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Four-manifold systoles and surjectivity of period map
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Abstract. P. Buser and P. Sarnak showed in 1994 that the maximum, over the moduli space of
Riemann surfaces of genus s, of the least conformal length of a nonseparating loop, is logarith-
mic in s. We present an application of (polynomially) dense Euclidean packings, to estimates
for an analogous 2-dimensional conformal systolic invariant of a 4-manifold X with indefinite
intersection form. The estimate turns out to be polynomial, rather than logarithmic, in χ(X),
if the conjectured surjectivity of the period map is correct. Such surjectivity is targeted by the
current work in gauge theory. The surjectivity allows one to insert suitable lattices with metric
properties prescribed in advance, into the second de Rham cohomology group of X, as its integer
lattice. The idea is to adapt the well-known Lorentzian construction of the Leech lattice, by
replacing the Leech lattice by the Conway–Thompson unimodular lattices which define asymp-
totically dense packings. The final step can be described, in terms of the successive minima λi

of a lattice, as deforming a λ2-bound into a λ1-bound, illustrated by Figure 9.1.
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1. Schottky problem, surjectivity conjecture, and main theorem

The work of P. Buser and P. Sarnak [BS94] on Riemann surfaces in connection
with the Schottky problem shows that the maximum, over the moduli space, of
the least conformal length of a nonseparating loop behaves logarithmically in the
genus, cf. (6.1) below and also M. Gromov’s result [Gro83, Theorem 5.5.C ′].

We provide a lower bound which is polynomial in the second Betti number,
for the analogous 2-dimensional conformal systolic invariant for a 4-manifold X
with indefinite intersection form, modulo the conjectured surjectivity of the period
map, targeted in the current work [ADK]. Our bound currently depends on such
surjectivity, but see 1.3. In the case b+(X) = 1 targeted in [ADK], such surjectivity
is expressed in Hypothesis 1.1.

Let (X, g) be a Riemannian 4-manifold. Let ∗ : H2
dR(X) → H2

dR(X) be the
Hodge star operator in de Rham cohomology identified with the space H of har-
monic 2-forms on X. Assume that b+(X) = 1, so that the selfdual subspace (i.e.
the (+1)-eigenspace of the Hodge star operator) is 1-dimensional. Recall that the
cup-product form in H2(X) is dual to the intersection form in H2(X).

Hypothesis 1.1. For every line V in the positive cone in H2
dR(X) defined by the

cup product form, there is a metric g on X whose selfdual subspace is exactly V .

Given a lattice L equipped with a norm ‖ ‖, we denote by

λ1(L) = λ1(L, ‖ ‖) (1.1)

the least norm of a nonzero lattice vector. The λ1 notation fits in with the succes-
sive minima λi of a lattice, studied in lattice theory, cf. [GruL87, p. 58], [BanK03,
Section 4], and Definition 3.2.

Theorem 1.2. Let n ∈ N and consider the complex projective plane blown up at
n points, Pn = CP 2#nCP

2
, where bar denotes reversal of orientation, while # is

connected sum. Assume that Hypothesis 1.1 is satisfied for such manifolds. Then

C−1
√

n < sup
g

{
λ1

(
H2(Pn, Z), | |L2

)}2
< Cn, ∀n > 0, (1.2)

where C > 0 is a numerical constant, the supremum is over all smooth metrics g

on CP 2#nCP
2
, and | |L2 is the norm (3.1) defined by g.

Here the upper bound may be replaced by 2
3 (n + 1) by the estimate (4.3),

while the lower bound, by
√

k(n), where k(n) is asymptotic to n
2πe as n → ∞,

cf. Theorem 2.2. The theorem is proved in Section 11. The desired metric is
specified in formula (11.1) in terms of inversion of the period map.

