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Abstract. In the first section we discuss Morita invariance of differentiable/algebroid cohomol-
ogy.

In the second section we extend the Van Est isomorphism to groupoids. As a first application
we clarify the connection between differentiable and algebroid cohomology (proved in degree 1,
and conjectured in degree 2 by Weinstein–Xu [50]). As a second application we extend Van Est’s
argument for the integrability of Lie algebras. Applied to Poisson manifolds, this immediately
implies the integrability criterion of Hector–Dazord [14].

In the third section we describe the relevant characteristic classes of representations, living
in algebroid cohomology, as well as their relation to the Van Est map. This extends Evens–

Lu–Weinstein’s characteristic class θL [20] (hence, in particular, the modular class of Poisson
manifolds), and also the classical characteristic classes of flat vector bundles [2, 30].

In the last section we describe applications to Poisson geometry.
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Introduction

The classical Van Est isomorphism [18, 17, 19] is the main tool which relates the
differentiable cohomology of Lie groups to the cohomology of Lie algebras. This
paper grew out of author’s attempts to understand the differentiable cohomology
of groupoids, the cohomology of Lie algebroids, as well as the relations between
them.

Lie groupoids/algebroids [32] have proven to be very useful in several areas: fo-
liation theory [13, 27, 8] Poisson geometry [48, 50], non-commutative geometry [8],
analysis on singular spaces [43, 44], geometry of connections etc. Roughly speak-
ing, a Lie groupoid consists of a base manifold (the space of objects) and a “group
of symmetries” (the space of arrows). Lie algebroids are the infinitesimal version
of Lie groupoids. In contrast with Lie algebras, there is no Lie third theorem for
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Lie algebroids. Moreover, it seems we are quite far from a complete understanding
of this failure. Positive integrability results are however very important, e.g. for
geometric quantization, the geometry of foliations, analysis on singular spaces.

Although differentiable/algebroid cohomology are straightforward extensions
of the corresponding notions for Lie groups, they are extremely relevant when ap-
plied to the list of examples above. Particular cases are: De Rham cohomology,
Lie algebra cohomology, Poisson cohomology, foliated cohomology, certain coho-
mology groups of classifying spaces. Despite this, very little is known about the
properties/relevance of these cohomologies for general Lie groupoids. What basic
properties do they enjoy (e.g. are they Morita invariant)? Which is the relation
between differentiable and algebroid cohomology? Which are the invariants which
live in these cohomologies? Apart from being basic questions on the theory of
Lie groupoids/algebroids, they are also relevant to the applications of the general
theory. For instance, in Poisson geometry, the relation between differentiable and
algebroid cohomology is relevant in the process of quantizing Poisson manifolds
[50]. In the same direction, one knows [20] that the modular class of Poisson
manifolds lives in the world of Lie algebroids, and appears as the (first) character-
istic class of a one dimensional representation. In non-commutative geometry, the
cyclic cohomology of convolution algebras is undoubtedly related to differentiable
cohomology of groupoids (this is clear for instance from [9, 42]); in this direction,
note that one of the missing steps for extending the results of [42] from Lie groups
to Lie groupoids is the lack of Van Est-type techniques for groupoids. Also, there
are clear indications that cohomological methods might be useful to the integra-
bility problem. The best example is probably Van Est’s proof [17] of Lie’s third
fundamental theorem.

The purpose of this paper is to study these general properties of differen-
tiable/algebroid cohomology, and to describe some applications. Below we give
an outline of the main results, as well as of the relation with other known re-
sults/conjectures. Note that all the applications to Poisson geometry have been
collected in the last section.

Morita invariance: Intuitively, two groupoids are Morita equivalent if they
have the same space of orbits (i.e. the same transversal geometry). This notion
is important in the theory of foliations (where groupoids are often replaced by
Morita equivalent ones; see e.g. [13, 27]), non-commutative geometry (recall that
the C∗-algebras defined by two Morita equivalent groupoids are stably isomorphic;
see [8, 40]), Poisson geometry (recall that Morita equivalent Poisson manifolds can
be integrated by Morita equivalent symplectic groupoids; see [51]), and to the ge-
ometry of principal bundles (gauge groupoids are Morita equivalent to Lie groups).
First we prove Morita invariance of differentiable cohomology (Theorem 1). Since
the notion of Morita equivalence of Lie algebroids is a bit problematic (there are
several natural, but non-equivalent definitions), we restrict ourselves to an invari-
ance of algebroid cohomology which we find relevant to applications. This is our
second theorem (Theorem 2).
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Van Est isomorphisms: The next theorem is an extension of Van Est’s iso-
morphism to groupoids (Theorem 3; see also the comments at the beginning of
Section 2). This immediately implies a version of Haefliger’s conjecture [26, 36]
for differentiable cohomology (Corollary 1). As a first application of Theorem 3
we clarify the relation between differentiable/algebroid cohomology, via a Van Est
map

Φ : H∗
d (G) −→ H∗(g). (1)

This is the object of our Theorem 4. In degree one it becomes a (slight improve-
ment of a) theorem of Weinstein-Xu, and in degree two it proves a conjecture by
the same authors (see Theorem 1.3 and the comments at page 172 of [50]). In com-
bination with the Morita invariance, this also clarifies the invariance of Poisson
cohomology (see Corollary 5), which has been known in degree one only [23].

An integrability result: In Theorem 5 we present another application of Van
Est’s isomorphism. We prove that, given an extension of Lie algebroids

0 −→ l
i−→ h

π−→ g −→ 0

such that l is abelian, and g admits an integration which is α-two-connected, then
h is integrable. Note that, in the case of Lie algebras, this immediately implies
Lie’s third theorem (and this is Van Est’s proof [17] mentioned above). Indeed, if h
is an arbitrary Lie algebra, we can take l to be the center of h, and, since g ⊂ gl(g)
by the adjoint representation, g is integrable. This shows that, quite surprisingly,
the non-trivial part of Van Est’s argument does extend to groupoids (see also our
Remark 5). There is also strong evidence that these Van Est-techniques, combined
with Cattaneo-Felder approach to integrability [7] could clarify the integrability
problem (compare to the proof of Lie’s third in [16]).

As an immediate consequence of our integrability result we obtain a slight
improvement and a more conceptual proof of Dazord–Hector’s criterion [14] for
the integrability of regular Poisson manifolds (see our Corollary 4). This shows
that Dazord–Hector’s result is precisely Van Est’s argument applied to Poisson
manifolds.

Comparing with another known integrability result, the one of Moerdijk–Mrcun
[37] and Nistor [43], our Theorem 5 is both stronger (since we allow Lie algebroids
more general then semi-direct products), and weaker (since we have to assume
abelian algebroids instead of bundles of Lie algebras). An improvement which
contains both integrability results would probably give a much better understand-
ing on Lie’s third theorem for groupoids.

Characteristic classes in algebroid cohomology: The last problem that we take
concerns the invariants living in algebroid cohomology. The conclusion is that,
given a n-dimensional representation E of a Lie algebroid g, the Chern classes of E
viewed in H∗(g) must vanish (Theorem 6), while new classes u2k−1(E) ∈ H2k−1(g),
1 ≤ k ≤ n show up. Note the analogy with Bott’s vanishing theorem, and the
construction of secondary characteristic classes for foliations [4]. We obtain a
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characteristic map
U : Rep(g) −→ Z � Hodd(g) . (2)

See also [25]. Part of our motivation was to extend the construction of the char-
acteristic class θL found by Evens–Lu–Weinstein [20] (hence, in particular, of the
modular class of a Poisson manifold), which we recover when n = k = 1. Although
we also sketch an explicit approach (in the spirit of [2]), the way we introduce the
higher u2k−1’s is by extending the well-known construction [30] of characteristic
classes of flat vector bundles over manifolds (which we recover in the case of tan-
gent Lie algebroids). One advantage of our (Chern–Weil type) approach is that
it can be used in the presence of other structural groups (not only GLn). Since
some possible applications of this construction are to Lie algebroids which are not
integrable, or whose integrations are difficult to work with, we do everything at
the algebroid level. However, when E is the representation of a Lie groupoid, we
show (Theorem 7) that its characteristic classes (2) come from the differentiable
cohomology via the Van Est map (1). An immediate consequence of this is the
Morita invariance of the modular class of Poisson manifolds (Corollary 7), which
has been known under certain conditions only (see Theorem 4.2 and the conjecture
4.6 in [24]).

Acknowledgments. All the discussion I had with K. Mackenzie and I. Moerdijk
were an essential source of inspiration. Useful were also the comments that V.
Ginzburg and R. L. Fernandes had on a preliminary version of this paper. Re-
garding R. L. Fernandes I have learned, in a late stage of my work, about his
construction of characteristic classes for algebroids [22] (and for Poisson mani-
folds in particular [21]). Recently we have explained the connection between our
approaches [10, 11] (see also our Examples 8). I have also benefited from the
discussions with J. Mrcun.

1. Differentiable and algebroid cohomology

This section is an exposition of basic definitions and properties concerning group-
oids, differentiable cohomology, Lie algebroids, and algebroid cohomology [26, 27,
32, 34]. It is a combinations of well-known definitions which we recall for refer-
ence, and some remarks which we find important for understanding the objects
under discussion. Here we prove Morita invariance of differentiable cohomology
(Theorem 1), and an invariance for algebroid cohomology (Theorem 2).

1.1. Groupoids

Recall that a groupoid G is a (small) category in which every arrow is invertible.
We will write G(0) and G(1) for the set of objects and the set of arrows in G,
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respectively. We also say that G is a groupoid over G(0). The source and target
maps are denoted by α, β : G(1) −→ G(0), while m(g, h) = g◦h is the composition,
and i(g) = g−1 denotes the inverse of g. One calls G a Lie groupoid if G(0) and
G(1) are smooth manifolds, all the structure maps are smooth, and α and β are
submersions. We denote by G(p) the space of p-composable strings

x
g1←− g2←− . . .

gp←− (3)

and by
β = βp : G

(p) −→ G
(0) (4)

the map which associates to a string (3) the element x.
A left action of G on a manifold X consists of a smooth map ε : X −→ G(0)

called the moment map of the action, together with a smooth map G(1) ∗X −→ X,
(g, x) �→ gx defined on the space of pairs {(g, x) : α(g) = ε(x)}, which satisfies
the usual identities of an action. One defines the action groupoid G >� X as the
groupoid over X with G(1) ∗ X as space of arrows, the multiplication as source
map, the second projection as target map, and multiplication (g, x)(h, y) = (gh, y)
(defined when x = hy). A left G-bundle consists of a (left) G-space P , and a
G-invariant surjective submersion π : P −→ B. It is called principal if

G ∗ P −→ P ×B P, (g, p) �→ (gp, p)

is a diffeomorphism. Similarly one defines the notion of a right action of G on a
space X, the action groupoid X >� G, and the notion of right G-bundle.

A morphism between two Lie groupoids is a smooth functor. If one is inter-
ested in the orbit space rather then on the groupoid itself (i.e. in “transversal
structures”), one has to relax the notion of morphism. Recall [27, 41] that a gen-
eralized morphism φ : G −→ H between two Lie groupoids is determined by a
manifold P (view it as “the graph” of φ) endowed with a left G-action with mo-
ment map denoted ε : P −→ G(0), a right H-action, with moment map denoted
η : P −→ H (0), such that ε : P −→ G(0) is a principal H-bundle, η : P −→ H (0) is
a G-bundle, and the two actions are compatible. The set of isomorphism classes
of such P ’s forms precisely the set Homgen(G,H) of generalized homomorphisms
from G to H. We say that P defines a Morita equivalence if P is principal also
as a G-bundle. Given φ : G −→ H represented by the bundle P , ψ : H −→ K
represented by the bundle Q, one can define the composition ψ◦φ represented by
the bundle P ⊗H Q, which is the quotient of P ×H(0) Q by the diagonal action of
H. One can easily see that Morita equivalences are precisely the isomorphisms of
the resulting category.

