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Structure of foliations of codimension greater than one

Habib Marzougui and Ezzeddine Salhi

Abstract. We study the structure of a foliation of high codimension which admits a transverse
foliation. We introduce four families of open saturated sets. These open sets have a simple
characterization and allow us to establish a structure theorem as in codimension 1.
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1. Introduction

This paper concerns the study of the global structure of foliations of codimension
greater than one in a closed manifold of finite dimension. In codimension 1, if the
foliation is of class C2, its topological structure is fairly well understood (cf. [2],
chap.4). When the foliation is of class C0, many phenomena occur which cannot
occur in class C2; such foliations were studied for instance in [1], [3], [4]. In
codimension q ≥ 2, there are many particular foliations which have been studied;
for example, Epstein studied foliations with all leaves compact; Molino studied the
Riemannian foliations case; Blummental studied the case of transversely homoge-
neous foliations (cf. [2], chap. 3). . . It is natural to try to understand foliations
in a closed manifold of codimension q ≥ 2: The purpose here is to develop in
this general situation a setting of a structure theorem. However, there are many
differences between codimension 1 and codimension ≥ 2. But very little is known
about them, in particular about their global structure. In order to generalize the
case of codimension 1, we relate them to the notion of regular open set introduced
by Salhi in [3], [4], and some related concepts.

We refer to section 5 for the statement of the main result of this paper.

The plan of this paper is as follows. In section 2 we give some preliminaries. In
sections 3 and 4, we introduce a family of open sets and technical lemmas which
will make up the main theorem. In section 5, we prove the main theorem.
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2. Preliminaries

In this section we recall some basic definitions and notations, and introduce notions
which will be useful in the sequel. Let M be a closed C∞ manifold of dimension
n, and F a codimension q, q ≥ 1 and class Cr, r ≥ 1, foliation on M . A subset of
M which is a union of leaves is called an F-saturated set. An F-saturated set E
is called a local minimal set of F if there exists an open F-saturated set U such
that E is a minimal set of F | U ; that is for every leaf L ⊂ E, we have L∩U = E.
Two distinct local minimal sets of F are disjoint.

We call the class of a leaf L of F the union cl(L) of all leaves G of F such that
G = L. If L is proper, cl(L) = L. If L is contained in a local minimal set E then
cl(L) = E. An open F -saturated set U is called an open local minimal set of F if
all leaves of F | U are dense in U . It is equivalent to the following: for every leaf
L of F | U , cl(L) = U . In this case, we have also U ⊂ L.

For more information about this terminology, see [3], [4], or see also ([2],
Chap. 4, section 4).

Here we give some trivial lemmas which are useful in the sequel.

Lemma 1. If U is an open connected set of M and V is a nonempty open set of
M strictly contained in U then Fr(V ) ∩ U �= ∅.

Indeed, V is not closed in U since U is connected and distinct from V . Therefore
Fr(V ) ∩ U = (V − V ) ∩ U �= ∅.

Lemma 2. Let L be a leaf of F and X ⊂ L be a closed nonempty F-saturated set
of M with X �= L. If U is the connected component of M − X containing L then
X = Fr(U).

Proof. Since U is closed in M − X, Fr(U) = U − U ⊂ X. On the other hand, we
have X ⊂ L ⊂ U and X ⊂ M − U . Hence X ⊂ U − U and then X = Fr(U). �

The Lemma 2 is also true if we replace the leaf L by any closed connected
nonempty F-saturated subset of M .

Corollary 1. If G and L are leaves of F such that G ⊂ L and G �= L then
G = Fr(U) where U is the connected component of M − G containing L.

In codimension q ≥ 2, there does not necessarily exist a foliation transverse
to F of dimension q. In order to give some analogies as in codimension 1, we
suppose in all the sections below, that there exists a foliation Γ transverse to F of
dimension q.
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3. Regular and foliated fiber open sets

In this section, we adapt to our purpose some viewpoints due to E. Salhi in [3],
[4] (see also [2], chap. 4, section 4).

