRT : R∗ → T∗, given by

mRT (s) =
{

s if s ∈ R ∩ T ,
1 otherwise.

Morphisms mRT with R ⊂ T and T ⊂ R respectively, will be called inclusions
and retractions. Since for any morphism m : R → T we have m = mm(R)−{1},T ◦
mR,m(R)−{1}, it follows that any morphism is a composition of an inclusion and a
retraction. In particular, for any R, T we have mRT = mT∩R,R ◦mT,T∩R.

Definition 4.1. A retractible complex of groups over the poset P (S) is a covariant
functor F from the category P∗(S) to the category of groups.

We still denote by FT the group assigned by a functor to a subset T ⊂ S.
For any subsets R, T ⊂ S, the homomorphism induced by the morphism mRT is
denoted by hRT : FR → FT .

Lemma 4.2.
(1) Homomorphisms induced by inclusions R ⊂ T are injective.
(2) Homomorphisms hTR with R ⊂ T (i.e. homomorphisms induced by retrac-

tions) map the subgroup FR ⊂ FT identically to itself.
(3) If R,U ⊂ T , then hTR|FU

= hU∩R,R◦hU,U∩R, and hence hTR(FU ) = FU∩R.
In particular, hTR(F{s}) = F∅ for s ∈ T −R.

(4) If R, T ⊂ S, then FR ∩ FT = FR∩T as subgroups of FS.

Proof. If R ⊂ T then by functoriality we have hTR ◦ hRT = idFR
, which proves

both (1) and (2). Property (3) follows from (1) and (2) by noting that hTR ◦
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hUT = hU∩R,R ◦ hU,U∩R (which follows by functoriality from a similar identity for
morphisms in the category Pr(S)).

To see (4), note that hSR|FR
= idFR

and hSR(FT ) = FT∩R. Thus, if x ∈
FR ∩ FT , then x = hSR(x) ∈ FT∩R, and hence FR ∩ FT ⊂ FR∩T . The opposite
inclusion is obvious. ¤

If F is a retractible complex of groups on P (S), the associated complex LS has
additional properties.

Proposition 4.3. Let F be a retractible complex of groups on the poset P (S) and
let LS be the associated development resulting from the basic construction in 3.1.

(1) LS is a simplicial complex.
(2) If v ∈ LS is a vertex that projects to vs under the quotient map LS → ∆S,

then the star st(v, LS) of this vertex in LS is a full subcomplex isomorphic to
the simplicial cone over the development LS−{s} (associated to the complex
of groups F restricted to P (S − {s})).

(3) LS is flag.
(4) If for each s ∈ S we have [F{s} : F∅] = 2 (in particular if F∅ = {1} and

F{s} = Z2) then LS is an orientable pseudomanifold.

Proof. Property (1) is an immediate consequence of Proposition 3.2(7) and Lemma
4.2 (4).

To prove (2) we use the complex Ds introduced in Section 5, just before Lemma
5.1. Observe that the star of v = [vs, g] in LS is equal to the translate gDs of Ds.
By Lemma 5.2, this star is then isomorphic to the simplicial cone over LS−{s}.
To prove that this star is full, it is sufficient to prove that Ds is full in LS . Let τ
be the simplex of LS with all vertices in Ds. By Lemma 5.1, the complex Ds is
a strict fundamental domain for the action of a subgroup HS

s ⊂ FS on LS . Thus
the image of the simplex τ under the quotient map LS → Ds (associated to the
action of HS

s ) has the same vertices as τ , and hence is equal to τ . It follows that
τ is contained in Ds, which finishes the proof of (2).

Please note that proofs of Lemmas 5.1 and 5.2 which we used are independent
of results in Section 4.

A simplicial complex X with full stars of vertices is flag iff all stars of vertices
in X are flag. Moreover, a cone over a flag complex is again flag. Thus one
can use (2) inductively to conclude LS is flag. To start induction we note that
0-dimensional complexes are flag. This proves (3).

The hypothesis (4) yields a homomorphism ρs : F{s} → Z2 as in Proposition
3.2 (6) for each s ∈ S. A homomorphism ρ : FS → Z2 given by the formula

ρ(g) :=
∑
s∈S

ρs ◦ hS,{s}(g),

is well defined and extends all homomorphisms ρs for s ∈ S, which can be easily
verified using Lemma 4.2. Applying Proposition 3.2(6) finishes the proof. ¤
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Definition 4.4. A retractible complex of groups F over the poset P (S) is reduced
if F∅ = {1}.

Observe that to any retractible complex of groups F there is associated a re-
duced complex F 0 over the same poset, with groups F 0

T := ker(hT,∅ : FT → F∅)
and with the induced homomorphisms equal to the restrictions of the correspond-
ing homomorphisms for F . The development L0

S associated to F 0 is isomorphic
to LS , and the isomorphism is given by [p, g] → [p, hS,∅(g)].

Definition 4.5. A retractible complex of groups F over the poset P (S) is minimal
if each of the groups FT is generated by the union of the singleton subgroups
F{s} : s ∈ T .

