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The K(π, 1)-conjecture for the affine braid groups
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Abstract. The complement of the hyperplane arrangement associated to the (complexified)
action of a finite, real reflection group on Cn is known to be a K(π, 1) space for the corresponding
Artin group A. A long-standing conjecture states that an analogous statement should hold for
infinite reflection groups. In this paper we consider the case of a Euclidean reflection group of
type Ãn and its associated Artin group, the affine braid group Ã. Using the fact that Ã can be
embedded as a subgroup of a finite type Artin group, we prove a number of conjectures about
this group. In particular, we construct a finite, n-dimensional K(π, 1)-space for Ã, and use it
to prove the K(π, 1) conjecture for the associated hyperlane complement. In addition, we show
that the affine braid groups are biautomatic and give an explicit biautomatic structure.
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Introduction

We begin by recalling some basic facts about Coxeter groups and Artin groups. A
Coxeter group is a group with presentation

W = 〈s1, . . . sn | s2
i = (sisj)mi,j = 1〉

where mi,j ∈ {2, 3, . . . } ∪ {∞}. Let S be the generating set {s1, . . . sn}. The pair
(W,S) is called a Coxeter system. We often encode this information in a labelled
graph, called the Coxeter diagram whose vertices are the elements of S and two
vertices si, sj are joined by an edge labelled mi,j if and only if mi,j > 2. (It is
common to omit the label when mi,j = 3.) If Γ is a Coxeter diagram, we denoted
the associated Coxeter group by W (Γ)

The irreducible finite Coxeter systems are classified by the well-known Dynkin
diagrams. The two which will primarily concern us in this paper are the Coxeter
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groups of type An and type Bn given by the diagrams in Figure 1. The Cox-
eter group W (An) is the symmetry group of the n-simplex (or equivalently the
symmetric group on (n + 1) letters) and W (Bn) is the symmetry group of the
n-cube.

B n
t s s s2 n−1

4

. . . .1

A n
ss s s2 3 n. . . .1

Figure 1. Coxeter diagrams of type An and Bn

Euclidean Coxeter groups, which act as affine reflection groups on Rn, are also
classified. Their Coxeter diagrams have the property that any proper subdiagram
corresponds to a finite Coxeter group. Of primary interest in this paper is the
Euclidean Coxeter group of type Ãn given by the diagram in Figure 2. For n = 3,
W (Ãn) is the group of affine transformations of the plane which preserve a tiling
by equilateral triangles.

A n
ss s s2 3 n. . . .1

s
0

~

Figure 2. Coxeter diagram of type Ãn

Associated to any Coxeter system is an Artin system (A, S) where A is the
group defined by the presentation

A = 〈S | prod(si, sj ;mi,j) = prod(sj , si;mi,j), mi,j 6= ∞〉.

where prod(si, sj ;mij) denotes the word sisjsi... of length mi,j . Adding the rela-
tions s2

i = 1 gives back the presentation for (W,S), thus W is a quotient of A. For
a Coxeter graph Γ, we write A(Γ) for the associated Artin group. Artin groups
corresponding to finite Coxeter groups are known as spherical or finite type Artin
groups. The Artin group A(An) is the braid group on n + 1 strands. The Artin
group A(Ãn) can also be thought of as a group of braids, as we will describe in
section 1 below, and is sometimes called the affine braid group.

If T ⊂ S, and WT is the subgroup of W (Γ) generated by T , then (WT , T ) is a
Coxeter system whose Coxeter diagram is the full subgraph of Γ spanned by the
vertices T . Likewise, if AT denotes the subgroup of A spanned by T , then (AT , T )



586 R. Charney and D. Peifer CMH

is the Artin system associated to (WT , T ) [L1]. The groups WT and AT are called
special subgroups of W and A respectively.

The Artin groups of finite type were studied extensively in the 1970’s. They
are closely related to the classical braid groups, and a great deal is known about
them. With a few exceptions, those corresponding to infinite Coxeter groups
remain mysterious and difficult to handle. For example, the following properties
are known to hold for finite type Artin groups but are only conjectured for infinite
type. (For the finite type case, see [De], [BS], [CW], [Di], and [C].)