Note that any morphism φ : G −→ H can be viewed as a generalized morphism
whose graph Pφ consists of pairs (x, h) ∈ G(0) × H (1) such that φ(x) = β(h), with
ε(x, h) = x, η(x, x) = α(h), and the obvious actions. We say that φ is an essential
equivalence if Pφ defines a Morita equivalence.
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Examples 1. Any Lie group is a groupoid with only one object, and any manifold
can be viewed as a groupoid with identity arrows only. Any surjective submersion
π : M −→ B induces a groupoid M ×B M over M , consisting on pairs (x, y) ∈
M × M so that π(x) = π(y), with the projections as source and target, and with
the obvious multiplication. One has an obvious Morita equivalence M ×B M ∼= B
with M as defining bundle. The particular case where B is a point gives the pair
groupoid M×M . The fundamental groupoid of a manifold M is Morita equivalent
to the fundamental group of the manifold (take the universal cover of M as defining
bundle). Any transitive groupoid is Morita equivalent to a Lie group. All these
can be viewed as an instance of the gauge groupoid: given any groupoid G, and
any principal G-bundle P −→ B, one can form the gauge groupoid over P , which
is P ⊗G P (we use the notations above), with the obvious structure maps; P gives
a Morita equivalence P ⊗G P ∼= G. In (transversal) foliation theory, the holonomy
and the monodromy groupoids, as well as Haefliger’s groupoids play a central
role. The former one is etale (i.e. its source is a local diffeomorphism), while the
first two are Morita equivalent to etale ones. In general, any foliation groupoid is
Morita equivalent to an etale one [13].

Although important examples coming from foliation theory may be non-Haus-
dorff, in order to deal effectively with the differentiable cohomology of groupoids,
we need to make the following

Overall assumption. All groupoids G in this paper are assumed to be Hausdorff,
in the sense that G(0) and G(1) are Hausdorff manifolds.

1.2. Differentiable cohomology and Morita invariance

Let G be a Lie groupoid. A left representation of G is a (real or complex) vector
bundle π : E −→ G(0), endowed with an action of G whose moment map is precisely
π, and which is fiberwise linear. Denote by Rep(G) the semi-ring of isomorphism
classes of (left) representations of G. An E-valued differentiable p-cochain on G
is a smooth map c which associates to a string (3) an element c(g1, . . . , gp) ∈ Ex.
The space Cp

d (G;E) of p-cochains coincides with the space of smooth sections of
β∗

pE, and comes equipped with a differential d : Cp
d (G;E) −→ Cp+1

d (G;E),

(dc)(g1, . . . , gp, gp+1) = g1c(g2, . . . , gp+1) (5)

+
p∑

i=1

(−1)ic(g1, . . . , gigi+1, . . . , gp+1) + (−1)p+1c(g1, . . . , gp). (6)

The differentiable cohomology of G with coefficients in E, denoted H∗
d (G;E), is

defined as the cohomology of the resulting complex (C∗
d(G;E), d). When E is the

trivial line bundle, we simplify the notations to C∗
d(G) and H∗

d (G). The usual
cup-product:

(c1 ∪ c2)(g1, . . . gp+q) = c1(g1, . . . gp) ⊗ (g1 . . . gp)c2(gp+1, . . . , gp+q),
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defines a product structure Cd(G;E) ⊗ Cd(G;F ) −→ Cd(G;E ⊗ F ) which passes
to cohomology because it satisfies the Leibniz identity d(c1 ∪ c2) = d(c1) ∪ c2 +
(−1)deg(c1)c1∪d(c2). In particular, (C∗

d(G), d) is a DG algebra, H∗
d (G) is a (graded)

algebra, and H∗
d (G;E) are H∗

d (G)-modules.
The notion of representation is a basic example of transversal structure, in

the sense that any Morita equivalence φ : G −→ H induces an isomorphism φ∗ :
Rep(H)−̃→Rep(G). More generally, any generalized morphism φ ∈ Homgen(G,H)
induces a map φ∗ : Rep(H) −→ Rep(G), natural on φ. If E ∈ Rep(H), and φ is
represented by the bundle P , then the pull-back η∗E of the vector bundle E to P
is equipped with a free right H-action, and a tautological left action of G. Define
then φ∗E := η∗(E)/H which is a vector bundle over P/H = G(0), equipped with
a left action of G, i.e. a representation of G.

Theorem 1. Any Morita equivalence φ : G −→ H induces isomorphisms:

φ∗ : H∗
d (H)−̃→H∗

d (G) .

More generally, for any φ ∈ Homgen(G,H), and any E ∈ Rep(H), there is an
induced homomorphism

φ∗ : H∗
d (H;E) −→ H∗

d (G;φ∗E) .

The construction is natural on φ, and is compatible with the product structure. If
φ is a morphism of groupoids, then φ∗ is just the map induced by the composition
with φ.

Proof. We prove the theorem with trivial coefficients (in the general case, there
are obvious modifications). Let P be a bundle representing φ. For each p, q,
P ×H(0) H (q) is a (left) G-space, G(p) ×G(0) P is a (right) H-space. Remark that
the spaces of composable arrows of the associated crossed product groupoids are
related by

(G >� (P ×H(0) H
(q)))(p) = ((G(p) ×G(0) P ) >� H)(q) = G

(p) ×G(0) P ×H(0) H
(q)

.

We form a double complex C(P ) with Cp,q(P ) = C∞(G(p) ×G(0) P ×H(0) H (q)),
and with the differentials defined so that the qth row C∗,q(P ) is the complex
computing the differential cohomology of G >� (P ×H(0) ×H (q)), and similarly, the
pth column Cp,∗(P ) is the complex computing the differentiable cohomology of
(G(p) ×G(0) P ) >� H. The complexes computing the differentiable cohomologies of
G and H come as co-augmentations of the columns, and rows, respectively:

Cd(G) ε∗−→ C(P )
η∗
←− Cd(H) .

We show that the condition that P is principal as an H space implies that the
co-augmented columns of C(P ) are acyclic, hence ε∗ induces isomorphisms in
cohomology. This will give the desired map in cohomology,

φ∗ : H∗
d (G)

(ε∗)−1

−→ H∗(C(P ))
η∗
−→ H∗

d (H),
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and, if P is principal also as a G-space (i.e. is a Morita equivalence), a similar
argument proves that also η∗ induces isomorphisms in cohomology. Since each of
the groupoids (G(p) ×G(0) P ) >� H is diffeomorphic to a groupoid of type X ×B X
(choose X = G(p) ×G(0) P , B = G(p)), the acyclicity of the columns follows from
the following:

Lemma 1. For any surjective submersion π : X −→ B, and any vector bundle E
on B, the differentiable cohomology H∗

d (X ×B X;π∗E) is zero in positive degrees,
and is C∞(B;E) in degree zero.

Proof. We have to prove that the complex C∗ = C∗
d(X ×B X), together with the

co-augmentation π∗ : C∞(B) −→ C∞(X) = C0, is exact. If π admits a contin-
uous section s : B −→ X, we have the explicit homotopy h(c)(x1, . . . , xn−1) =
c(s(π(x1)), x2, . . . , xn−1). In the general case, we choose an open cover U of B
over which π admits local sections, and we use a Mayer–Vietoris argument [5]. �

To prove that φ∗ is compatible with the product structure, it suffices to find a
(bigraded) product on C(P ), such that ε∗ and η∗ are compatible with the products.
For c ∈ Cp,q, c ′ ∈ Cp ′,q ′

we define ω · η ∈ Cp+q,p ′+q ′
by

(c · c ′)(g1, . . . , gp+p ′ , x, h1, . . . , hq+q ′)
= c(g1, ..., gp, gp+1...gp+p ′x, h1, ..., hq)c ′(gp+1, ..., gp+p ′ , xh1...hq, hq+1, ..., hq+q ′).

If φ is a morphism of groupoids, denote by φ̃ : Cd(H) −→ Cd(G) the composition
by φ. To prove that φ̃ induces φ∗ in cohomology, it suffices to find a chain map
Φ : C(P ) −→ Cd(G) (where P = Pφ, see subsection 1.1) such that Φ◦ε∗ = Id, and
Φ◦η∗ = φ̃. For c ∈ Cp,q(Pφ) = C∞(G(p) ×H(0) H (q+1)) we set

Φ(c)(g1, . . . , gp+q) = c(g1, . . . , gp, 1φ(α(gp)), φ(gp+1), . . . , φ(gp+q)).

We now prove the naturality φ∗ψ∗ = (ψφ)∗ for φ ∈ Homgen(G,H),
ψ ∈ Homgen(H,K). Choose P and Q representing φ, and ψ, respectively, and
we consider a triple complex C(P,Q) with

Cp,q,r(P,Q) = C∞(G(p) ×G(0) P ×H(0) ×H
(q) ×H(0) Q ×K(0) K

(r))

defined analogous to C(P ). The double complexes C(P ), C(Q◦P ), and C(Q) ap-
pear all as co-augmentations of C(P,Q), and the first two of this co-augmentations
are quasi-isomorphisms. Moreover, they are compatible with the co-augmentations
of C(P ), C(Q◦P ), and C(Q), and then the conclusion follows by a diagram chasing.

�

Examples 2. When G is a Lie group, one recovers the ususal differentiable co-
homology of Lie groups. In particular, for discrete groups, one obtains the usual
group cohomology. By Morita invariance, one can compute the differentiable coho-
mology in many examples: transitive groupoids, fundamental groupoids, foliation
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groupoids. Related to the last class of examples, remark that if G is a Hausdorff
etale groupoid, then H∗

d (G) is (by definition) the same as Haefliger’s cohomology
[26] with coefficients in the sheaf A of smooth functions. Hence one obtains a
sheaf Ã over the classifying space BG [46] so that H∗

d (G) ∼= H∗(BG; Ã) (this was
conjectured by Haefliger and proved in [36]).

1.3. From Lie groupoids to Lie algebroids

Analogous to the construction of the Lie algebra of a Lie group, one can construct
the infinitesimal version of a Lie groupoid G. We recall here some of these con-
structions, and we refer to [32] for more details. The central role is played by the
vector bundle g which is defined as the restriction along u : G(0) ↪→ G(1) of the vec-
tor bundle Tα(G(1)) = Ker(dα : TG(1) → TG(0)) of “α-vertical” tangent vectors
on G(1). The fiber of g at x ∈ G(0) is the tangent space at 1x of G(x,−) = α−1(x).
Moreover, the differential of the target β of G induces a map of vector bundles
over G(0), the anchor map,

ρ : g −→ TM.

Any section X ∈ Γ(g) defines a vector field X̃ on G(1) by the formula

X̃(g) = (dRg)x(X(x)) ,

where Rg : G(x,−) −→ G(y,−) ⊂ G(1) is the right multiplication by g, x = β(g),
y = α(g). Denoting by Xα(G) = Γ(Tα(G(1)) the space of “α-vertical” vector
fields on G(1), and by Xα

inv(G) the subspace of right invariant vector fields, i.e.
vector fields X ∈ Xα(G) with the property that X(gh) = (dRh)g(X(g)) for all
composable arrows g, h of G, the construction above defines an isomorphism:

Γ(g)−̃→Xα
inv(G) ⊂ X (G(1)), X �→ X̃ .

Expressing the Lie brackets in terms of flows (see below) we see that Γ(g) ∼=
Xα

inv(G) is closed under the usual Lie bracket of vector fields on G(1). Hence Γ(g)
comes equipped with a Lie bracket [· , ·], and it is not difficult to see that it is
related to the anchor map by the formula:

[X, fY ] = f [X,Y ] + ρ(X)(f) · Y (7)

for all X,Y ∈ Γ(g) and f ∈ C∞(G(0)). The resulting structure:

(g, ρ, [· , ·])
is called the Lie algebroid of G.

The connection between (the sections of) g and G is given by the flows. Given
X ∈ Γ(g), we denote by φX the flow of X̃ on G(1), and, for x ∈ G(0), put βX(t, x) =
βφX(t, x). Then βX is a flow on G(0), namely the flow of the vector field ρ(X),
while the properties of X̃ show that

φX(t, g) = φX(t, x)g, φX(t, x) ∈ G(x, βX(t, x))
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where x = β(g). We then see that the Lie bracket in Γ(g) is given by

[X,Y ](x) =
d

dt

d

ds
|t=s=0φX(t, βY (s, βX(−t, x)))φY (s, βX(−t, x))φX(−t, x). (8)

An action of G on a vector bundle E over G(0) has an infinitesimal version:

LX(s)(x) = (
d

dt
)

t=0φX(t, x)−1s(βX(t, x)) ∈ Ex , (9)

which defines a pairing Γ(g)× Γ(E) −→ Γ(E), (X, s) �→ LX(s). These derivatives
of sections of E along sections of g satisfy the basic relations:

LfX(s) = fLX(s) (10)
LX(fs) = fLX(s) + LX(f)s (11)
L[X,Y ] = [LX , LY ] (12)

for all X,Y ∈ Γ(g), f ∈ C∞(G(0)), s ∈ Γ(E).

1.4. Algebroids and their cohomology

A Lie algebroid over a manifold M is a triple

(g, [· , ·] , ρ)

consisting of a vector bundle g over M , a Lie bracket [· , ·] on the space Γ(g), and
a morphism of vector bundles ρ : g −→ TM (the anchor of g), so that (7) holds
true for all X,Y ∈ Γ(g) and f ∈ C∞(M).