Let U denote a nonempty open connected F-saturated set distinct from M . If
T is a transverse leaf, we denote by Sat(T ) its saturated set for the leaves of F .

Definition 1. U satisfies:
– Property (a): if for every x ∈ U , the transverse leaf Tx of Γ passing through

x meets the complementary M − U of U .
– Property (c): if U contains a transverse leaf and for every transverse leaf

T ⊂ U , we have Sat(T ) = U .

Definition 2. U is called regular if for every transverse leaf T of Γ meeting U ,
every leaf of F | U meets T (i.e. U ⊂ Sat(T )).

Definition 3. U is called a foliated fiber if it is regular and satisfies Property (a).

Note that if U = M , we say that M is regular (or a foliated fiber) if for every
transverse leaf T we have: M = Sat(T ).

Remark 1. If F is of codimension q = 1:
– U is a foliated fiber open set if and only if it satisfies the Property (a).
– U is regular if and only if U satisfies one of the Properties (a) or (c). (cf. [3],

proposition 3).

Remark 2. If F is of codimension q ≥ 2, a regular open set U satisfies always
Properties (a) or (c). The converse is not true in general:

– There exists an open set U which satisfies Property (a) but it is not regular
as can be shown by the following example:

Example 1. Let F = F1×F2 be the product foliation of T 3 = T 2×S1 where F1

is the discrete foliation of the circle S1 (i.e. each leaf is a single-point), and F2 is
the foliation of the torus T 2 having a compact leaf L0 and such that (T 2 − L0) is
a Reeb component. F is of codimension q = 2. Let Γ1 (resp. Γ2) be the foliation
transverse to F1 (resp. F2). Since S1 is the unique transverse leaf of Γ1, then
any open set U1 ⊂ S1 distinct from S1 is a foliated fiber. Also, since Γ2 has a
transverse leaf T2 such that Sat(T2) = T 2 − L0, then T 2 is not regular. It follows
that the open set U = T 2 × U1 in T 3 satisfies Property (a) but is not regular.

– There exists an open set U which satisfies Property (c) but it is not regular
as can be pointed out to us by the referee.

At first, we prepare some properties which are useful in the sequel:
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Proposition 1. Let U1 and U2 be open, nonempty, connected F-saturated sets of
M such that U1 ⊂ U2. Then we have the following:

(i) If U2 is regular and U1 �= U2 then U1 is foliated fiber.
(ii) If U2 is an open local minimal set of F then U1 = U2.

Proof. (i) First, U1 is regular since it is contained in a regular set U2. Let T1

be a transverse leaf meeting U1. We have U2 ⊂ Sat(T1). Then by Lemma 1,
Fr(U1) ∩ Sat(T1) �= ∅. Therefore T1 meets M − U1, and U satisfies Property (a).

(ii) This follows from the fact that: For every leaf L of F | U2, cl(L) = U2 and
then cl(L) = U1. �

We introduce four families of F-saturated open sets:
– A the union of all open sets which satisfy Property (a)
– D the union of all open local minimal sets of F
– R the union of all regular open sets.
– C the union of all open sets which satisfy Property (c).
Note that:
– A ∩R is the union of all foliated fiber open sets
– a regular non foliated fiber open set satisfies Property (c).

Corollary 2. Let U be an F-saturated open connected set of M . Then:
(i) If U is an open local minimal set of F then U is regular. In particular, we

have D ⊂ R ⊂ A ∪ C.
(ii) U is an open local minimal set of F if and only if U ⊂ D.

Proof. (i) Let U be an open local minimal set of F . If T is a transverse leaf of Γ
which meets U and TU be a connected component of T ∩ U , then Sat(TU ) ⊂ U is
an open, nonempty, connected F-saturated set of M . It follows by (Proposition
1, (ii)) that Sat(TU ) = U . Thus U ⊂ Sat(T ) and U is regular.

