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The effective surjectivity of mod l Galois representations of
1- and 2-dimensional abelian varieties with trivial endomor-
phism ring

Takashi Kawamura

Abstract. Mod l Galois representations of 1- and 2-dimensional abelian varieties with trivial
endomorphism ring are surjective for sufficiently large prime l as Serre proved. But he did not
give an effective lower bound of l0 such that they are surjective for l > l0. We supply an effective
evaluation of l0 by an “elementary” proof of the surjectivity. The proof uses the Masser–Wüstholz
theorem and Kleidman and Liebeck’s classification of the maximal subgroups of GL2(Fl) and
GSp4(Fl).
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1. Introduction and main results

Let A be a principally polarized abelian variety of dimension n over an algebraic
number field K. For a prime l let Al be the group of l-division points of A,
which is a vector space of dimension 2n over Fl. Let µl be the group of l-th
roots of unity in the algebraic closure K̄ of K, and let εl : GK := Gal(K̄/K) →
Fl
∗ ∼= Aut(µl) be the cyclotomic character. As A is principally polarized, the Weil

pairing W : Al × Al → µl, written additively, defines a symplectic form with 2n
variables, satisfying W (σ(P ), σ(Q)) = εl(σ)W (P, Q) for (P, Q) ∈ Al × Al and
σ ∈ GK . Hence a Galois representation ρl : GK → GSp2n(Fl) is obtained, where
GSp2n(Fl) is the group of symplectic similitudes of dimension 2n with entries in
Fl.

Serre [11] proved that when n = 2, 6 or odd, and EndK̄(A) = Z, ρl is surjective
for sufficiently large l. The proof uses Faltings’ theorem and standard theorems of
algebraic groups. Though the result is general, it does not give an effective lower
bound of l0 such that ρl is surjective for l > l0.

Masser and Wüstholz [5] give an effective estimate of l0 when n = 1 using their
isogeny estimates [4].
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Le Duff [3] gives a sufficient condition for the surjectivity of ρl when n = 2
under some assumption on the reduction of abelian varieties. He also suggested
that the explicit calculation of the constants in the refinement of Faltings’ theorem
by Masser and Wüstholz [8] should enable one to evaluate l0 effectively. But no
details are given.

The purpose of this paper is to supply an “elementary” proof of the surjectivity
for n = 1 or 2, which also gives an effective evaluation of l0. The proof uses the
Masser–Wüstholz theorem [8] and Kleidman and Liebeck’s [2] detailed results
about the classification of the maximal subgroups of the finite classical groups,
especially of GSp2(Fl) ∼= GL2(Fl) and GSp4(Fl).

Let D(K) be the discriminant of K, and let h(A) be the Faltings height of A,
which is invariant under field extensions.

Main Theorem 1. Let A = E be an elliptic curve over an algebraic number field
K of degree d with EndK̄(E) = Z. If l > max(|D(K)|, C(1)[max{48d, h(E)}]τ(1)),
then ρl(GK) = GL2(Fl), where C(1) is a constant C(n) in Theorem 3 of Section 3
when n = 1, and τ(1) is the constant τ given in Theorem 1 of Masser and Wüst-
holz [8] when n = 1. Explicitly τ(1) = 2285 · 34 · 52 · 136!× (2276 · 33 · 5 · 136!+ 1)7 +
21073 · 3 · 17 · 312 · 41 · 528!× (21061 · 17 · 31 · 528! + 1)15 < 1025000.

Main Theorem 2. Let A be a two-dimensional principally polarized abelian
variety over an algebraic number field K of degree d with EndK̄(A) = Z. If
l > max(|D(K)|, C(2)[max{3840d, h(A)}]τ(2)), then ρl(GK) = GSp4(Fl), where
C(2) is a constant C(n) in Theorem 3 of Section 3 when n = 2, and τ(2) is the
constant τ given in Theorem 1 of Masser and Wüstholz [8] when n = 2. Explicitly
τ(2) = 21074 · 17 · 312 · 528! × (21061 · 17 · 31 · 528! + 1)15 + 24183 · 36 · 73 · 11 · 23 ·
2080!× (24166 · 33 · 7 · 11 · 2080! + 1)31 < 10240000.