A representation of g is a vector bundle π : E −→ M , together with a bilinear
map (called the infinitesimal action of g on E)

Γ(g) × Γ(E) −→ Γ(E), (X, s) �→ LX(s),

satisfying the relations (10)–(12) for all X,Y ∈ Γ(g), f ∈ C∞(M), s ∈ Γ(E).
Isomorphism classes of representations of g, with the direct sum, and tensor prod-
uct as operations, form a semi-ring Rep(g). It actually comes endowed with an
involution ∗: E∗ is the dual of the conjugate of E (hence, in the real case it is just
the dual of E), with LX(ω)(s) = LX(ω(s)) − ω(LX(s)), for ω ∈ Γ(E∗), s ∈ Γ(E).
With this, a metric on E is called invariant if the induced isomorphism of vector
bundles E∗ ∼= E is compatible with the action of g.

Of course, the motivating example is the Lie algebroid of a Lie groupoid G,
and the representations induced by the representations of G. As terminology, we
call integration of g, any Lie groupoid G so that g = Lie(G). In contrast with the
theory of Lie groups, not all Lie algebroids are integrable. See however [37] for
a large class of positive results. For instance one knows that, if g is integrable,
then it has a unique integration G which is α-simply connected (i.e. whose α-fibers
are simply connected). Moreover, in this case any representation E of g can be
uniquely integrated to a representation of G (this is e.g. a very particular case of
Theorem 3.6 in [37]); hence one has an isomorphism Rep(G) ∼= Rep(g).
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Let E be a representation of the Lie algebroid g. An E-valued p-cochain on g
is a C∞(M)-multilinear antisymmetric map

Γ(g) × . . . × Γ(g) � (X1, . . . , Xp) �→ ω(X1, . . . , Xp) ∈ Γ(E).

The space Cp(g;E) of such cochains coincides with the space of sections of the
vector bundle Λpg∗ ⊗ E over M , and comes equipped with a differential d :
Cp(g;E) −→ Cp+1(g;E),

d(ω)(X1, . . . , Xp+1) =
∑
i<j

(−1)i+j−1ω([Xi,Xj ],X1, . . . , X̂i, . . . , X̂j , . . . Xp+1))

+
p+1∑
i=1

(−1)iLXi
(ω(X1, . . . , X̂i, . . . , Xp+1)). (13)

Define the cohomology of g with coefficients in E, denoted H∗(g;E), as the coho-
mology of the resulting complex C∗(g;E). When E is the trivial line bundle (with
the action LX(f) = ρ(X)(f), X ∈ Γ(g), f ∈ C∞(M)), we simplify the notations
to C∗(g) and H∗(g).

Note that, as in the case of differentiable cohomology, the usual wedge product
(defined fiberwise) defines product structures H∗(g;E)⊗H∗(g;F ) −→ H∗(g;E ⊗
F ). In particular, C∗(g) is a DG algebra, H∗(g) is a (graded) algebra, and H∗(g;E)
are H∗(g)-modules. Moreover, the usual Cartan calculus extends to C∗(g). More
precisely, any X ∈ Γ(g) induces Lie derivatives and interior products

LX : C∗(g) −→ C∗(g), iX : C∗(g) −→ C∗−1(g) ,

LX(ω)(X1, . . . Xp) =
∑

ω(X1, . . . , Xi−1, [X,Xi],Xi+1, . . . , Xp) −
− LX(ω(X1, . . . , Xp))

iX(ω)(X1, . . . , Xp−1) = ω(X,X1, . . . , Xp−1).

The Lie derivatives are derivations of degree 0, the interior products are derivations
of degree −1, and they satisfy the Cartan relations

diX + iXd = LX (14)
[LX , LY ] = L[X,Y ] (15)
[LX , iY ] = i[X,Y ] (16)
[iX , iY ] = 0 . (17)

Examples 3. Of course, Lie algebras and their cohomology are basic examples.
Another extreme example is the tangent Lie algebroid TM of a manifold (when
ρ is the identity). Then one recovers the usual DeRham cohomology, while its
representations are precisely vector bundles over M endowed with a flat connec-
tion. Another important class of examples are the Lie algebroids associated to
Poisson manifold (see section 4). Foliations (M,F) can be naturally viewed as Lie
algebroids with g = F the vectors tangent to the leaves, and ρ is the inclusion. Its
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representations are precisely the foliated vector bundles over (M,F) [30, 38], while
its cohomology with constant coefficients is well known under the name of foliated
or leafwise cohomology, denoted H∗(F) (see e.g. [29, 38, 39, 48]). The normal bun-
dle ν of F a basic example of representation of F (see below), and the cohomology
H∗(F ; ν) is known to be relevant to deformations of foliations [28]. The α-simply
connected integration of F is usually called the monodromy groupoid of F (see
[13] for a description of all groupoids integrating F). Note that when F = F(π) is
the foliation induced by a submersion π : M −→ B with connected fibers, then the
pull-back π∗E of any vector bundle over B is naturally a representation of F(π).
Moreover, if the fibers of π are simply connected, then any representation of π is
of this type. Indeed, in this case the α-simply connected integration of F(π) is
just M ×B M , which is Morita equivalent to B (see Examples 1).

Examples 4 (Bott representations). If E ⊂ g is an ideal (i.e. [ΓE,Γg] ⊂ ΓE),
on which the anchor vanishes, then LX(V ) = [X,V ] defines an action of g on E.
If E is abelian (i.e. [ΓE,ΓE] = 0), then it factors through an action of h = g/E on
E. This applies in particular to the kernel of the anchor map of a regular Poisson
manifold (see the last section).

A similar construction applies to the quotient vector bundle ν = g/h, where
h ⊂ g is any Lie sub-algebroid (i.e. closed under the bracket). In this case, the
Bott-type formula [4] LX(Ȳ ) = [X,Y ] makes ν into a representation of h.

Examples 5. Let π : P −→ M be a submersion with connected fibers, and let g
be a Lie algebroid over M . Recall [34] that one has an induced pull-back algebroid
π!g over P . Its fiber at p ∈ P consists of pairs (X,V ) with X ∈ gπ(p), V ∈ TpP
satisfying ρ(X) = (dπ)p(V ), its anchor is (X,V ) �→ V . To describe the bracket,
we represent the sections of Γπ!g as sums of elements of type φπ∗(X), with φ ∈
C∞(P ), X ∈ Γg, and we put:

[(φπ∗(X), V ), (ψπ∗(Y ),W )]=(φψπ∗([X,Y ])+LV (ψ)π∗(Y )−LW (φ)π∗(X), [V,W ]).

(of course one has to use sums here). We leave to the reader to show that, for
any E ∈ Rep(g), the pull-back bundle π∗(E) is naturally a representation of π!g.
The map Γg −→ Γπ!g induces a homomorphism H∗(g;E) −→ H∗(π!g;π∗E) for
any representation E. Note that if π has simply connected fibers, then we have
an isomorphism π∗ : Rep(g) ∼= Rep(π!g) (use the case mentioned at the end of
Examples 3, when g = 0 and π!(0) = F(π) is the foliation defined by the fibers
of π). This is only one of the reasons for which any notion of Morita equivalence
for Lie algebroids should declare g and π!g to be equivalent. Hence the following
lemma, which will be useful later, also shows that Morita invariance of cohomology
can be expected under certain n-connectedness condition.

Theorem 2. If π : P −→ M is a submersion with homologically n-connected
fibers, then π∗ : Hk(g) −→ Hk(π!g) is an isomorphism in all degrees k ≤ n. The
same holds with general coefficients.
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Proof. We first assume that g = 0; then π!g is the foliation F(π) defined by the
fibers of π. In general, for any foliation F on P , H∗(F) is isomorphic to the
cohomology of P with coefficients on the sheaf A of smooth functions on P which
are locally constant along leaves. Indeed, U �→ C∗(F|U ) are fine sheaves, and the
resulting complex of sheaves is a resolution of A, as can be seen by restricting
to foliation charts; for more details, see e.g. [39]. In our case, A is precisely the
pull-back of the sheaf of smooth functions on M , and the result is a very special
case of a known criterion in sheaf theory (see e.g. 1.9.4 in [1]).

In general, we need the spectral sequence associated to a sub-algebroid h ⊂ g.
At the first level, it is

Hp(h; Λqν∗) =⇒ Hp+q(g) .

Here ν = g/h is as in Examples 4. This extends the standard spectral sequence
for Lie algebras, and the well-known foliated spectral sequence [29] (when h = F
is a foliation, and g = TM). To construct it, we consider the filtration F∗C∗ of
C∗(g) with F0C

∗ = C∗(g), and, for q ≥ 1,

FqC
n = {ω ∈ Cn(g) : ω(X1, . . . , Xn) = 0 if X1, . . . , Xn−q+1 ∈ Γh}.

At the 0th level we clearly have FqC
n/Fq+1C

n ∼= Cn−q(h; Λqν∗), and, a short
computation shows that the boundary is precisely the one computing H∗(h; Λqν∗).

With the notations of the statement, F(π) is obviously a Lie sub-algebroid of
π!g, and we consider the associated spectral sequence

Ep,q
1 = Hp(F(π);π∗(Λqg∗)) =⇒ Hp+q(π!g) .

By the case g = 0 we know that Ep,q = 0 for 1 ≤ p ≤ n, hence Hk(π!g) in degrees
k ≤ n is isomorphic to the cohomology of the complex (H0(F(π);π∗(Λ∗g∗)), d1),
which is nothing but C∗(g). The rest is standard. �

2. A Van Est isomorphism

The most general form of the Van-Est isomorphism states that, if a connected Lie
group G acts properly (from the right) on a contractible manifold X, then

H∗
d (G) ∼= H∗

G−inv(X) , (18)

where the right hand side is the cohomology defined by the complex Ω∗(X)G of
G-invariant forms on X (cf. 5.6 in [3]). In the case where X = G/K with K ⊂ G
maximal compact subgroup, Ω∗(G/K)G = C∗(g,K) is (by definition) the complex
computing the relative Lie algebra cohomology, and (18) takes the well-known form
[17, 18, 19, 26] H∗

d (G) ∼= H∗(g,K).
In this section we improve (18), extend it to groupoids, and present some

applications.
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2.1. The proper case

In this subsection we prove a particular case of our general Van Est isomorphism,
which is an analogue of the vanishing of H∗

d (G) for compact Lie groups G. Recall
that a groupoid G is called proper if the map (α, β) : G(1) −→ G(0)×G(0) is proper.

Proposition 1. For any proper Lie groupoid G, and any E ∈ Rep(G),

Hk
d (G;E) = 0, ∀ k ≥ 1.

Proof. We fix a smooth Haar system λ for G [45], i.e. a family λ = {λx : x ∈ G(0)}
of smooth measures λx supported on the manifolds G(−, x) = β−1(x), with the
property that:

(i) for any φ ∈ C∞
c (G(1)), the formula

Iλ(φ)(x) =
∫

G(−,x)

φ(g)dλx(g)

defines a smooth function Iλ(φ) on G(0);
(ii) λ is left invariant, i.e., for any g ∈ G(x, y), and any φ ∈ C∞

c (G(−, y)), one
has ∫

G(−,x)

φ(gh)dλx(h) =
∫

G(−,y)

φ(h)dλy(h).

The existence of Haar system for Lie groupoids is well known (see e.g. the prelim-
inaries of [13], or [44]). The properness of G ensures the existence of a “cut-off”
function for G, i.e. a smooth function on G(0) satisfying:

(iii) β : supp(c◦α) −→ G(0) is proper;
(iv)

∫
G(−,x)

c(α(g))dλx(g) = 1 for all x ∈ G(0).
(see e.g. the appendix in [47] for the construction of such functions). We now

check that the following formula defines a contraction of C∗
d(G;E):

h(φ)(g1, . . . , gn) =
∫

G(−,β(g1))

a · φ(a−1, g1, . . . , gn)c(α(a))dλβ(g1)(a) .

The integration is defined because of (iii) above, and defines a smooth section
h(φ), by (ii) above. One has:

h(d(φ))(g1, . . . , gn) =
∫

G(−,x)

a · {a−1φ(g1, . . . , gn) − φ(a−1g1, g2, . . . , gn) −

−
n−1∑
i=1

(−1)iφ(a−1, g1, . . . , gigi+1, . . . , gn) +

+ (−1)n+1φ(a−1, g1, . . . gn−1)}c(α(a))dλx(a) ,
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which, by (iv) above, and the left invariance (ii) equals to

φ(g1, . . . , gn) −
∫

G(−,β(g2))

g1aφ(a−1, g2, . . . , gn)c(α(a))dλβ(g2)(a)

−
n−1∑
i=1

(−1)i

∫
G(−,β(g1))

aφ(a−1, g1, . . . , gigi+1, . . . , gn)c(α(a))dλβ(g1)(a)

+ (−1)n+1

∫
G(−,β(g1))

aφ(a−1, g1, . . . , gn1)c(α(a))dλβ(g1)(a)

= φ(g1, . . . , gn) − g1h(φ)(g2, . . . , gn)

−
n−1∑
i=1

(−1)ih(φ)(g1, . . . , gigi+1, . . . , gn) + (−1)n+1h(φ)(g1, . . . , gn−1)

= φ(g1, . . . , gn) − d(h(φ))(g1, . . . , gn),

hence the desired formula hd + dh = id. �

2.2. A Van-Est theorem

We now state and prove the extension of the Van Est isomorphism (18), mentioned
at the begining of this section.

