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Pieri-type formulas for the non-symmetric Jack polynomials

P. J. Forrester and D. S. McAnally

Abstract. In the theory of symmetric Jack polynomials the coefficients in the expansion of
the pth elementary symmetric function ep(z) times a Jack polynomial expressed as a series in
Jack polynomials are known explicitly. Here analogues of this result for the non-symmetric Jack
polynomials Eη(z) are explored. Necessary conditions for non-zero coefficients in the expansion
of ep(z)Eη(z) as a series in non-symmetric Jack polynomials are given. A known expansion
formula for ziEη(z) is rederived by an induction procedure, and this expansion is used to deduce
the corresponding result for the expansion of

∏N
j=1, j �=i zj Eη(z), and consequently the expansion

of eN−1(z)Eη(z). In the general p case the coefficients for special terms in the expansion are
presented.
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1. Introduction

Jack polynomials and Macdonald polynomials can be defined as homogeneous mul-
tivariable orthogonal polynomials, or as eigenfunctions of a family of commuting
differential or difference operators respectively. From the latter viewpoint these
polynomials occur in the study of certain quantum many body systems [3, 8]. In
their most basic form the polynomials are non-symmetric, although eigenfunctions
with a prescribed symmetry with respect to interchange of coordinates are often
required in application [1]. The polynomials with a prescribed symmetry can be
obtained from the non-symmetric polynomials by an appropriate symmetry oper-
ation. One consequence of this feature is that many properties of the symmetric
Jack and Macdonald polynomials can be obtained from the corresponding prop-
erties of the non-symmetric polynomials [2, 10].

There are, however, a number of properties of the symmetric Jack and Macdon-
ald polynomials which have no known relation to properties of the non-symmetric
polynomials. One example is the so-called Pieri formula [14, 9, 4]. To present this
formula requires some notation. Let κ and λ be partitions described by their dia-
grams and suppose κ ⊂ λ. A skew diagram λ/κ is said to be a vertical m-strip if
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it consists of m boxes, all of which are in distinct rows. For λ/κ a vertical m-strip
define χm by λ = κ + χm, and put

U (α)(λ/κ) :=
f1

N (ακ + χm)f1/α
N (κ)

f1
N (ακ)f1/α

N (κ + χm)

where

fr
n(κ) =

∏
1≤i<j≤n

((j − i)r + κi − κj)r

((j − i)r)r
, (u)r :=

Γ(u + r)
Γ(u)

.

With this notation the Pieri formula reads

ep(z)Pκ(z) =
∑

λ
λ/κ a vertical m−strip

U (α)(λ/κ)Pλ(z) (1.1)

where
ep(z) :=

∑
1≤i1<···<ip≤N

zi1 · · · zip

denotes the pth elementary symmetric function, and Pκ(x) := Pκ(x;α) denotes
the symmetric Jack polynomial indexed by the partition κ and normalized so that
when expanded in terms of monomial symmetric functions the coefficient of the
monomial symmetric function mκ is unity.

It is the objective of this paper to investigate non-symmetric analogues of the
Pieri formula (1.1). Our original idea was to adapt the method used by Knop
and Sahi [6] to derive (1.1), which involves the theory of the so-called shifted Jack
polynomials. This was passed on to D. Marshall, who subsequently [11] obtained
the explicit form of the coefficients in the expansions

ziEη(z) =
∑

ν:|ν|=|η|+1

c(i)
ηνEν(z) (1.2)

( N∑
i=1

zi

)
Eη(z) =

∑
ν:|ν|=|η|+1

CηνEν(z). (1.3)

In this work we will give an inductive proof of the evaluation of the c
(i)
ην which

avoids all reference to the theory of the shifted Jack polynomials (the evaluation
of the Cην follows as a simple corollary from knowledge of the c

(i)
ην ).

In Section 3 of the paper we present necessary conditions on ν for the coefficients
in the expansion

zi1 · · · zip
Eη(z) =

∑
ν:|ν|=|η|+p

c(i1,...,ip)
ην Eν(z) (1.4)

to be non-zero. Here use is made of the theory of shifted Jack polynomials. In
Section 4 the result of Marshall for the explicit value of c

(i)
ην is revised, and in

Section 5 we present our inductive proof of this result. The expansion (1.4) in
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the case p = N − 1, where N is the number of variables z := (z1, . . . , zN ), is
given in Section 6. In the final section, Section 7, a coefficient in the expansion of
ep(z)Eη(z) as a series in {Eν} is evaluated for a special value of ν and the form
of the evaluation further explored for a larger class of ν.

2. The non-symmetric Jack polynomials

The non-symmetric Jack polynomials Eη(z) can be specified as the simultaneous
polynomial eigenfunctions of the commuting operators

ξi := αzi
∂

∂zi
+

∑
p<i

zi

zi − zp
(1 − sip) +

∑
p>i

zp

zi − zp
(1 − sip) + 1 − i,

where sip is the operator which permutes zi and zp, satisfying the eigenvalue
equations

ξiEη = η̄iEη, (i = 1, . . . , N) (2.1)

and with coefficient of zη = zη1 · · · zηN unity. For a given composition η :=
(η1, . . . , ηN ), the eigenvalue η̄i in (2.1) is given by

η̄i := αηi − #{k < i|ηk ≥ ηi} − #{k > i|ηk > ηi}. (2.2)

An alternative characterization of the non-symmetric Jack polynomials is as
multivariable orthogonal polynomials. With zj := e2πixj , introduce the inner
product

〈f |g〉 :=
∫ 1

0

dx1 · · ·
∫ 1

0

dxN

∏
1≤j<k≤N

|zk − zj |2/αf∗(z1, . . . , zN )g(z1, . . . , zN ),

(2.3)
where the ∗ denotes complex conjugation. Suppose |η| = |ν| for compositions η �=
ν. Introduce the dominance partial ordering < on compositions by the statement
that ν < η if

∑p
j=1 νj <

∑p
j=1 ηj for each p = 1, . . . , N . Let η+ denote the

partition corresponding to the composition η. Introduce a further partial ordering
	 by the statement that ν 	 η if ν+ < η+, or in the case ν+ = η+, if ν < η. Then
for a given value of |η|, the Eη can be constructed via a Gram-Schmidt procedure
from the requirements that

〈Eη|Eν〉 = 0, (2.4)

for η �= ν, and that

Eη(z) = zη +
∑
ν�η

cηνzν . (2.5)

We will have future use for the explicit value of

Nη := 〈Eη|Eη〉.
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This requires the introduction of further quantities for its presentation. Follow-
ing [13], define the arm and leg lengths at the node (i, j) of the diagram of a
composition η by

a(i, j) = ηi − j, l(i, j) = #{k < i|j ≤ ηk + 1 ≤ ηi} + #{k > i|j ≤ ηk ≤ ηi}
(2.6)

and put

d′η :=
∏

(i,j)∈η

(
α(a(i, j) + 1) + l(i, j)

)
, dη :=

∏
(i,j)∈η

(
α(a(i, j) + 1) + l(i, j) + 1

)
.