To any retractible complex of groups F there is associated a minimal complex
Fmin over the same poset, with groups Fmin

T := 〈∪s∈T F{s}〉 and with the induced
homomorphisms equal to the restrictions of the corresponding homomorphisms for
F . The development Lmin

S associated to Fmin is easily seen to be the gallery con-
nected component of the simplex [∆S , 1] in LS . The whole LS is isomorphic to the
disjoint union of FS/Fmin

S copies of Lmin
S , glued along some faces of codimension

at least 2.

4.6. Examples of retractible complexes of groups

First examples of functors on Pr(S) are given by direct product and free product
of singleton groups. More specifically assign to any s ∈ S a group Gs; then put
Fdirect

T :=
∏

s∈T Gs and F free
T := ∗s∈T Gs.

For another example, suppose that S is a vertex set of a graph A. With T ⊂ S
we associate the direct limit of the poset of groups lim dir

∏
s∈K Gs, where K ⊂ T

spans a complete subgraph of A. This yields the graph product functor over Pr(S).
Finally, suppose that we are given an infinite Coxeter matrix (ms,t)s,t∈S , with

even off diagonal elements (∞ is declared an even number). Then assigning to
T ⊂ S the Coxeter group with the matrix (ms,t)s,t∈T we get a functor on Pr(S).
The restriction to even entries is necessary to have homomorphisms induced by
retractions.

The examples described above are all reduced and minimal. Note that any
reduced and minimal functor F on Pr(S) is sandwiched between the free and the
direct product of its singleton groups. More precisely, there are natural trans-
formations yielding surjective homomorphisms F free

T → FT → Fdirect
T for each

T ⊂ S.

4.7. Examples of developments

We discuss developments LS associated to functors from 4.6.
For F = Fdirect, the complex LS is the simplicial join ∗s∈SF{s}. In particular,
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if all the singleton groups are Z2, Fdirect
T is ZT

2 and the complex LS is isomorphic
to the standard hyperoctahedral triangulation of the sphere S|S|−1. In the general
case, when the singleton groups are nontrivial, LS is a spherical Tits building with
hyperoctahedral apartments.

If F = F free and the singleton groups are Z2, the complex LS is isomorphic
to a thickening of a regular S-valent tree with (|S| − 1)-dimensional simplices.

More generally, if F is a graph product functor based on a graph A with the
vertex set S, the space LS is the Tits (simplicial) building associated with the
right angled Weyl group given by the matrix MA. The thickness of the building
at the face corresponding to s is equal |F{s}|.

Finally, if F comes from an even Coxeter matrix M , LS is the Coxeter com-
plex of the Coxeter system (FS , S) given by the matrix M . Here we identify the
elements s ∈ S with the generators in the singleton subgroups F{s} = Z2.

5. Extra retractibility and no-square condition

We say that a simplicial complex X contains no empty square (or satisfies the
no-square condition) if for any vertices a, b, c, d in X connected by edges ab, bc,
cd and da (thus forming a square abcd in X) at least one of the edges ac or bd is
in X.

The hyperoctahedral triangulation of S|S|−1 mentioned in 4.7 shows that the
space LS associated to an arbitrary retractible complex of groups may contain
empty squares. Thus when trying to construct no-square flag complexes, we need
further restrictions on the complex of groups. To formulate them a preliminary
discussion is necessary.

We will often deal with sets of form S \ {s}, and we use a simplified notation
S − s for them. We also denote by sg the conjugation gsg−1, and apply the same
convention Hg = gHg−1 for conjugation of subgroups.

Let F be a retractible complex of groups over P (S). For a subset T ⊂ S and for
any s ∈ T , denote by HT

s the kernel of the homomorphism hT,T−s : FT → FT−s.
We focus attention on the groups HS

s and their actions on the complex LS . Put

Ds = ∪g∈FS−s
[∆S , g] ⊂ LS .

Lemma 5.1. The subcomplex Ds is a strict fundamental domain for the action
of HS

s on LS, i.e. the restriction of the quotient map qs : LS → HS
s \LS to Ds is

a bijection.

Proof. The map js : HS
s \LS → Ds defined by

js(HS
s · [p, γ]) = [p, hS,S−s(γ)]

is the inverse of qs|Ds
. ¤
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Lemma 5.2. The complex Ds is isomorphic to the simplicial cone C(LS−s), with
vertex vs as cone vertex.

Proof. Since we have ∆S = vs ∗ σs, we write

Ds = ∆S×FS−s/ ∼ = (vs ∗σs)×FS−s/ ∼ ∼= vs ∗ (∆S−s×FS−s/ ∼s) = vs ∗LS−s,

where ∼s above denotes the equivalence relation used to define LS−s. The isomor-
phism in the middle comes from comparing the equivalence relation ∼ restricted
to σs×FS−s and the equivalence relation ∼s. We omit the straightforward details.

¤

We will view the complex Ds as a stratified space: its top closed stratum is Ds

and remaining closed strata are the simplices not containing the center vs. The
boundary ∂Ds of Ds is the union of all nonmaximal strata ∪g∈FS−s

[σs, g]. By
Lemma 5.2, the boundary is isomorphic to the complex LS−s. For a point p ∈ Ds

denote by σ(p) the unique minimal stratum (face) of Ds with p ∈ σ(p). Lemma
5.1 implies the following.

Lemma 5.3. For each face σ of Ds let Γσ be the stabilizing subgroup of the group
HS

s at the face σ. We then have

LS = Ds ×HS
s / ∼,

where (p, γ) ∼ (q, η) iff p = q and γ−1η ∈ Γσ(p).