Let P be a right G-space. We call it proper if the map P ∗ G(1) −→ P × P ,
(g, p) �→ (gp, p) is proper. Note that, if the moment map π : P −→ G(0) of the
action is a submersion, then G acts on the foliation F(π) induced by π on P . More
precisely, for any p ∈ P , and any arrow g : x −→ y of G ending at y = π(p), the
differential at p of the multiplication π−1(y) −→ π−1(x) by g induces a map

g : F(π)p −→ F(π)pg . (19)

Hence it makes sense to talk about the complex C∗
G(F(π)) of G-invariant foliated

forms (a subcomplex of C∗(F(π))); denote by H∗
G(F(π)) the resulting cohomology.

Remark that the product structure on the foliated cohomology induces a product
structure on H∗

G(F(π)). Also, if E ∈ Rep(G), then π∗E is a representation of
F(π)) (since it is a pull-back via π), and there are obvious versions with coefficients,
for C∗

G(F(π);E) and H∗
G(F(π);E).

Theorem 3. Let G be a Lie groupoid, and let P be a proper G-space whose
moment map π : P −→ G(0) is a submersion with connected fibers. For any
E ∈ Rep(G) there is a map compatible with the product structure

ΦP : H∗
d (G;E) −→ H∗

G(F(π);E).

Moreover, if the fibers of π are cohomologically n-connected (i.e. have trivial co-
homology in degrees ≤ n), then ΦP is an isomorphism in degrees ∗ ≤ n, and is
injective in degree n + 1.
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In particular, if π has contractible fibers, then ΦP is an isomorphism in all
degrees.

Proof. We assume that the coefficients are trivial (in general there are obvious
modifications). Consider the space P ∗G(p) consisting of pairs (p,−→g ) with p ∈ P ,−→g ∈ G(p) an arrow of type (3) with π(p) = x. This space comes equipped with
a foliation F(p), defined by the projection into G(p). In particular, F(0) = F(π).
We form a double complex C which, in bi-degree (p, q), is

Cp,q = Cq(F(p)) = C∞(P ∗ G
(p); ΛqF(p)∗).

We now describe the differentials (but we leave to the reader the lengthy but
straightforward verification of the compatibility between the horizontal and the
vertical differentials).

1. Columns: the pth column is just the complex C∗(F(p)) computing the
foliated cohomology. Note that it comes with Cp

d (G) as a co-augmentation (as the
kernel of the differential C0(F(p)) −→ C1(F(p))):

0 −→ C∞(G(p)) ε−→ C0(F(p)) −→ C1(F(p)) −→ . . . (20)

2. Rows: the qth row comes with Cq
G(F(π)) as a co-augmentation:

C∞(P ; ΛqF(0)∗)G η−→ C∞(P ; ΛqF(0)∗) −→ C∞(P ∗ G
(1); Λq F(1)∗) −→ . . .

(21)
To define this, we consider the crossed product groupoid P >� G. The action (19)
of G on F(π) = F(0) translates into the fact that F(0) (hence also ΛqF(0)∗)
is a representation of P >� G. Note also that (P >� G)(p) = P ∗ G(p), and F(p),
as a vector bundle, is the pull-back of F(0). Now, the co-augmentation η is the
obvious inclusion, while the rest of (21) (i.e. the qth row C∗,q) is defined as the
complex C∗

d(P >� G; ΛqF(p)∗) computing the differentiable cohomology of P >� G
with coefficients.

Since the properness of P as a G-space is equivalent to P >� G being proper,
Proposition 1 implies that (21) is exact. Hence the inclusion η : C∗

G(F(π)) −→ C
induces isomorphisms:

η : H∗
G(F(π)) ∼= H∗(C) . (22)

Combined with the inclusion ε : C∗
d(G) −→ C, this induces the desired map:

ΦP : H∗
d (G) ε−→ H∗(C)

η−1

−→ H∗
G(F(π)) . (23)

To prove that ΦP is compatible with the products, note that Cp,q ⊗ Cp ′,q ′ −→
Cp+p ′,q+q ′

,

(ω · η)(x, g1, . . . , gp+p ′) =
ω(x, g1, . . . , gp) ∧ (g1 . . . gp)−1η(xg1 . . . gp, gp+1, . . . , gp+p ′),

defines a product on C, and ε and η are maps of DG algebras.
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For the second part of the theorem, the spectral sequence of the double complex
C, combined with (22), provides us with a spectral sequence

Ep,q
2 = Hp(Hq(F(∗))) =⇒ Hp+q

G (F(π)),

with Ep,0
2 = Hp

d (G), and with ΦP as edge maps. Since each F(p) is a foliation
defined by a submersion with homologically n-connected fibers, it follows from
Theorem 2 (applied to the zero algebroid) that Ep,q

2 = 0 for 1 ≤ q ≤ n, hence the
statement follows by the well known spectral-sequence arguments. �

Remark 1 (connection with classifying spaces). This result is undoubtedly
related to the classifying space BG of G [46], or, even better, to the classifying
space for proper actions, familiar to the people working on the Baum-Connes
conjecture. We discuss here the classifying space only. In general it is only defined
up to homotopy, and this is important for choosing explicit models (depending on
the context). Relevant for us is that it is the base space of a principal G-bundle
σ : EG −→ BG, whose moment map π : EG −→ G(0) has contractible fibers.
We say that G has a smooth classifying space BG if these choices can be made
in the smooth category. Note that in this case, there is a natural (classifying?)
Lie algebroid g̃ over BG, namely the Lie algebroid of the gauge groupoid (see
Examples 1) of EG. Alternatively, F(σ) = π∗g naturally acts on F(π), and g is
the quotient algebroid. We deduce the following result, which extends Haefliger’s
conjecture mentioned in the last part of our Examples 2.

Corollary 1. Let G be a Lie groupoid with smooth classifying space BG, and let
g̃ be the induced Lie algebroid over BG. Then there are isomorphisms compatible
with the product structures:

H∗
d (G) ∼= H∗(g̃).

2.3. Application: relation between differentiable and algebroid coho-
mology

Let G be a Lie groupoid. Roughly speaking, Lie algebroid cocycles can be viewed
as an infinitesimal version of groupoid cocycles. This translates into the existence
of a map,

Φ : Hp
d (G) −→ Hp(g),

which we call the Van Est map. In the case of Lie groups is was constructed by
Van Est [17, 18], and it was extended to Lie groupoids by Weinstein and Xu [50].
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Explicitly, Φ is defined at the chain level by1

Φ(c)(X1, . . . , Xp) =
∑

σ∈Sp

sign (σ)RXσ(p) . . . RXσ(1)
(c), (24)

for all c ∈ Cp
d (G), X1, . . . , Xp ∈ Γ(g). Here, for X ∈ Γ(g) and c ∈ Cp

d (G),
RX(c) ∈ Cp−1

d (G) is given by

RX(c)(g2, . . . , gp)) =
∂c(−, g2, . . . , gp)

∂X
(β(g2)) , (25)

the derivative at the identity of c(−, g2, . . . , gp) : G(β(g2),−) −→ C, along the
vector field on G((β(g2),−) induced by X.

This construction, together with the fact that it is an isomorphism in degree
p = 1 provided G is α-simply connected, are part of the main results/tools of [50].
In the same paper it is conjectured that, if G has 2-connected α-fibers, then Φ
is an isomorphism in degree p = 2. In this section we explain how the Van Est
isomorphism of the previous section clarifies the connection between differentiable
and algebroid cohomology (see the theorem below).

Let us first remark that there is a version of Φ in the presence of coeffi-
cients E: one only has to replace c(−, g2, . . . , gp) in formula (25) by the function
G(β(g2),−) −→ Eβ(g2), g �→ g−1c(g, g2, . . . , gp).

Theorem 4. Let G be an α-connected Lie groupoid, and let E be a representation
of G. The formula (24) defines a map

Φ : Hp
d (G;E) −→ Hp(g;E)

which is compatible with the product structures.
Moreover, if the α-fibers of G are homologically n-connected, then Φ is an

isomorphism in degrees p ≤ n, and is injective for p = n + 1.

Proof. We apply Theorem 3 to the right G- space P = G(1), with π = α as moment
map, and the obvious action. Note that P is always proper as a G-space, and
C∗

G(F(π);E) is isomorphic to C∗
d(g;E) (since F(π) ∼= β∗g). Hence the only thing

we have to prove is that the map ΦP of Theorem 3 coincides with the map Φ (24) of
the statement. We use the notations from the proof of Theorem 3, with P = G(1),
and, as there, we also assume that the coefficients are trivial (as explained above,
the difference with the general case is mainly notational). Since F(p) ∼= β∗

p+1g

(see (4)), C stands for the double complex Cp,q = C∞(G(p+1); Λq(β∗g∗)), and we
view its elements as C∞(G(0)) multilinear maps

Γ(g) × . . . × Γ(g) � (X1, . . . , Xq) �→ c(X1, . . . , Xq) ∈ C∞(G(p+1)).

1 As pointed out to me by Alan Weinstein, this is well defined (more precisely, it is tensorial)
only if c is a normalized groupoid cocycle, i.e. c vanishes if one of the entries is a unit. So,
in this section, all the terms which depend on strings of arrows of G, are assumed to satisfy
the normalization condition. This is all right because normalized cocycles compute the same
cohomology as non-normalized ones.



Vol. 78 (2003) Differentiable and algebroid cohomology 699

We need the explicit formulas for the horizontal boundary dh (along q), and the
vertical one dv (along p) of C. First of all it is not difficult to see that

dv(c)(X1, . . . , Xq) = d
′
(c(X1, . . . , Xq)) , (26)

where

d
′
: C∞(G(p)) −→ C∞(G(p+1)),

d
′
(c)(g1, . . . gp+1) =

p∑
i=1

(−1)ic(g1, . . . , gigi+1, . . . , gp+1) + (−1)p+1c(g1, . . . , gp).

Secondly, since F(p) ∼= β∗
p+1g, we see that any section X ∈ Γ(g) induces a vector

field X̃ on G(p+1) which is tangent to F(p). Explicitly, the flow of X̃ is given by:

φX̃(g1, . . . , gp+1) = (φX(t, g1), g2, . . . , gp+1). (27)

Since dh is the boundary of the complex C(F(p)), we see that the formula for dh

is the usual one:

dh(c)(X1, . . . , Xq+1) =
∑
i<j

(−1)i+j−1ω([Xi,Xj ],X1, . . . , X̂i, . . . , X̂j , . . . Xq+1))

+
q+1∑
i=1

(−1)iLXi
(ω(X1, . . . , X̂i, . . . , Xq+1)), (28)

with the warning that here LX stands for the derivation on C∞(G(p+1)) determined
by X̃. Note also that, using these derivations, (25) is:

RX(c) = LX(c)◦u, ∀c ∈ C∞(G(p+1)), (29)

where
u : G

(p) −→ G
(p+1)

, u(g1, . . . , gp) = (β(g1), g1, . . . , gp).

Looking at the construction (23) of ΦP , to prove that it coincides (in cohomology)
with Φ, it suffices to construct a chain map Φ̃ : C −→ C(g) such that Φ̃◦ε = ΦP ,
and η◦Φ̃ = id. For c ∈ Cp,q, we define Φ̃(c) ∈ Cp+q(g) by

Φ̃(c)(X1, . . . , Xp+q)

=
∑

σ∈S(p,q)

sign (σ)Φ(c(Xσ(1), . . . , Xσ(q))◦u)(Xσ(q+1), . . . , Xσ(q+p)),

where the sum is over all (p, q)-shuffles. E.g., for c ∈ Cp,1,

Φ̃(c)(X1, . . . , Xp+1) =
∑

i

(−1)i+1Φ(c(Xi)◦u)(X1, . . . , X̂i, . . . , Xp+1), (30)

and, for c ∈ Cp,2,

Φ̃(c)(X1, ...,Xp+2) =
∑
i<j

(−1)i+j+1Φ(c(Xi,Xj)◦u)(X1, ..., X̂i, ..., X̂j , ...,Xp+2).