(2.7)
Also, define the generalized factorial by

[u](α)
η+ =

N∏
j=1

Γ(u − (j − 1)/α + η+
j )

Γ(u − (j − 1)/α)

and put
eη = α|η|[1 + N/α](α)

η+ , e′η = α|η|[1 + (N − 1)/α](α)
η+ . (2.8)

In terms of the quantities (2.7) and (2.8) we have [12, 2]

Nη

N(0N )

=
d′ηeη

dηe′η
. (2.9)

Starting with E(0N )(z) = 1, the non-symmetric Jack polynomials can be re-
cursively generated from the action of just two fundamental operators. The first
of these operators is the elementary permutation operator si := si i+1, which per-
mutes zi and zi+1. It has the action [12]

siEη(z) =




1
δ̄i,η

Eη(z) +
(
1 − 1

δ̄2
i,η

)
Esiη(z), ηi > ηi+1

Eη(z), ηi = ηi+1

1
δ̄i,η

Eη(z) + Esiη(z), ηi < ηi+1

(2.10)

where
δ̄i,η := η̄i − η̄i+1. (2.11)

The second required operator is the raising type operator, defined when acting on
functions according to

Φf(z1, . . . , zN ) = zNf(zN , z1, . . . , zN−1),

which has the property [7]

ΦEη(z) = EΦη(z), Φη := (η2, . . . , ηN , η1 + 1). (2.12)

Starting from η = (0N ), all compositions can be generated by the action of Φη
and siη, so (2.10) and (2.12) provide the recursive generation of all the Eη.
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Future use will be made of the quantities (2.7) and (2.8) with η replaced by
siη and Φη. In particular, we require the formulas [13]

esiη = eη, e′siη = e′η,
dsiη

dη
=




δ̄i,η+1

δ̄i,η
, ηi > ηi+1

δ̄i,η

δ̄i,η−1
, ηi < ηi+1

d′siη

d′η
=




δ̄i,η

δ̄i,η−1
, ηi > ηi+1

δ̄i,η+1

δ̄i,η
, ηi < ηi+1

dΦη

dη
=

eΦη

eη
= η̄1 + α + N,

d′Φη

d′η
=

e′Φη

e′η
= η̄1 + α + N − 1. (2.13)

Let us now revise some aspects of the theory of non-symmetric shifted Jack
polynomials E∗

η [5]. The polynomial E∗
η(z) is the unique polynomial of degree

≤ |η| with the property

E∗
η(ρ̄/α) = 0, |ρ| ≤ |η|, ρ �= η

and E∗
η(η̄/α) �= 0 with coefficient of zη in its monomial expansion unity (η̄ :=

(η̄1, . . . , η̄N ) where the η̄j are specified by (2.2)). The non-symmetric Jack poly-
nomial Eη is the leading homogeneous term of E∗

η so that

E∗
η(z) = Eη(z) + lower degree terms. (2.14)

A fundamental property of the E∗
η is the extra vanishing condition. Introduce

the partial ordering � on compositions by writing ν � η if there exisits a permu-
tation π such that νi < ηπ(i) for i < π(i) and νi ≤ ηπ(i) for i ≥ π(i). Note that
for ν and η partitions the statement ν � η is equivalent to ν ⊆ η (inclusion of
diagrams) but for compositions, although ν ⊆ η implies ν � η (take π to be the
identity), the converse is not true in general. The extra vanishing condition states
[5]

E∗
η(ν̄/α) = 0 for η �≺ ν. (2.15)

3. Structure of the Pieri type expansions for the non-symmetric
Jack polynomials

Our interest is in the coefficients c
(i1,...,ip)
ην in the expansion (1.4). In this section

we will use the theory of the non-symmetric shifted Jack polynomials to present
necessary conditions for the coefficients to be non-zero.

Now the extra vanishing condition (2.15) implies that any analytic function
vanishing on {ρ̄/α : η �≺ ρ} can be written in the form

f(z) =
∑

ν:η�ν

cηνE∗
ν(z). (3.1)

It follows from this that

zi1 · · · zip
E∗

η(z) =
∑

ν:η�ν
|ν|≤|η|+p

c(i1,...,ip)
ην E∗

ν(z) (3.2)
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for some coefficients c
(i1,...,ip)
ην . Taking the leading homogeneous term on both sides

using (2.14) gives

zi1 · · · zip
Eη(z) =

∑
ν:η�ν

|ν|=|η|+p

c(i1,...,ip)
ην Eν(z) (3.3)

which is a refinement of (1.4).
The statement (3.3) can be further refined by making use of the orthogonality

(2.4). Applying this orthogonality in (3.3) shows that

c(i1,...,ip)
ην =

〈Eν |zi1 · · · zip
Eη〉

〈Eν |Eν〉 . (3.4)

Using the facts that with z1 := z1 · · · zN we have

Eη+(1N )(z) = z1Eη(z), 〈z1f |z1g〉 = 〈f |g〉 and 〈f |g〉 = 〈g|f〉
(the latter provided f and g have real coefficients) it follows from (3.4) that

c(i1,...,ip)
ην =

〈zj1 · · · zjN−p
Eν |Eη+(1N )〉

〈Eν |Eν〉
=

〈Eη+(1N )|zj1 · · · zjN−p
Eν〉

〈Eν |Eν〉 = c
(j1,...,jN−p)

νη+(1N )

〈Eη|Eη〉
〈Eν |Eν〉

(3.5)

where j1, . . . , jN−p are such that {1, . . . , N} = {i1, . . . , ip} ∪ {j1, . . . , jN−p}. But
according to (3.3) c

(j1,...,jN−p)

ν η+(1N )
= 0 for ν �� η + (1N ) and thus (3.5) implies

c(i1,...,ip)
ην = 0 for ν �� η + (1N ). (3.6)

Hence in (3.3) we can make the additional restriction ν � η + (1N ), and so obtain

zi1 · · · zip
Eη(z) =

∑
ν∈JN,p

c(i1,...,ip)
ην Eν(z) (3.7)

where
JN,p := {ν : η � ν � η + (1N ), |ν| = |η| + p}. (3.8)

Note that by performing the sum 1 ≤ i1 < · · · < ip ≤ N in (3.7) we obtain

ep(z)Eη(z) =
∑

ν∈JN,p

A(p)
ην Eν(z) (3.9)

for some constants A
(p)
ην .