A number of systolic inequalities are now available in the literature. Nontrivial
cup product relations lead to stable systolic inequalities [BanK03] (cf. inequal-
ity (4.3) below), some of them sharp [BanK04, NV03]. Meanwhile, nontrivial
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Massey products also admit systolic repercussions, cf. [KKS]. For ordinary (rather
than stable) systoles, systolic freedom prevails as soon as we go beyond loops. Here
“systolic freedom” refers to the absence of systolic inequalities, i.e. the existence
of sequences of metrics violating such potential inequalities. Such a phenomenon
for the middle dimensional systole was first described in detail by the author in
[Ka95B]. M. Gromov’s original seminal example of 1993 is described in [Gro99,
p. 268], as well as [CrK03, section 4.2]. Further generalisations of systolic freedom
were obtained in [BabK98], [BKS98], [Fr99], [KS99, KS01], [Bab02], [Ka02]. See
the recent survey [CrK03, Figure 4.1] for a 2-D map of systolic geometry, which
places such results in mutual relation.

Question 1.3. Can one eliminate the dependence of our Theorem 1.2 on the sur-
jectivity conjecture? Recent discussions with C. LeBrun and P. Biran suggest that
one may be able to remove the dependence on the conjectured surjectivity of the
period map, at least in the case of the blow-ups of the projective plane, by exploit-
ing the action of the automorphism group of the intersection form, cf. Lemma 7.1
and Remark 7.2. This would work if one can show the existence of metrics adapted
to symplectic forms which represent classes from a suitable fundamental domain
for the action, cf. [Bi01, Theorem 3.2] and Remark 9.1.

Question 1.4. Can one improve the lower bound in (1.2) to linear dependence
on n? Here one could envision an averaging argument, using Siegel’s formula as
in [MH73, Theorem 9.5], over integral vectors satisfying qn,1(v) = −p. Here one
seeks a vector v ∈ R

n,1 such that the integer lattice Z
n,1 ⊂ R

n,1 has the Conway–
Thompson behavior (2.1) with respect to the positive definite form SR(qn,1, v).

Question 1.5. Is there an asymptotically infinite lower bound similar to Theo-
rem 1.2 for the stable 2-systole in place of the conformal 2-systole? This is related
to understanding the discrepancy between the comass norm and the L2 norm in
2-dimensional cohomology. Note that Remark 4.1, concerning the 1-systoles of sur-
faces, suggests that a priori there may exist, instead, an asymptotically vanishing
upper bound for the stable 2-systole, cf. (5.2) in the definite case.

The present work is organized as follows. Section 2 introduces the Conway–
Thompson lattices and describes the idea of the proof. Section 3 defines the L2-
norm in cohomology, describes its relation to the intersection form, and discusses
the successive minima of a lattice. Section 4 defines the conformal and stable
systoles. Section 5 discusses the definite case. Note that our main Theorem 1.2
can be thought of as a higher-dimensional analogue of the Buser–Sarnak theorem,
presented in Section 6. Section 7 explains a useful sign reversal relation between
definite and indefinite forms. Section 8 describes a Lorentzian construction of
lattices inspired by a result of J. Conway and N. Sloane, and presents a lower
bound for the second successive minimum. Section 9 presents the necessary linear
algebraic ingredient. Section 10 deforms a lower bound for the second successive
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minimum, into a lower bound for the first successive minimum. The proof is
completed by a successive minimum calculation in Section 11.

2. Conway–Thompson lattices CTn and idea of proof

The surjectivity of the period map (see Hypothesis 1.1) furnishes a lot of latitude
in prescribing the position of the integer lattice in middle-dimensional de Rham
cohomology, with respect to the L2-norm. In particular, we show that the least
norm, λ1

(
Hp(X, Z)R, | |L2

)
, of a nonzero lattice element, can be made arbitrarily

large as the Betti number grows. Here one relies on the existence of Euclidean
unimodular lattices L with arbitrarily high λ1(L), as well as on the (elementary)
classification of indefinite odd unimodular forms, cf. (8.1). We acknowledge the
influence on our approach of the Lorentzian construction (i.e. using indefinite
forms) of the Leech lattice of J. Conway and N. Sloane [CoS99, Chapter 26],
namely the following result.