(ii) If U is an open local minimal set of F we have U ⊂ D by definition of D.
Suppose now that U ⊂ D. Since two distinct open local minimal sets of F are
disjoint and U is connected, there exists an open local minimal set V of F such
that U ⊂ V . Therefore, by (Proposition 1, (ii)) we have U = V . �

Proposition 2. If U1 is an open set which satisfies Property (c) and U2 is regular
such that U1 ∩ U2 �= ∅, then U2 ⊂ U1.

Proof. By hypothesis of U1, there exists a transverse leaf T1 such that Sat(T1) = U1.
Since U1 ∩ U2 �= ∅, T1 meets every leaf in U1 ∩ U2. Therefore U2 ⊂ Sat(T1) = U1,
as desired. �

Corollary 3. If U1 is an open set which satisfies Property (c) and U2 is regular
non foliated fiber such that U1 ∩U2 �= ∅ then U1 = U2. In particular, every regular
non foliated fiber open set is a connected component of R.
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Corollary 4. If U satisfies Property (c) then Fr(U) ⊂ M −R.

Indeed, otherwise there exists a regular set U2 such that Fr(U)∩U2 �= ∅. Then
U ∩ U2 �= ∅ and, we have U2 ⊂ U (Proposition 2), a contradiction.

Proposition 3. Every connected component of R is regular

Proof. Suppose on the contrary, there exists a connected component U of R which
is not regular, that is, there exists a transverse leaf T meeting U such that U �⊂
Sat(T ). So, U ∩ Sat(T ) is nonempty and strictly contained in U . By Lemma 1,
Fr(Sat(T ))∩U �= ∅. Let L be a leaf in Fr(Sat(T ))∩U . There exists a regular open
set V such that L ⊂ V . It follows that Fr(Sat(T ))∩V �= ∅. Therefore, V ⊂ Sat(T )
and then L ⊂ Sat(T ), which is impossible. The proof is complete. �

Corollary 5. Let U be an F-saturated open connected set of M . Then U is regular
if and only if U ⊂ R.

Indeed, if U ⊂ R then there exists a regular open set V such that U ⊂ V
(Proposition 3). Therefore, U is regular (Proposition 1, i)).

Remark 3. If U satisfies Property (a) then U ⊂ A. The converse is not true in
general.

4. Technical lemmas

Hereafter, we prepare some lemmas which play an important role in the proof of
the main theorem.

Lemma 3. If P is a union of transverse leaves of Γ and U = Sat(P ), then there
exists a minimal set E of F | U and U is compact by saturation (i.e. quasi-compact
for the topology defined by the saturated open subsets of M).

Proof. This lemma follows from Zorn’s lemma since we have P ⊂ U . �

Lemma 4. Let Pn (n ≥ 1) be a union of transverse leaves of Γ. If Sat(Pn+1) ⊂
Sat(Pn) then (Sat(Pn))n≥1 is stationary.

Proof. Suppose that (Sat(Pn))n≥1 is infinite. So, we may suppose, for every n ≥ 1
that Sat(Pn+1) is strictly contained in Sat(Pn). Let Ln ⊂ (Sat(Pn) − Sat(Pn+1)),
be a leaf of F . Then Ln meets a transverse leaf Tn ⊂ Pn ; let xn ∈ Tn ∩ Ln.
One can assume, passing to a subsequence if necessary, that (xn)n≥1 converges to
a limit x. Let Wx be a bidistinguished open set which contains x. Then, there
exists an integer N such that for n ≥ N , xn ∈ Wx. Therefore, the leaf Ln of F
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passing through xn meets a transverse leaf Tn+1 ⊂ Pn+1; which is impossible. �

Lemma 5. Every F-saturated open set U has only a finite number of connected
components which do not satisfy Property (a).