Next we seek a more explicit description of the set JN,p. Let wη be the shortest
element of SN (the permutations of {1, . . . , N}) such that w−1

η (η) is a partition
and similarly define wν . It is straightforward to show [5] that if ν � η then
the permutation π in the definition of the partial order can be represented π =
wν ◦ w−1

η =: πν,η. Now, members ν of the set JN,p require both η � ν and
ν � η + (1N ) with |ν| = |η| + p. For the former ordering constraint the relevant
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permutation is πη,ν = π−1
ν,η. Replacing π by π−1 in the definition of � shows we

require

ηi < νπν,η(i) for i < πν,η(i), ηi ≤ νπν,η(i) for i ≥ πν,η(i). (3.10)

For the latter ordering constraint the relevant permutation is πν,η. Replacing π
by π−1 and i by π(i) in the definition of � shows we require

νπν,η(i) < ηi + 1 for πν,η(i) < i, νπν,η(i) ≤ ηi + 1 for πν,η(i) ≥ i. (3.11)

Combining (3.10) and (3.11) gives

ηi < νπν,η(i) ≤ ηi+1 for i < πν,η(i), ηi ≤ νπν,η(i) < ηi+1 for i > πν,η(i),

and so

νπν,η(i) = ηi + 1 for i < πν,η(i), νπν,η(i) = ηi for i > πν,η(i). (3.12)

In the case i = πν,η(i) (3.10) and (3.11) give ηi ≤ νπν,η(i) ≤ ηi + 1 and so

νπν,η(i) = ηi or νπν,η(i) = ηi + 1. (3.13)

It remains to implement the requirement |ν| = |η|+ p. We see from (3.12) and
(3.13) that we must have

νπν,η(ir) = ηir
+ 1 (r = 1, . . . , p) (3.14)

for some 1 ≤ i1 < · · · < ip ≤ N and

νπν,η(jr) = ηjr
(r = 1, . . . , N − p) (3.15)

where {i1, . . . , ip} ∪ {j1, . . . , jN−p} = {1, 2, . . . , N}. Combining (3.14) and (3.15)
with (3.12) and (3.13) shows compositions ν ∈ Jn,p are characterized by the prop-
erties

νπ(ir) = ηir
+ 1 for ir ≤ π(ir) r = 1, . . . , p

νπ(jr) = ηjr
for jr ≥ π(jr) r = 1, . . . , N − p (3.16)

for some permutation π (π = πν,η suffices). The characterization (3.16) can be
interpreted in terms of the diagram of η. We begin by adding one box to the rows
i1, . . . , ip. Then we consider all rearrangements of the rows such the rows with a
box added move downwards or stay stationary, while the rows with no box added
move upwards or stay stationary. An example is given in Figure 1.

In the case p = 1 the compositions ν defined by (3.16) and thus belonging to
the set JN,1 have the property of being the minimal elements lying above η [5].
Note that this set can be indexed by subsets I = {t1, . . . , ts} of {1, . . . , N} with
t1 < · · · < ts which correspond to the element

ν =: cI(η) ∈ JN,1 (3.17)

where

νtj
= ηtj+1 j = 1, . . . , s − 1

νts
= ηt1 + 1

νi = ηi i /∈ I (3.18)
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3

t = 3

2

1 t1 = 2 t1 = 2

=t

t1 = 1 t1 1t = 1

2=2t

=3t 3

=2t 3

1

2

=

=2t

1t 1
=

Fig. 1. Construction of the composition ν : η � ν � η + (1)3 with η = (2, 0, 1) and
|ν| = |η| + 1. The unshaded boxes originate from the diagram of η. With reference to the

original diagram of η the row with the additional box (shaded) must move downwards or stay
stationary, while the rows with no box added move upwards or stay stationary. The labels in

the description (3.18) are also noted.

Furthermore, the subset I is called maximal with respect to η if I �= ∅ and

ηj �= ηtu
j = tu−1 + 1, . . . , tu − 1 (u = 1, . . . , s; t0 := 0)

ηj �= ηt1 + 1 j = ts + 1, . . . , N (3.19)

It follows from (3.18) that an equivalent way to characterize the maximal subsets
is via the conditions

νj �= νts
− 1, j = 1, . . . , t1 − 1

νj �= νtu
, j = tu + 1, . . . , tu+1 − 1 (u = 1, . . . , s; ts+1 := N + 1). (3.20)

It is shown in [5] that it is only these maximal subsets which give distinct compo-
sitions ν (we illustrate this point in Figure 2). Thus we can write

JN,1 := JN,1[η] = {ν : ν = cI(η), I maximal}. (3.21)

It is also convenient to introduce the set Jη of maximal subsets

Jη = {I : I is maximal w.r.t. η}, (3.22)

so that JN,1 = {cI(η) : I ∈ Jη}.
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t1 =

3

3 t1 = 2

t2 =

Fig. 2. In this example, starting with η = (0, 2, 2), two different choices of subsets
I = {t1, . . . , ts} give the same composition, but only the second subset is maximal (note that in

the first diagram η2 = ηt1 ).

4. A Pieri type formula for the non-symmetric Jack polynomials
in the case p = 1

So far the theory of shifted Jack polynomials [5] has been used to deduce the
structural formula (3.7), and also notions from that theory are used to label the
set JN,p appearing in (3.7) in terms of certain maximal subsets I. To now evaluate
the coefficients in (3.7), the most natural way to proceed is to make further use
of theory from [5]. In the case p = 1 this part of the program has recently been
successfully undertaken by Marshall [11]. The presentation of the result requires
some notation.

First write

a(x, y) :=
1

α(x − y)
, b(x, y) :=

x − y − 1/α

x − y
. (4.1)

For I = {t1, . . . , ts} ⊆ {1, . . . , N}, I �= ∅, t1 < · · · < ts put

AI(x) :=
( s−1∏

u=1

a(xtu
, xtu+1)

)
a(xts

− 1, xt1) (4.2)

BI(x) :=
( s∏

u=1

tu+1−1∏
j=tu+1

b(xtu
, xj)

)

×(xts
+ (N − 1)/α)

t1−1∏
j=1

b(xts
− 1, xj), ts+1 := N + 1 (4.3)

B̃I(x) :=
( s∏

u=1

tu−1∏
j=tu−1+1

b(xtu
, xj)

)

×
( N∏

j=ts+1

b(xt1 + 1, xj)
)
(xt1 + 1 + (N − 1)/α), t0 := 0 (4.4)



10 P. J. Forrester and D. S. McAnally CMH

and for i ∈ I write

χ
(i)
I (x) =

{
α(xtk−1 − xi), i = tk (k = 2, . . . , s)
α(xts

− xi − 1), i = t1

χ̃
(i)
I (x) =

{
α(xi − xtk+1), i = tk (k = 1, . . . , s − 1)
α(xi − xt1 − 1), i = ts.

(4.5)

In terms of these quantities, and the quantity d′η of (2.7), the result of Marshall
[11] reads

ziEη(z) = αd′η
∑
I∈Jη

given i∈I

χ
(i)
I (cI(η)/α)AI(cI(η)/α)BI(cI(η)/α)

d′cI(η)

EcI(η)(z). (4.6)

Also, noting from (4.5) that ∑
i∈I

χ
(i)
I (x) = −α (4.7)

it follows from (4.6) that [11]
( N∑

i=1

zi

)
Eη(z) = −α2d′η

∑
I∈Jη

AI((cI(η)/α)BI((cI(η)/α)
d′cI(η)

EcI(η)(z). (4.8)

We remark that it follows from the definition (4.3) of BI(x) that for I not maximal
(i.e. cases for which the relations (3.20) are not obeyed), BI(cI(η)/α) = 0. Thus
the restriction to maximal subsets in the summation of (4.6) and (4.8) is in fact a
feature of the analytic form of the coefficients.