Now we will take a closer look at the subgroups Γσ.

Lemma 5.4.
(1) Each face σ ⊂ ∂Ds has a form σ = [σT , g] for some subset T ⊂ S containing

s and for some g ∈ FS−s.
(2) If σ = [σT , g] for some s ∈ T ⊂ S and some g ∈ FS−s, then Γσ = (HT

s )g ⊂
HS

s .

Proof. Only the second assertion requires a proof. Observe that Stab(FS , [σT , 1]) =
FT , and hence Stab(FS , [σT , g]) = (FT )g. Using the fact that the subgroup HS

s

is normal in FS , we have Γσ = Stab(HS
s , [σT , g]) = (FT )g ∩HS

s = (FT ∩HS
s )g =

(FT ∩ kerhS,S−s)g = (ker hT,T−s)g = (HT
s )g. ¤

From now on all retractible complexes of groups will be reduced and minimal.
Under this restriction we obtain nice descriptions of various groups in terms of
generators.

Lemma 5.5. If F is reduced and minimal then the subgroup HT
s is generated by

the union of the conjugates (F{s})g : g ∈ FT−s.
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Proof. By minimality the subgroups FT−s and F{s} generate FT . Since F is
reduced, we have F{s} ⊂ HS

s . The lemma follows by combining these two facts.

Next lemma describes the subgroups Γσ in terms of generators.

Lemma 5.6. Let σ = [σT , γ] ⊂ ∂Ds. Then the subgroup Γσ ⊂ HS
s is generated

by the union of the conjugates (F{s})g : g ∈ γ · FT−s.

Proof. Applying Lemmas 5.4 and 5.5 we have

Γσ = (HT
s )γ = 〈hγ : h ∈ ∪g∈FT−s

(F{s})g〉 = 〈∪g∈FT−s
(F{s})γg〉

= 〈∪g∈γ·FT−s
(F{s})g〉. ¤

Observe that the top dimensional simplices of ∂Ds have the form [σs, g] : g ∈
FS−s and that they correspond bijectively to the elements of FS−s. Put σg :=
[σs, g]. The following reformulation of Lemma 5.6 will be useful later in this
section.

Lemma 5.7. Let σ be a simplex of ∂Ds. Then the group Γσ is generated by the
union of the conjugates (F{s})g : σ ⊂ σg.

Proof. The inclusion σ = [σT , γ] ⊂ [σs, g] = σg holds iff γ−1g ∈ FT−s iff g ∈
γ · FT−s. ¤

Definition 5.8. A reduced, minimal, retractible complex of groups F over the
poset P (S) is extra retractible if for each s ∈ S and for any subset T ⊂ S containing
s, there is a (uniquely determined) homomorphism rS

s,T : HS
s → HT

s such that:
(1) rS

s,T (h) = h if h ∈ (F{s})g and g ∈ FT−s;
(2) rS

s,T (h) = 1 if h ∈ (F{s})g and g ∈ FS−s − FT−s.

Note that condition (1) above implies that rS
s,T (h) = h for each h ∈ HT

s and
thus the homomorphism rS

s,T is a retraction. This explains why we call the property
from Definition 5.8 extra retractibility.

Lemma 5.9. Let F be an extra retractible complex of groups over the poset P (S).
Then for each simplex σ ∈ ∂Ds there is a (uniquely determined) homomorphism
rσ : HS

s → Γσ such that
(1) rσ(h) = h if h ∈ (F{s})g and σ ⊂ σg;
(2) rσ(h) = 1 if h ∈ (F{s})g and σ is not contained in σγ .

Proof. Let σ = [σT , γ]. In view of Lemmas 5.6 and 5.7, the homomorphism defined
by rσ(h) := [rS

s,T (hγ−1
)]γ is as required. To see this, observe that if h is as in (1)
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then h = kγg for some k ∈ F{s} and for some g ∈ FT−s. Thus

rσ(h) = rσ(kγg) = [rS
s,T ((kγg)γ−1

)]γ = [rS
s,T (kg)]γ = (kg)γ = kγg = h.

Similarly, one shows that rσ(h) = 1 if h is as in (2). ¤

Remark.
(1) Existence of homomorphisms rσg

as in Lemma 5.9 implies that for distinct
g1, g2 ∈ FS−s we have (F{s})g1 ∩ (F{s})g2 = {1}.

(2) Remark (1) above implies that the complex of groups Fdirect (for which
Fdirect

T = (Z2)T ) is not extra retractible, since the groups in this complex
are abelian.

(3) Slightly less clear, but still true, is the fact that the complex of groups
F free is extra retractible. However, the groups FT in this complex are in
general infinite and hence useless for our purpose. In Section 6 we construct
a functor F which is extra retractible and for which all the groups FT are
finite.

Remark (1) above can be generalized as follows.

Lemma 5.10. Let σ and τ be two simplices of ∂Ds that are not contained in any
common simplex of ∂Ds. Then Γσ ∩ Γτ = {1}.