2. Enumeration of maximal subgroups of GSp4(Fl)

We enumerate maximal subgroups of GSp4(Fl) in this section.
Classically, Mitchell determined the maximal subgroups of Sp4(Fl) whose or-

ders are prime to l [9], and then all the maximal subgroups of Sp4(Fl) [10]. But he
gave only their orders and geometric properties, and did not give their structure.

More recently, Aschbacher [1] obtained the classification theorem of the maxi-
mal subgroups of the finite classical groups as follows.

Theorem 1. Let G be a finite almost simple classical group over a finite field F
with its socle G0, and let H be a subgroup of G not containing G0. Then either
H is contained in a member of C(G) = ∪8

i=1Ci(G) or H ∈ S(G), where Ci(G)
is the collection of subgroups of G which stabilize something and S(G) is that
satisfying the irreducibility conditions. C1(G) are the stabilizers of totally singular
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or non-singular subspaces of V , which is the vector space over F associated with
G. C2(G) are the stabilizers of direct sum decomposition of V into subspaces of
the same dimension. C3(G) are the stabilizers of extension fields of F . C4(G) are
the stabilizers of tensor product decompositions of V into two subspaces. C5(G)
are the stabilizers of subfields of F . C6(G) are the normalizers of symplectic-
type r-groups in absolutely irreducible representations. C7(G) are the stabilizers of
tensor product decompositions of V into multiple subspaces of the same dimension.
C8(G) are classical subgroups. The subgroup H of G lies in S(G) if and only if
the following hold.

(a) The socle S of H is a non-abelian simple group.
(b) If L is the full covering group of S, and if ρ : L → GL(V ) is a represen-

tation of L such that ρ(L) ≡ S (mod scalars), then ρ is absolutely irreducible.
(c) ρ(L) can not be realized over a proper subfield of F .
(d) If ρ(L) fixes a non-degenerate quadratic form on V , then G0 = PΩn(F ).
(e) If ρ(L) fixes a non-degenerate symplectic form on V , but no non-degenerate

quadratic form, then G0 = PSpn(F ).
(f) If ρ(L) fixes a non-degenerate unitary form on V , then G0 = PSUn(F ).
(g) If ρ(L) does not satisfy the conditions in (d), (e) or (f), then G0 = PSLn(F ).

Kleidman and Liebeck [2, p. 57, Main Theorem] decided the structure of the
members of C(G), their maximality conditions, and their overgroups in C(G) ∪
S(G).

By applying Theorem 1 and [2, Main Theorem] to GL2(Fl) and GSp4(Fl), we
enumerate their maximal subgroups.

Proposition 1. When l ≥ 5, a maximal subgroup of GL2(Fl) is conjugate to one
of the following five subgroups.

(1) SL2(Fl) o (maximal subgroup of 〈δ1〉),
(2) Borel subgroup,
(3) normalizer of the split Cartan subgroup ∼= (Fl

∗ × Fl
∗) o S2,

(4) normalizer of the nonsplit Cartan subgroup ∼= Fl2
∗ • Z2, and

(5) Q8 •D6 o 〈δ1〉 ∼= GL2(F3) o 〈δ1〉,
where δ1 is the element expressed as diag(µ, 1) with respect to a basis of Fl

2, µ
being a generator of Fl

∗. For groups G and H, G •H denotes the extension of G
by H. Z2 is the cyclic group of order 2, Q8 is the quaternion group, and Dn is
the dihedral group of order n.

Proposition 2. When l ≥ 3, a maximal subgroup of GSp4(Fl) is conjugate to
one of the following seven subgroups.