The dependence on cI(η) in (4.6) and (4.8) can be replaced by a dependence
on η̄. Thus we note from the definitions (4.2), (4.4) and (4.5) that

AI(cI(η)/α) = AI(η̄/α), BI(cI(η)/α) = B̃I(η̄/α),

χ
(i)
I (cI(η)/α) = χ̃

(i)
I (η̄/α) (i ∈ I),

which when substituted in (4.6) and (4.8) give

ziEη(z) = αd′η
∑
I∈Jη

given i∈I

χ̃
(i)
I (η̄/α)AI(η̄/α)B̃I(η̄/α)

d′cI(η)

EcI(η)(z) (4.9)

( N∑
i=1

zi

)
Eη(z) = −α2d′η

∑
I∈Jη

AI(η̄/α)B̃I(η̄/α)
d′cI(η)

EcI(η)(z). (4.10)

A still more useful form of (4.9) results by introducing

B̂I(η̄/α) : = α
e′η

e′cI(η)

B̃I(η̄/α)

=
( s∏

u=1

tu−1∏
j=tu−1+1

b(xtu
, xj)

)( N∏
j=ts+1

b(xts
+ 1, xj)

)
, t0 := 0

(4.11)
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where the equality follows from (2.8) and (4.4). In terms of this quantity (4.9)
reads

ziEη(z) =
d′η
e′η

∑
I∈Jη

given i∈I

e′cI(η)χ̃
(i)
I (η̄/α)AI(η̄/α)B̂I(η̄/α)

d′cI(η)

EcI(η)(z). (4.12)

5. Inductive proof

In this section we will provide an inductive proof of (4.12). This has the advantage
of being independent of the theory of the shifted Jack polynomials, relying only on
the recurrence properties (2.10) and (2.12) of the non-symmetric Jack polynomials
themselves.

Strategy

It has already been remarked that starting with E(0N )(z) = 1, the non-symmetric
Jack polynomials can be generated recursively from the recurrence properties
(2.10) and (2.12). To make use of these properties, suppose for a given η we
know the coefficients c

(j)
η,ν in the expansion

zjEη(z) =
∑

ν∈JN,1[η]

c(j)
η,νEν(z) (5.1)

for each j = 1, . . . , N . Then, with zN+1 := z1 and c
(N+1)
η,ν := c

(1)
η,ν , (2.12) gives

zjEΦη(z) = zjΦEη(z) = Φ(zj+1Eη(z)) =
∑

ν∈JN,1[η]

c(j+1)
η,ν EΦν(z). (5.2)

This shows zjEΦη(z) can be computed from knowledge of the expansion (5.1) for
the given η. Moreover, we can can give an explicit relationship between coefficients.
To demonstrate this, for I ⊆ {1, . . . , N}, I �= ∅ put

Φ(I) := {j − 1|j ∈ I ∩ {2, . . . , N}} ∪ {N |1 ∈ I}. (5.3)

Then we can check that Φ(I) is maximal with respect to Φη if and only if I is
maximal with respect to η. This means that in (5.2) we can replace the summation
ν ∈ JN,1[η] by Φν ∈ JN,1[Φη], which allows us to change variables Φν �→ ν to obtain

zjEΦη(z) =
∑

ν∈JN,1[Φη]

c
(j+1)
η,Φ−1νEΦν(z). (5.4)

On the other hand (5.1) gives

zjEΦη(z) =
∑

ν∈JN,1[Φη]

c
(j)
Φη,νEΦν(z). (5.5)
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Comparing (5.4) and (5.5) shows we require

c
(j)
Φη,Φν = c(j+1)

η,ν , (j = 1, . . . , N − 1) c
(N)
Φη,Φν = c(1)

η,ν . (5.6)

Let us now consider the computation of zjEsiη(z) for ηi < ηi+1 from knowledge
of the expansion (5.1) for the given η. For this purpose we rewrite (5.1) as

zjEη(z) =
∑

ν

α(j)
η,νEν(z) (5.7)

where α
(j)
η,ν = c

(j)
η,ν , ν ∈ JN,1[η] and α

(j)
η,ν = 0 otherwise. By doing this the sum over

ν in (5.7) is unrestricted. Since from (2.10), with ηi < ηi+1,

zjEsiη(z) = zj

(
siEη(z) − 1

δ̄i,η
Eη(z)

)

=




si(zjEη(z)), j �= i, i + 1
si(ziEη(z)), j = i + 1
si(zi+1Eη(z)), j = i

− 1
δ̄i,η

zjEη(z) (5.8)

we see that knowledge of zjEη(z) for each j = 1, . . . , N implies the value of
zjEsiη(z). We want to exhibit this feature as a recurrence for the coefficients α

(j)
η,ν .

Now, from (5.7) and (2.10)

si(zjEη(z)) =
∑

νi<νi+1

{α(j)
η,ν δ̄−1

i,ν + α(j)
η,siν(1 − δ̄−2

i,ν )}Eν(z) +
∑

νi=νi+1

α(j)
η,νEν(z)

+
∑

νi>νi+1

{α(j)
η,ν δ̄−1

i,ν + α(j)
η,siν}Eν(z) (5.9)

while (5.7) itself gives

zjEsiη(z) =
∑

ν

α(j)
siη,νEν(z). (5.10)

Substituting (5.10), (5.9) and (5.7) in (5.8) and equating coefficients of Eν(z) gives
a recurrence allowing α

(j)
η,siν to be computed. In the recurrence it is necessary to

distinguish the cases νi < νi+1 from νi > νi+1. However this can be avoided if we
write the recurrence in terms of the quantity

α̃(j)
η,ν :=

d′νe′η
d′ηe′ν

α(j)
η,ν

and make use of (2.13). We then find for νi �= νi+1

(1 + δ̄−1
i,η )α̃(j)

siη,ν = (1 − δ̄−1
i,ν )α̃(j)

η,siν + (δ̄−1
i,ν − δ̄−1

i,η )α̃(j)
η,ν (j �= i, i + 1)

(1 + δ̄−1
i,η )α̃(i+1)

siη,ν = (1 − δ̄−1
i,ν )α̃(i)

η,siν + δ̄−1
i,ν α̃(i)

η,ν − δ̄−1
i,η α̃(i+1)

η,ν

(1 + δ̄−1
i,η )α̃(i)

siη,ν = (1 − δ̄−1
i,ν )α̃(i+1)

η,siν + δ̄−1
i,ν α̃(i+1)

η,ν − δ̄−1
i,η α̃(i)

η,ν (5.11)
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while for νi = νi+1

(1 + δ̄−1
i,η )α̃(j)

siη,ν = (1 − δ̄−1
i,η )α̃(j)

η,ν (j �= i, i + 1)

(1 + δ̄−1
i,η )α̃(i+1)

siη,ν = α̃(i)
η,ν − δ̄−1

i,η α̃(i+1)
η,ν

(1 + δ̄−1
i,η )α̃(i)

siη,ν = α̃(i+1)
η,ν − δ̄−1

i,η α̃(i)
η,ν . (5.12)

Noting that for νi = νi+1 we have siν = ν, we see that the equations (5.11) remain
valid in that they reduce to the equations (5.12), so it suffices to consider (5.11)
for all ν.