(1) A is torsion free.
(2) A is linear.
(3) A is biautomatic.
(4) If A is irreducible, the center of A is trivial (A of infinite type) or infinite

cyclic (A of finite type).
(5) A has a finite K(π, 1) space of dimension n.
(6) A has cohomological dimension n.
(7) Let HW be the hyperplane complement associated to W acting as a reflec-

tion group on Cn. Then HW /W is a K(A, 1)-space.
The last of these is called the K(π, 1) Conjecture and is discussed in more detail
below. A number of special cases of these conjectures have been proved for infinite
type Artin groups ([A], [AS], [BM], [CD1], [CD2], [Pe]), but nearly all of them fall
into one of two categories: the 2-dimensional Artin groups and the Artin groups
of FC type. The former are groups for which WT is infinite for any T ⊂ S with at
least three elements, and the latter are those for which WT is infinite if and only
if some si, sj ∈ T has mi,j = ∞. In particular, little is known for the Artin groups
associated to Euclidean Coxeter groups.

There is a curious, but little known fact that the affine braid group A(Ãn) can
be realized as a subgroup of the finite type Artin group A(Bn+1). This has been
observed, for example, in [KP], [tD] and [Al]. In [KP] it is shown that A(Bn+1)
is a semi-direct product of A(Ãn) and an infinite cyclic factor generated by an
element δ which acts on A(Ãn) by a cyclic permutation of its Coxeter diagram
Ãn. In this paper, we use this fact to prove all of the above properties for the
groups A(Ãn).

Clearly, the first two properties follow immediately from the embedding of
A(Ãn) as a subgroup of a finite type Artin group. The third and fourth properties
are also easy to prove. Thus, the main content of the paper is the proof of the last
three properties.

Property (7) requires some explanation. Any finite Coxeter system (W,S) can
be realized as a group of linear transformations of Rn, n = |S|, with the elements
of S acting as orthogonal reflections in the walls of a polyhedral cone. For each
reflection r in W (r acts as a reflection if it is conjugate to an element of S), let
Hr denote the hyperplane fixed by r. Then W acts freely on the complement
of these hyperplanes. Complexifying the action, we get an action of W on Cn

which is free on the complement of the complex hyperplanes CHr = Hr ⊕ iHr.
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Let HW = Cn\(⋃r CHr) be the hyperplane complement. Deligne [De] showed
that HW /W is a K(A, 1)-space where A is the Artin group associated to W , i.e.,
HW /W has fundamental group A and its universal covering space is contractible.

Infinite Coxeter groups also act as reflection groups on Rn. The K(π, 1) Conjec-
ture states that an analogous statement about the hyperplane complement should
be true for infinite Coxeter groups. The “analogous statement”, however, requires
that we replace Rn with the Tits cone, an open cone in Rn on which W acts prop-
erly. We refer the reader to [CD1] for a complete discussion of this conjecture and
discuss it here only for the case which concerns us, namely the case of a Euclidean
Coxeter group. For a Euclidean Coxeter system (W,S) with |S| = n+1, the action
on Rn+1 preserves an n-dimensional affine space En and the elements of S act on
En as (affine) reflections in the walls of a simplex. (In this case the Tits cone is
the upper half space in Rn+1 and it equivariantly retracts onto En.) If we identify
Cn with En ⊕ iEn then we can define the hyperplane complement associated to
(W,S) as above,

HW = Cn\(
⋃
r

CHr)

where CHr is the fixed set of the reflection r.

Conjecture. For a Euclidean Coxeter system (W,S) with associated Artin group
A, the orbit space HW /W is a K(A, 1)-space.

It was shown by van der Lek [L2] in the early 80’s that π1(HW /W ) = A.
Thus, to prove the conjecture, it remains to show that the universal cover of the
hyperplane complement is contractible.

In section 3, we use a construction from [CMW] to find a contractible, n-
dimensional complex on which A(Ãn) acts freely and cocompactly, and we prove
that this contractible complex is homotopy equivalent to the universal covering
space of the associated hyperplane complement HW . This proves properties (5),
(6), and (7) for these groups.

1. The group Ã

In this section we recall the results of [KP] and prove properties (3) and (4) for
the affine braid groups.

Let B = A(Bn+1), the Artin group of type Bn+1 with generating set S =
{t, s1, . . . , sn}. We may think of elements of B as (n + 1)-strand braids drawn
on a cylinder. From this point of view, the generators are represented in Figure
3. (It is more common to view elements of B as (n + 2)-strand braids which fix
the first strand. Letting the fixed strand expand to form a cylinder, we get the
representation as cylindrical braids. This representation has a certain symmetry
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i i+1

Figure 3. The generators t and si of B

to it which makes the relation between Ã and B more transparent.)1

Define a homomorphism

φ : B → Z by φ(t) = 1 and φ(si) = 0.