Proof. Suppose on the contrary, there exist infinitely many transverse leaves (Tn)n≥1

in U such that (Sat(Tn))n≥1 are pairwise disjoint. Let xn ∈ Tn for every n. One
can assume that (xn)n≥1 converges to a limit x. By taking a bidistinguished
open set Wx which contains x, there exists an integer N such that for n ≥ N ,
xn ∈ Wx. Therefore, the leaf Lx of F passing through x meets all Tn for n ≥ N ;
a contradiction. �

Lemma 6. If (Un)n≥1 is a sequence of open sets which do not satisfy Property (a)
and with Un+1 ⊂ Un then there exists an open set V ⊂ ∩

n≥1
Un.

Proof. By assumption, for every n, there exists a transverse leaf Tn ⊂ Un. Denote
by Pn the union of all transverse leaves contained in Un, and we let Vn = Sat(Pn).
It follows that for every n ≥ 1, Vn+1 ⊂ Vn and Vn ⊂ Un. By Lemma 4, (Vn)n≥1

is stationary; so there exists an integer N such that for n ≥ N , Vn = VN ⊂ Un.
Hence, VN ⊂ ∩

n≥1
Un, as desired. �

Lemma 7. Let U be an open set which does not satisfy Property (a). Then U
contains an open set which satisfies Property (c).

Proof. Suppose the contrary. Then in particular U does not satisfy Property (c).
There exists a transverse leaf T1 such that Sat(T1) is strictly contained in U . Since
Sat(T1) does not satisfy Property (c), there exists a transverse leaf T2 such that
Sat(T2) is strictly contained in Sat(T1). In this way, we construct a sequence
(Tn)n≥1 of transverse leaves such that Sat(Tn+1) is strictly contained in Sat(Tn),
which contradicts Lemma 4. �

Proposition 4. If U is an open set which satisfies Property (c) then U has one
of the following properties:

(i) U is an open local minimal set of F .
(ii) There exists a minimal set E of F | U with empty interior and for every

minimal set E of F | U , each connected component of U −E satisfies Property (a).

Proof. By the hypothesis of U , there exists a transverse leaf T of Γ such that
Sat(T ) = U . Then, by Lemma 3 there exists a minimal set E of F | U . Now,
assume that (i) does not hold, that is U is distinct from E, and denote by V a
connected component of U − E. We claim that V satisfies Property (a). If a
transverse leaf T1 meets V , then one of the following holds:

(i) T1 meets M −U ; in this case, T1 meets M −V and V satisfies Property (a).
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(ii) T1 is contained in U ; in this case Sat(T1) = U . Therefore, T1 meets M −V ,
and then V satisfies Property (a). �

Note that a regular non foliated fiber open set satisfies Proposition 4.

Corollary 6. Let U be an open set which satisfies Property (c). If U contains
two distinct minimal sets E1 and E2 then U ⊂ A.

Indeed, by Proposition 4, we have U − E1 ⊂ A and U − E2 ⊂ A. So, U ⊂ A.

Corollary 7. If all leaves of F are proper then every regular non foliated fiber
open set U contains a leaf closed in U .

Proof. This follows from Proposition 4 and from the fact that a local minimal set
in this case is a proper leaf. �

Remark 4. If F is of codimension q = 1 and U satisfies one of the properties (i)
or (ii) of Proposition 4 then U is regular. If F is of codimension q ≥ 2, and if U
satisfies Property (i) then U is regular by Corollary 2, (i).

Proposition 5. There exist finitely many F-saturated connected open sets V1, V2,
. . . ,Vp which satisfy Property (c) such that:

(i) C = V1 ∪ V2 ∪ · · · ∪ Vp.
(ii) Each regular non foliated fiber open set is one of the Vi, 1 ≤ i ≤ p.