Theorem 2.1 (J. H. Conway, N. J. A. Sloane). If

t = (3, 5, 7, . . . , 45, 47, 51|145)

is a vector with q24,1(t) = −1 in I24,1, then t⊥∩ I24,1 is a copy of the Leech lattice.

The first step of our approach can be described as adapting the Lorentzian
construction by replacing the Leech lattice by the Conway–Thompson lattices. The
latter are unimodular lattices which define packings of high asymptotic density.
More precisely, we have the following result [MH73, Theorem 9.5].

Theorem 2.2 (Conway, Thompson). For any dimension n, there exists a positive
definite inner product space, denoted CTn, over Z of odd type and rank n with

min
x�=0

x.x ≥ k(n), (2.1)

where k(n) is asymptotic to n/2πe as n → ∞.

The second step of our approach is explained in Section 9.

3. Norms in cohomology and successive minima λi of lattices

Let (X, g) be a closed orientable Riemannian (2p)-dimensional manifold. Let
Hp(X, Z)R ⊂ H = Hp

dR(X) be the lattice defined as the image of Hp(X, Z) in
Hp(X, R) under the inclusion Z ⊂ R of coefficients, i.e. quotient by its torsion
subgroup. We will sometimes delete the subscript R, by abuse of notation, when
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the torsion subgroup is trivial. Consider the L2-norm | |L2 in H, defined by

|f |2L2 =
∫

X

f ∧ ∗f (3.1)

for each harmonic p-form f ∈ H, where ∗ is the Hodge operator for the metric g.
The following lemma is obvious, cf. [FU84, Lemma 2.21].

Lemma 3.1. Let p be even. Then the L2-norm is related to the cup product form
ω(f, g) =

∫
X

f ∪ g by means of the “sign reversal” formula

|f |2L2 = 〈f, f〉 = ω(f+, f+) − ω(f−, f−) (3.2)

where f = f+ + f− is the decomposition given by the splitting H = V + + V − into
the (±1)-eigenspaces of the involution ∗.

Similarly to the notation of formula (7.1) below, we can restate Lemma 3.1 as
follows:

〈 , 〉 = SR(ω, V −). (3.3)

The lattice Hp(X, Z)R is equipped with the L2-norm defined by formula (3.1).
The dual norm in the similarly defined lattice Hp(X, Z)R ⊂ Hp(X, R) will also be
denoted | |L2 .

The successive minima are defined as follows. Note that the second successive
minimum is exploited in Corollary 8.1 below.

Definition 3.2. Let i be an integer satisfying 1 ≤ i ≤ rk(L). The i-th successive
minimum λi(L, ‖ ‖) is the least λ > 0 such that there exist i linearly independent
vectors in L of norm at most λ:

λi(L, ‖ ‖) = inf
λ

{
λ ∈ R

∣∣ ∃v1 , . . . , vi (l.i.) : ‖v1‖ ≤ λ, . . . , ‖vi‖ ≤ λ
}

.

4. Conformal length and systolic flavors

In this section, we define several flavors of systolic invariants of a (2p)-dimensional
Riemannian manifold manifold (X, g). The (middle dimensional) conformal p-
systole, denoted confsysp(g), of the metric g, is the least norm of a nonzero element
in the integer lattice in p-dimensional cohomology (or, equivalently, homology; see
Remark 4.2), with respect to the L2-norm (3.1) defined by g:

confsysp(g) = λ1

(
Hp(X2p, Z)R, | |L2

)
= min

{ |v|L2

∣∣ v ∈ Hp(X, Z)R \ {0}} .

Meanwhile, the stable p-systole is the quantity

stsysp(g) = λ1(Hp(X2p, Z)R, ‖ ‖),
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where ‖ ‖ is the stable norm in homology, dual to the comass norm in cohomology,
cf. [Fe74, 4.10], [BanK03]. The conformal systole is related to the stable systole
as follows:

stsysp(g)vol2p(g)−
1
2 ≤

(
2p

p

) 1
2

confsysp(g). (4.1)

Here the binomial coefficient appears due to the discrepancy between the linear
comass norm and the natural Euclidean norm on the space of p-forms, cf. [BanK03,
section 7]. In the case p = 1, the binomial coefficient may be replaced by 1.