Proof. The groups Γσ and Γτ are generated by the unions of the families of con-
jugates (F{s})g : σ ⊂ σg and (F{s})g : τ ⊂ σg respectively. Due to our assumption
on σ and τ , these two families are disjoint. It follows that the homomorphism rσ

as in Lemma 5.9 maps Γσ identically to itself, and it maps all of Γτ to 1. This
implies that Γσ ∩ Γτ = {1}. ¤

We now turn to describing the complex LS as tessellated by the isomorphic
copies of Ds. We take as tiles the translates h ·Ds : h ∈ HS

s and denote the whole
tessellation by HS

s · Ds. Using the description LS = Ds × HS
s / ∼ from Lemma

5.3, we can identify each tile h ·Ds with the set [Ds, h]. It is then clear that the
tiles cover all of LS and that they do not overlap, i.e. the intersection of any two
tiles is contained in the boundary of each of them. Assuming extra retractibility,
we have the following stronger

Lemma 5.11. Suppose that F is an extra retractible complex of groups over the
poset P (S). Then the intersection of any two distinct tiles in the tessellation
HS

s ·Ds is either empty or it is a single simplex contained in the boundary of each
of the tiles.

Proof. Let h1, h2 be two distinct elements of the group HS
s and [Ds, h1], [Ds, h2] the

corresponding two distinct tiles. If x ∈ [Ds, h1]∩ [Ds, h2] then x = [p, h1] = [q, h2]
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and (p, h1) ∼ (q, h2). It follows that p = q and h−1
1 h2 ∈ Γσ(p). Thus, identifying

the intersection of the tiles with a subset in Ds, we have

[Ds, h1] ∩ [Ds, h2] = ∪{σ ∈ ∂Ds : h−1
1 h2 ∈ Γσ}.

Now, using homomorphisms rσ and the argument as in the proof of Proposition 4.2.
(3), we see that Γσ = ∩{Γv : v is a vertex of σ}. This implies that if all vertices
of a simplex σ ∈ ∂Ds are in the intersection of the two tiles, so is the whole σ,
and thus the intersection is a full subcomplex in ∂Ds. On the other hand, all the
vertices contained in the intersection have to belong to a single simplex of ∂Ds,
since otherwise they span a full subcomplex in ∂Ds containing some two simplices
σ and τ not contained in a single simplex of ∂Ds. Applying Lemma 5.10, we then
get h−1

1 h2 ∈ Γσ ∩ Γτ = {1}, and hence h1 = h2. This contradicts our initial
assumption proving that the intersection is either empty or a single simplex of
∂Ds. ¤

Proposition 5.12. Suppose that F is an extra retractible complex of groups on
the poset P (S). Then the complex LS satisfies no-square condition.

Proof. Suppose there is a square in LS with vertices a, b, c, d and with edges
ab, bc, cd and da. By translating with an element of FS we may (and will) as-
sume that ab is an edge of the simplex [∆S , 1] in LS . Let s, t be the elements
of S such that [vs, 1] = a and [vt, 1] = b. Consider the subgroup HS

s ⊂ FS and
the tessellation HS

s ·Ds of LS . The vertex a is then the unique interior vertex of
the tile Ds, and we will refer to it as centre of Ds. Consider next the subgroup
HS−t

s ⊂ HS
s and the homomorphism rS

s,S−t : HS
s → HS−t

s . Define the subgroup
HS

s,t := ker rS
s,S−t ⊂ HS

s and note that its restricted action on LS clearly preserves
the tessellation HS

s ·Ds. Put Ds,t = ∪{h ·Ds : h ∈ HS−t
s }.

Claim 1. Ds,t is a strict fundamental domain for the action of HS
s,t on LS.

Proof of Claim 1. Viewing LS as HS
s × Ds/ ∼ (see Lemma 5.3), define a map

js,t : HS
s,t\LS → Ds,t by the formula

js,t(HS
s,t · [p, γ]) = [p, rS

s,S−t(γ)].

This map is easily checked to be an inverse of the quotient map LS → HS
s,t\LS

restricted to Ds,t, hence the claim.

Claim 2. Ds,t is the union of all tiles of the tessellation HS
s ·Ds that contain the

vertex b = [vt, 1].

Proof of Claim 2. Using again the description LS = HS
s ×Ds/ ∼, observe that a

tile h · Ds = [Ds, h] contains the vertex [vt, 1] iff h ∈ Γvt
= ΓσS−t

= HS−t
s (see

Lemma 5.4). This implies the claim.
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By Claim 2 and the fact that a is the centre of the tile Ds ⊂ Ds,t, the edges
ab, bc and da of the square abcd are contained in Ds,t. By Claim 1, the vertices c
and d are connected by an edge in Ds,t, namely by the image of the edge cd under
the quotient map LS → HS

s,t\LS = Ds,t. This edge is in fact equal to cd, since
two vertices span at most one edge in LS .

Consider now the following two cases.

Case 1: c ∈ Ds. Since Ds is a simplicial cone centered at a (see Lemma 4.2),
there is an edge ac in Ds ⊂ LS . Thus the square abcd is not empty in this case.