Proof. (i) For each x ∈ C there exists an open set Vx ⊂ C which satisfies Prop-
erty (c). So, there exists a transverse leaf Tφ(x) in Vx with Vx = Sat(Tφ(x)) and
C = ∪

x∈C
Vx. Since C = Sat( ∪

x∈C
Tφ(x)) is compact by saturation (Lemma 3) then

there exist finitely many transverse leaves Tφ(x1), Tφ(x2), . . . , Tφ(xp) such that
C = ∪

1≤i≤p
Sat(Tφ(xi)) = ∪

1≤i≤p
Vxi

, as desired. Property (ii) follows from the fact

that: if R is a regular non foliated fiber open set then R ∩ Vi �= ∅ for some i,
1 ≤ i ≤ p. It follows that R = Vi by Corollary 3. �

5. Main result

Theorem 1. 1. The union A ∪D is open and dense in M and we have:
A ∪D ⊂ A ∪R ⊂ A ∪ C.
2. M − A ∪ C = ∪

1≤i≤p
Fr(Ci) where (Ci)1≤i≤p are the finite connected compo-

nents of A ∪ C which do not satisfy Property (a).
3. C − A is a union of finite local minimal sets of F .

Proof. Assertion (1): Suppose the contrary; that is there exists a nonempty, open,
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connected F-saturated set U ⊂ M −A ∪D. Since U does not satisfy Property (a),
there exists by Lemma 7, a transverse leaf T1 such that Sat(T1) ⊂ U and Sat(T1)
satisfies Property (c). By Lemma 3, there exists a minimal set E in Sat(T1). Since
U ⊂ M − A ∪ D we have E �= Sat(T1) and Sat(T1) − E satisfies Property (a) by
Proposition 4, a contradiction.

Assertion (2): First, we deduce from assertion (1) that A ∪ C is dense in M .
Now, let (Ci)1≤i≤p be the family of connected components of A ∪ C which do
not satisfy Property (a). (We know that such connected components are finite by
Lemma 5). Now, since the Ci are closed in A∪C then, ∪

1≤i≤p
Fr(Ci) ⊂ M −A∪C.

To prove the other inclusion M −A∪ C ⊂ ∪
1≤i≤p

Fr(Ci), let x ∈ M −A∪ C. Take

Un = Sat(Bn) where Bn is the open ball centered at x with radius 1
n . Thus, Un

is an open F-saturated set which does not satisfy the Property (a). By Lemma
7, Un contains an open set Vn which satisfies Property (c). Thus, we can suppose
that for every n, Vn is contained in one of the (Ci)1≤i≤p, say C1, and x /∈ C1.
Take xn ∈ Vn ∩Bn ⊂ C1. Then the sequence (xn)n≥1 converges to x and we have
x ∈ Fr(C1), this completes the proof of Assertion (2).

Assertion (3): Let x ∈ C − A and Lx be a leaf passing through x. From
Proposition 5, x ∈ Vi for some i, 1 ≤ i ≤ p. We will show that cl(Lx) is the
only minimal set of F | Vi: If Vi is not an open local minimal set of F , then by
Proposition 4 and Corollary 6, there exists a unique minimal set Ei in Vi such
that each connected component of Vi − Ei satisfies Property (a). Since x /∈ A, so
x ∈ Ei and then cl(Lx) = Ei. �

Corollary 8 ([3]). If F is of codimension q = 1, then
1. R is open and dense in M .
2. There exist a finite number of half-proper leaves L1, L2, . . . , Lp of F such

that M −R = L1 ∪ L2 ∪ · · · ∪ Lp

3. There exist finitely many classes which are contained in regular non foliated
product sets.

Proof. Since F is of codimension q = 1, we have A ∪ C = R. Hence, Assertion
(1) follows from Theorem 1, (1). Assertion (2) follows from Theorem 1, (2) since
the connected components (Ri)1≤i≤p of R which do not satisfy Property (a) are
exactly the regular non foliated product open sets and since Fr(Ri) are the closure
of finitely many leaves and these leaves are half-proper and attracting in a proper
side (cf. [3]). Assertion (3) follows from Theorem 1, (3). �
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