(31)
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The only serious challenge is to prove that Φ̃ defines a chain map from (the total
complex of) C into C(g), i.e. we have to prove that

d(Φ̃(c)) = (−1)qΦ̃(dv(c)) + Φ̃(dh(c)), ∀ c ∈ Cp,q. (32)

The proof of (32) is actually a combinatorial computation which is based only on
the following properties of the map Φ:

(p1). Φ : Cd(G) −→ C(g) is a chain map;
(p2). Φ(c) = 0 if c(g1, . . . , gp) does not depend on the variable g1. Note that,

together with (p1) this implies that dΦ(c◦u) = Φ(d
′
(c)◦u)−Φ(c) for all c ∈ Cd(G);

(p3). for all c ∈ C∞(G(p+1)) one has:
∑

i

(−1)i+1Φ(RXi
(c))(X1, . . . , X̂i, . . . , Xp+1) = Φ(c)(X1, . . . , Xp+1).

All these properties are easy to check (and have been remarked also in [50]). Since
the proof of (32) for q = 1 contains all the intricacies of the general case, to simplify
the exposition we restrict ourselves to this particular case. Hence, let c ∈ Cp,1.
Then d(Φ̃(c))(X1, . . . , Xp+2) equals to

∑
i<j

(−1)i+j+1Φ̃(c)([Xi,Xj ],X1, . . . , X̂i, . . . , X̂j , . . . Xp+2)

+
∑

i

LXi
(Φ̃(c)(X1, . . . , X̂i, . . . , Xp+2),

and, by the definition of Φ̃ (see the particular formula (30) above), this is
∑
i<j

(−1)i+j+1Φ(c([Xi,Xj ])◦u)(X1, ..., X̂i, ..., X̂j , ...,Xp+2)

+
∑

r<i<j

(−1)i+j+1(−1)rΦ(c(Xr)◦u)([Xi,Xj ],X1, ..., X̂r, ..., X̂i, ..., X̂j , ...Xp+2)

+
∑

i<r<j

(−1)i+j+1(−1)r+1Φ(c(Xr)◦u)([Xi,Xj ],X1, ..., X̂i, ..., X̂r, ..., X̂j , ...Xp+2)

+
∑

i<j<r

(−1)i+j+1(−1)rΦ(c(Xr)◦u)([Xi,Xj ],X1, ..., X̂i, ..., X̂j , ..., X̂r, ...Xp+2)

+
∑
r<i

(−1)i(−1)r+1LXi
(Φ(c(Xr)◦u)(X1, ..., X̂r, ..., X̂i, ...,Xp+2))

+
∑
i<r

(−1)i(−1)rLXi
(Φ(c(Xr)◦u)(X1, ..., X̂i, ..., X̂r, ...,Xp+2)).

Now, fixing r, by the definition of the differential of C(g), the sum (over i) of
the last five terms equals (−1)rd(Φ(c(Xr)◦u))(X1, . . . , X̂i, . . . , Xp+2), which, by
(p2) and (26), is (−1)rΦ(dv(c)(Xr)◦u) + (−1)r+1Φ(c(Xr)) applied to (X1, . . . , X̂r,
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. . . , Xp+2). Hence our big sum equals to

∑
i<j

(−1)i+j+1Φ(c([Xi,Xj ])◦u)(X1, . . . , X̂i, . . . , X̂j , . . . , Xp+2) (33)

+
∑

r

(−1)r+1Φ(c(Xr))(X1, . . . , X̂r, . . . , . . . , Xp+2) (34)

+
∑

r

(−1)rΦ(dv(c)(Xr)◦u)(X1, . . . , X̂r, . . . , Xp+2).

Since the last term is −Φ̃(dv(c))(X1, . . . , Xp+2) (cf. (p3) above), we are left with
showing the connection of the terms (33) and (34) with the horizontal boundary
of C. Let us compute Φ̃(dh(c))(X1, . . . , Xp+2). By definition (see (31) above), it
is ∑

i<j

(−1)i+j+1Φ(dh(c)(Xi,Xj)◦u)(X1, . . . , X̂i, . . . , X̂j , . . . , Xp+2).

By the formulas (28) and (29), this is equal to

=
∑
i<j

(−1)i+j+1Φ(c([Xi,Xj ])◦u)(X1, . . . , X̂i, . . . , X̂j , . . . , Xp+2)

−
∑
i<j

(−1)i+j+1Φ(RXi
(c(Xj)))(X1, . . . , X̂i, . . . , X̂j , . . . , Xp+2) (35)

+
∑
i<j

(−1)i+j+1Φ(RXj
(c(Xi)))(X1, . . . , X̂i, . . . , X̂j , . . . , Xp+2). (36)

Replacing the pair (i, j) by (j, i) in (36), we see that the sum of (35) and (36) is
the sum over j of

(−1)j

{ ∑
i<j

(−1)iΦ(RXi
(c(Xj))(X1, . . . , X̂i, . . . , X̂j , . . . , Xp+2)

+
∑
i>j

(−1)i+1Φ(RXi
(c(Xj))(X1, . . . , X̂j , . . . , X̂i, . . . , Xp+2)

}
.

By (p3) this is equal to

∑
j

(−1)j+1Φ(c(Xj))(X1, . . . , X̂j , . . . , Xp+2),

hence Φ̃(dh(c))(X1, . . . , Xp+2) is precisely the sum of the two expressions (33) and
(34). In conclusion, we get the desired relation d(Φ̃(c)) = Φ̃(dh(c)) − Φ̃(dv(c)). �



702 M. Crainic CMH

Remark 2. The formulas (27) and (29) in the previous proof show that the map
Φ can be expressed in terms of the flows (see subsection 1.3) of sections of g. More
precisely, for all X1, . . . , Xp ∈ Γ(g), and c ∈ Cp

d (G), RXp
. . . RX1(c)(x) equals to

the derivative at t1 = . . . = tp = 0 of

c(φX1(t1, βX2(t2, βX3(t3, . . . , βXp
(tp, x) . . .))) ,

φX2(t2, βX3(t3, . . . , βXp
(tp, x) . . .)) ,

. . . ,

φXp
(tp, x))

In the presence of coefficients E, one has to transport the previous element into
the fiber Ex, i.e. to multiply it by the element

φX1(t1, φX2(t2, φX3(t3, . . . , φXp
(tp, x) . . . )))−1.

Remark 3. Note that, as in the case of classical “van-Est isomorphisms” [17, 18,
19], it is rather the method that gives us the maximal information. For instance,
the previous double complex induces a spectral sequence which converges to the
algebroid cohomology, and the theorem above is just a simple consequence. By
the usual arguments of algebraic topology, if the fibers of G are (homological)
n + 1-spheres we obtain a Gysin-type long exact sequence relating differentiable
and algebroid cohomology. Note also that the lower non-trivial part of the spectral
sequence provides us with a description of the image of the Van Est map in degree
n + 1. To explain this, we consider n + 1 α-loops in G i.e. smooth maps γ :
Sn+1 −→ G with the property that α◦γ = x is constant. For any such γ we have
a map

∫
γ

: Hn+1(g) −→ R, [ω] �→ ∫
Sn+1 γ∗ω|L, where L = G(x,−). Note that

∫
γ

depends only on the homotopy class of γ inside L. In particular, if the homotopy
class of γ is an element of finite order, then

∫
γ

= 0. The conclusion is:

Corollary 2. If the α-fibers of G are (homologically) n-connected, then ω ∈
Hn+1(g) is in the image of the Van Est map if and only if

∫
γ

ω = 0 for all n + 1
α-loops γ.

Remark 4 (compact supports). In relation with the cyclic cohomology of
the convolution algebra, it is relevant to have a compactly supported version of
differentiable cohomology and of our results. We prefer to call this cohomology
with compact supports a homology theory, and denote it by Hd

∗ (G) instead of
H∗

cpt,d(G); this is in agreement also with the homology theory described in [12],
which we recover when G is étale. The definition of Hd

∗ (G), in analogy with the
definition of the convolution product [45], depends on the choice of a smooth Haar
system λ for G. For the definition, see the proof of our Proposition 1. The (chain)
complex Cd

∗ (G) defining this homology consists of the differentiable cochains with
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compact supports, while the differential is given by

(dc)(g1, . . . , gp) =
∫

c(a−1, g1, . . . , gp)dλβ(g1)(a) (37)

+
p∑

i=1

(−1)i

∫
c(g1, . . . , gia, a−1, gi+1, . . . , gp)dλα(gi)(a) (38)

+ (−1)p+1

∫
c(g1, . . . , gp, a)dλα(gp)(a). (39)

A compactly version of our proofs shows that:

1. Hd
∗ (G) is Morita invariant. In particular (compare to the similar statement

for convolution algebras [40]), it does not depend on the choice of the smooth Haar
system λ.

2. Denote by q the dimension of g, and by H∗
cpt(g) the algebroid cohomology

with compact supports. Assume we are in the orientable case (in general, some
twisting in the algebroid cohomology is necessary). If G has homologically n-
connected fibers, then one has isomorphisms Hd

k (G) ∼= Hq−k
cpt (G) for all 0 ≤ k ≤ n.

2.4. Application: an integrability result

As an application of Theorem 4, we show the following integrability result. In
the case of Lie algebras this result is precisely the argument given by Van Est
[17] for a short proof of Lie’s third theorem. An immediate consequence will be a
more conceptual proof and a slight improvement of Dazord–Hector’s integrability
criterion for Poisson manifolds (this will be explained in the last section).

Theorem 5. Let
0 −→ l

i−→ h
π−→ g −→ 0 (40)

be an exact sequence of Lie algebroids, with l abelian. If g admits a Hausdorff inte-
gration whose α-fibers are simply connected and have vanishing second cohomology
groups, then h is integrable (and the integration can be chosen to be Hausdorff and
α-simply connected).

Proof. We need the following remarks:

1. Given a representation E of a Lie algebroid g over M , and ω ∈ C2(g;E)
closed, one can form a twisted semi-direct product Lie algebroid g � ω E. As a
vector bundle it is g ⊕ E, with the anchor (X,V ) �→ ρ(X), and with the bracket

[(X,V ), (Y,W )] = ([X,Y ], LX(W ) − LY (V ) + ω(X,Y )] ,

for X,Y ∈ Γ(g), V,W ∈ Γ(E). Moreover, the isomorphism class of g� ω E depends
only on the cohomology class [ω] ∈ H2(g;E). In the trivial case (ω = 0), one
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obtains the usual semi-direct product g � E. These remarks are well-known [32]
and follow by direct computation.

2. Similarly, given a representation E of a Lie groupoid G over M , and c ∈
C2

d(G;E) closed and normalized, one forms the groupoid G � c E over M , whose
space of objects is G(1) ×G(0) E, with the product

(g1, v1)(g2, v2) = (g1g2, g
−1
1 · v1 + v2 + (g1g2)−1 · c(g1, g2)) .

Moreover, Lie(G � c E) ∼= g � ω E, where ω = Φ(c). Since this is obvious as an
isomorphism of vector bundles, the more serious task is to identify the bracket of
Lie(G � c E). For this, one notes that the flows φ(X,V ) (X ∈ Γ(g), V ∈ Γ(E)) for
G � c E are given by

φX,V (t, x) = (φX(t, x), tV (x)), x ∈ M ,

and then one uses the formula (8) for the Lie bracket in Lie(G � c E), the formula
(9) for the action of g on E, and the formula described in Remark 2 for the map Φ.

3. Given an extension (40) as in the statement, there is a canonical action of g
on l, and a canonical cohomology class [ω] ∈ H2(g; l) such that h ∼= g � ω l. They
are determined by the formulas

i(LX(V )) = [σ(X), i(V )], i(ω(X,Y )) = σ([X,Y ]) − [σ(X), σ(Y )] ,

for X,Y ∈ Γ(g), V ∈ Γ(h), where σ : g −→ h is a/any linear splitting of π. This
is an easy computation, whose conclusion is the well known correspondence [32]
between 2-cohomology classes [ω] ∈ H2(g; l) and extensions (40).