Case 2: c /∈ Ds. Let g · Ds ⊂ Ds,t be a tile containing the edge cd. By our
assumption on c we have g · Ds 6= Ds. Next, since a is the centre of Ds, we
have d ∈ Ds and consequently d ∈ Ds ∩ g ·Ds. By Lemma 5.11, the intersection
Ds ∩ g · Ds is a simplex, and by Claim 2 this simplex contains the vertex b. It
follows that there is an edge bd in LS , and again the square abcd in not empty. ¤

6. Construction and the proof of Theorem 1

To prove Theorem 1 it is sufficient to construct for any natural number n a flag
simplicial complex Ln of dimension n which is a closed orientable pseudomanifold
and contains no empty square. According to previous sections, such Ln comes
as the development LS of an extra retractible complex of groups F on the poset
P (S), if |S| = n + 1, all singleton groups are equal to Z2 and the group FS is
finite (Propositions 3.2, 4.3 and 5.12). We will construct such complexes of groups
for any n. This will be done inductively, by extending the complexes of groups
constructed in earlier steps to bigger posets.

Let (Pf (A),≤) be the poset of all finite subsets of the fixed countably infinite
set A. View Pf (A) as the category with inclusions and retractions in the obvious
analogy with the category Pr(S) defined at the beginning of Section 4. As before,
the induced groups are denoted by FS , the groups F{s} are called singleton groups,
and the homomorphisms induced by morphisms mRT are denoted hRT .

For any morphism F from the category Pf (A) to the category of groups, and for
any finite subset S ⊂ A, the restriction of F to Pr(S), denoted F (S), is a retractible
complex of groups. Thus we will call F a retractible complex of groups on Pf (A).
We say that F is reduced (minimal, extra retractible), if for any S ∈ Pf (A) the
restriction F (S) is reduced (minimal, extra retractible, respectively). To prove
Theorem 1, it is sufficient to construct an extra retractible complex of groups F
on Pf (A), with all singleton groups equal to Z2 and all groups FS finite. We will
call such a complex of groups (or functor) wonderful.

For a natural number n, denote by Pn(A) the full subcategory of Pf (A) whose
objects are all sets S ⊂ A with cardinality |S| ≤ n. It means that Pn(A) contains
all morphisms from the category Pf (A) between the relevant objects. We adapt
the notion of a wonderful complex of groups to functors on the categories Pn(A)
in the obvious way. A wonderful functor F on Pf (A) will be constructed by a
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sequence of extensions from a wonderful functor on Pn(A) to a wonderful functor
on Pn+1(A).

The construction. For the first step of the induction, define F on P1(A) in the
only possible way, putting F{s} = Z2 for each s ∈ A. Observe that this functor is
clearly wonderful. Next, assume that F defined on Pn(A) is wonderful. For each
S ⊂ A with |S| = n+1, denote by F (∆S) the simplex of groups (over the simplex
∆S) with local groups FT at faces σT of ∆S . Declare FS to be the direct limit of
this simplex of groups.

Lemma 6.1. Local groups FT in the simplex of groups F (∆S) inject into the
direct limit FS. In other words, simplex of groups F (∆S) is developable.

Proof. For a fixed local group FT consider the morphism from F (∆S) to FT given
by the family of homomorphisms hRT : FR → FT (indexed by proper subsets
R ⊂ S). This simple morphism induces a homomorphism µS,T : FS → FT whose
composition FT → FS → FT with the map FT → FS (associated to the direct
limit) is clearly the identity. Thus the map FT → FS is injective. ¤

Observe that any subset S ⊂ A with |S| = n + 1 identifies with the generating
set for the group FS , where an element s ∈ S represents the generator in the sin-
gleton subgroup F{s} ⊂ FS (isomorphic to Z2). The fact that these generators are
all distinct follows from the existence of retractions µS,{s} : FS → F{s} (described
in the proof of Lemma 6.1). This observation is extended by the following

Proposition 6.2. The functor on the category Pn+1(A) with groups FT for |T | ≤
n, and with groups FS for |S| = n + 1, is extra retractible.

Remark. The functor as in Proposition 6.2 satisfies all properties of a wonderful
functor except that the groups FS are in general not finite. Finite groups FS

giving a wonderful functor on Pn+1(A) will be defined later as certain quotients
of the groups FS .

Proof of Proposition 6.2. We have first to check the existence of all homomorphisms
prescribed by functoriality. Those ones which are induced by morphisms from the
subcategory Pn(A) are simply the homomorphisms given by the functor F . The
remaining homomorphisms are obtained by composing the inclusions FT → FS

and the retractions µS,T : FS → FT defined in the proof of Lemma 6.1. This is so,
because any morphism m : S → T in Pn+1(A) is of the form m = mm(S)−{1},T ◦
mS,m(S)−{1}.
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Since minimality and reducedness of the considered functor are obvious, we
turn to proving extra retractibility. Let S ⊂ A be a set with |S| = n + 1. Denote
by HS

s the kernel of the homomorphism µS
S−s : FS → FS−s. According to Lemma

5.5, HS
s is generated by the set {sg : g ∈ FS−s}, and the generating sets for groups

HT
s with T ⊂ S have similar form. It is sufficient to prove that for any T ⊂ S

containing s there is a homomorphism rS
s,T : HS

s → HT
s such that

(1) rS
s,T (h) = h for each h ∈ {sg : g ∈ FT−s};

(2) rS
s,T (h) = 1 for each h ∈ {sg : g ∈ FS−s − FT−s}.