Thus, for any b ∈ B, φ(b) is the exponent sum of t in some (any) word in the free
group on S representing b. That this is a homomorphism follows from the fact
that every relation in the presentation for B preserves this exponent sum. We can
split φ by lifting the generator of Z to the element δ = ts1s2 · · · sn. It follows that
B is isomorphic to the semidirect product, B ∼= K o Z, where K is the kernel of φ
and Z is the cyclic group generated by δ.

Figure 4. The element δ in B

Now let Ã = A(Ãn), the Artin group of type Ãn with generating set S̃ =
{s0, s1, . . . , sn}. In [KP], Kent and Peifer show that the homomorphism h : Ã → B

1 These braids are sometimes known as annular braids since B can be identified with the
fundamental group of the configuration space of n + 1 points in an annulus.
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taking si to the generator of the same name in S for i = 1, . . . , n, and taking s0

to δsnδ−1, maps Ã isomorphically onto a normal subgroup of B. Since the image
of h clearly lies in the kernel of φ and is a normal subgroup containing s1, . . . sn,
the image of h must be all of K. Thus we can identify B with Ão 〈δ〉. Under this
identification, s0 is the braid which crosses the nth string over the first string in
the back of the cylinder.

It is straightforward to check that the action of δ on Ã (by conjugation) is given
by δsiδ

−1 = si+1 mod n+1, or in other words, δ acts on Ã by cyclic permutation
of its Coxeter diagram. In particular, δn+1 acts trivially on Ã, hence B contains
the direct product Ã × 〈δn+1〉 as a subgroup of finite index.

Properties (3) and (4) listed in introduction are now easy to prove for Ã. We
refer the reader to [E] for definitions and background on (bi)automatic groups.

Proposition 1.1. The affine braid group Ã is biautomatic.

Proof. The group B is a finite type Artin group so it is biautomatic [C]. By [E],
Theorem 4.1.4, a finite index subgroup of a biautomatic group is also biautomatic.
Therefore, Ã×〈δn+1〉 is biautomatic. In [M], L. Mosher proves that a direct factor
of a biautomatic group is again biautomatic. Therefore Ã is biautomatic. ¤

An explicit biautomatic structure for Ã is described in Section 2 below.
To prove properties (4) and (6), we will need a bound on the rank of abelian

subgroups in Ã. For finite type Artin groups, the bound is well known.

Lemma 1.2. Let (A, T ) be an Artin system of finite type. Then the maximal rank
of an abelian subgroup of A is n = |T |

Proof. It suffices to consider an irreducible finite type Artin system (A, T ). In this
case, the Coxeter diagram for (A, T ) is a tree and we can order the generators
T = {t1, . . . tn} so that for 1 ≤ i ≤ n, Ti = {t1, . . . ti} spans a connected subgraph.
Then the special subgroup Ai generated by Ti is an irreducible finite type Artin
group and hence has infinite cyclic center (generated by the ∆-element in Ai or
the square of this element). Let zi be a generator of this center. Then no power of
zi belongs to Aj for j < i. (This is easily seen using the normal form for A given
in [C].) Hence {z1, z2, . . . , zn} generates a rank n abelian subgroup of A. Since A
has an n-dimensional K(π, 1)-space ([De], [Sa]), its cohomological dimension is at
most n, so this group is of maximal rank. ¤

Property (4), which states that the center of Ã is trivial, was proved by D.
Johnson and M. Albar in [JA]. We give a simpler proof below.

Proposition 1.3. The maximal rank of an abelian subgroup of the affine braid
group Ã is n and the center of Ã is trivial.
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Proof. Recall that A(An) is the braid group on (n+1)-strands. The first statement
of the proposition follows immediately from the preceding lemma since A(An) ⊂
Ã ⊂ B, and if H is a rank k abelian subgroup of Ã, then H × 〈δn+1〉 is a rank
k + 1 abelian subgroup of B.

For the second statement, assume that z 6= 1 is in the center of Ã. Let Ti =
{s0, . . . , ŝi, . . . , sn}, the subset of S̃ consisting of all the generators except si, and
let ÃTi

be the special subgroup generated by Ti. Notice that each ÃTi
is a copy

of the braid group A(An).
We claim that 〈z〉 ∩ ÃTi

= {1}, for some i. Suppose that this is not the
case. Then for all i, there exists an integer mi such that zmi ∈ ÃTi

. Let m =
m1m2 · · ·mn. Then zm ∈ ÃTi

for all i and hence zm ∈ ÃT1 ∩ · · · ∩ ÃTn
=

ÃT1∩···∩Tn
= {1}. Therefore, zm = 1 and since Ã is torsion free, z = 1. This

proves the claim.
Say 〈z〉 ∩ ÃTj

= {1}. Take a rank n abelian subgroup G of ÃTj
. The direct

product, 〈z〉 ×G is a rank n + 1 abelian subgroup of Ã. This contradicts the first
statement of the proposition and completes the proof. ¤

2. Garside groups

Before proving our main theorems, we need to review the notion of a Garside
group, introduced by Dehornoy and Paris in [DP]. For any monoid G+, we can
define a partial order on G+ by a < b if there exists c ∈ G+ with ac = b. We
say that G+, together with <, is a Garside monoid if it satisfies the following
conditions.