The proof of the theorem is quite obvious now: let G be the integration of g
whose existence is part of the hypothesis. Then, the canonical action of g on l
(cf. 3. above) comes from an action of G on l since G is α-simply connected (see
subsection 1.4). By theorem 4, the canonical 2-cohomology class ω ∈ H2(g; l) (cf.
3. above) is of type ω = Φ(c) for some c ∈ H2

d(G; l). Then, using 2. above, we see
that H = G � c l is a (Hausdorff) integration of h. �

Remark 5. Actually we have proven a bit more then stated: given an extension
(40), it defines a cohomology class in ω ∈ H2(g; l), and, if this class is integrable
(i.e. in the image of the Van Est map), then h is integrable. As explained in
the introduction, this theorem immediately implies Lie’s third theorem (see also
section 14 in [17]). Essential for this is that simply connected Lie groups have
vanishing second cohomology groups, and that we can use the adjoint representa-
tion. For Lie groupoids these both fail. Note that the most difficult problem to
overcome is the non-existence of the adjoint representation for general Lie alge-
broids. However, there are no such difficulties in the case of Lie algebra bundles
(the LAB’s of [32]), or, more generally, in the case of bundles of Lie algebras with
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regular center (i.e. with the property that the centers of the Lie algebra fibers fit
into a vector bundle). The resulting integrability results are particular cases of
Douady–Lazard’s theorem [15].

3. Characteristic classes in algebroid cohomology

The aim of this section is to find the characteristic invariants living in algebroid
cohomology, as well as their relation to the Van Est map. As we have already
mentioned, many examples of Lie algebroids arise naturally and, even if they are
integrable, the integrating groupoids may be difficult to visualise (the best exam-
ples this remark applies to are probably the Lie algebroids associated to Poisson
manifolds, but this type of phenomenon occurs even in the case of foliations). For
this reason we insist on working at the algebroid level.

Asking for characteristic invariants living in algebroid cohomology, there is
an obvious (and naive) construction. Using the composition with the anchor,
ρ∗ : H∗(M) −→ H∗(g), we define the g-Chern classes of a vector bundle E over
M by

Chg
k(E) := ρ∗(Chk(E)) ∈ H2k(g), k ≥ 0.

In the case of foliations, these characteristic classes were studied by Moore Scho-
chet [39] under the name of the foliated Chern classes. They also appear in the
geometry of Poisson manifolds P , when E is e.g. a co-foliation on P [48]. In sub-
section 3.2 we will prove that Chg

k(E) can be computed using g-connections on
E [20]; this will be done in the proof of the following theorem, which shows that
these classes can also be viewed as obstructions to the existence of infinitesimal
actions of g on E.

Theorem 6. For any representation E of g, the Chern classes Chg
k(E) ∈ H2k(g)

vanish for k ≥ 1.

According to the general principle that a vanishing result for certain character-
istic classes is the origin of new (secondary) characteristic classes which are made
out of the transgression of the vanishing ones, the previous proposition rises the
question of finding the non-trivial cohomological invariants of representations of g.

In the next subsection we will show in an explicit fashion how a first such class
arises naturally; the complete description of the secondary classes (and the proof
of the theorem above) will be given in the subsection 3.2. In 3.3 we will describe
the relation with the Van Est map.

Warning. So far, the choice of the basic field (real or complex numbers) was
irrelevant. From now on we use the notations RepR(g) and RepC(g) to distinguish
between real/complex representations. Also we consider only cohomology with real
coefficients (hence H∗(g) will always stand for H∗(g; R)).
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3.1. The first characteristic class u1

We now describe, in a direct manner, the first cohomology class u1(E) ∈ H1(g) of
a representation E of the Lie algebroid g. Denote by M the base manifold. We
consider the real/complex cases separately.

The real case. Let E ∈ RepR(g). We first assume that E, as a vector bundle over
M , is trivializable, and let e = {e1, . . . , en} be a frame of E. Then the equation:

LX(ej) =
∑

ωi
j(X)ei, X ∈ Γ(g)

shows that the action of g on E is uniquely determined by a matrix:

ωe = (ωi
j)1≤i,j≤n ∈ Mn(C1(g))

satisfying the flatness condition

dωe = ωe ∧ ωe =
1
2
[ωe, ωe] .

The last relation implies that

Tr(ωe) ∈ C1(g)

is closed. The same happens with the forms

Tr(ωe ∧ . . . ∧ ωe︸ ︷︷ ︸
2k−1

) ∈ C2k−1(g), (41)

but at these classes we will look in the next subsection.

If f = {f1, . . . , fn} is another frame, and A = (ai
j) ∈ Mn(C∞(M)) is the

change of coordinates matrix, i.e. ej =
∑

aj
ifi, one can easily see that the matrix

corresponding to f is
ωf = AωeA

−1 + (dA)A−1. (42)

This implies
Tr(ωf ) = Tr(ωe) + d(log |det A|),

hence the class:
u1(E) := [Tr(ωe)] ∈ H1(g) (43)

does not depend on the choice of the trivialisation.
We now return to the general case, where E is not necessarily trivializable. We

choose a covering U = {Uα} of domains of trivialization of E, and let

hα,β : Uα ∩ Uβ −→ GLn

be the transition functions of E. The previous construction provides us with 1-
forms of the restrictions of g to Uα’s:

u(α) = Tr(ωα) ∈ C1(Uα; g),
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and with functions

u(α, β) = log |det(h(α, β))| ∈ C0(Uα ∩ Uβ ; g)

satisfying:

d(u(α)) = 0 on Uα ,

d(u(α, β)) = u(α) − u(β) on Uα ∩ Uβ ,

u(α, β) − u(α, γ) + u(β, γ) = 0 on Uα ∩ Uβ ∩ Uγ ,

The last relation follows from the cocycle relations satisfied by the transition func-
tions. These relations are precisely the relations defining a closed cocycle u in the
Cech double complex Č∗(U ;C∗(g)). By a Mayer–Vietoris argument (cf. e.g. [5]),
one has exact sequences

0 −→ Cp(g) rU−→ Č0(U ;Cp(g)) δ−→ Č1(U ;Cp(g) δ−→ . . .

where δ is the Cech boundary, and rU is the obvious restriction to opens U ∈ U .
Hence the map rU can be viewed as a map from C∗(g) into (the total complex of)
Č∗(U ;C∗(g)), which induces an isomorphism in cohomology, and we define

u1(E) = r−1
U ([u]) ∈ H1(g).

By the same arguments as in the trivializable case:

Proposition 2. Given a representation E of a Lie algebroid g, the previously
constructed class u1(E) ∈ H1(g) does not depend on the choice of the local triv-
ializations, and, when E is trivializable as a vector bundle, it is given by the
formula (43).

The complex case. Assume now that E ∈ RepC(g). We can simply define
u1(E) = 1

2u1(ER), where ER is the real representation underlying E. Although
this is correct, it is quite instructive to try to imitate the real case. As above, the
choice of a trivialization e (over C) for E defines a matrix ωe, and

Tr(ωe) ∈ C1(g; C)

will be a closed cocycle. However, simple examples show that it is only Tr(Re(ωe))
that is invariant under the change of trivializations. Indeed, the analogue of (42)
gives

Tr(ωf ) − Tr(ωe) =
αdα + βdβ

α2 + β2
+ i

αdβ − βdα

α2 + β2
,

where α + iβ = det(A). While (αdα + βdβ)/(α2 + β2) is d(log|det(A)|),
αdβ − βdα

α2 + β2
(44)

is not always exact. Since Tr(Re(ωf )) = Tr(Re(ωe))+d(log|detA|) we can proceed
exactly as in the real case (with Tr(ωe) replaced by Tr(Re(ωe))) and define the
class u1(E) ∈ H1(g). It coincides with 1

2u1(ER).
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Note that what the complex case really teaches us is that, if one wants to fully
use the closed forms Tr(ωe), there is an obstruction to the independence on e,
obstruction which comes from the non-exactness of (44). It is worth to point out
that (44) gives the volume form on S1 = U(1). Although this type of phenomenon
has not been seen in the real case above, it will be present in higher dimensions
both for real and complex representations.

Examples 6. In the case of 1-dimensional representations L, then our u1(L) co-
incides with the characteristic class θL introduced in [20]. The modular class of g
is defined as u1(Qg), where Qg = Λtopg ⊗ ΛtopT ∗M is the canonical line bundle
of g. When applied to the Lie algebroid associated to a Poisson manifold P , one
obtains (up to a constant) the modular class of P . For more details see [20], and
also our last section.

Let us now look at a simple example which shows the non-triviality of u1. Let
X ∈ X (M) be a vector field on the manifold M . It induces a Lie algebroid gX

over M : as a vector bundle it is just M × R, ρ is the multiplication by X, while
the Lie bracket on Γ(gX) = C∞(M) is [f, g] = fX(g) − X(f)g. For any zero x of
X, the evaluation at x defines a map evx : H1(gX) −→ C. The cotangent bundle
T ∗M is a representation of gX ; a local computation shows that evx(u1(T ∗(M))) =∑

i
∂Xi

∂xi (x), where (x1, . . . , xn) is a/any system of local coordinates around x.

3.2. The higher characteristic classes u2k−1

The key of finding all the higher cohomological invariants of representations is a
better understanding of the notion of representation, in terms of frame bundles
(see Corollary 3 below). This is analogous to the correspondence between con-
nections on a vector bundle over a manifold, and connections on the associated
principal GLn (frame) bundle. To any E ∈ Rep(g) we will associate certain classes
u2k−1(E) ∈ H2k−1(g) which are non-trivial only when 1 ≤ k ≤ dim(E), and which
for real representation vanish for even k’s. To get a feeling about the final result,
I mention here that the forms defining these classes are just some “corrections” of
(41) (see also Examples 7).

Explicit approach (sketch). Let E be a (complex or real) representation of g. As
in the previous subsection, we first assume that E has a trivialization e. We have
noticed that, together with Tr(ωe), we also have the closed forms (41). Of course,
they appear as the natural candidates for the higher cohomological invariants of
E. However, as hinted by the complex case above, the resulting classes depend on
the trivialization e, hence they cannot be globalized. Instead, we have to “correct”
these classes (41) and consider:

Tr(θe ∧ . . . ∧ θe︸ ︷︷ ︸
2k−1

) ∈ C2k−1(g), θe = (ωe + ω∗
e)/2 (45)
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(where ω∗
e = (ωe)t). The full understanding of this choice, and of the fact that

these are all geometric classes one can construct, lies in the computation of the
differentiable cohomology of GLn, and the global understanding of representations
in terms of frame bundles. This will be done below. We leave for the reader to
show that the previous classes are indeed closed, and that in the real case they
vanish if i is even.

For the sake of explicit formulas, I mention here a global expression of these
classes (see also [2]). Hence, let E be any representation (real or complex) of g.
Denote by ∇ the action of g on E, and by ∇∗ be the dual action of g on E∗. Let
h be a metric on E. Using the isomorphism E ∼= E∗ induced by h, we transport
∇∗ to a new action of g on E, denoted ∇h. Then θ(E, h) := (∇ − ∇h)/2 is
in C1(g; End (E)), and, up to a constant, the classes u2k−1(E) will be given by
(45) with θe replaced by θ(E, h). Alternatively, one can use a transgression (a la
Chern–Weil) construction for (∇,∇h). The resulting cohomology classes will be
independent of the choice of the metric. We now turn to the promised approach,
in terms of frame bundles.

Global approach. To obtain all the characteristic classes at once, we restrict to
the complex case, and, for E real, we will define u2k−1(E) = u2k−1(EC), where EC

is the complexification of E. Hence let E be an n-dimensional complex represen-
tation of g. Denote by π : P −→ M the frame bundle of E. We have already seen
that, fixing a frame {e1, . . . , en} for E, the action of g on E is uniquely determined
by a matrix ωe ∈ C1(g) ⊗ gln satisfying dωe = 1

2 [ωe, ωe]. On the other hand, the
basic properties (10), (11) of an action show (as in the case of connections on
vector bundles) that the expression LX(s)(x), for x ∈ M , depends only on Xx and
on the restriction of s to an integral curve of ρ(X) ∈ X (M) through x. Combining
the previous two remarks we see that, for any e(0) = {e1(0), . . . , en(0)} ∈ P a
frame of Ex, any X ∈ gx, and any tangent vector V ∈ Te(0)P defined by a curve
of frames e : (−ε, ε) −→ P around e(0) such that

ρ(X) = (dπ)p(V ), (46)

one has an (unique) associated matrix ωi
j = ωi

j(X,V ) ∈ gln such that LX(ej) =∑
ωi

jei. Now, (46) is precisely the relation defining the pullback algebroid π!(g)
(see Examples 5). Hence the previous construction provides us with an element

ω = ωE ∈ C1(π!g) ⊗ gln. (47)

To understand the special features of ω we use the canonical Lie algebra map

gln −→ Γ(π!g), v �→ v = (0, vP ). (48)

Here vP ∈ X (P ) is the transport of v to P ; it comes from the differential (at the
identity matrix)

jp : gln −→ TpP (49)
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of the multiplication map GLn −→ P , g �→ p·g. Note that, since the inclusion (49)
maps gln isomorphically into the space of vertical vector fields on P (i.e. killed by
the differential of π), v does indeed define an element in Γ(π!g). Now, the Cartan
calculus on π!g (cf. 1.4), together with the Lie algebra map (48), endows the DG
algebra C(π!g) with Lie derivatives (which are derivations of degree 0) and interior
products (which are derivations of degree 1),

Lv : C(π!g) −→ C(π!g), iv : C(π!g) −→ C∗−1(π!g),

linear on v ∈ gln, and which satisfy the Cartan relations (14)–(17). The Lie
derivatives can be viewed also as the infinitesimal version of the canonical action
of GLn on C(π!g). In the standard terminology which originates in Cartan’s
interpretation of connections (see [30] and the references therein), C(π!g) is a
gln-DG algebra. The main properties of the 1-form (47) are:

(i) iv(ω) = v for all v ∈ gln,
(ii) ω is is GLn-invariant,
(iii) dω = 1

2 [ω, ω].
(i.e., in the terminology of [30] again, ω is a flat connection for the gln-DG algebra
C(π!g)). We can interpret (47) as a map gl∗n −→ C1(π!g), which can be uniquely
extended to a map of algebras

kE : C∗(gln) −→ C∗(π!g). (50)

It is easy to see that the basic properties of ω translate into:
(i ′) kE is compatible with the interior products iv, v ∈ gln,
(ii ′) kE is compatible with the Lie derivatives Lv, v ∈ gln,
(iii ′) kE is compatible with the differentials.