(1) Sp4(Fl) o (maximal subgroup of 〈δ2〉),
(2) maximal parabolic subgroup,
(3) (SL2(Fl)× SL2(Fl)) o S2 o 〈δ2〉,
(4) GL2(Fl) • Z2 o 〈δ2〉,
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(5) SL2(Fl2) o 〈δ2〉,
(6) GU2(Fl2) o 〈δ2〉, and
(7) D8 ◦Q8 •O4

−(F2) o 〈δ2〉,
where δ2 is the element expressed as diag(µ, µ, 1, 1) with respect to a symplectic
basis of Fl

4. ◦ denotes the central product, and O4
− is the 4-dimensional orthog-

onal group with Witt defect 1.

Proof. Proposition 1 is well-known, so we prove only Proposition 2. The socle G0

of G = GSp4(Fl) is Sp4(Fl). Therefore the maximal subgroup containing G0 is
given by (1). If G0 6⊂ H, then G0 ∩H is contained in a subgroup on the table [2,
p. 72, Table 3.5.C] of Kleidman and Liebeck.

By applying Theorem 1 and [2, Main Theorem] to Sp4(Fl), we see from [2,
Table 3.5.C] that the set S(Sp4(Fl)) is empty, and Ci(Sp4(Fl)) (i = 4, 5, 7, 8)
are also empty. The same table shows that a maximal subgroup of Sp4(Fl) is
conjugate to a maximal parabolic subgroup in C1(Sp4(Fl)), (SL2(Fl)×SL2(Fl))o
S2 and GL2(Fl) • Z2 in C2(Sp4(Fl)), SL2(Fl2) and GU2(Fl2) in C3(Sp4(Fl)), or
D8 ◦Q8 •O4

−(F2) in C6(Sp4(Fl)).
Next by applying Theorem 1 and [2, Main Theorem] to GSp4(Fl), we find

that a maximal subgroup of GSp4(Fl) other than (1) is conjugate to a maximal
parabolic subgroup of GSp4(Fl) or (a maximal subgroup of Sp4(Fl)) o 〈δ2〉, that
is, (3), (4), (5), (6) and (7). ¤

Remark. Explicit realization of these subgroups in GSp4(Fl) = {gtJg = εl(g)J |
g ∈ GL4(Fl), εl(g) ∈ Fl

∗} is as follows. Here

J =
(

O2 −E2

E2 O2

)
,

where O2 is the 2× 2 zero matrix and E2 is the 2× 2 identity matrix.

(3) {(
A O2

O2 B

) ∣∣∣∣∣A, B ∈ SL2(Fl)

}
o

〈(
O2 E2

E2 O2

)〉
o 〈δ2〉.

(4) {(
A O2

O2 (At)−1

) ∣∣∣∣∣A ∈ GL2(Fl)

}
•

〈(
O2 E2

E2 O2

)〉
o 〈δ2〉.

(5) 





a1 a2 b1 b2λ
2

a2λ
2 a1 b2λ

2 b1λ
2

c1 c2 d1 d2λ
2

c2 c1λ
−2 d2 d1





 o 〈δ2〉,

where ai, bi, ci and di ∈ Fl for i = 1 and 2 such that (a1 + a2λ)(d1 + d2λ)−
(b1 + b2λ)(c1 + c2λ) = 1, and λ ∈ Fl2

∗ such that λ + λl = 0.
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(6) {(
A B

λ2B A

)}
o 〈δ2〉,

where A and B ∈ M2(Fl), AtA− λ2BtB = E2 and AtB −BtA = O2.
(7) 〈(

0 1
1 0

)
,

(
1 0
0 −1

)〉
⊗

〈(
0 1
1 0

)
,

(
a b
b −a

)〉
•O4

−(F2) o 〈δ2〉,

where a and b in Fl are chosen such that a2+b2 = −1, and ⊗ denotes the Kronecker
product.

Remark. The necessary properties of the subgroups are as follows.
(a) It stabilizes a positive-dimensional subspace of Vn := Fl

2n.
(b) It has a subgroup satisfying (a) whose index is bounded independently of l.
(c) Its commutant is larger than Fl.
(d) It has a subgroup satisfying (c) whose index is bounded independently of l.
(2) satisfies (a), (3) and (4) satisfy (b), (5) and (6) satisfy (c), and (7) satis-

fies (d).