Remark 4.1 (1-systole asymptotics). It should be kept in mind that the asymp-
totic behavior of the (stable) 1-systole as a function of the genus is completely
different from the conformal systole. Thus, M. Gromov [Gro96, 2.C] reveals the
existence of a universal constant C such that we have an asymptotically vanishing
upper bound

sys1(Σs)2

area(Σs)
≤ C

(log s)2

s
,

for every orientable surface Σs of genus s ≥ 2, with a Riemannian metric, see
[CrK03, (2.9) and (2.10)] for related bounds. In contrast, P. Buser and P. Sarnak
[BS94] provide an asymptotically infinite lower bound for the maximum of the
conformal systole over the moduli space, cf. inequality (6.1).

Remark 4.2 (Conformal length). The Poincaré duality map induces an isometry

PD : (Hp(X, Z)R, | |L2) → (Hp(X, Z)R, | |L2), (4.2)

proving that the integer lattice in middle dimension is isodual in the sense of
[CoS94, BeM95]. Thus for p = 1, the invariant confsys1 is the conformal length of
the surface.

We have the following upper bound on conformal systole:

λ1(Hp(X2p, Z)R, | |L2)2 ≤ γb <
2
3

bp(X2p) for bp(X) ≥ 2, (4.3)

see [BanK03] for stable systolic generalisations based on multiplicative relations
in cohomology, and [CrK03] for an overview.

5. Systoles of definite intersection forms

Our main result is Theorem 1.2, which may be viewed as a higher dimensional gen-
eralisation of the Buser–Sarnak theorem (6.1). We briefly discuss the definite case.
Consider the family of manifolds nCP 2, defined as the connected sum of n copies
of the complex projective plane with the standard orientation. Recall that these
exhaust the smooth positive definite case by Donaldson’s theorem, cf. [Ka95A].
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In contrast to Theorem 1.2, the maximal conformal systole in the definite case is
bounded as the second Betti number grows:

λ1(H2(nCP 2, Z), | |L2) = λ1(H2(nCP 2, Z),
√

ω) = λ1(Zn) = 1, (5.1)

for every Riemannian nCP 2, n = 1, 2, . . .. This is immediate from formula (3.2)
which identifies the L2-norm and the intersection form ω if the latter is positive
definite. By inequality (4.1), we obtain the following result, pointed out by C. Le-
brun: every Riemannian nCP 2 satisfies the inequality

stsys2
(
nCP 2

)2 ≤ 6 vol4
(
nCP 2

)
. (5.2)

6. Buser–Sarnak theorem

Our Theorem 1.2 may be viewed as a higher dimensional analogue of the theorem
of P. Buser and P. Sarnak [BS94, formula (1.13)]. Let Σs be a closed orientable
surface of genus s. Then the conformal 1-systole satisfies the bounds

C−1 log s < sup
g

{
λ1

(
H1(Σs, Z), | |L2

)}2
< C log s, ∀s ≥ 2 (6.1)

where C > 0 is a numerical constant, the supremum is over all metrics g on Σs, and
| |L2 is the norm (3.1) associated with g. An explicit upper bound of 3

π log(4s+3)
is provided in [BS94, formula (1.13)].

Note that a (weaker) upper bound of C
√

s ( in place of C log s) results from
R. Lazarsfeld’s work [La96, p. 441, Proposition, part (i)]. The systolic quantity
λ1

(
H1(Σs, Z), | |L2

)
may be viewed as the conformal length of the surface, in view

of the isomorphism of formula (4.2). By conformal invariance, the supremum in
(6.1) may be restricted to the moduli space of hyperbolic metrics on the surface.