Starting from knowledge of c
(j)

(0N ),ν
and α̃

(j)

(0)N ,ν
for a particular j the recur-

rences (5.6) and (5.11) can be used to compute all the c
(j)
η,ν and α̃

(j)
η,ν . Thus, after

independently establishing their validity in the case η = (0N ) and a particular j,
we want to show the functional forms

α̃(j)
η,ν =

{
χ̃

(j)
I (η̄/α)AI(η̄/α)B̂I(η̄/α), I ∈ Jη and j ∈ I with ν = cI(η)

0, otherwise
(5.13)

c(j)
η,ν =

d′ηe′ν
d′νe′η

χ̃
(j)
I (η̄/α)AI(η̄/α)B̂I(η̄/α), ν = cI(η), (5.14)

with χ̃(j), AI and B̂I as specified by (4.5), (4.2) and (4.11) respectively, satisfy
the recurrences (5.6) and (5.11) as appropriate.

Verification of the initial conditions

We require the expansion of zi in terms of {Eν}. Any particular value of i =
1, . . . , N is sufficient, although we will proceed with i arbitrary in this range.
From the recurrences (5.6) and (5.11) we can readily show

E(0k10N−k−1)(z) = zk+1 +
1

α + k + 1
(zk+2 + · · · + zN ).

Thus the expansion of {E(0k10N−k−1)}, k = 0, . . . , N −1, in terms of {zi} has a tri-
angular structure. This makes the task of inverting the formulas straightforward,
provided we start with zN and then compute the expansion of zN−1 etc.. We find

zi = E(0i−110N−i)(z) − 1
α + i

E(0i10N−i−1) −
1

α + i + 1
E(0i+110N−i−2)(z) − · · ·

− 1
α + N − 1

E(0N−11)(z).

(5.15)
On the other hand for ν = cI(0N ), I ∈ J(0N ) and i ∈ I we see from (3.18) that

the only possibilities are ν = (0j−110N−j) with j ≥ i so that (5.13) gives

zi =
N∑

j=i

c
(i)
j E(0j−110N−j)(z) (5.16)
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for some constants c
(i)
j . The general structure of (5.16) is in agreement with (5.15).

To check that the coefficients agree we note from (3.18) that for I ∈ J(0N ), we must
have I = {1, 2, . . . , j} and tl = l (l = 1, . . . , j). Noting also that with η = (0N ),
η̄i = −(i − 1), we see that (4.5), (4.2) and (4.12) give

χ̃
(i)
I ((0N )/α) =

{
1, i < j
−(N − 1 + α), i = j

AI((0N )/α) = − 1
j − 1 + α

,

B̂I((0N )/α) =
j − 1 + α

N − 1 + α
. (5.17)

Substituting (5.17), together with the evaluations

d′(0N ) = e′(0N ) = 1, e′(0j−110N−j) = α + N − 1, d′(0j−110N−j) = α + j − 1

from (2.8) and (2.7), in (5.13) we see that the coefficients in (5.16) are as required
by (5.15).

Verification of the recurrences

Consider (5.6). From the definitions (2.2) and (2.12) we can check

(Φη)i = (η̄)i+1, i �= N (Φη)N = (η̄)1 + α. (5.18)

With Φ(I) defined by (5.3) and I = {t1, . . . , ts}, making use of (5.18) it follows
from the definition (4.2) that

AΦ(I)(Φη/α)

=




( s−1∏
u=1

a((Φη)tu−1/α, (Φη)tu+1−1/α)
)
a((Φη)ts−1/α−1, (Φη)t1−1/α), t1 �= 1

(a((Φη)ts−1−1)/α, (Φη)N/α)a((Φη)N/α − 1, (Φη)t2−1/α)

×
s−1∏
u=2

a((Φη)tu−1/α, (Φη)tu+1−1/α), t1 = 1

=
s−1∏
u=1

a(η̄tu
/α, η̄tu+1/α) a(η̄ts

/α − 1, η̄t1/α) = AI(η̄/α). (5.19)

Similar calculations show

B̂Φ(I)(Φη/α) = B̂I(η̄/α), χ̃
(i)
Φ(I)(Φη/α) = χ̃

(i+1)
I (η̄/α), (i = 1, . . . , N − 1),

χ̃
(N)
Φ(I)(Φη/α) = χ̃

(1)
I (η̄/α), cΦ(I)(Φη) = Φ(cI(η)).

These formulas together with the appropriate formula from (2.13) immediately
imply (5.6) is satisfied by (5.13).
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The recurrences (5.11) are not so straightforward. One complication is that
the cases

(i) i, i + 1 /∈ I (ii) i ∈ I, i + 1 /∈ I (iii) i /∈ I, i + 1 ∈ I (iv) i, i + 1 ∈ I (5.20)

must be treated separately, in addition to the division of cases depending on the
value of (j). Independent of the division of cases (5.20), the fact that α̃

(j)
η,ν = 0 for

ν /∈ JN,1[η] used in (5.11) gives

α̃(j)
siη,ν = 0, ν �= cI(η), I ∈ Jη and ν �= sicI(η), I ∈ Jη. (5.21)

For (5.21) to be consistent with (5.13) we must show

cI′(siη) = cI(η) or cI′(siη) = sicI(η) for some I ∈ Jη. (5.22)

The validity of this statement will be verified for each of the cases separately.
First suppose I ′ ∈ Jsiη

∣∣∣
i,i+1/∈I′

. The definitions (3.18) and (3.19) give that this

is equivalent to the statement that I ′ = I, I ∈ Jη

∣∣∣
i,i+1∈I

, and

cI(siη) = sicI(η). (5.23)

Suppose next I ′ ∈ Jsiη

∣∣∣
i+1∈I′,i/∈I′

. Then there are two possibilities. The first is

I ′ = (I ∪ {i + 1})\{i}, I ∈ Jη

∣∣∣
i∈I,i+1/∈I

, with

c(I∪{i+1})\{i}(siη) = sicI(η). (5.24)

The second is I ′ = I\{i}, I ∈ Jη

∣∣∣
i,i+1∈I

with

cI\{i}(siη) = cI(η). (5.25)

In the case I ′ ∈ Jsiη

∣∣∣
i∈I,i+1/∈I′

the only possibility is I ′ = (I ∪ {i})\{i + 1},
I ∈ Jη

∣∣∣
i/∈I,i+1∈I

, with

c(I∪{i})\{i+1}(siη) = sicI(η). (5.26)

The remaining case is I ′ ∈ Jsiη

∣∣∣
i,i+1∈I′

. Then we can have I ′ = I ∪ {i}, I ∈
Jη

∣∣∣
i+1∈I,i/∈I

with

cI∪{i}(siη) = cI(η). (5.27)

These results together verify (5.22). Thus we can restrict attention to the cases

ν = cI(η), ν = sicI(η), (I ∈ Jη). (5.28)

The case i, i + 1 /∈ I

Because α̃
(j)
η,ν requires j ∈ I to be non-zero, while we are considering the case

i, i+1 /∈ I, the second and third equations in (5.11) give α̃
(i)
siη,ν = 0 and α̃

(i+1)
siη,ν = 0,
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which is consistent with (5.13). Thus we can restrict attention to the first equation
in (5.11). Also, if νi = νi+1 with i, i + 1 /∈ I then we must have ηi = ηi+1. Since
in the induction procedure it suffices to consider only the cases ηi+1 > ηi we can
suppose νi �= νi+1.