This requires some preparatory discussion.
Let LS = FS × ∆S/ ∼ be the development of the complex of groups F (∆S)

associated to the direct limit FS . It follows from general theory [BH II.12] that
LS is connected and simply connected. Consider the complex of groups HS

s \LS

associated to the action of HS
s on LS . By lemma 5.1, HS

s \LS is a simple complex
of groups, and since LS is connected and simply connected, the group HS

s is
the direct limit of this complex. To prove the existence of the homomorphism
HS

s → HT
s as required, it is sufficient to construct the appropriate simple morphism

HS
s \LS → HT

s , i.e. the consistent family of homomorphisms from the local groups
of HS

s \LS to HT
s .

According to Lemma 5.4, local groups of HS
s \LS have the form (HR

s )g for
the appropriate R and g. The required homomorphisms to HT

s are then the
compositions

(HR
s )g → (HR∩T

s )g → (HT
s )g → HT

s ,

where the first map is the conjugated retraction rR
s,R∩T (provided by extra re-

tractibility in the inductive hypothesis), the second map is the conjugated inclu-
sion, and the third map is the identity if g ∈ FT−s while it is the trivial map to
1 ∈ HT

s otherwise. Conditions (1) and (2) for the induced homomorphism can be
checked directly, by tracing the images of the generators under all involved maps.
We omit the details. ¤

We will now improve the functor described in Proposition 6.2 by replacing
groups FS with their appropriate finite quotients. To do this, we need certain
normal subgroups of finite index in those groups. For any distinct elements s, t ∈
S, denote by HS

s,t the kernel of the retraction rS
s,S−t : HS

s → HS−t
s . Observe

that, since the group HS−t
s is finite, the group HS

s,t has finite index in HS
s , and

hence also in FS . Put KS :=
⋂

s6=tHS
s,t and normalize it to the normal subgroup

NS :=
⋂

g∈FS
(KS)g which still has finite index in FS .

Lemma 6.3. The normal subgroup NS is contained in the kernel of any retrac-
tion HS

s → HT
s and any homomorphism FS → FR induced by the functor from

Proposition 6.2.
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Proof. By definition, NS is contained in the kernel HS
s,t of any map HS

s → HS−t
s .

Now, since T ⊂ S − t for some t, and since the map HS
s → HT

s is equal to the
composition HS

s → HS−t
s → HT

s of the retractions, the kernel of HS
s → HT

s

contains the kernel of HS
s → HS−t

s , and hence contains NS .
The part of the lemma concerning morphisms FS → FR has very similar proof

which we omit. ¤

The next proposition completes the inductive construction of a wonderful func-
tor F on Pf (A), thus proving Theorem 2.

Proposition 6.4. The functor on Pn+1(A) obtained from a wonderful functor F
on Pn(A) by putting FS := FS/NS for any S ⊂ A with |S| = n + 1 is wonderful.

Proof. Since by Lemma 6.3, the kernels of all homomorphisms from FS to FR

(induced by the functor as in Proposition 6.2) contain NS , they induce homo-
morphisms from FS to FR which turn the improved functor into a reduced and
minimal retractible complex of groups on Pn+1(A). Similarly, the kernels of retrac-
tions HS

s → HT
s all contain NS , thus inducing homomorphisms HS

s /NS → HT
s .

By observing that these homomorphisms are the desired retractions HS
s → HT

s

we get extra retractibility. Since the rest of the desired properties are obvious, the
proposition follows. ¤

7. Hyperbolization

Thus far we produced essentially a single CAT (−1) pseudomanifold, and the
reader may think that such spaces are isolated/exotic. We now show how to
produce many CAT (−1) cubical complexes, using hyperbolization procedure.

We start with cubical complexes which are locally CAT (0), and convert them
to locally CAT (−1) complexes. There are several hyperbolization procedures de-
scribed in [DJ1], which, starting with any cubical complex, produce a locally
CAT (0) one. Putting these together we end up with a hyperbolization procedure
which converts any cubical complex to a locally CAT (−1) one.

Let us recall [BH, II.5] that a piecewise constant curvature κ space has curva-
ture bounded above by κ, or satisfies the CAT (κ) inequality locally if and only
if all its links, considered as piecewise constant curvature 1 metric spaces, are
large: the length of the shortest geodesic loop in any link is ≥ 2π. In particular a
piecewise flat metric on a cubical complex is CAT (0) iff the links are flag.

For any minimal, reduced, retractible complex of groups over P (S) we have, as
discussed in 4.6, a surjective map AS : FS → Fdirect

S . Assume that the singleton
groups are all isomorphic to Z2. Then this last group is isomorphic with Z

|S|
2 , and

AS coincides with the abelianization map. Since the complex Ldirect
S associated

with Z
|S|
2 is the hyperoctahedral triangulation of the sphere, we have the associated
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map aS : LS → S|S|−1 of complexes. One can interpret this map as taking the
quotient of LS by the kernel of AS .

Recall that the cone over the barycentric subdivision of any simplicial complex
X has a natural structure of a cubical complex. We will call it the cubical cone
over X and denote it by ccX. An alternative description is as follows. For any
simplex σ ⊂ X we take a cube cσ of dimension dimσ + 1 with a distinguished
vertex 0, identify the link of 0 in cσ with σ. Now identify cubical faces containing
0 following the identifications on X. The cubes of this cubical structure are called
small cubes in ccX.