(This is the standard passing from a flat connection 1-form ω to a map of gln-
DG algebras.) Moreover, we can also go backwards, hence our discussion can be
summarized into:

Corollary 3. Let g be a Lie algebroid, let E be a vector bundle over the base
manifold M of g, and let π : P −→ M be the associated principal GLn-bundle of
E. Then there is a one to one correspondence between:

(1) a pairing Γ(g)× Γ(E) −→ Γ(E) which makes E into a representation of g;
(2) a 1-form ω ∈ C1(π!g) ⊗ gln satisfying (i)–(iii) above;
(3) a map k : C∗(gln) −→ C∗(π!g) of DG algebras, satisfying (i ′)–(iii ′) above.

Now, given our representation E, kE induces a map at the level of U(n)-basic
elements, i.e. elements which are U(n)-invariant, and are killed by all iv’s with
v ∈ un,

kE : C∗(gln)U(n)-basic −→ C∗(π!g)U(n)-basic . (51)

The reason for passing to U(n)-basic elements is that we can get down from π!g
over P to g over M . Indeed, the right hand side is isomorphic to C∗(π!

0g), where



Vol. 78 (2003) Differentiable and algebroid cohomology 711

π0 : P0 = P/U(n) −→ M is the obvious projection. Its fibers are contractible,
hence, by Theorem 2, it induces isomorphisms

π∗
0 : H∗(g)−̃→H∗(π!

0g).

On the other hand, the right hand side of (51) is precisely the complex computing
the relative Lie algebra cohomology H∗(gln, U(n)). Recall (see e.g. [30]) that this
cohomology is the exterior algebra on n generators u1, u3, . . . , u2n−1 of degrees
deg(u2k−1) = 2k − 1. Hence, from (51) we get a map in cohomology

kE : Λ∗(u1, u3, . . . , u2n−1) ∼= H∗(gln, U(n)) −→ H∗(g). (52)

Definition 1. Define the characteristic classes of the n-dimensional representation
E of the Lie algebroid g as:

u2k−1(E) := kE(u2k−1) ∈ H2k−1(g), 1 ≤ i ≤ n.

Main properties. The main properties that the u2k−1’s satisfy are:
(i) u2k−1(E ⊕ F ) = u2k−1(E) + u2k−1(F );
(ii) u2k−1(E ⊗ F ) = rk(E)u2k−1(F ) + rk(F )u2k−1(E);
(iii) u2k−1(E∗) = −u2k−1(E). In particular, if E admits an invariant metric,

then u2k−1(E) vanish;
(iv) u2k−1(E) = 0 if k is even and E is real.
Combining these invariants u2k−1 with the obvious invariant given by the rank

of a representation, we obtain a map:

U : RepC(g) −→ Z � Hodd(g; R), (53)

and the properties above translate into the fact that U is a morphism of ∗-semi-
rings.

Proof. This is only a closer look at the definition. For instance (iv) means that
the restriction map

H∗(gln(C), U(n)) −→ H∗(gln(R), O(n))

kills the universal u4k−1 (see also [11]). �

Proof of Theorem 6. We now freely use the language of g-DG algebras; an exposi-
tion can be found e.g. in Chapter 3 of [30]. Let E be a vector bundle over M . Recall
(see e.g. [22]) that a g-connection on E is a linear map Γ(g) × Γ(E) −→ Γ(E),
(X, s) �→ ∇X(s), satisfying (10) and (11). It is called flat if ∇[X,Y ] = [∇X ,∇Y ].
Hence a representation of g is a vector bundle over M endowed with a flat g-
connection. Exactly as in the flat case above, we find a 1–1 correspondence
between g-connection and connection 1-forms ω = ω∇ ∈ C1(π∗g) ⊗ gln on the
gln-DG algebra C∗(π∗g). The Chern–Weil construction gives us a characteristic
map k∇ : W (gln) = C∗(gln)⊗S(gl∗n) −→ C∗(π∗g) defined on the Weil complex of
gln. Passing to gln-basic elements, it induces a map Inv(gln) −→ C∗(g) defined
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on the algebra of invariant symmetric polynomials on gln. The map induced in
cohomology k∇ : Inv(gln) −→ H∗(g) will be independent of the connection ∇. In
particular, one can use a g- connection which is induced by an usual connection
on the vector bundle E, and we see that k∇ is just the composition of the map
ρ∗ : H∗(M) −→ H∗(g) with the usual characteristic map kE : Inv(gln) −→ H∗(M)
of E (and which defines the Chern classes of E). On the other hand, if ∇ is a flat
g-connection on E, then k∇ kills the symmetric part of W (gln) = C∗(gln)⊗S(gl∗n),
hence the map in cohomology is trivial. �

Examples 7. When g = TM we obtain the usual characteristic classes (and their
construction) of flat vector bundle (see e.g. [30]).

When g = F is a foliation of a manifold M , any foliated bundle E ∈ Rep(F)
defines a vector bundle EL = E|L endowed with a flat connection, for each leaf L
of F . Similarly, the foliated cohomology H∗(F) can be viewed as a glueing of the
cohomology groups {H∗(L)}L, and u2k−1(E) can be viewed as a glueing of the
usual characteristic classes u2k−1(EL) ∈ H2k−1(EL) of the flat vector bundles EL.
When applied to the normal bundle ν = TM/F of the foliation, we obtain certain
characteristic classes u2k−1(ν) ∈ H2k−1(F), 1 ≤ i ≤ q where q is the codimension
of F . Note the intimate relation with the secondary characteristic classes found
by Bott [4], living in H∗(M). What happens is that the image of those classes in
H∗(F) vanish (because the Chern classes vanish), and u2k−1(ν) are precisely the
new relevant classes that live in H∗(F).

Examples 8 (intrinsic characteristic classes). Similar characteristic classes
u2k−1(g), which depend on g only (and not on an auxiliary representation) have
been defined by R. L. Fernandes [22]. To describe the relation to our classes, we
first assume that g is regular, i.e. the image F of the anchor map has constant
rank. Let ν be the normal bundle of F , and let K be the kernel of the anchor
map. With the Bott connections (see Examples 4), K and ν are representations
of g, and one can show [11] that

u2k−1(g) = u2k−1(K) − u2k−1(ν).

This suggests that Fernandes’ u2k−1(g) can be viewed as the characteristic class of
the “formal difference” K − ν. Since there are exact sequences of vector bundles
0 −→ K −→ g −→ F −→ 0 and 0 −→ F −→ TM −→ ν −→ 0, the previous
difference bundle equals to g − TM (view these in the K-theory of M). Hence
the classes u2k−1(g) are the new secondary classes which arise from the following
vanishing result (implied by Theorem 6):

Lemma 2. For any regular Lie algebroid g over M , one has Ch(g − TM) = 0 in
H∗(g).

This can be viewed as an analogue of Bott vanishing theorem [4] for character-
istic classes of foliations. Using a nice adaptation of Bott’s methods, Fernandes
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proves this result (and constructs the resulting secondary classes u2k−1(g)) with-
out any regularity assumption. Although we cannot extend our interpretation of
g − TM as a representation of g from the regular to the non-regular case, this
formal difference is always a “representation up to homotopy” of g in the sense
of [20] (called there “the adjoint representation”). Moreover, we can extend our
characteristic classes from representations to representations up to homotopy, and
the conclusion is that u2k−1(g) of [22] are always the characteristic classes of the
adjoint representation. For details see [10, 11].

3.3. Relation with the Van Est map

In this subsection we shortly discuss the relation between the characteristic classes
previously introduced and the differentiable cohomology: we show that the char-
acteristic map

U : Rep(g) −→ Z � Hodd(g; R)

constructed in the previous section naturally factors, via the Van Est map, through
the differentiable cohomology. More precisely, making use both of our Morita
invariance and Van Est isomorphism we show:

Theorem 7. If E is a representation of a Lie groupoid G, and g is the Lie alge-
broid of G, then the characteristic classes u2k−1(E) ∈ H2k−1(g) lie in the image
of the Van Est map Φ : H∗

d (G) −→ H∗(g).

Examples 9. The α-simply connected integration of the tangent Lie algebroid
TM of a manifold is the fundamental groupoid of M , which is Morita equivalent
to the fundamental group π(M) of M (cf. Example 2). Hence, by the Morita
invariance of differentiable cohomology, we see that our Theorem 7 becomes the
well-known result that characteristic classes of flat vector bundles come from the
cohomology H∗(π(M)) of the discrete group π(M) (see also Example 7).

Given a foliation (M,F), since the normal bundle of F is endowed with an
action of the holonomy groupoid Hol(M,F) (see e.g. [9] for more on representa-
tions of the holonomy groupoid), the previous theorem tells us that the classes
u2k−1(ν) (see Example 7) come from H∗

d (Hol(M,F)). In particular, they vanish
if the leaf space is an orbifold. More generally, using Proposition 1, we see that
if a Lie algebroid admits a proper α-simply connected integration, then all the
characteristic classes of its representations must vanish.

Proof of Theorem 7. The idea is quite simple. The frame bundle P = P (E) of an
n-dimensional representation E of G is a left G-space and a principal GLn-bundle,
hence can be viewed as a generalized map φE : G −→ GLn (and this defines a 1−1
correspondence Repn(G) ∼= Homgen(G,GLn)). Hence, by the Morita invariance of
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differentiable cohomology (Theorem 1) with trivial coefficients we obtain a map:

φ∗
E : H∗

d (GLn) −→ H∗
d (G).