Suppose ν = cI(η). The assumptions that i, i + 1 /∈ I and ηi �= ηi+1 to-
gether with (5.23) imply there is no I ′ ∈ Jη such that cI′(η) = sicI(η) and thus
α̃

(j)
η,siν = 0. Also in this case it follows from the definition (2.11) that δ̄i,cI(η) = δ̄i,η.

Substituting these formulas in the first equation of (5.11) gives

α̃
(j)
siη,cI(η) = 0, j �= i, i + 1, I ∈ Jη

∣∣∣
i,i+1/∈I

. (5.29)

This is consistent with (5.13) because (5.23) and the surrounding sentence implies
there is no I ′ ∈ Jsiη such that cI′(siη) = cI(η).

According to (5.28) the remaining possibility for a non-zero value is ν = sicI(η).
From the above reasoning we know from this choice of ν, α̃

(j)
η,ν = 0, while (2.11)

gives δ̄i,sicI(η) = −δ̄i,η. Thus the first equation in (5.11) reduces to

α̃
(j)
siη,sicI(η) = α̃

(j)
η,cI(η) j �= i, i + 1, I ∈ Jη

∣∣∣
i,i+1/∈I

. (5.30)

From (5.23) and the surrounding text we know that sicI(η) = cI(siη) with I ∈ Jsiη.
We note in general from (2.2) that

(siη)i =
{

η̄i+1, ηi �= ηi+1

η̄i, ηi = ηi+1
, (siη)i+1 =

{
η̄i, ηi �= ηi+1

η̄i+1, ηi = ηi+1
, (siη)j = η̄j (j �= i, i+1).

(5.31)
Using (5.31), we see from the definitions (4.2), (4.11) that for I ∈ Jη

∣∣∣
i,i+1/∈I

=

Jsiη

∣∣∣
i,i+1/∈I

,

AI(η̄/α) = AI(siη/α), B̂I(η̄/α) = B̂I(siη/α)

while from (4.5) we see that

χ̃
(j)
I (η̄/α) = χ̃

(j)
I (siη/α).

Hence (5.13) satisfies (5.30).
The case i ∈ I, i + 1 /∈ I

We note that in this case sicI(η) �= cI(η). Consider the first equation in (5.11)
and suppose ν = cI(η). We can check from the definitions (3.18) and (3.19) that
for I ∈ Jη

∣∣∣
i∈I,i+1/∈I

,

sicI(η) = cI∪{i+1}(η) (5.32)

so the value of α̃
(i)
η,siν on the right hand side of the first equation in (5.11) is

non-zero. Noting from (2.11) and the definition (3.18) of cI(η) that

δ̄i,cI(η) = (cI(η))i − η̄i+1,
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this equation reads

(1 + δ̄−1
i,η )α̃(j)

siη,cI(η) =
(cI(η))i − η̄i+1 − 1

(cI(η))i − η̄i+1

α̃
(j)
η,sicI(η)

−
( 1

η̄i − η̄i+1
− 1

(cI(η))i − η̄i+1

)
α̃

(j)
η,cI(η).

(5.33)

The equation (5.32) allows the quantities AI′ , B̂I′ and χ̃
(j)
I′ , I ′ = I ∪ {i + 1},

making up α̃
(j)
η,sicI(η) to be related to the corresponding quantities in α̃

(j)
η,cI(η). Thus

we can check from the definitions (4.2) and (4.11) that

AI∪{i+1}(η̄/α) =
(η̄i − (cI(η))i)

(η̄i − η̄i+1)(η̄i+1 − (cI(η))i)
AI(η̄/α)

B̂I∪{i+1}(η̄/α) =
(η̄i+1 − (cI(η))i)

η̄i+1 − (cI(η))i + 1
B̂I(η̄/α)

χ̃
(j)
I∪{i+1}(η̄/α) = χ̃

(j)
I (η̄/α), j �= i, i + 1. (5.34)

When multiplied together according to (5.13) to form α̃
(j)
η,sicI(η) and substituted in

(5.33) we find all terms on the right hand side cancel giving the result

α̃
(j)
siη,cI(η) = 0, j �= i, i + 1. (5.35)

Consider now the second and third equation equations in (5.11) in the case
ν = cI(η). The requirement in (5.13) that α̃

(j)
η,cI(η) �= 0 only if j ∈ I, while we are

assuming i ∈ I, i + 1 /∈ I, means the equations read

(1 + δ̄−1
i,η )α̃(i+1)

siη,cI(η) = (1 − δ̄−1
i,ν )α̃(i)

η,cI∪{i+1}(η) + δ̄−1
i,ν α̃

(i)
η,cI(η)

(1 + δ̄−1
i,η )α̃(i)

siη,cI(η) = (1 − δ̄−1
i,ν )α̃(i+1)

η,cI∪{i+1}(η) − δ̄−1
i,η α̃

(i)
η,cI(η) (5.36)

where use has also been made of (5.32). To simplify the right hand sides of these
equations we note from (4.5) that

χ̃
(i)
I∪{i+1}(η̄/α) =

η̄i − η̄i+1

η̄i − (cI(η))i

χ̃
(i)
I (η̄/α),

χ̃
(i+1)
I∪{i+1}(η̄/α) =

η̄i+1 − (cI(η))i

η̄i − (cI(η))i

χ̃
(i)
I (η̄/α).

Use of these equation, together with the first two equations of (5.34) allows us to
express α̃

(i)
η,cI∪{i+1}(η) and α̃

(i+1)
η,cI∪{i+1}(η) in terms of α̃

(i)
η,cI(η). Doing this shows the

right hand side is equal to zero in both cases and so for all j = 1, . . . , N

α̃
(j)
siη,cI(η) = 0. (5.37)



18 P. J. Forrester and D. S. McAnally CMH

For sicI(η) �= cI(η) the result (5.37) is consistent with (5.13) because the result
(5.24) implies that for I ∈ Jη

∣∣∣
i+1/∈I,i∈I

there is no I ′ ∈ Jsiη such that cI′(siη) =

cI(η).
We now proceed to consider the equations (5.11) in the case ν = sicI(η),

I ∈ Jη

∣∣∣
i∈I,i+1/∈I

. Proceeding as in the derivation of (5.35) we find that in this case

the first equation of (5.11) reads

α̃
(j)
siη,sicI(η) =

(η̄i − η̄i+1 − 1)(η̄i+1 − (cI(η))i)
(η̄i − η̄i+1)(η̄i+1 − (cI(η))i + 1)