(1) There are no infinite descending chains in G+.
(2) Left and right cancellation laws hold.
(3) (G+, <) is a lattice, that is, any two elements of G+ have a least upper

bound and a greatest lower bound.
(4) There exists an element ∆ such that the left and right divisors of ∆ are the

same, there are finitely many of them, and they form a set of generators
for G+.

The element ∆ is called a Garside element and the set of left divisors of ∆ is de-
noted by M∆. It follows from property (3) that conjugation by ∆ preserves M∆.

Given a Garside monoid G+, we can form the group of fractions G whose
elements are of the form a∆i for some a ∈ G+, i ∈ Z. If we require that ∆ ≮ a,
then every element of G can be uniquely written in this form. In particular, the
monoid G+ imbeds in the group G. Such a group is called a Garside group.2 These

2 When first introduced in [DP] these groups were called “small Gaussian”, and “Garside” was
used for a slightly stronger condition. Since then, the definition above has become the accepted
notion of a Garside group. In the case of interest here, namely the Artin groups, both definitions
apply.
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have been studied extensively by Dehornoy, Picantin, and others ([D1], [D2], [DP],
[P1]).

The most well known Garside monoids are the positive monoids A+ of the
finite type Artin groups. This is the monoid defined by the standard presentation
for A. It consists of all elements of A which can be written as a product of positive
powers of the standard generators. The element ∆ projects to the longest element
of the Coxeter group W corresponding to A. More recently, a different Garside
structure for these groups was introduced by Bessis, Digne, and Michel in [BDM]
and [Be]. It is this new Garside structure which will be relevant to our discussion.

Suppose (W,S) is a finite Coxeter system and R is the set of reflections in W .
(An element of W is a reflection if it is conjugate to an element of S.) Let δ be
the product of the generators, δ = s1s2 . . . sn (in any order). Then δ is called a
Coxeter element of W . There are many ways to decompose δ as a product of n
reflections, δ = r1r2 . . . rn. Call a word in the free group on R allowable if it is
an initial segment of such a decomposition. Let A+

δ be the monoid defined by the
presentation

A+
δ = 〈R | w1 = w2〉

where the relations w1 = w2 run through all pairs w1, w2 of allowable words which
represent the same element of W . Bessis [Be] has shown that this monoid is a
Garside monoid with Garside element δ, and that the Artin group A associated
to W is isomorphic to the group of fractions of A+

δ via the map induced by the
inclusion of S into R. This gives a new Garside structure on A which we will call
the δ-Garside structure. The generating set Mδ for this Garside structure can be
identified with the subset of W corresponding to allowable words.

A word of caution is in order here: although elements of Mδ correspond to
(allowable) elements of W , products of these elements do not satisfy all of the
relations in W . It is best, therefore, to think of them as elements of A. We
describe how to do this for the Artin groups of type An and Bn+1 in the example
below.

Example 2.1. (i) Let W be the symmetric group on n+1 letters. Then the cyclic
permutation (1 2 3 . . . n+1) is a Coxeter element and the reflections are transpo-
sitions (i j). Now let A be the braid group on (n + 1)-strands. To understand the
δ-Garside structure on A, we need to lift the reflections in W to elements of A.
For 1 ≤ i < j ≤ n + 1, let ai,j denote the braid which crosses the ith string over
the jth string as shown below.

This is a lift of the transposition (i j), and we will refer to it as a reflection. Note
that si = ai,i+1, i = 1, . . . , n are the standard generators forA. Set δ = s1s2 . . . sn.
It is shown in [BKL] that A+

δ can be identified with the submonoid of A generated
by the reflections R = {ai,j}. This is known as the Birman–Ko–Lee monoid.