7. Sign reversal procedure SR and Aut(In,1)-invariance

Let q be an indefinite quadratic form of index +1 (i.e. with a single negative
direction) on a vector space E over R, and let v ∈ E be a vector satisfying
q(v) < 0. Denote by v⊥ ⊂ E the q-orthogonal complement of v ∈ E, or, more
precisely, the Q-orthogonal complement, where Q(u,w) = 1

4 (q(u + w)− q(u−w))
is the polarisation of q. Thus, we have a decomposition E = v⊥ ⊕ Rv. The sign
reversal, SR(q, v), is the positive definite form on E obtained by reversing the sign
of q in direction v, while keeping it fixed on v⊥ ⊂ E:

SR(q, v)(x) = q(x+) − q(x−), (7.1)

where x = x+ + x− is the decomposition of x ∈ E following the splitting E =
v⊥ ⊕ Rv, cf. formula (3.3). Let R

p,q denote the standard real vector space with
quadratic form

qp,q(x) = x2
1 + . . . + x2

p − x2
p+1 − . . . − x2

p+q, (7.2)



Vol. 78 (2003) Four-manifold systoles and surjectivity of period map 779

and let Ip,q ⊂ R
p,q denote its integer lattice. For the purposes of the proof of

Theorem 1.2, it is convenient to reverse the orientation and work instead on the
manifold nCP 2#CP

2
, while hoping that such a step may not prove baffling to an

algebraic geometer.
Recall that the intersection form on nCP 2#CP

2
is qn,1, and the integer lattice

in two-dimensional homology becomes a copy of In,1.

Lemma 7.1. The invariant confsys2
(
nCP 2#CP

2
, g

)
only depends on the orbit

of the antiselfdual line of g in H2
dR

(
nCP 2#CP

2
)

under the action of the auto-
morphism group of In,1.

Proof. An endomorphism f of H2
dR(nCP 2#CP

2
) which is an automorphism of the

indefinite lattice In,1, induces an isometry of the definite form SR(qn,1, v), since f
maps the subspace v⊥q to the subspace f(v)⊥q , and hence

SR(qn,1, v)(x) = SR(qn,1, f(v))(f(x)).

Here if x ∈ In,1, then f(x) ∈ In,1 by the hypothesis that f preserves the integer
lattice. Now the lemma follows from the formula

confsys2(g) = λ1

(
H2

(
nCP 2#CP

2
, Z

)
,SR

(
qn,1, V

−) 1
2
)

,

where V − is the antiselfdual direction of g. �

Remark 7.2. Note that not all automorphisms of the intersection form can be
realized by a diffeomorphism of the manifold, cf. [Ko91].

8. Lorentz construction of Leech lattice and line CT⊥
n

Let CTn ⊂ R
n,0 be a Conway–Thompson lattice as in Theorem 2.2, i.e. a uni-

modular lattice satisfying λ1(CTn)2 ≥ k(n). Then the lattice CTn ⊕ I0,1 is odd,
indefinite, and unimodular, cf. (7.2) and notation there. The classification of odd
indefinite unimodular forms [MH73, p. 22] implies that the lattice In,1 contains an
isometric copy of CTn such that the qn,1-orthogonal complement of CTn in In,1,
is a copy of the line I0,1. In formulas, there exists an isomorphism

φn : CTn ⊕ I0,1 → In,1 (8.1)

preserving the bilinear forms. We will use the following suggestive notation for
the line identified by isomorphism (8.1): let

CT⊥
n ⊂ In,1 (8.2)

be the qn,1-orthogonal complement of φn(CTn ⊕ {0}) ⊂ In,1.
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Corollary 8.1. Let In,1 ⊂ R
n,1 be the integer lattice. Let v ∈ In,1 be a generator

of CT⊥
n ⊂ In,1 as in (8.2), i.e. v = φn(0, e), where e ∈ I0,1 is a generator, as in

isomorphism (8.1). Consider the norm ‖x‖v =
√

SR(qn,1, v)(x), in the notation of
formula (7.1). Then the integer lattice has successive minima λ1(In,1, ‖ ‖v) = +1,
and

λ2(In,1, ‖ ‖v)2 ≥ k(n),

cf. Definition 3.2, where k(n) is as in Theorem 2.2. In other words, all vectors of
square-norm smaller than k(n) are proportional to each other.