On the other hand, by the classical Van Est isomorphism for GLn, and by the
computation of H∗(gln, U(n)) used also in the previous section, H∗

d (GLn) is iso-
morphic to the exterior algebra on generators u2k−1, 1 ≤ k ≤ n. What happens is
that

φ∗
E(u2k−1) = u2k−1(E). (54)

Here are the details. The main problem is to compare the various double complexes
which are involved in the definition of our objects. All these double complexes are
of Van Est type (below we will fix the notations), with one exception: the double
complex arising in the construction of φ∗

E . To avoid working with this double
complex, we use the following trick. We consider the pull-back π∗G which is a
groupoid over P whose space of arrows consists of triples (p, g, q) ∈ P × G(1) × P
with π(q) = β(g), π(q) = α(g) (with the first and last projections as target and
source map, respectively, and with the obvious composition). For later use, note
that its Lie algebroid is precisely π!g (see Examples 5). We will make use if the
following (true!) morphisms of groupoids

G
fπ←− π∗G uπ−→ GLn. (55)

Here fπ is the obvious projection, while uπ associates to an arrow (p, g, q) of π∗G
the unique matrix A such that pA = gq. The main property of these morphisms
is that fπ is an essential equivalence (i.e. defines a Morita equivalence; see 1.1),
and, as generalized morphisms, φE = uπf−1

π .
We now look at the Van Est maps. For any Lie groupoid G, denote by C(G)

the double complex appearing in the proof of Theorem 4 (denoted C there); recall
that it connects the differentiable and the algebroid cohomology:

Cd(G) ε−→ C(G)
η←− C(g) (56)

Moreover, η was a quasi-isomorphism, and the map in cohomology εη−1 is the
Van Est map for G. For G = GLn, both ε and η are quasi-isomorphism if one
passes to Un-basic elements in the last two complexes of (56), and this describes
the classical Van Est isomorphism for GLn, H∗

d (GLn) ∼= H∗(gln, Un). Since (56)
is natural on G with respect to morphisms of groupoids, by applying it to each of
the groupoids in (55), we obtain a commutative diagram

C∗
d(G)

��

∼ �� C∗
d(π!G)

��

C∗
d(GLn)

ε

��

��

C(G)
f∗

π �� C(π!G) C(GLn)��

C∗(g)

∼
��

f∗
π �� C∗(π!g)

∼
��

C∗(gln)
kE��

∼
��
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Maps marked with “∼” are those which are quasi-isomorphisms, and it is not
difficult to see that kE is precisely the map (50) used to construct the characteristic
classes of E. By passing to U(n)-basic elements in the complexes which form
the small diagram in the bottom right corner, we obtain a similar diagram with
the additional property that the maps denoted above by f∗

π and ε become quasi-
isomorphisms (cf. Theorem 2). Passing to cohomology, and using the previous
remarks about the Van Est maps, about the map φ∗

E , and about the definition of
kE in (52), we obtain a commutative diagram

H∗
d (G)

Φ

��

H∗
d (GLn)

∼
��

φ∗
E��

H∗(g) H∗(gln, Un)
kE��

which concludes the proof of the theorem. �

4. Applications to Poisson manifolds

In this section we discuss some applications of our results to Poisson manifolds. Al-
though this applications are sort of obvious, our intention is to show the relevance
of Lie algebroids and of our results to those interested on Poisson geometry, but
less interested on the general theory of Lie groupoids/algeborids. As a resumé: we
derive a new proof (and a slight improvement) of the well-known Dazord–Hector
integrability criterion for Poisson manifolds [14], we clarify the problem of Morita
invariance of Poisson cohomology (known in degree one only [23]), we prove the
Morita invariance of the modular class (known under certain conditions only [24]),
we explain the nature of the modular class for regular Poisson manifolds, and we
argue that the first Poisson cohomology groups and our characteristic classes are
obstructions to a representation theory for Poisson manifolds which is analogous
to the representation theory for compact Lie groups.

For an introduction to Poisson geometry we recommend [48], as well as [35,
49, 51]. Recall here that a Poisson manifold is a manifold P together with a
2-tensor π ∈ Γ(Λ2TP ) with the property that {f, g} = π(df, dg) defines a Lie
bracket on C∞(P ) satisfying the Leibniz identity {f, gh} = {f, g}h+g{f, h}. Call
representation of (P, π) any vector bundle E over P together with an external
(bilinear) bracket {·, ·} : C∞(P ) × Γ(E) −→ Γ(E) which satisfies the Leibniz
identities {fg, s} = f{g, s} + g{f, s}, {f, gs} = {f, g}s + g{f, s}, and the Jacobi
identity {{f, g}, s} = {f, {g, s}} + {g, {f, s}}, for all f, g ∈ C∞(P ) and s ∈ Γ(E).
Denote by Rep(P, π) the semi-ring of (isomorphism classes of) representations
of P .

Recall also that associated to (P, π) there is a Lie algebroid (T ∗P, ρ, [·, ·]), where
ρ : T ∗P −→ TP is the map induced by π (i.e. ρ(df) is the vector field induced
by the derivation {f, ·}), and [α, β] = Lρ(α)β − Lρ(β)α − dπ(α, β). The relevance
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here of the Lie algebroid T ∗P is that the resulting cohomology is isomorphic to
the Poisson cohomology of (P, π), usually denoted by H∗

π(P ) (see [50]), while its
representations are precisely the representations of (P, π).

One says that (P, π) is (Hausdorff) integrable if there exists a symplectic (Haus-
dorff) groupoid over P which induces the given Poisson structure. If G is the
α-simply connected integration of (P, π) it follows that Rep(P, π) ∼= Rep(G). For
more details, as well as for an exposition of integrability results, we refer to Chap-
ter 9 of [48]. Using the fundamental result of Mackenzie–Xu (Theorem 5.2 in [35]
which states that P is integrable if and only if its Lie algebroid is integrable), our
Theorem 5 immediately implies the following slight improvement of the Hector–
Dazord integrability result [14] for regular Poisson manifolds with totally aspher-
ical symplectic foliation.

Corollary 4. Let P be a regular Poisson manifold, and let F be the associated
foliation. If:

(i) F has no (non-trivial) vanishing cycles,
(ii) for any leaf L of F , π2(L) contains only elements of finite order,

then P is Hausdorff integrable.

Proof. The first condition is equivalent to the Hausdorffness of the monodromy
groupoid G of the foliation F , while the second one is equivalent to the vanishing
of the second cohomology groups of its α-fibers (i.e. of the universal covers of the
leaves of F). Since the kernel of the anchor map ρ : T ∗P −→ F ⊂ TP is always
abelian [48], we can apply Theorem 5. �

Let us now explain how our results clarify the Morita invariance of Poisson
cohomology (known to hold in degree one only) in all degrees. Recall [51] that
a Morita equivalence between two Poisson manifolds (P1, π1) and (P2, π2) is a
complete full dual pair [49] P1

σ1←− X
σ2−→ P2 with connected and simply-connected

fibers. Morita equivalence only makes sense on the class of integrable Poisson
manifolds, and there it does define an equivalence relation (cf. the Remark on
pp. 496, and Corollary 3.1 of [51]).

Corollary 5. Let (P1, π1) and (P2, π2) be two Poisson manifolds. Any Morita
equivalence P1 ←− X −→ P2 with homologically n-connected fibers induces iso-
morphisms

Hk
π1

(P1) ∼= Hk
π2

(P2) (57)

in all degrees k ≤ n.

Since Morita equivalent Poisson manifolds have Morita equivalent α-simply
connected integrating groupoids (Theorem 3.2 in [51]), whose α-fibers are pre-
cisely the fibers of σ1 and σ2, this result immediately follows from our Morita
invariance of differentiable cohomology (Theorem 1), and Theorem 4. Alterna-
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tively, one remarks that the pull-back groupoids (see Example 5) σ!
1T

∗P1 and
σ!

2T
∗P2 are isomorphic, and invoke Theorem 2. Apart from being much more

direct, this last argument also show that Poisson cohomology is invariant under a
much weaker notion of Morita equivalence, which does not exclude non-integrable
Poisson manifolds (we hope to make this more clear in some other place).

The first part of our Theorem 2 implies that Morita equivalence of Poisson
manifolds behaves as it should:

Corollary 6. Any Morita equivalence P1 ←− X −→ P2 of Poisson manifolds
induces isomorphisms

Rep(P1, π1) ∼= Rep(P2, π2) (58)

Let me sketch now an argument which explains the nature of the isomorphism
between the algebroids σ!

1T
∗P1 and σ!

2T
∗P2, isomorphism which has been essential

to our conclusions. Let F(σ1) and F(σ2) be the foliations on X induced by the
fibers of σ1 and σ2, respectively. Since F(σ2) ∼= π∗

1T ∗P1, there is a natural action
of F(σ2) on F(σ1) (see Example 3), and, similarly, an action of F(σ1) on F(σ2). In
the terminology of [33], (F(σ1),F(σ2)) form a matched pair, and we obtain a Lie al-
gebroid structure on F(σ1)⊕F(σ2), which we denote by F(σ1) ��F(σ2). It is quite
straightforward to see now that this Lie algebroid is isomorphic to our σ!

iT
∗Pi’s,

i ∈ {1, 2}. Hence, in the previous two corollaries, the cohomology/representation
of our Poisson manifolds are isomorphic also to the cohomology/representation of
F(σ1) ��F(σ2).

We now turn to the Morita invariance of the modular class of a Poisson mani-
fold, which is known under certain conditions only (cf. section 4 in [24]).

Corollary 7. Any Morita equivalence P1 ←− X −→ P2 between Poisson mani-
folds induces an isomorphisms H1

π1
(P1) ∼= H1

π2
(P2) which maps the modular class

of P1 into the modular class of P2.

Proof. As mentioned in Examples 6, the modular class of a Poisson manifold P
is just the first characteristic class u1(L) of a canonical one dimensional repre-
sentation L (denoted QA in [20]) of the Lie algebroid T ∗P . Let G1and G2 be
symplectic integrations of P1, and P2, respectively, and let φX : G1

∼= G2 be the
Morita equivalence of groupoids induced by X [51]. Then the canonical represen-
tations of P1 and P2 are related by L1 = φ∗

XL2, hence it suffices to use Theorem 7
(more precisely the formula (54) appearing in the proof), and the naturality en-
sured by Theorem 1. As indicated in the previous discussions, one can also give a
direct proof at the infinitesimal (algebroid) level. �

Clearly, the same argument applies also to the higher characteristic classes. By
the constructions of this section we obtain, for any E ∈ Rep(P, π), certain classes
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u2k−1(E) ∈ H∗
π(P ), which fit into a homomorphism

U : Rep(P, π) −→ Z � Hodd
π (P ).

Corollary 8. Let P1 ←− X −→ P2 be a Morita equivalence of Poisson man-
ifolds with homologically n-connected fibers, and let 2k − 1 ≤ n. For any two
representations E1, E2 which correspond to each other in the Morita isomorphism
Rep(P1, π1) ∼= Rep(P2, π2), the isomorphism

H2k−1
π1

(P1)−̃→H2k−1
π2

(P2)

(cf. Corollary 5) maps u2k−1(E1) into u2k−1(E2).

Proof. The Morita invariance of representations follows from the corresponding
result for groupoids (see subsection 1.2), and Theorem 3.2 of [51] again. �

Now, a word about the modular class of regular Poisson manifolds (P, π). Let
F be the symplectic foliation of P , and let

ρ∗ : H∗(F) −→ H∗
π(P ) (59)

be the map induced in cohomology by the anchor. The following result shows
that mild conditions on the geometry of the symplectic foliation (e.g. vanishing of
H1(F)) implies the vanishing of the modular class of P . Note the formula (60) in
the proof below, which expresses the modular class in terms of our characteristic
classes.

Corollary 9. The modular class of a regular Poisson manifold (P, π) comes from
the foliated cohomology of the symplectic foliation F of π, i.e. is in the image
of (59).

Proof. Denote by g the Lie algebroid of P , and let K, ν and F be as in Exam-
ples 7. By the arguments given there, K and ν are representations of g. Up to
multiplication to a constant, the modular class of P equals to

mod(P ) = u1(K) − u1(ν) ∈ H1
π(P ) . (60)

Indeed, choosing a linear splitting of the short exact sequences of vector bundles
relating K, ν, F , g, and TM , we obtain isomorphisms TP ∼= F⊕ν, g ∼= K⊕F . The
induced isomorphisms ΛtopTP ∼= ΛtopF ⊗ Λtopν, and Λtopg ∼= ΛtopK ⊗ ΛtopF are
natural, i.e. do not depend on the choice of the linear splittings. It follows that, as
vector bundles, Qg = ΛtopK ⊗Λtopν∗. It is not difficult to see that the action of g
on Qg [20] comes from the canonical actions of g on K and on ν (mentioned above),
hence u1(Qg) = u1(K) − u1(ν). It suffices to remark that K and ν ∈ Rep(P, π)
are actually representations of F (of Bott type cf. our Examples 4). �

The previous argument obviously applies to the higher intrinsic characteristic
classes of P as well (but not to those of general representations). Regarding these
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classes, we mention here the following immediate consequence (which is known in
the case of the modular class)

Corollary 10. If a representation E ∈ Rep(P, π) admits a Poisson-invariant met-
ric, then all its characteristic classes vanish.

The Poisson invariance of a metric h on E is just:

{f, h(s1, s2)} = h({f, s1}, s2) + h(s1, {f, s2}), ∀f ∈ C∞(P ), s1, s2 ∈ Γ(E).

Related to the previous corollary, we mention the following result which shows
that the first Poisson cohomology group, together with our characteristic classes
are a (serious, we believe) obstruction to a close relation between the geometry of
Poisson manifolds and the one of compact Lie groups.

Corollary 11. If the α-simply connected integration of a Poisson manifold (P, π)
is a proper groupoid, then:

(i) H1
π(P ) = 0;

(ii) The characteristic classes of any representation E ∈ Rep(P, π) vanish;
(iii) Any representation of (P, π) admits a Poisson-invariant metric.

Clearly (i) and (ii) follow from Proposition 1, Theorem 4 (case n = 1), and
Theorem 7. Note that (ii) also follows from (iii) and from the general properties
of characteristic classes mentioned in the previous section. The last part (iii)
follows by a classical averaging argument, using a cut-off function as in the proof
of Proposition 1.

Note also that (iii) implies, by usual the arguments of the representation theory
of compact Lie groups, that any representation can be written as a direct sum of
irreducible ones, and rises many questions regarding this analogy.
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