(ii) We can do a similar construction for B. The Coxeter group W (Bn+1) is
now the symmetry group of the (n + 1)-cube [−1, 1]n+1. The reflections in W are
of three types: i) interchanging two factors of the product [−1, 1]n+1, ii) flipping
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ji

Figure 5. The braid ai,j

a single factor, or iii)interchanging and flipping two factors. The first type we lift
to the elements ai,j as above (now thought of as braids on a cylinder). The second
type we lift to the element ci which wraps the ith string around the cylinder and
the third type we lift to a′i,j = ciai,jc

−1
i which has the effect of crossing the jth

string over the ith around the back of the cylinder. As Coxeter element, we take
δ = ts1s2 · · · sn = c1s1s2 · · · sn.

jii

Figure 6. The cylindrical braids ci and a′i,j

It is shown in [P2] that B+
δ is the submonoid of B generated by the reflections

R = {ai,j , a′i,j , ci}. Note that all of these reflections lie in Ã except for the ci’s and
that the ci’s are all δ-conjugate to t; in fact, c1 = t and δciδ

−1 = ci+1. (In [Be], the
positive monoid with respect to a different choice of δ is described which has the
advantage that every reflection is δ-conjugate to one of the standard generators in
S. However, for our purposes, δ = ts1 · · · sn is more convenient since conjugation
by this δ preserves the generating set S̃ of Ã.)

In [D2], Dehornoy shows that every Garside group has a biautomatic structure
based on a “left greedy” normal form. In the case of the usual ∆-structure on a
finite type Artin group A, this is the well-known normal form due to Deligne [De]
which was shown to be biautomatic in [C]. In the case of the δ-structure on the
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classical braid group, it is the normal form given by Birman, Ko and Lee in [BKL].
We can use the δ-structure on B to get an explicit biautomatic structure for Ã.

The left greedy normal form for an element b ∈ B with respect to the generating
set Mδ is defined as follows. First write b = δ−jb0 where b0 ∈ B+

δ and δ ≮ b0. Then
write b0 = τ1b1 where τ1 is the least upper bound of the set {τ ∈ Mδ | τ < b0}.
Similarly, write b1 = τ2b2 where τ2 is the least upper bound of {τ ∈ Mδ | τ < b1}.
Repeat this process with b2, b3, etc., until you reach the point where bk = 1. This
gives a decomposition of b as a word in the free group on Mδ, b = δ−jτ1τ2 . . . τk,
satisfying τi = lub{τ | τ < τi . . . τk}. This decomposition is unique and defines a
biautomatic structure on B.

To get a biautomatic structure on Ã, consider the left greedy normal form
a = δ−jτ1τ2 . . . τk for an element a ∈ Ã ⊂ B. We claim that φ(τi) = 0 or 1.
This is because τi is an initial segment of a decomposition of δ into a product of
n + 1 reflections. Since each reflection r ∈ B has φ(r) = 0, 1 and φ(δ) = 1, there
must be exactly one reflection in this decomposition with φ(r) = 1. It follows that
φ(τi) = 0, 1. On the other hand, φ(a) = 0 so the number of indices i with φ(τi) = 1
must be exactly j. Since conjugation by δ preserves Mδ, we can “slide” copies of
δ−1 through the τi’s (replacing τi with its conjugate by δ as necessary) until one
copy of δ−1 precedes each τi with φ(τi) = 1. But if φ(τi) = 1, then δ = τ∗i τi for
some τ∗i ∈ Mδ (since left divisors of δ are also right divisors of δ) with φ(τ∗i ) = 0.
Thus, replacing each δ−1τi with (τ∗i )−1, we obtain a word in the free group on
Mδ ∩ Ã representing a. This defines a normal form on Ã.

Theorem 2.2. The normal form described above gives a biautomatic structure
on Ã.

Sketch of proof. We must show that the normal form is a regular language and
satisfies the “fellow traveler” properties. For a ∈ Ã, let NÃ(a) denote the normal
form for a in Ã and NB(a) denote the normal form for a in B.

That NB is a regular language follows from the fact that a word in Mδ is in
normal form (with respect to NB) if and only if each adjacent pair τiτi+1 is in
normal form [D2]. An adjacent pair of terms in NÃ(a) determines the original
pair of terms in NB(a) up to conjugation by δ, thus the same holds for NÃ.

The fellow traveler properties for NÃ follow from the fellow traveler properties
for NB, together with the fact that left or right multiplication by an element of
Mδ can add at most one δ−1 to NB(a). Thus the number of δ−1’s that are slid
through NB(a) to obtain NÃ changes by at most one. We leave the details to the
reader. ¤

Motivated by a construction of Bestvina in [Bv], Charney, Meier, and Whit-
tlesey show in [CMW] that for any Garside group G with Garside element ∆, one
can construct a K(G, 1)-space X(G,∆) as follows. Recall that M∆ denotes the set
of left divisors of ∆ and that these form a generating set for G. The 1-skeleton of
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X(G,∆) is the Cayley graph of G with respect to this generating set. That is, the
vertices are indexed by G and two vertices g1, g2 are joined by an edge if and only
if g1 = g2m

±1 for some m ∈ M∆. The higher dimensional simplices of X(G,∆)
are defined by requiring X(G,∆) to be a flag complex. That is, a set of vertices
spans a simplex if and only if they are pairwise joined by edges. In [CMW], it is
shown that X(G,∆) is contractible, and G acts freely on X(G,∆), hence the orbit
space X(G,∆)/G is a K(G, 1)-space. The dimension of this complex is the length
of a maximal chain of elements in M∆.