Proof. For any lattice L with a positive definite form, we have the identity
SR(L ⊕ I0,1, ι(e)) = L ⊕ I1,0, where ι is the inclusion of the second factor. In
particular,

SR(In,1, φn(ι(e))) = CTn ⊕ I1,0, (8.3)

proving the corollary. �

As an indication of how nontrivial the isomorphism φ as in formula (8.1) could
be, consider Theorem 2.1, which exhibits an isomorphism Λ24⊕I0,1 → I24,1, where
Λ24 is the Leech lattice.

With an eye on the lower bound of our main Theorem 1.2, we first prove
Proposition 8.2 below. Recall that the intersection form on nCP 2#CP

2
is the

diagonal form qn,1, cf. formula (7.2). Let φn be the isomorphism (8.1).

Proposition 8.2. If g is a metric on nCP 2#CP
2

whose antiselfdual direction
is the vector φn(0, e) ∈ In,1, then all surfaces of “conformal area” smaller than√

k(n) with respect to g are homologous to multiples of one another.

Proof. The integer lattice in the selfdual subspace V + is isometric to the Conway–
Thompson lattice:

V + ∩ H2(nCP 2#CP
2
, Z) � CTn.

Moreover, this copy of the Conway–Thompson lattice is a direct summand, where
the second summand is isometric to I0,1. The sign reversal formula (3.2) shows
that the integer lattice(

H2(nCP 2#CP
2
, Z), SR

(
ω,CT⊥

n

) 1
2
)

,

is isometric to the positive definite lattice CTn⊕I1,0, where I0,1 has been replaced
by I1,0 as in formula (8.3). Thus the proposition is a restatement of Corollary 8.1.

�
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9. Three quadratic forms in the plane

The main result of this section is Lemma 9.3 below on the interplay of three
quadratic forms in the plane, an indefinite one, q, and and a pair of definite ones,
q1 and qs, where the parameter value s will be judiciously chosen in (10.7).

To go beyond Proposition 8.2 and prove our theorem, the lattice CTn ⊕ I1,0

is not sufficient, as it contains vectors of unit norm in the second summand I1,0,
so that the quantity λ1(CTn ⊕ I1,0) = 1 is too small. In other words, we need to
replace a lower bound for the successive minimum λ2 of the integer lattice, by a
lower bound for the successive minimum λ1 for the same lattice, but with respect
to a new norm. The idea is to deform appropriately the choice of the negative
definite direction v = φn(0, e), responsible for the Conway–Thompson behavior of
its complement.

Thus, to prove Theorem 1.2, we will apply the surjectivity of the period map,
not to the line CT⊥

n ⊂ H2
dR

(
nCP 2#CP

2
)
, but rather to the image of CT⊥

n under
a suitable “Lorentz deformation”, cf. Figure 9.1 and formula (11.1).

us

vs

u

v

y

x

Fig. 9.1. Lorentz transformation As, cf. (10.4)
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Remark 9.1. Since the quantity λ1 (as in Definition 3.2) is continuous as a func-
tion on the space of positive definite lattices, while the form SR(ω, V ) is continuous
in both parameters, and V − depends continuously on the metric, it follows that
Hypothesis 1.1 can be relaxed to assume the density of the image in place of
surjectivity.

The argument relies on a rather crude bound on the operator norm of the
deformation. The deformation needs to be sufficient to eliminate short vectors, but
with operator norm controlled so as not to negate entirely the Conway–Thompson
effect.

Sign reversal on the line CT⊥
n ⊂ In,1 produces a quadratic form with respect to

which most vectors are suitably long, except for a single direction. To weed out the
remaining short vector, we apply a suitable deformation, whose linear algebraic
content is presented in Lemma 9.3 below.

Let π be the xy-plane. Let e1, e2 be the standard basis and x, y the standard
coordinates. Consider the indefinite form q = dxdy, and let s > 0 be a real
parameter.