3. Proof of Main Theorems

Masser and Wüstholz [7, Theorem II] (see also the note at the end of [7]) estimated
the degree of an isogeny between abelian varieties over a number field effectively.

Theorem 2. Given positive integers n and d, there are constants κ(n) and C(n)
depending only on n with the following property. Let A and A′ be abelian vari-
eties of dimension n defined over a number field K of degree d. Then if they are
isogenous over K, there is an isogeny over K from A to A′ of degree at most
C(n)[max{d, h(A)}]κ(n).

Using Theorem 2, they [8, Theorem 1] (see also the note at the end of [8])
refined Faltings’ theorem in the following effective way.

Theorem 3. Given positive integers n and d, there are constants τ(n) and C(n)
depending only on n with the following property. Let A be an abelian variety of
dimension n defined over a number field K of degree d. Then there is a positive
integer M ≤ C(n)[max{d, h(A)}]τ(n) such that for any prime l the natural map
EndK(A) → EndGK

(Al) has cokernel killed by M .

Corollary. Suppose M as in Theorem 3. Then for any prime l not dividing M
the natural map EndK(A)⊗Z Fl → EndGK

(Al) is an isomorphism.
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Explicitly τ(n) = n2{λ(8n) + 3κ(2n)} by [8, Section 6 ], where

λ(n) = 16n3(2n− 1)k(n){2nk(n) + 1}n−1

by [6, Section 5 ], k(n) being (2n2 + n − 1)4n(2n+1){n(2n + 1)}!, and κ(n) =
10n3λ(8n) + 32n2µ(8n) by [7, Section 7 ], µ(n) being λ(n)/(4n) by [6, Section 6 ].

Let ζl be a primitive l-th root of unity. If K ∩Q(ζl) = Q, then εl is surjective.
The condition on l is given by the following Lemma.

Lemma. If l > |D(K)|, then K ∩Q(ζl) = Q.

Proof. The discriminant of Q(ζl), D(Q(ζl)), is ll−2 when l = 2 or ≡ 1 (mod 4),
and −ll−2 when l ≡ 3 (mod 4). The discriminant of K∩Q(ζl) divides the greatest
common divisor of D(K) and D(Q(ζl)), which is 1 if l > |D(K)|. By Minkowski’s
theorem K ∩Q(ζl) = Q. ¤

Proof of Main Theorem 1. We prove that Gl := ρl(GK) is not contained in any
maximal subgroups of GL2(Fl) in Proposition 1.

As l > |D(K)|, εl is surjective by Lemma, so that

Gl 6⊂ SL2(Fl) o (maximal subgroup of 〈δ1〉).
The Borel subgroup stabilizes a one-dimensional subspace W of V1. If Gl is

contained in it, then there is a K-isogeny f : E/W → E/V1
∼= E the degree

of which is l. By Theorem 2 there is a K-isogeny g : E → E/W the degree of
which, say d0, is at most C(1)[max{d, h(E)}]κ(1). The degree of the composition
K-isogeny g ◦ f is d0l. On the other hand, as EndK̄(E) = Z, EndK(E/W ) = Z.
Thus d0l is the square of an integer, say m. So l divides m, and l divides d0,
contradicting the inequality l > d0.

Next if Gl ⊂ (Fl
∗×Fl

∗)oS2, then there exists a homomorphism ϕ1 from Gl to
S2. Let L1 be K̄ker(ϕ1◦ρl), then [L1 : K] ≤ 2, and ρl(GL1 := Gal(K̄/L1)) ⊂ Fl

∗ o
〈δ1〉. Thus EndGL1

(El) ⊃ Fl
2. On the other hand, as l > C(1)[max{2d, h(E)}]τ(1),

EndGL1
(El) ∼= EndL1(E)⊗Z Fl

∼= Fl by Corollary. This is a contradiction.
If Gl ⊂ Fl2

∗ • Z2, then there exists a quadratic extension L2 of K such that
ρl(GL2 := Gal(K̄/L2)) ⊂ Fl2

∗. Thus EndGL2
(El) ⊃ Fl2 . On the other hand, as

l > C(1)[max{2d, h(E)}]τ(1), EndGL2
(El) ∼= EndL2(E) ⊗Z Fl

∼= Fl by Corollary.
Hence a contradiction.

Lastly assume that Gl ⊂ GL2(F3) o 〈δ1〉. As εl is surjective by Lemma,
Gl ⊃ 〈δ1〉. Let L3 be K̄(ρl)

−1(〈δ1〉), then [L3 : K] ≤ |GL2(F3)| = 48, and
ρl(GL3 := Gal(K̄/L3)) = 〈δ1〉. Thus EndGL3

(El) ⊃ Fl
4. On the other hand,

as l > C(1)[max{48d, h(E)}]τ(1), EndGL3
(El) ∼= EndL3(E)⊗Z Fl

∼= Fl by Corol-
lary. This is a contradiction.

Proof of Main Theorem 2. We prove that Gl is not contained in any maximal
subgroups of GSp4(Fl) in Proposition 2.
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Gl 6⊂ Sp4(Fl) o (maximal subgroup of 〈δ2〉), for εl is surjective.
Maximal parabolic subgroups stabilize a one- or two-dimensional subspace of

V2. So Gl is not contained in them similarly as the case of the Borel subgroup in
Main Theorem 1.

Next if Gl ⊂ (SL2(Fl)×SL2(Fl))oS2o〈δ2〉, then there exists a homomorphism
ϕ2 from Gl to S2. Let L4 be K̄ker(ϕ2◦ρl), then [L4 : K] ≤ 2, and ρl(GL4 :=
Gal(K̄/L4)) ⊂ (SL2(Fl)×SL2(Fl))o〈δ2〉. As (SL2(Fl)×SL2(Fl))o〈δ2〉 stabilizes
two-dimensional subspaces of V2, a contradiction arises similarly as the case of the
Borel subgroup in Main Theorem 1.

Gl 6⊂ GL2(Fl)•Z2o〈δ2〉 similarly as the case of (SL2(Fl)×SL2(Fl))oS2o〈δ2〉,
for GL2(Fl) o 〈δ2〉 stabilizes two-dimensional subspaces of V2.

If Gl ⊂ SL2(Fl2) o 〈δ2〉 or Gl ⊂ GU2(Fl2) o 〈δ2〉, then Gl commutes with Fl2 .
On the other hand, as l > C(2)[max{d, h(A)}]τ(2), EndGK

(Al) ∼= EndK(A)⊗ZFl
∼=

Fl by Corollary. Hence a contradiction.
Gl 6⊂ D8 ◦Q8 •O4

−(F2) o 〈δ2〉 similarly as the case of GL2(F3) o 〈δ1〉 in Main
Theorem 1, for |D8 ◦Q8 •O4

−(F2)| = 3840.

Remarks. (a) The effective dependence of C(n) on the dimension n remains an
interesting problem [7].

(b) When dimA = 3, the classification of maximal subgroups of GSp6(Fl) is
also known ([1] and [2, pp. 57 and 72]). When l ≥ 5, they are

(1) Sp6(Fl) o (maximal subgroup of 〈δ3〉),
(2) maximal parabolic subgroup,
(3) SL2(Fl)× Sp4(Fl) o 〈δ3〉,
(4) (SL2(Fl)× SL2(Fl)× SL2(Fl)) o S3 o 〈δ3〉,
(5) GL3(Fl) • Z2 o 〈δ3〉,
(6) SL2(Fl3) o 〈δ3〉,
(7) GU3(Fl2) o 〈δ3〉, and
(8) SL2(Fl) ◦O3(Fl) o 〈δ3〉,

where δ3 is the element expressed as diag(µ, µ, µ, 1, 1, 1) with respect to a sym-
plectic basis of Fl

6. Explicit realization of the subgroups are similar to the two-
dimensional case. (2) and (3) satisfy the property (a) of the remark after Propo-
sition 2, (4) and (5) satisfy (b), and (6) and (7) satisfy (c), so the first seven are
handled similarly as the 2-dimensional case. Only the case (8) seems to be difficult
to treat.
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