In the case of an Artin group with its δ-Garside structure, the construc-
tion of X(A, δ) is functorial in the following sense. Let (W,S) be the Coxeter
system associated to A with S = {s1, . . . , sn} and δ = s1s2 · · · sn. For any
T = {si1 , si2 , . . . , sik

} ⊆ S, let δT = si1si2 · · · sik
where i1 < i2 < · · · < ik.

Then δT is a Coxeter element for WT , and if T ⊂ T ′, then δT < δ′T in A+
δ . In

particular, δT ∈ Mδ for all T . We claim that the subspace of X(A, δ) spanned by
the vertices in AT is naturally isomorphic to X(AT , δT ). To see this, we need the
following technical lemma.

Lemma 2.3. Let R be the set of reflections in W and let RT = R∩WT . Suppose
|T | = k. If r1, . . . , rk ∈ R are reflections such that δT = r1 · · · rk. Then ri ∈ RT

for i = 1, . . . , k.

Proof. We can realize W as a reflection group on Rn with the generators s0, . . . , sn

acting as reflections in the walls of a simplicial cone, and we may assume the
action is essential (i.e., fixes only the origin). For any reflection r, let Hr denote the
hyperplane fixed by r. Let F be the codimension k subspace F = Hsi1

∩· · ·∩Hsik
.

Then Rn decomposes as a sum F⊕F⊥ with WT acting trivially on F and essentially
on F⊥. Since δT is a Coxeter element for WT , it fixes only the origin in F⊥ ([H],
Lemma 3.16), thus the fixed point set of δT is precisely F .

Now let G = Hri
∩ · · · ∩Hrk

. Then G is fixed by r1 · · · rk = δT so G ⊆ F . But
codim G ≤ k = codim F , so F = G. It follows that each Hri

contains F , or in
other words, ri fixes F . The isotropy group of F is WT , so ri lies in WT . ¤

Proposition 2.4. The subspace of X(A, δ) spanned by the vertices in AT is nat-
urally isomorphic to X(AT , δT ).

Proof. Since X(AT , δT ) is a flag complex, it suffices to show that two vertices
a, b ∈ AT are connected by an edge in X(A, δ) if and only if they are connected
by an edge in X(AT , δT ). By the previous lemma and the fact that δT ∈ Mδ, a
word in the free group on RT is allowable (with respect to δT ) if and only if it
is allowable as a word in the free group on R (with respect to δ). It follows that
MδT

= Mδ ∩WT as required. ¤
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3. Main Theorems

Although the construction of X(A, δ) described in the previous section is defined
only for finite type Artin groups, we can modify X(B, δ) to obtain a K(π, 1)-space
for the affine braid group Ã. Let X = X(B, δ) and let X+ = X+(B, δ) denote
the full subcomplex of X spanned by the vertices a ∈ B+

δ with δ ≮ a. In [CMW]
it is shown that X decomposes as a product X = X+ × R. In particular, X+ is
contractible. We can also think of the vertices of X+ as cosets B/〈δ〉 since any
element of B has a unique expression of the form aδi with a as above. Viewing
the vertices as cosets, we get an action of B on X+ such that the projection of X
onto X+ is B-equivariant.

Theorem 3.1. Ã acts freely on X+ and acts transitively on the vertices of X+,
hence X+/Ã is a finite K(Ã, 1)-space of dimension n.

Proof. Identify Ã with the kernel of the homomorphism φ : B → Z. Since φ(δ) = 1,
any coset b〈δ〉 contains a unique representative a with φ(a) = 0. Thus Ã acts freely
and transitively on the set of vertices of X+. If a ∈ Ã fixes a point in the relative
interior of a simplex σ of X+, then it must permute the vertices of σ, hence some
power of a fixes the vertices of σ. Since Ã is torsion-free, we conclude that a itself
must be the identity element. Thus A acts freely on X+.

The quotient is finite since every simplex in X+ is the translate of a simplex
containing the identity vertex. The dimension of X is the length of a maximal
chain in Mδ, or equivalently, the length of δ as a product of reflections. Thus,
dim (X+) = dim (X)− 1 = n. ¤

Corollary 3.2. The cohomological dimension of Ã is n.