Since the coning is obviously functorial, we form the cubical cone over the map
aS , to obtain a map of cubical complexes

cc(aS) : ccLS → ccS|S|−1 = CS ,

with CS , the cube [−1, 1]S , decomposed into 2|S| images of the small cube [0, 1]S

under sign changing symmetries of the large cube.
One can view ccLS as a ramified covering of CS .
We use the map cc(aS) as an input in a fiber product hyperbolization for

cubical complexes as in [DJ1], and accordingly change the notation slightly. Now
CS

h = ccLS denotes the hyperbolized cube. For CT , T ⊂ S, a face of dimension
|T | in CS is obtained by fixing coordinates not in T to be +1 or −1. We denote
by CT

h a connected component of the preimage of CT by cc(aS). It is, in fact, a
cubical cone ccLT .

Let X be a locally CAT (0) cubical complex.
Suppose there exists a folding map fX : X → CS to the |S|-cube CS ; the CS is

considered here as a single cube (i.e. it is not subdivided). This means that there
is a map of cubical complexes which is injective on each cube in X to the |S|-cube
(thus the complex is of dimension at most |S|).

Let Xh be the fiber product of fX and cc(aS), that is X × CS
h ⊃ Xh =

{(x, h)|fX(x) = cc(aS)(h)}.
The intuitive content of this construction is that we replace a cube in X with

a copy of Ch preserving the gluing pattern of X. The fiber product construction
allows us to say it concisely.

The projection Xh → Ch restricted to the preimage of a top dimensional cube
in X under the projection Xh → X is an isomorphism, thus it endows Xh with
the geodesic metric, which on each Ch is the Moussong metric.

For the reader’s convenience we recall briefly Moussong’s construction. First
we need the notion of hyperbolic cubes. In the disc model of Hn take coordinate
hyperplanes xi = 0. Take a point (t, . . . , t), and all of its 2n − 1 orthogonal
projections to the intersections of coordinate hyperplanes. The convex hull of
these 2n points is a cube. The solid angle at the vertex (0, . . . , 0) is the spherical
simplex with all dihedral angles π

2 (all-right simplex); the opposite solid angle is
a fairly small regular spherical simplex, depending on t. The small angle is placed
at the tip of the cubical cone, while the all-right angle is placed at the vertex
corresponding to the barycenter of the (n− 1) simplex.
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We need to describe links of points in Xh. For this we need some notation. Let
C(x) denote the cube of X containing x in its interior. Denote by Lk(C(x) ⊂ X)
the normal link of any point c in the interior of C(x) (which depends on C(x)
only) and by Lk(a ∈ A) the link of a in A. Then we have

Proposition 7.1.
(1) Let (x, h) ∈ Xh. Then we have an isometry of links

Lk((x, h) ∈ Xh) = Lk(C(x) ⊂ X) ∗ Lk(h ∈ C(x)h).

Here X ∗Y denotes the spherical join of piecewise spherical complexes X,Y
(see [BH p. 63]).

(2) If X is locally CAT (0) and FS is an extra retractible complex of groups,
then the complex Xh with its Moussong metric is locally CAT (−1).

Proof. (1) is straightforward from the definition of the hyperbolization and the
description of the metric.

(2) follows from (1) and the following three facts: the join of large links is large,
the assumption that X has large links and the fact that the Moussong metric has
large links.

Remarks.
(1) The most notable defect of this hyperbolization is that it does not preserve

the property of X being a manifold for dimX ≥ 3. In dimension 3 this can
be fixed by an explicit local resolution of singularities. In higher dimension
such a resolution, preserving CAT (−1) property is unknown to us.

(2) It is not really necessary to use cubical complexes which admit a folding
map. If FS has a better functorial property, that is if a permutation of
S induces an automorphism FS → FS , respecting the subgroup structure
of FS , then the complex LS is symmetric, and we can apply the hyper-
bolization to complexes without a folding map. The complex constructed
in Section 6 has such a symmetry.

8. Non right-angled groups

Let (mst) be a right angled Coxeter matrix with the set of indices S. Let (mf
st)

be any Coxeter matrix obtained from (mst) by the following modification:

(mf
st) =

{
mst if mst 6= ∞
fst otherwise

with fst ∈ {5, 6, ...,∞}.

Proposition 8.1. Suppose the Coxeter group (W,S) associated to (mst) is Gro-
mov hyperbolic. Then
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(1) The group (W f , S) associated to any of the matrices mf is Gromov hyper-
bolic.

(2) If the nerve N(W,S) is connected, then N(W f , S) has the homotopy type
of the wedge of N(W,S) and a certain number of circles.

(3) If vcd(W ) ≥ 2, then vcd(W ) = vcd(W f ).

Proof. To prove (1) we use Moussong’s criterion for hyperbolicity: a Coxeter group
is Gromov hyperbolic if none of its parabolic subgroups is affine of rank ≥ 2 or
splits into a product of two infinite parabolic subgroups.

If T ⊂ S, then hyperbolicity of (W,S) implies that the Dynkin diagram of W
restricted to T has at most one connected component with more than one point.

If the nontrivial connected component contains more than two points, the sub-
group of (W f , S) spanned by T is neither finite nor affine (as one sees by examining
well known lists of finite and affine irreducible Coxeter groups) and does not split
as a product of infinite groups.