α̃
(j)
η,cI(η)

= χ̃
(j)
(I∪{i+1})\{i}(siη/α)A(I∪{i+1})\{i}(siη/α)B̂(I∪{i+1})\{i}(siη/α),

j �= i, i + 1
(5.38)

where the second equality follows after use of (5.13) to substitute for α̃
(j)
η,cI(η) and

use of the definitions (4.2), (4.11) and (4.5). An analogous calculation, involving
the second and third equations of (5.11), gives

α̃
(i)
siη,sicI(η) = 0 (5.39)

as well as the equation (5.38) in the case j = i + 1. Recalling (5.24) we see the
equations (5.38) and (5.39) are consistent with (5.13).
The case i /∈ I, i + 1 ∈ I

We distinguish the case
sicI(η) = cI(η) (5.40)

from
sicI(η) �= cI(η). (5.41)

In the case (5.40) we can check that

(cI(η))i+1 = η̄i − 1, (5.42)

while a feature of the case (5.41) is that there is no I ′ ∈ Jη such that sicI(η) =
cI′(η) and therefore

α̃
(j)
η,sicI(η) = 0. (5.43)

Consider first the equations (5.11) in the case (5.40) (as already noted, the
equations (5.11) are equivalent to the equations (5.12) for ν = sicI(η) = cI(η)).
The equations read

(1 + δ̄−1
i,η )α̃(j)

siη,cI(η) = (1 − δ̄−1
i,η )α̃(j)

η,cI(η), j �= i, i + 1

(1 + δ̄−1
i,η )α̃(i+1)

siη,cI(η) = −δ̄−1
i,η α̃

(i+1)
η,cI(η)

(1 + δ̄−1
i,η )α̃(i)

siη,cI(η) = α̃
(i+1)
η,cI(η). (5.44)
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To verify that (5.13) satisfies these equations we note that in the case (5.40)
the equation (5.27) is valid, so we should seek to express (5.44) in terms of
α̃siη,cI∪{i}(siη). Now (5.31), (4.2), (4.11) and (4.5) give

AI∪{i}(siη/α) =
η̄i − η̄i+1 − 1

η̄i − η̄i+1
AI(η̄/α)

B̂I∪{i}(siη/α) =
η̄i − η̄i+1

η̄i − η̄i+1 + 1
B̂I(η̄/α)

χ̃
(j)
I∪{i}(siη/α) = χ̃

(j)
I (η̄/α), j �= i, i + 1

χ̃
(i+1)
I∪{i}(siη/α) =

1
η̄i+1 − η̄i + 1

χ̃
(i+1)
I (η̄/α)

χ̃
(i)
I∪{i}(siη/α) =

η̄i+1 − η̄i

η̄i+1 − η̄i + 1
χ̃

(i+1)
I (η̄/α). (5.45)

Making use of these equations in the right hand side of (5.44) we find that for each
j = 1, 2, . . . , N

α̃
(j)
siη,cI(η) = χ̃

(j)
I∪{i}(siη/α)AI∪{i}(siη/α)B̂I∪{i}(siη/α) (5.46)

which by virtue of (5.27) is consistent with (5.13).
Consider now the equations (5.11) with ν = cI(η) in the case (5.41). Then

(3.12) holds, so (5.11) can be appropriately simplified. Furthermore, we can check
that the second and third members of (5.45) remain valid, while the remaining
equations are to be replaced by

AI∪{i}(siη/α) = − (η̄i+1 − (cI(η))i+1)
(η̄i − η̄i+1)(η̄i − (cI(η))i+1)

AI(η̄/α)

χ̃
(i+1)
I∪{i}(siη/α) =

η̄i − (cI(η))i+1

η̄i+1 − (cI(η))i+1

χ̃
(i+1)
I ((η̄/α)

χ̃
(i)
I∪{i}(siη/α) =

η̄i+1 − η̄i

η̄i+1 − (cI(η))i+1

χ̃
(i+1)
I ((η̄/α). (5.47)

Using these equations to further simplify (5.11) again gives (5.46), which we know
is consistent with (5.13). It remains to consider the case ν = sicI(η), for which it
suffices to restrict attention to the subcase (5.41) as the subcase (5.41) is included
in the above working. We first simplify the equations (5.11) according to (5.43)
and then obtain the analogues of (5.45) for the quantities A(I∪{i})\{i+1}(siη/α)
etc.. We find, for j �= i + 1,

α̃
(j)
siη,cI(η) = χ̃

(j)
I∪{i}\{i+1}(siη/α)A(I∪{i})\{i+1}(siη/α)B̂I∪{i}\{i+1}(siη/α)

while
α̃

(i+1)
siη,cI(η) = 0.

We see from (5.26) that these equations are consistent with (5.13).
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The case i, i + 1 ∈ I
Analogous to the case i /∈ I, i + 1 ∈ I we distinguish the case sicI(η) = cI(siη)

from sicI(η) /∈ cI(siη). In the latter case

sicI(η) = cI\{i+1}(η). (5.48)

This tells us that this case is the same as that with I ′ ∈ Jη, i ∈ I ′, i+1 /∈ I ′, which
has already been dealt with. Thus we can restrict attention to the case sicI(η) =
cI(siη), when the equations (5.11) reduce to the equations (5.12). Obtaining the
analogue of (5.45) but for AI\{i}(siη/α) etc. we find, for j �= i,

α̃
(j)
siη,cI(η) = χ̃

(j)
I\{i}(siη/α)AI\{i}(siη/α)B̂I\{i}(siη/α)

while
α̃

(i)
siη,cI(η) = 0.

By virtue of (5.25) these equations are consistent with (5.13).

This completes consideration of the choices of ν (5.28) in all four cases (5.20).
In each case it was found (5.13) satisfies the recurrences (5.11), thereby complet-
ing the demonstration that for general ν (5.13) satisfies (5.11). Since the other
fundamental recurrence (5.6) has also been shown to be satisfied, as has the initial
condition, our inductive proof is complete.

6. An equivalent expansion formula

The formula (4.10) is the non-symmetric analogue of the Pieri formula (1.1) in
the case p = 1. Here we will use this result and the formula (3.5) to derive the
analogue of (1.1) in the case p = N − 1.