Proof. The dimension of a K(π, 1)-space gives an upper bound for the cohomolgical
dimension. A lower bound is given by the rank of a maximal abelian subgroup.
Thus the corollary follows from Proposition 1.3 and Theorem 3.1. ¤

We are now ready to prove the K(π, 1) Conjecture for the affine braid group
Ã. Let W̃ = W (Ãn) be the Coxeter group corresponding to Ã and let HW̃ be the
associated hyperplane complement. In [L2] and [CD1], it is shown thatHW̃ /W̃ has
fundamental group Ã and its universal cover is homotopy equivalent to a certain
simplicial complex known as the Deligne complex for Ã. Thus, to prove the K(π, 1)
Conjecture, it suffices to prove that the Deligne complex is contractible.

The Deligne complex for Ã is defined as follows. Let S̃ = {s0, s1, . . . sn} be the
standard generating set for Ã and let P = P(S̃) be the set of proper subsets of S̃
(including the empty set). Define

ÃP = {aÃT | a ∈ Ã, T ∈ P}
(where Ã∅ = {1}) to be the poset of special cosets partially ordered by inclu-
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sion. Then the Deligne complex, D(Ã), is the geometric realization of this poset.
(Deligne introduced this complex for finite type Artin groups in [De].)

Theorem 3.3. Let T0 = {s1, . . . , sn} ⊂ S̃, and let X+
0 be the subspace of X+

spanned by the vertices in ÃT0 . Let U denote the collection of B-translates of X+
0 ,

and N(U) the nerve of U. Then
(1) U covers X+,
(2) the barycentric subdivision of N(U) is isomorphic to the Deligne complex

D(Ã), and
(3) every nonempty intersection of sets in U is contractible.

Thus, D(Ã) is homotopy equivalent to the contractible space X+.

Proof. (1) It suffices to show that every maximal simplex σ in X+ is a B-translate
of a simplex in X+

0 . There are three ways we can label vertices of X+, as elements
of Ã, as elements of the positive monoid B+

δ with δ ≮ a, or as cosets of 〈δ〉 in B.
The proof exploits the interplay among these. Note, for example, that if we label
the vertices by elements of Ã, then the left action of δ on X+ has the effect of
moving the vertex a to the vertex δaδ−1.

Let σ be a maximal simplex. Up to translation, we may assume that σ contains
the identity vertex ∗. First consider the vertices of σ as elements of B+

δ . Since
every vertex is connected to the identity vertex by an edge, it must correspond
to an admissible element τ < δ. Since any two vertices in σ are connected by
an edge, the set of vertices is totally ordered under <, hence σ corresponds to a
maximal chain of admissible elements ∗ < τ1 < τ2 < · · · < τn < δ. Any such chain
is given by a decomposition of δ into a product of reflections δ = r1r2 · · · rn+1

where τi = r1r2 · · · ri.
Now let us relabel these vertices as elements of Ã. To do so, we must find the

unique element of Ã which lies in the coset τi〈δ〉. Recall that Ã is the kernel of
the homomorphism φ : B → Z which counts the exponent sum of the generator
t. Clearly φ(δ) = 1 and since every reflection r is a conjugate of an element of
S, φ(r) = 0, 1. It follows that exactly one of the ri’s in the decomposition of δ is
conjugate to t, say rj . As noted in Example 2.1, rj is, in fact, δ-conjugate to t.
Since the action of δ on X+ has the effect of conjugating vertices by δ, we may
assume that rj = t. The remaining ri’s lie in Ã. Thus, τi lies in Ã for i < j and
τiδ

−1 lies in Ã for i ≥ j.
We claim that δ−1σ lies in X+

0 and hence σ lies in δX+
0 . To see this, note that

δ−1r1r2 · · · rj−1trj+1 · · · rn+1 = 1.

Letting r̄i = δ−1riδ, we obtain

r̄1r̄2 · · · r̄j−1δ
−1trj+1 · · · rn+1 = 1,

and thus
rj+1 · · · rn+1r̄1 · · · r̄j−1 = t−1δ = s1 · · · sn.
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It now follows from Lemma 2.3 that r̄i ∈ BT0 for i < j and ri ∈ BT0 for i > j.
Viewed as elements of Ã, the vertices of δ−1σ are δ−1τiδ = r̄1 . . . r̄i for i < j and
δ−1τ = r̄1 . . . r̄j−1(δ−1t)rj+1 . . . ri for i ≥ j. By the discussion above, these all
live in BT0 = ÃT0 This proves the claim and completes the proof of statement (1).

