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Abstract. Let K be any field and G be a finite group. Let G act on the rational function field
K(xg : g ∈ G) by K-automorphisms defined by g · xh = xgh for any g, h ∈ G. Denote by K(G)
the fixed field K(xg : g ∈ G)G. Noether’s problem asks whether K(G) is rational (= purely

transcendental) over K. We shall prove that K(G) is rational over K if G is the dihedral group
(resp. quasi-dihedral group, modular group) of order 16. Our result will imply the existence of
the generic Galois extension and the existence of the generic polynomial of the corresponding
group.
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§1. Introduction

Let K be any field and G be a finite group. Let G act on the rational function
field K(xg : g ∈ G) by K-automorphisms such that g · xh = xgh for any g, h ∈ G.
Denote by K(G) the fixed field K(xg : g ∈ G)G = {f ∈ K(xg : g ∈ G) : σ · f =
f for any σ ∈ G}. Noether’s problem asks whether K(G) is rational (=purely
transcendental) over K.

Noether’s problem is related to the inverse Galois problem, which asks whether
there is a Galois extension L over K such that Gal(L/K) � G if the field K and the
finite group G are prescribed. In fact, if K is an infinite field and K(G) is rational
over K, then there exists a generic Galois G-extension over the field K [Sa1, The-
orem 5.1]; see Proposition 2.2 for a generalization. A generic Galois G-extension is
some universal object of G-extensions such that we can apply Hilbert irreducibility
theorem; see [Sa1; Me] for more details. When K is a Hilbertian field, i.e. Hilbert
irreducibility theorem is valid for irreducible polynomials f ∈ K[x1, · · · , xn], the
existence of a generic Galois G-extension over K will guarantee the existence of
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a Galois extension field L over K with Gal(L/K) � G. In particular, if K is an
algebraic number field, then the validity of Noether’s problem for the pair (K,G)
will imply the validity of the inverse Galois problem for the pair (K,G). However,
the converse is not true in general: there is a generic Galois G-extension over Q if
G is a cyclic group of odd order [Sa1, Theorem 2.1], while Q(G) is not rational over
Q when G is a cyclic group of order 47 or 113 [Sw]. On the other hand, Saltman
shows that, if G is the cyclic group of order 8, then there cannot be a generic
Galois G-extension over Q [Sa1, Theorem 5.11] while the answer of the inverse
Galois problem for (Q, G) is affirmative, e.g. the subfield L in Q(e2π

√−1/32) such
that L is a cyclic extension of degree 8 over Q.

Yet another notion due to DeMeyer, