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Presentations of the first homotopy groups of the unitary
groups
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Abstract. We describe explicit presentations of all stable and the first nonstable homotopy
groups of the unitary groups. In particular, for each n ≥ 2 we supply n homotopic maps that
each represent the (n− 1)!-th power of a suitable generator of π2nSU(n) ≈ Zn!. The product of
these n commuting maps is the constant map to the identity matrix.
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Introduction

The homotopy groups of compact Lie groups have been of continuous interest since
the discovery of homotopy groups at around 1935. There is now a tremendous
amount of computational tools available and many groups have been determined.
On the other hand, intellectually and practically satisfying presentations of these
groups are only known in comparatively few cases. Our goal in this paper is to
describe such presentations for the first homotopy groups of the unitary groups.

For the stable groups we mainly, but not entirely, review some known results
and procedures in an easily accessible and most explicit way. Particular emphasis
is given to the last stable groups π2n−1U(n). A highlight of this part is a strik-
ingly simple formula for a minimal embedding of S5 into SU(3) that represents
a generator of π5SU(3) and has a natural interpretation in terms of the complex
cross product.

The main achievement of the paper concerns the first nonstable homotopy
groups π2nSU(n) ≈ Zn!. These groups played an important role in the first proofs
of the fact that the only parallelizable spheres are S1, S3, and S7. We figure in
an elementary and explicit way how a suitable generator of π2nSU(n) becomes
null-homotopic in the n!-th power. Namely, we supply n homotopic maps that
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each represent the (n − 1)!-th power of the generator. The product of these n
commuting maps is the constant map to the identity matrix. The generators of
π2nSU(n) are then used to produce similar presentations of the homotopy groups
π2nSU(n− 1) with even n.

In the final section we obtain presentations of certain stable homotopy groups
of the symplectic groups and a structure theorem for certain nonstable homotopy
groups of the symmetric spaces SU(n)/SO(n).

Throughout this paper we use the well-known fact that the homotopy group
πk(G) of a compact connected Lie group G is isomorphic to the group of free
homotopy classes of maps Sk → G. Here, the product between two free homotopy
classes is given by multiplying the representing maps value by value with the
product of G. We also often use the elementary fact that the inclusions SU(n) →
U(n) induce isomorphisms between πrSU(n) and πrU(n) for r ≥ 2.

1. The stable homotopy groups of the unitary groups

1.1. Bott periodicity

It has been known since around 1940 that the inclusion of U(n) into U(n + 1)
induces an isomorphism between the homotopy groups πrU(n) and πrU(n + 1) if
r < 2n. The homotopy groups in this range are called stable. Their simple struc-
ture became visible at the end of the 50’s by Bott’s famous periodicity theorem
[3]: The stable groups πrU are trivial if r is even and isomorphic to Z if r is odd.
In fact, Bott constructed isomorphisms

πrU(n) → πr+2SU(2n)

for r < 2n and thus all stable groups are determined by π1U(1) ≈ Z and the trivial
group π2U(2). The periodicity isomorphisms can be given in the following explicit
way: One assigns to a map θ : Sr → U(n) the map B(θ) : Sr+2 → SU(2n) defined
on the unit sphere in C × Rr+1 by

B(θ)
(

w
x

)
=

(
1l 0
0 θ(x̂)

)(
w1l −|x|1l
|x|1l w̄1l

)(
1l 0

0 θ(x̂)
t

)
=

(
w1l −|x|θ(x̂)

t

|x|θ(x̂) w̄1l

)
.

Here, x̂ stands as an abbreviation for the unit vector x
|x| ∈ Sr and 1l denotes the

n × n identity matrix. This assignment B provides the periodicity isomorphism.
We refer to [7], [8], and [10] for (essentially) this form of B. In [7], [8] it is deduced
by the relation to Hurwitz–Radon matrices with the help of K-theory. In [10],
Bott’s original arguments [3] are turned into an explicit formula.
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1.2. Totally geodesic presentations

Iterating the periodicity isomorphism B above starting with the parametrization

ζ1 : S1 → U(1), z 7→ z

provides embeddings ζk : S2k−1 → U(2k−1) that represent generators of the groups
π2k−1U(2k−1) and take values in SU(2k−1) if k ≥ 2. For example,

ζ2 : S3 → SU(2),
(

w
z

) 7→ (
w −z̄
z w̄

)
is the standard parametrization of SU(2) and

ζ3 : S5 → SU(4),
(

z1
z2
z3

)
7→

( z1 0 −z̄2 −z̄3
0 z1 z3 −z2
z2 −z̄3 z̄1 0
z3 z̄2 0 z̄1

)
.

The embeddings ζk are totally geodesic and R-linear in the sense that they extend
to R-linear maps from R2k to the space of complex 2k−1 × 2k−1 matrices. By
placing several copies of ζk or its inverse along the diagonal in a sufficiently large
square matrix one can realize all elements of the homotopy group π2k−1U by totally
geodesic, R-linear embeddings. For all these and additional facts we refer to [7],
[8], and [10].

We have just seen that the homotopy groups π2k−1U(n) admit very simple
presentations if k is very small compared to n. The question we are now going to
answer is how one can obtain presentations of the last stable groups π2n−1U(n) in
the sequence πrU(n) with fixed n.

1.3. A deformation

Consider the subset of SU(n+1) that consists of matrices whose lower right entry
vanishes. There is the following map from this subset to the group SU(n):(

A b
c̄t 0

) 7→ A− bc̄t.

Here A is an n× n-matrix and b, c are unit vectors in Cn. The map above can be
obtained by the following deformation in SU(n + 1):(

A−bc̄t sin t b cos t
c̄t cos t sin t

)
. (1)

For t = 0 we get the initial matrix above and for t = π
2 we obtain the target

matrix embedded in the upper left n × n-block of SU(n + 1). This deformation
exists analogously in SO(n + 1) and Sp(n + 1).
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1.4. Factorization of the periodicity isomorphism

Because of stability the original periodicity isomorphism B admits the following
factorization:

πrU(n) B′−→ πr+2SU(n + 1) → πr+2SU(2n).

In order to obtain this factorization explicitly, we review essentially an algorithm
of Lundell [16]. There are, however, modifications in the details and we substitute
some of his arguments by the simple explicit deformation above. The algorithm
itself is very short: In a first step one deforms the map B(θ) with values in SU(2n)
by multiplying the matrix (

1l 0 0
0 cos t − sin t
0 sin t cos t

)
(2)

from the left. For t = π
2 the lower two rows in each value of B(θ) are exchanged

(one changes the sign). Hence, the lower right entry of the resulting matrix valued
map vanishes. In a second step one now applies the deformation to SU(2n − 1)
described above. It is not complicated to check that these two deformation steps
can be iterated until the map takes values in SU(n+1). This yields the factorized
isomorphism B′ : πrU(n) → πr+2SU(n+1) for r ≤ 2n− 1. Note that for arbitrary
r the map B′ is still a homomorphism. The effect of this homomorphism on the
nonstable homotopy groups of the unitary groups is studied in [16]. For example,
it is shown that a generator of π2nSU(n) ≈ Zn! is mapped to (n + 1) times a
generator of π2n+2SU(n + 2).

1.5. The last stable groups π2n−1U(n)

Iterating the factorized version of the periodicity isomorphism starting with the
map η1 = ζ1 above we obtain maps ηn that represent generators of the last stable
groups π2n−1U(n) and take values in SU(n) for n ≥ 2. Note that η2 = ζ2 still is the
standard parametrization of SU(2). In the case n = 3 one applies the deformation
above to the generator ζ3 of π5SU(4). This yields the map

η3 : S5 → SU(3),
(

z1
z2
z3

)
7→

(
z1+z̄3z2 −z̄2

3 −z̄2+z̄3z̄1

z2
2 z1−z2z̄3 z3+z2z̄1

−z3+z̄1z2 −z̄2−z̄1z̄3 z̄2
1

)
.

A map of this form was obtained by Chaves and Rigas [5] with a related but
slightly more complicated approach. With a few transformations we simplify the
formula in a way that a striking relation to the complex cross product appears and
its equivariance properties are revealed. In fact, after multiplying η3 by

(
0 0 1
0 1 0
1 0 0

)
from the left and by

(
0 1 0
0 0 −1
1 0 0

)
from the right and after passing from z1 and

z3 to z̄1 and z̄3 we obtain the map η of the next section. There, we introduce
the resulting map directly by the complex cross product. For n ≥ 4 we do not
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know whether any of the maps ηn or any map homotopic to some ηn has any nice
geometric properties or can be found by a more geometric construction. Note that
an elementary induction shows that all ηn have the property that ηn(z) = ηn(z̄)
for all z ∈ S2n−1.

We now point out a property of the generators of π2n−1U(n) that will be the key
for understanding the first nonstable groups π2nU(n) ≈ Zn! in Section 3. Given a
map θ : S2n−1 → U(n) we obtain a map pj ◦θ : S2n−1 → S2n−1 using the projection
pj : U(n) → S2n−1 that maps a matrix to its j-th column.

Lemma 1.1. The assignment

θ 7→ 1
(n−1)! deg(pj ◦ θ)

yields an isomorphism π2n−1U(n) → Z. This isomorphism is independent of j.

In other words, a map θ : S2n−1 → U(n) represents a generator of π2n−1U(n)
if and only if the composition with the projection to some (and hence any) of the
columns has degree ±(n− 1)! where the sign is independent of the column.

Proof. The first part follows immediately from the exact homotopy sequence of
the bundle U(n−1) → U(n) → S2n−1 using the fact that π2n−2U(n−1) ≈ Z(n−1)!

and stable homotopy groups. In order to see that, say, pn−1 and pn yield the same
isomorphism, we multiply the values of θ from the right by the matrix in (2) with
t = π

2 . The resulting map θ′ is homotopic to θ and we get pn−1 ◦ θ′ = pn ◦ θ. ¤

2. A minimal generator of π5SU(3)

Given two vectors z, w ∈ C3 their cross product is defined to be

z × w =
( z̄2w̄3−z̄3w̄2

z̄3w̄1−z̄1w̄3
z̄1w̄2−z̄2w̄1

)
.

If z and w are unit vectors that are perpendicular with respect to the standard
hermitian inner product on C3 then z×w is the unique vector such that the matrix
whose columns are z, w, and z × w is contained in SU(3). Hence,

(A · z)× (A · w) = A · (z × w) (3)

for all A ∈ SU(3) and z, w ∈ C3.
We can now define an embedding η : S5 → SU(3) by setting η(z) · z̄ = z and

η(z) · w̄ = z × w if w is perpendicular to z. This map is obviously not null-
homotopic. For if it were homotopic to the constant map from S5 to the identity
in SU(3) then the map from S5 to itself given by complex conjugation would be
homotopic to the identity map of S5, which is not true. An explicit formula for η
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is given as follows:

η(z) = zzt +
( 0 −z̄3 z̄2

z̄3 0 −z̄1−z̄2 z̄1 0

)
.

Theorem 2.1. The embedding η : S5 → SU(3) generates π5SU(3) ≈ Z.

Proof. If we compose η with the projection to any of the columns of SU(3) we
obtain a map from S5 to itself with degree 2. It follows from Lemma 1.1 that η
represents a generator of π5SU(3). ¤

It follows from property (3) that η is equivariant with respect to the standard
action of SU(3) on S5 ⊂ C3 and the action of SU(3) on itself given as follows:

SU(3)× SU(3) → SU(3), (B,A) 7→ BABt.

It is known that the orbit space of the latter action is a closed interval. In order
to give a more detailed description of the orbit structure we use the geodesic

c(t) =
(

1 0 0
0 cos t − sin t
0 sin t cos t

)
.

The orbit through c(0) = 1l is diffeomorphic to the symmetric space SU(3)/SO(3)
and consists precisely of the symmetric matrices in SU(3). It is easy to see that
c intersects this orbit perpendicularly (and hence all orbits by Clairault’s theo-
rem that the velocity vectors of a geodesic have a constant inner product with
a Killing field). The orbits through c(t) for t ∈ ]0, π

2 [ are diffeomorphic to the
seven-dimensional space SU(3)/SO(2). Finally, we have

c(π
2 ) =

(
1 0 0
0 0 −1
0 1 0

)
= η

(
1
0
0

)
.

Hence, η parametrizes the isolated singular orbit through c(π
2 ). Since isolated

orbits are minimal submanifolds (in the usual sense that they are critical points
for the volume functional, i.e., their mean curvature vanishes) [11], we get:

Proposition 2.2. The embedding η parametrizes a minimal submanifold of SU(3).

We finally mention the following curiosity: Using the embedding η, the Hopf
fibration S5 → CP2 can be extended to a simple self-map of SU(3), namely, to the
map A 7→ A · Ā. Indeed, if we multiply η and η̄ value by value we obtain the map

S5 → SU(3), z 7→ 2zz̄t − 1l.

This map is the standard totally geodesic Cartan embedding of CP2 into SU(3).
It follows from Lemma 5.1 or by inspecting the orbit space of the adjoint action of
SU(3) that η · η̄ is null-homotopic.
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3. The first nonstable homotopy groups π2nSU(n) ≈ Zn!

Bott [2] showed in 1958 that the image of π2nBU in H2n(BU) is divisible by
precisely (n−1)!. This refined the previous result of Borel and Hirzebruch [1] that
these classes are divisible by (n− 1)! except for the prime 2. As a consequence of
the refined version, the first nonstable homotopy groups π2nU(n) of the unitary
groups are isomorphic to the cyclic groups of order n!. This result was used
almost immediately by Kervaire [13] and Milnor [4] who independently gave the
first proofs of the fact that the only parallelizable spheres are S1, S3, and S7.
Generators of the groups π2nU(n) are represented by the characteristic maps of
the bundles U(n + 1) → S2n+1. These maps were known explicitly several years
before Bott’s result [21]. We will deform them in a way that allows us to see how
they become null-homotopic in the n!-th power.

The group SU(n) acts transitively on the unit sphere S2n−1 in Cn. The isotropy
group of the j-th canonical basis vector in Cn is denoted by SU(n − 1)j . It is
the subgroup of SU(n) whose j-th diagonal entry is 1. Natural diffeomorphisms
between SU(n)/SU(n − 1)j and S2n−1 are given by the projections pj : SU(n) →
S2n−1 that map matrices to their j-th columns. Now consider the maps

φj : [0, 2π
n ]× SU(n)/SU(n− 1)j −→ SU(n)

given by

φ1(t, A) = A · diag (ei(n−1)t, e−it, . . . , e−it) ·A−1

...

φn(t, A) = A · diag (e−it, . . . , e−it, ei(n−1)t) ·A−1.

For t = 0 and t = 2π
n the values of all φj are independent of A ∈ SU(n). Hence

the φj induce maps S2n → SU(n).

Lemma 3.1. All the maps φj above induce the same map φ : S2n → SU(n). This
map represents a generator of π2nSU(n).

Proof. Consider a matrix A whose first column is given by z ∈ S2n−1. Then

A · diag (ei(n−1)t, e−it, . . . , e−it) ·A−1

= A · e−it · (1l + diag (eint − 1, 0, . . . , 0)
) ·A−1

= e−it
(
1l + z(eint − 1)z̄t

)
.

For the other columns the computation is analogous and yields the same result.
We compose the map

φ̂ : [0, 2π
n ]× S2n−1 → SU(n), (t, z) 7→ e−it

(
1l + z(eint − 1)z̄t

)
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with the inverse of the suspension

[0, 2π
n ]× S2n−1 → S2n ⊂ R× Cn, (t, z) 7→ (

tn
π − 1, z

√
1− ( tn

π − 1)2
)
.

This yields the map

φ : S2n → SU(n), (y, z) 7→ e−iπ(y+1)/n · (1l− z
|z| (1 + eiπy) z̄t

|z|
)
.

We can remove the factor in front of the paranthesis and obtain a homotopic map
with values in U(n). Moreover, we can substitute the rational parametrization
( 1+iy
1−iy )2 of the unit circle in C for the exponential parametrization eiπy without

changing the homotopy class of φ. This leads to the map

S2n → U(n), (y, z) 7→ 1l− 2z 1
(1−iy)2 z̄t.

In Steenrod’s book [21] it is proved that this map represents the characteristic
map of the bundle U(n + 1) → S2n+1 and hence a generator of π2nU(n). ¤

At first glance it might seem like one could multiply the n maps φ1, . . . , φn

value by value and the result is the constant map to the identity. This would
imply that π2nSU(n) is of order at most n contradicting π2nSU(n) ≈ Zn!. The
reason why this does not work is that we are not multiplying maps that have the
same domain of definition, since the isotropy groups SU(n − 1)j are different. In
order to get maps from the same domain of definition [0, 2π

n ] × S2n−1 one has to
use the identifications between SU(n)/SU(n− 1)j and S2n−1. But, as we saw, this
always yields the same map φ above and φn is evidently not the constant map to
the identity.

There is, however, a way to make the previous idea work. The clue is to
use any map η : S2n−1 → SU(n) that represents a generator of the stable group
π2n−1SU(n). Such a map has the fundamental property that the composition pj ◦η
with the projection pj to the j-th matrix column has degree ±(n− 1)! where the
sign is independent of the column (see Lemma 1.1). We now obtain maps

ψj : [0, 2π
n ]× S2n−1 → SU(n)

by plugging pj ◦ η into the second argument of φ̂, i.e., by

ψ1(t, z) = φ1(t, η(z)) = η(z) · diag (ei(n−1)t, e−it, . . . , e−it) · η(z)−1

...

ψn(t, z) = φn(t, η(z)) = η(z) · diag (e−it, . . . , e−it, ei(n−1)t) · η(z)−1.

The following is now evident and shows us explicitly how the n!-th power of a
generator of π2nSU(n) is null-homotopic.

Theorem 3.2. The maps ψj induce maps S2n → SU(n) that represent (n − 1)!
times the same generator of π2nSU(n). The maps ψj commute mutually and their
product ψ1 · . . . · ψn is the constant map to the identity.
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Explicit homotopies between the maps ψj are easily given. The formula

η(z) ·
( cos s − sin s 0

sin s cos s 0
0 0 1l

)
· diag (ei(n−1)t, e−it, . . . , e−it) ·

( cos s sin s 0
− sin s cos s 0

0 0 1l

)
· η(z)−1,

for example, yields the map ψ1 for s = 0 and the map ψ2 for s = π
2 .

Remark 3.3. Theorem 3.2 and Lemma 1.1 together provide inductively an ele-
mentary proof for the fact that π2nSU(n) is a cyclic group whose order divides n!.
In order to show that n! divides the order of π2nSU(n), however, cohomological
arguments like those in [2] seem to be inevitable.

Remark 3.4. The map φ̂ factors through a map φ̌ defined on [0, 2π
n ] × CPn−1.

The CPn−1 can be considered to represent the space of shortest curves from the
identity matrix 1l to the matrix e−2πi/n · 1l in the center of SU(n). The map
φ̌ appears in Bott’s papers [2], [3] frequently, but not with the meaning that it
provides a generator of the group π2nSU(n).

4. The homotopy groups π2nSU(n− 1)

The homotopy groups π2nSU(n − 1) were first computed by Kervaire [14]. The
following fact is central for the computation: Given a generator φ of π2nSU(n)
the composition pj ◦ φ : S2n → S2n−1 with the projection to the j-th column is
null-homotopic if n is odd and homotopic to the (2n − 3)-rd suspension of the
Hopf fibration S3 → S2 if n is even (see [14], [21]). With this fact Kervaire [14]
deduced from the exact homotopy sequence of the bundle SU(n) → S2n−1 that
π2n−1SU(n− 1) is trivial if n is even and isomorphic to Z2 if n is odd and that

π2nSU(n− 1) ≈




Zn!/2 if n is even,
Z2 ⊕ Zn! if n ≥ 5 is odd,
Z12 if n = 3.

In other words, if n is odd, φ is homotopic to a map with values in SU(n− 1) (it
is, however, not very easy to write this homotopy down explicitly). If n = 2m is
even, φ cannot be deformed to a map with values in SU(n − 1), but φ2 can, and
the resulting map represents a generator of π4mSU(2m− 1). We will now describe
this deformation explicitly by reducing the equivariance group of φ from SU(2m)
to Sp(m).

The symplectic group Sp(m) can be regarded as the subgroup of matrices
A ∈ SU(2m) with AtJA = J . Here, J ∈ SU(2m) is the matrix whose diagonal
2× 2-blocks are

(
0 −1
1 0

)
. A matrix A ∈ SU(2m) with columns v1, . . . , v2m belongs

to Sp(m) if and only if v2k = J · v̄2k−1 for all k = 1, . . . , m. The group Sp(m) acts
transitively on the unit sphere S4m−1 in C2m. The isotropy groups of the first
and the second canonical basis vector in C2m are the same, namely, the subgroup
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Sp(m− 1)1 of matrices in Sp(m) whose first and second diagonal entry is 1. Now
we consider the maps φ1 and φ2 of the previous section and restrict the second
argument of these maps to symplectic matrices. This way we obtain maps

φ′1, φ
′
2 : [0, π

m ]× Sp(m)/Sp(m− 1)1 → SU(2m)

with the same domain of definition. Both these maps still induce the generator
φ : S4m → SU(2m) of π4mSU(2m) given in the previous section. Their product is
the map

φ′12 : [0, π
m ]× Sp(m)/Sp(m− 1)1 → SU(2m),

(t, A) 7→ A · diag (ei(2m−2)t, ei(2m−2)t, e−2it, . . . , e−2it) ·A−1.

Lemma 4.1. The map φ′12 and the analogously defined maps φ′34, . . . , φ
′
2m−1,2m

all induce the same map φ(2) : S4m → SU(2m) which represents twice a generator
of π4mSU(2m). The deformation to SU(2m − 1) of Section 1.3 can be applied to
φ(2) and the deformed map represents a generator of π4mSU(2m− 1).

Proof. Since φ′12 is the product of φ′1 and φ′2 it is evident that φ(2) represents twice a
generator of π4mSU(2m). Computations analogous to that of the previous section
show the following: If the first column of the matrix A is the vector z ∈ C2m then

φ′12(t, A) = e−2it
(
1l + (e2mit − 1)(zz̄t − Jz̄ztJ)

)
,

and the map φ′12 induces the map

φ(2) : S4m → SU(2m),

(y, z) 7→ e−iπ(y+1)/m · (1l− (1 + eiπy)( z
|z|

z̄t

|z| − J z̄
|z|

zt

|z|J)
)
.

The (2, 1)-entry in the values of φ(2) is always zero. Hence, after multiplying φ(2)

from the left and the right with suitable permutation matrices, the lower right
entry vanishes and the deformation of Section 1.3 can be applied. ¤

Analogously to the previous section we can plug a generator of π4m−1Sp(m) ≈
Z into the second argument of the maps φ′12, . . . , φ

′
2m−1,2m. The resulting maps will

be denoted by ψ′12, . . . , ψ
′
2m−1,2m. Like φ′12 they can all be deformed to SU(2m−1)

with the explicit deformation of Section 1.3.

Proposition 4.2. The m maps ψ′2k−1,2k induce maps S4m → SU(2m − 1) that
represent (2m−1)! times a generator of π4mSU(2m−1) if m is odd and 2·(2m−1)!
times a generator if m is even. They commute and their product is the constant
map to the identity.

Proof. It follows from the exact homotopy sequence of the bundle Sp(m) → S4m−1

that the composition of a generator of π4m−1Sp(m−1) with the projection to any
of the columns of Sp(m− 1) yields a self-map of S4m−1 whose degree is the order
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of the cyclic group π4m−2Sp(m − 1). Kervaire [15] first showed that the order of
this group is (2m− 1)! if m is odd and 2 · (2m− 1)! if m is even. ¤

Remark 4.3. The map φ(2) is homotopic to the map

S4m → U(2m), (y, z) 7→ 1l− 2
(1−iy)2 (zz̄t − Jz̄ztJ)

with values in U(2m).

Remark 4.4. The map φ′12 factors through a map defined on

[0, π
m ]× Sp(m)/(Sp(m− 1)× Sp(1)).

In the case m = 1 the factor on the right is trivial and the maps φ′12 and φ(2) are
the constant maps to the identity. In the case m = 2 the factor on the right is
diffeomorphic to S4 and hence φ′12 induces a map S5 → SU(4). It is not difficult to
see that this is the map ζ3 from Section 1. This means that a generator of π8SU(3)
is given by composing the first suspension of the Hopf fibration S7 → S4 with the
generator of π5SU(3) described in Section 2.

5. Symmetric maps into the unitary groups and homotopy groups
of Sp(n) and SU(n)/SO(n)

The Cartan embedding of the symmetric space SU(n)/SO(n) into the Lie group
SU(n) is the map

C : SU(n)/SO(n) → SU(n), A · SO(n) 7→ A ·At.

The image of this map is precisely the space of symmetric matrices in SU(n). We
combine this fact with the explicit form of the Bott periodicity isomorphism given
in Section 1. This combination provides first maps that represent non-trivial ele-
ments of certain homotopy groups of the symplectic groups and second a structure
theorem for certain nonstable homotopy groups of SU(n)/SO(n).

We begin with the following statement:

Lemma 5.1. Any map S2k−1 → U(n) with k ≤ n is homotopic to its transposed
if k is odd and homotopic to its complex conjugate if k is even. Any map from S2n

to U(n) or U(n− 1) is homotopic to its transposed if n is even and homotopic to
its complex conjugate if n is odd.

Proof. Complex conjugation on SU(k) corresponds to complex conjugation on the
sphere S2k−1 ⊂ Ck under the projection p1 : SU(k) → S2k−1. The complex conju-
gation on S2k−1 is homotopic to the identity map if k is even and not homotopic
to the identity map if k is odd. The lemma follows now from the following part of
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the exact homotopy sequence

π2k−1SU(k) −−−−→ π2k−1S2k−1 −−−−→ π2k−2SU(k − 1) −−−−→ π2k−2SU(k)

Z Z Z(k−1)! 0

and from the fact that a generator of the homotopy group π2nU(n−1) is homotopic
to a generator of π2nU(n) or to twice a generator or of order 2 (see Section 4). ¤

Note that in SU(2) complex conjugation is an inner automorphism and thus
any non-trivial map from any sphere Sm to SU(2) is homotopic to its conjugate
and therefore only homotopic to its transposed if it is of order 2. From the higher
homotopy groups of SU(2) ≈ S3 it is now clear that there exist many maps S2k−1 →
SU(2) with odd k that are not homotopic to their transposed.

Let Sp(n) ⊂ SU(2n) be the subgroup of matrices of the form
(

A −B̄
B Ā

)
(note

that this subgroup of SU(2n) agrees with the Sp(n) used in Section 4 only up to
conjugation). The following property of the explicit form of the Bott periodicity
isomorphism B given in (1.1) is now apparent.

Lemma 5.2. Let θ be a symmetric map S2k−1 → U(n), i.e., θ(z)t = θ(z) for all
z ∈ S2k−1. Then B(θ) takes values in Sp(n) ⊂ SU(2n).

Corollary 5.3. Any symmetric map θ : S2k−1 → U(n) with even k ≤ n is null-
homotopic.

Proof. If θ would represent a non-trivial element in the stable group π2k−1U(n),
then B(θ) would represent a non-trivial element in π2k+1SU(2n) ≈ Z. But B(θ)
takes values in Sp(n) and the stable group π2k+1Sp(n) is trivial or isomorphic to
Z2 if k is even. ¤

Proposition 5.4. If θ is a generator of π2k−1U(n) with k = 2m + 1 ≤ n then
B(θ·θt) represents a generator of π2k+1Sp(n) ≈ Z if m is odd and twice a generator
if m is even.

Proof. Because of Lemma 5.1, θ · θt represents in π2k−1U(n) twice the generator
given by θ. Correspondingly, B(θ ·θt) represents twice a generator of π2k+1SU(2n).
Since θ · θt is symmetric, B(θ · θt) falls into Sp(n). We now inspect part of the
exact homotopy sequence of the bundle that belongs to the homogeneous space
SU(2n)/Sp(n):

π2k+1Sp(n) → π2k+1SU(2n) → π2k+1

(
SU(2n)/Sp(n)

) → π2kSp(n).

All the homotopy groups involved here are stable, the first two isomorphic to Z,
the last one trivial, and π2k+1

(
SU(2n)/Sp(n)

)
trivial if m is even and isomorphic

to Z2 if m is odd. ¤
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Corollary 5.5. A generator of the stable group π2k−1U(n) with k = 4l + 3 ≤ n
cannot be represented by a symmetric map.

We will now apply the statements above to determine the structure of the
semistable homotopy groups π8l+5

(
SU(n)/SO(n)

)
for l ≤ n−3

4 . Given a map
θ : S2k−1 → SU(n) with odd k, the composition

S2k−1 θ−→ SU(n) → SU(n)/SO(n) C−→ SU(n) ∩ Sym (n, C) ↪→ SU(n) (4)

yields the symmetric map θ · θt which represents twice the element in π2k−1SU(n)
that is represented by θ. Hence, if θ represents a generator of π2k−1SU(n) then
θ · θt represents a generator or twice a generator of a Z-factor in

π2k−1

(
SU(n) ∩ Sym (n, C)

) ≈ π2k−1

(
SU(n)/SO(n)

)
.

This ambiguity remains in the case k = 4l+1 ≤ n as we shall see below. However,
if k = 4l + 3 ≤ n then θ · θt cannot represent twice a generator because of the
previous corollary.

Theorem 5.6. If 3 ≤ k = 4l + 3 ≤ n then a generator of π2k−1SU(n) projects to
a generator of a Z-factor in π2k−1

(
SU(n)/SO(n)

)
. Consequently we have

π8l+5

(
SU(n)/SO(n)

) ≈ Z⊕ π8l+4SO(n) and

π8l+6

(
SU(n)/SO(n)

) ≈ π8l+5SO(n).

Proof. The first part follows from the factorization (4) of the map θ ·θt, the second
part from the first and the relevant segment of the exact homotopy sequence of
the bundle SO(n) → SU(n) → SU(n)/SO(n). ¤

This statement was obtained before by Kachi (see [12], Proposition 3.5) for
7 ≤ k = 4l + 3 ≤ n − 1. Kachi’s proof is based on computations of Kervaire
[14]. These, in turn, involve certain homotopy groups of the Stiefel manifolds that
were determined by Paechter [20]. Our proof, on the other hand, requires just the
knowledge of stable homotopy groups.

The simplest example where our statement provides information is the homo-
topy group π5

(
SU(3)/SO(3)

)
. The exact homotopy sequence leaves the two choices

Z and Z⊕Z2. Our argument above shows that π5

(
SU(3)/SO(3)

)
is isomorphic to

the second group.

Proposition 5.7. If 5 ≤ k = 4l +1 ≤ n then a generator of π2k−1SU(n) can only
project to a generator or to twice a generator of a Z-factor in π2k−1

(
SU(n)/SO(n)

)
.

In the first case we have

π8l+1

(
SU(n)/SO(n)

) ≈ Z⊕ π8lSO(n).

In the second case, π8lSO(n) is isomorphic to a direct sum G⊕ Z2 such that

π8l+1

(
SU(n)/SO(n)

) ≈ Z⊕G.
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In any of the two cases we have

π8l+2

(
SU(n)/SO(n)

) ≈ π8l+1SO(n).

In the stable range obviously the second alternative holds. On the other hand,
the group π8SO(5) (which occurs in the first case covered by the proposition) is
trivial. For information on πn+r

(
SU(n)/SO(n)

)
for n ≥ 8 and r ≤ 5 we refer

to [12].

Appendix. The first homotopy groups of the unitary groups

For the convenience of the reader we provide in Table 1 the very first homotopy
groups of the unitary groups. Larger tables can be found in [17]. The black line
in the table indicates the border between the stable and the nonstable groups. A
t or c below a group πrU(n) indicates that any map Sr → U(n) is homotopic to
its transposed or to its complex conjugate, respectively.

r \n 1 2 3 4 5 6
1 Z

t
Z Z Z Z Z

2 0 0 0 0 0 0
3 0 Z

c
Z Z Z Z

4 0 Z2
t c

0 0 0 0

5 0 Z2
t c

Z
t

Z Z Z

6 0 Z12
c

Z6
c

0 0 0

7 0 Z2
t c

0 Z
c

Z Z

8 0 Z2
t c

Z12
t

Z24
t

0 0

9 0 Z3
c

Z3
c

Z2
t c

Z
t

Z

10 0 Z15
c

Z30
c

Z120 ⊕
c

Z2 Z120
c

0

Table 1. Table of the first homotopy groups πrU(n)
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