(2) We next consider the nerve of U. Recall that the inclusion of Ã in B
takes S̃ = {s0, s1, . . . , sn} to the set {δ−1s1δ, s1, . . . , sn} and that δ acts on this
set by cyclic permutation (Example 2.1). In particular, if Ti = S̃\{si}, then
δTiδ

−1 = Ti+1, where the indices are taken mod (n+1). The Ti’s are the maximal
elements of P. Let X+

i denote the span of the vertices ÃTi
in X+.

Let b ∈ B and write b = aδi where a ∈ Ã. Then

bX+
0 = aδiX+

0 = aX+
i

It follows that every element of U is the span of a maximal coset in ÃP, and
an intersection of elements of U is the span of the corresponding intersection of
cosets. A non-empty intersection of special cosets in an Artin group is again a
special coset and every special coset in P can be obtained as an intersection of
maximal ones. This proves that the poset of simplices of N(U) is isomorphic to
the poset P, or in other words, the barycentric subdivision of N(U) is the Deligne
complex for Ã.

(3) Suppose Y is the intersection of a collection of sets in U. Up to translation
by an element of B, we may assume that one of these sets is X+

0 . Then by the
discussion above, Y is the span of the vertices lying in some special coset aÃT

with T ⊂ T0. Translating by a−1, we may, in fact, assume that Y is the span of
ÃT .

We claim that Y is isomorphic to the subcomplex XT of X spanned by ÃT

(=BT ). The projection π : X → X+ maps the vertices of XT isomorphically onto
the vertices of Y since ÃT ∩ 〈δ〉 = ∅. Since both XT and Y are flag complexes, it
suffices to show that every edge in Y is the image of an edge in XT . Two vertices
a, b ∈ ÃT are connected by an edge in Y if and only if ac = bδi for some c ∈ Mδ

and i ∈ Z. Since φ(a) = φ(b) = 0, we must have φ(c) = φ(δi) = i. But c < δ
implies that φ(c) = 0, 1. If φ(c) = 1, then the element c∗ ∈ Mδ with c∗c = δ
must satisfy φ(c∗) = 0. Thus we have two cases. Either ac = b with φ(c) = 0, or
a = bc∗ with φ(c∗) = 0. In either case, a and b are connected by an edge in XT .
By Proposition 2.4, XT is contractible, so this completes the proof of statement
(3). ¤

Corollary 3.4. The K(π, 1) Conjecture holds for Ã.

Remark. Let δ0 = s1 . . . sn and δi = δiδ0δ
−i. Then δi is a Coxeter element for

ÃTi
and Mδi

= Mδ ∩ ÃTi
. It is clear from the proof of the theorem, that the

one-skeleton of X+ can be identified with the Cayley graph for Ã with respect
to the generating set M =

⋃
Mδi

. This construction could be imitated for other
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infinite type Artin groups. Namely, choose a compatible set {δT } of δ-elements
for the finite type special subgroups of A and take M to be the union of the
generating sets MδT

. Let X(A, {δT }) be the flag complex whose one-skeleton is
the Cayley graph for A with respect to M . It seems plausible that this space is a
K(A, 1)-space, at least for the Euclidean Artin groups, but we don’t know how to
prove it.

There is another finite, n-dimensional complex which is conjectured to be a
K(Ã, 1)-space, namely the Salvetti complex for Ã. This complex, which we will
denote by Σ(Ã), has one cell (a “Coxeter cell”) for each T ∈ P. We give a brief
description of Σ(Ã) and refer the reader to [CD2] for details.

For any T ∈ P, take the standard Garside structure on ÃT with Garside ele-
ment ∆(T ) corresponding to the longest element in W̃T . For this Garside struc-
ture, the elements of M∆(T ) (i.e., the left divisors of ∆(T )) are in one-to-one
correspondence with elements of W̃T . For a ∈ Ã, aM∆(T ) denotes the subset of Ã
of elements ac, c ∈ M∆(T ). Let

Sal(Ã) = {aM∆(T ) | a ∈ Ã, T ∈ P}

be the poset of such subsets, ordered by inclusion. There is a left action of Ã on
this poset and the Salvetti complex is obtained by taking the geometric realization
of this poset modulo the action of Ã.

Σ(Ã) = |Sal(Ã)|/Ã.

Salvetti [Sa] proved that Σ(Ã)/Ã is homotopy equivalent to the hyperplane com-
plement HW̃ /W̃ . Thus we obtain

Corollary 3.5. The Salvetti complex Σ(Ã) is a K(Ã, 1)-space.
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