Definition 9.2. Our “Lorentz transformation” As :π → π is defined by the matrix

As =
(

s 0
0 1

s

)
with respect to the standard basis, and we set us = As(e1 + e2)

= se1 + 1
se2 and vs = As(e1 − e2) = se1 − 1

se2, as illustrated in Figure 9.1.

Lemma 9.3. Consider the positive definite quadratic form qs = SR(q, vs) on π,
obtained from q by reversing the sign in the direction vs, as in formula (7.1). Then
the map As : (π, q1) → (π, qs) is an isometry.

Proof. Since the “Lorentz transformation” As preserves q and sends v1 to vs, it
is clear that it also sends q1 to qs, but we will give a short explicit calculation.
We have q(us, vs) = 0. Let (x′, y′) be the coordinates with respect to the basis
{us, vs} of the plane π. Then the two pairs of coordinates are related by x =
s(x′ + y′), y = 1

s (x′ − y′). Now q = dxdy = s(dx′ + dy′) 1
s (dx′ − dy′) = dx′2 − dy′2.

Therefore by definition, qs = SR(q, vs) = dx′2 + dy′2. Thus qs(us, vs) = 0 and
qs(us) = qs(vs) = 1. Similarly, the vectors u = e1 + e2 and v = e1 − e2 form an
orthonormal basis for q1, proving the Lemma. �

10. Replacing λ1 by the geometric mean (λ1λ2)1/2

Let L = In,1 ⊂ (Rn,1, qn,1) be the integer lattice. Let v ∈ L be a vector satisfying
qn,1(v) = −1 and

L = Zv ⊕ v⊥ � I0,1 ⊕ v⊥, (10.1)
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where the sublattice
(
v⊥, (qn,1|v⊥)

1
2

)
is positive definite. Let SR(qn,1, v) be the

positive definite form obtained by sign reversal. Let λi = λi

(
L,SR(qn,1, v)

1
2

)
be

the successive minima with respect to the new form. We have λ1 = 1 but we
will ignore this in the statement of the proposition below, so as to emphasize the
geometric mean inherent in the proof. Note that

λ2 = λ1

(
v⊥,

(
qn,1

∣∣
v⊥

) 1
2
)

. (10.2)

Proposition 10.1. There is a qn,1-preserving transformation A of R
n,1 such that

λ1

(
L,SR (qn,1, Av)

1
2

)
≥ √

λ1λ2.

Proof. Let π ⊂ R
n,1 be any 2-plane containing the vector v as in (10.1). We choose

coordinates (x, y) in π with the following three properties:
(1) the union of the x-axis and the y-axis in π is the intersection of the isotropic

cone of qn,1 with π;
(2) the restriction of qn,1 to π is the form q of Lemma 9.3;
(3) with respect to the standard basis e1, e2 in π, we have v = e1 − e2.
Now let s ∈ R, and set vs = se1− 1

se2. Let qs be the positive definite quadratic
form obtained by sign reversal qs = SR(qn,1, vs). Thus, for s = 1, replacing q by
q1 has the effect of replacing I0,1 by I1,0 in the decomposition (10.1). Hence we
have the following isometry of lattices:

(L, q1) � I1,0 ⊕ v⊥. (10.3)

We wish to understand the position of the integer lattice L with respect to the
definite form qs “deforming” q1. By Lemma 9.3, the map

As ⊕ Idπ⊥ , (10.4)

also denoted As, is an isometry from q1 to qs. Thus the pullback lattice
(
A−1

s (L), q1

)
is isometric to (L, qs). We have A−1

s (v) = 1
se1 − se2, and hence

qs(v) = q1

(
A−1

s v
)

= q1

(
1
se1 − se2

)
= 1

s2 + s2 ≥ s2. (10.5)

Now consider an element x ∈ L = Zv ⊕ v⊥ which is not proportional to the
generator v of the first summand. By the Pythagorean theorem applied to formula

(10.3), the element x satisfies q1(x)
1
2 ≥ λ1

(
v⊥)

= λ2

(
L,

√
q1

)
, by formula (10.2).