First we note that in the case p = N − 1, analogous to the case p = 1, the
set JN,p appearing in (3.7) and (3.9) can be indexed by subsets I = {t1, . . . , ts} of
{1, . . . , N} with t1 < · · · < ts. Each such subset corresponds to the element

ν =: ĉI(η)

where

(ĉI(η))t1 = ηts
,

(ĉI(η))tu
= ηtu−1 + 1, u = 2, . . . , s

(ĉI(η))k = ηk + 1, k /∈ I (6.1)

(c.f. (3.18)). Furthermore, to avoid duplication within the set JN,N−1, as with the
description (3.18) of JN,1, we must restrict I to maximal subsets with respect to
η, in this case specified by the requirements

ηj �= ηts
− 1, j = 1, . . . , t1 − 1

ηj �= ηtu
, j = tu + 1, . . . , tu+1 − 1 (6.2)
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for u = 1, . . . , s with ts+1 := N + 1. With this definition of maximal, analogous
to (3.22) we define

Ĵη = {I : I is maximal with respect to η}.
According to (3.5)

c(i1,...,iN−1)
ην = c

(j1)

ν η+(1N )

〈Eη|Eη〉
〈Eν |Eν〉 . (6.3)

Now c
(j1)

ν η+(1N )
is non-zero only if η + (1N ) = cI(ν), I ∈ Jν , j1 ∈ I. With I =

{t1, . . . , ts} we see from (3.18) that η + (1N ) = cI(ν) gives

ηtj
= νtj+1 − 1, j = 1, . . . , s − 1

ηts
= νt1

ηi = νi − 1, i /∈ I (6.4)

while from (3.20) the condition I ∈ Jν gives

ηj �= ηts
− 1 j = 1, . . . , t1 − 1 (6.5)

ηj �= ηtu
j = tu + 1, . . . , tu+1 − 1 (6.6)

for u = 1, . . . , s with tN+1 := N + 1. These are precisely the equations (6.1) with
ν := ĉI(η) and the equations (6.2) for I ∈ Ĵη, so we conclude

η + (1N ) = cI(ν)
∣∣∣
I∈Jν

iff ν = ĉI(η)
∣∣∣
I∈Ĵη

.

It remains to substitute for the explicit values in the right hand side of (6.3).
With η + (1N ) = cI(ν), I ∈ Jν and thus ν = ĉI(η), I ∈ Ĵη we read off from (4.12)
and (2.9) that

c(i1,...,iN−1)
ην =

eηdν

dηeν

dηeη+(1N )

dη+(1N )eη
χ̃

(j1)
I (η/α)AI(η/α)B̂I(η/α) (6.7)

where use has been made of the facts that Nη = Nη+(1N ) and χ̃
(j1)
I ((η + c)/α) =

χ̃
(j1)
I (η/α) etc. for any constant c. This further simplifies by noting from (2.7),

(2.6) and (2.2) that
dη

dη+(1N )

=
1∏N

j=1(η̄j + α + N)

while (2.8) together with (5.31) and (2.2) implies

eη+(1N )

eη
=

N∏
j=1

(η̄j + α + N).

Substituting these formulas in (6.7) gives

c(i1,...,iN−1)
ην =

eηdν

dηeν
χ̃

(j1)
I (η/α)AI(η/α)B̂I(η/α), ν = ĉI(η), I ∈ Ĵη (6.8)



22 P. J. Forrester and D. S. McAnally CMH

(c.f. (5.14)).
As in the derivation of (4.8) from (4.6), if follows from (6.8) that

eN−1(z)Eη(z) = −α
eη

dη

∑
I∈Ĵη

eĉI(η)AI(η̄/α)B̂I(η̄/α)
dĉI(η)

EĉI(η)(z). (6.9)

7. The coefficient A
(p)
η,ν of the Pieri type formula for general p

In this final section we will consider features of the coefficient A
(p)
η,ν in the expansion

(3.9) for general p. Our first result concerns the value of A
(p)
η,ν for a particular value

of ν. Denote by M the set of all sets of the form {j1, . . . , jp|1 ≤ j1 < · · · < jp ≤ N}.
For a given M ∈ M, let

χM = ((χM )1, (χM )2, . . . , (χM )N ) where (χM )i =
{

1, i ∈ M
0, otherwise

and note that the pth monomial symmetric function can be written

ep(z) =
∑

M∈M
zχM .

Let M∗ be the particular member of M such that

η + χM 	 η + χM∗

for all M �= M∗. Noting from (2.5) that the coefficient of zη in Eη(z) is unity and
all other monomials are smaller with respect to the ordering 	, it follows that we
must have

A
(p)
η,η+χM∗ = 1. (7.1)

Moreover, with

l′η(i) := #{k < i|ηk ≥ ηi} + #{k > i|ηk > ηi}
it follows from the definition of 	 that

(η + χM∗)i =
{

ηi + 1, l′η(i) ≤ p − 1
ηi, l′η(i) ≥ p

(7.2)

The result (7.1) suggests an alternative way to write A
(1)
η,ν in (3.9) for general

ν. To see this, first observe that associated with (7.2) are the sets

G0 := {i ∈ {1, . . . , N} : l′η(i) ≥ p}, G1 := {i ∈ {1, . . . , N} : l′η(i) ≤ p − 1}.
(7.3)

An alternative characterization follows by noting that since η ⊆ η + χM∗ we have
η � η + χM∗ and so from the definition of �, for ν = η + χM∗ ,

G0 := {i ∈ {1, . . . , N} : νπ(j) = ηj}, G1 := {i ∈ {1, . . . , N} : νπ(j) = ηj + 1}.
(7.4)
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Let us now put

B(p)
η,ν :=

d′νe′η
e′νd′η

A(p)
η,ν . (7.5)

Then it follows from the definitions (2.7) and (2.8), together with (7.1), that

B
(p)
η,η+χM∗ =

( ∏
j∈G0, k∈G1

j<k

η̄j − η̄k + 1
η̄j − η̄k

)( ∏
j∈G1, k∈G0
π(j)<π(k)

η̄j − η̄k + α − 1
η̄j − η̄k + α

)
. (7.6)

In the case p = 1, comparison with the expression

B(1)
η,ν = −αAI(η̄/α)B̂I(η̄/α), I ∈ Jη, (7.7)

which follows from (4.12), (4.7) and (7.5), we see that as written (7.6) is in fact
valid for all ν = cI(η) with I consisting of a single element t1. More explicitly, we
then have

AI(η̄/α) = a(η̄t1/α − 1, η̄t1) = − 1
α

(7.8)

B̂1(η̄/α) =
t1−1∏
j=1

b(η̄t1/α, η̄j/α)
N∏

j=t1+1

b(η̄t1/α + 1, η̄j/α); (7.9)

the factor (7.8) cancels with −α in (7.7) while the two products (7.9) correspond
with the two products in (7.6) respectively. The structure exhibited by (7.6)
suggests an extension with the property that for p = 1 there is agreement with
(7.7). The extended form is

B(p)
η,ν =

( ∏
j∈G0,k∈G1

j<k

η̄j − η̄k + 1
η̄j − η̄k

)( ∏
j∈G1, k∈G0
π(j)<π(k)

η̄j − η̄k + α − 1
η̄j − η̄k + α

)

×
∏

π2(j)<π(j)<j

1
η̄π(j) − η̄j

∏
j≤π2(j)≤π(j)

1
η̄π(j) − η̄j − α

, (7.10)

valid for p = 1 and ν = cI(η), I ∈ Jη.
The significant feature of (7.10) is that in the general p case, with ν = cI(η) ∈

JN,p and I such that at most one part of η in the formation of ν according to the
prescription below (3.16) move downwards, explicit small N calculations indicate
it remains valid. However we have no proof of this empirical observation.
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