On the other hand, if the nontrivial component has two points, or if the Dynkin
diagram has no edges at all, the group spanned by T in W f is either finite or
contains an infinite dihedral subgroup of finite index. This proves (1).

To prove (2), consider the coarse simplicial structures on the nerves. Clearly
N(W,S) is a subcomplex of N(W f , S). Let τ be a simplex in N(W f , S) not in
N(W,S) and let T ⊂ S denote the set of vertices of τ . From the proof of Assertion
(1) we know that the Dynkin diagram of W f restricted to T has one connected
component with two vertices say t, s with mst = ∞ and fst finite (while the other
components of the Dynkin diagram are points). This implies that τ (in fact the
edge ts) is contained in the unique maximal simplex of N(W f , S), whose vertices
are t, s and all elements of S commuting with both t, s. Thus either the edge
ts is itself a maximal simplex in N(W f , S) or its maximal simplex deformation
retracts through its interior onto the union of its faces not containing ts, which
is a subcomplex of N(W,S). These deformation retractions can be performed
independently and together they give a collapse of N(W f , S) onto the union of
N(W,S) and certain number of 1-simplices. This proves (2).

For the proof of (3) we need the following

Lemma 8.2. Let K be a finite flag simplicial complex, having the property that
for any simplex σ in K (including the empty simplex), Hi(Kσ;Z) = 0 for i > k,
where Kσ is the full subcomplex of K spanned by the vertices not in σ. Then for
any full subcomplex L of K we have Hi(L;Z) = 0 for i > k.

Proof. Let V be the set of vertices of K, and let L be spanned by V −A ⊂ V . We
proceed by induction on cardinality of A. Note that for |A| = 0, 1 the conclusion
follows from the assumptions.

Now let |A| ≥ 2. If A spans a simplex in K, we are done. Otherwise there are
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two vertices in A, say v, w, not connected by an edge in K. Consider subcomplexes
Lv, Lw, Lv,w of K spanned by V − (A − {v}), V − (A − {w}), V − (A − {v, w})
respectively. Then Lv ∩Lw = L, and Lv ∪Lw = Lv,w. Now we have a piece of the
Mayer–Vietoris sequence

Hi(Lv;Z)⊕Hi(Lw;Z) → Hi(L;Z) → Hi+1(Lv,w;Z).

For i > k groups on both left and right are zero by inductive assumption, hence
the Lemma.

Now the proof of (3) in Proposition 8.1 proceeds as follows. By Assertion (2),
the nerve N(W f

S−T , S−T ) has the homotopy type of the wedge of N(WS−T , S−T )
and certain number of circles. By the discussion in Section 1.4 and the Lemma,
Hi(N(WS−T , S − T );Z) = 0 for i > vcd(W ) and any T . Thus if vcd(W ) ≥ 2,
Hi(N(W f

S−T , S − T );Z) = 0 for i > vcd(W ) and any T , and (3) follows.

9. Complexity issue

The complexes LS we construct have strikingly large complexity measured in terms
of the number of either vertices or top dimensional simplices. Let Sn, Vn denote
respectively the number of simplices of dimension n and of vertices in LS , for
|S| = n + 1. Clearly Sn = |FS |.

Since the link of any vertex v in LS is isomorphic to LS−s, v is contained in
Sn−1 simplices. Thus by double counting

Vn =
(n + 1)Sn

Sn−1
.

Since under the abelianization map HS
s surjects onto Z

Sn−1

2 , we have

Sn ≥ Sn−12Sn−1 and Vn ≥ (n + 1)2Sn−1 .

Actual values of Sn are probably much larger than predicted by these inequal-
ities, making the growth of Sn ridiculously fast. It may be desirable to improve
this aspect of the construction.

On the other hand we would like to point out that flag no-square simplicial
pseudomanifolds cannot be too simple, that is the number of their top simplices
grows with the dimension significantly faster than exponentially.

Proposition 9.1. Let vn, sn denote the minimal number of vertices and n-simpl-
ices respectively in a simplicial, flag, no-square pseudomanifold of dimension n.
Then

sn+1 >
s2

n

n + 2
and vn+1 > sn.
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Proof. Let X be a simplicial, flag, no-square pseudomanifold of dimension n + 1.
Then the link of any simplex σ in X is also a simplicial, flag, no-square pseudo-
manifold of appropriate dimension. To prove this notice that since X is flag, the
join σ ∗ link(σ) embeds in X as the set of all top dimensional simplices containing
σ. Thus a square in link(σ) is a square in X, and hence it has one of its diagonals
in X. Since X is flag, the diagonal is in the link.

By double counting, the number of (n + 1)-simplices in X is equal to
1

n+2

∑
v |lk(v)|, where v runs over all vertices of X, and |lk(v)| denotes the number

of n-simplices in the link of v.
Since links in X are flag, no-square pseudomanifolds, we obtain the estimate

sn+1 ≥ vn+1sn

n + 2
.

Now fix a vertex x ∈ X. Each n-simplex σ in the link of x determines the unique
(n+1)-simplex in X which contains σ and is not contained in the star of x. Hence
it determines a vertex of X: the vertex of σ not in the link of x. The vertices so
obtained are all distinct by the no-square condition. Counting vertices in the star
of x, and vertices obtained above we get

vn+1 ≥ 1 + vn + sn.

Putting the two displayed inequalities together finishes the proof. ¤
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