Meanwhile, we have the following bound on the operator norm with respect to the
form q1: ‖As‖ = ‖A−1

s ‖ ≤ s, and therefore

qs(x) = q1(A−1
s x) ≥ λ2

2

s2
. (10.6)

Combining (10.5) and (10.6), we obtain the lower bound λ1

(
L,

√
qs

)≥min
{
s, λ2

s

}
.



784 M. Katz CMH

Choosing the parameter value

s =
√

λ2

λ1
=

√
λ2, (10.7)

we complete the proof of the proposition. �

Corollary 10.2. Let Zv = CT⊥
n ⊂ L = Z

n,1, as in Theorem 2.2 and isomor-
phism (8.1). Then there is a transformation A = A

k(n)
1
4

of R
n,1 such that

λ1

(
L,SR(qn,1, Av)

1
2

)
≥ k(n)

1
4 .

11. Period map and proof of main theorem

We are now in a position to prove Theorem 1.2. The inequality (4.3) proves the
upper bound of estimate (1.2), insofar as b2(nCP#CP ) = n+1. Let us write down
a formula, (11.1), for a metric gn satisfying the lower bound. Let X = nCP 2#CP 2,
so that H2(X, Z) = In,1, with cup-form ω = qn,1. Recall that the L2-norm in
H2(X, R) is related to the cup product form ω(f, g) =

∫
X

f ∪ g by means of the
“sign reversal” formula |f |2L2 = 〈f, f〉 = ω(f+, f+)−ω(f−, f−), where f = f++f−

is the decomposition given by the splitting H2(X, R) = V + + V − into the (±1)-
eigenspaces of the Hodge involution ∗. It is convenient to introduce the notation
SR, for the “sign reversal” procedure, whose effect is to replace an indefinite (n, 1)
form by a positive definite form: 〈 , 〉 = SR(ω, V −), cf. formula (3.3).

By the Conway–Thompson theorem [MH73, Theorem 9.5], there exist positive
definite unimodular lattices CTn of rank n satisfying λ1(CTn)2 ≥ k(n), where
k(n) is asymptotic to n

2πe as n → ∞, while λ1 is the least length of a nonzero lattice
element, cf. (1.1). Furthermore, by the classification of odd indefinite unimodular
forms [MH73, p. 22], there exists a vector v ∈ In,1 with qn,1(v) = −1, whose
orthogonal complement with respect to the polarisation of qn,1 is the lattice CTn.
Denote by CT⊥

n ⊂ H2(X, R) the negative definite line Rv. Proposition 10.1 yields
a Lorentzian endomorphism As of R

n,1 which replaces the first two successive
minima, λ1 and λ2 (cf. Definition 3.2), of the lattice with respect to the definite
quadratic form SR(ω, v), by their geometric mean, when one passes to the new
definite form SR(ω,Asv).

Let M(X) be the space of all Riemannian metrics on X, and let G be the
projectivisation of the negative cone of the form ω. Let P : M → G be the map
assigning to each metric, its antiselfdual direction. Exploiting the surjectivity of
P, we set

gn = P−1A
k(n)

1
4

(
CT⊥

n

)
, (11.1)

where P−1 denotes a choice of an inverse image. Finally, the lower bound results
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from the following calculation:

confsys2(gn) = λ1(H2(X), | |L2)

= λ1

(
H2

(
nCP 2#CP 2, Z

)
, SR

(
qn,1, Ak(n)

1
4

(
CT⊥

n

)) 1
2
)

≥
√

λ2

(
H2(nCP 2#CP 2, Z), SR

(
qn,1,CT⊥

n

) 1
2
)

=
√

λ1(CTn)

≥ k(n)
1
4 .
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réseaux isoduaux. (French) [Density in families of lattices. Application to isodual lat-
tices], Enseign. Math. (2) 41 (1995), 335–365.

[Bi01] P. Biran, From symplectic packing to algebraic geometry and back, in: Proceedings of
the 3’rd European Congress of Mathematics, 506–524, Progress in Mathematics 202,
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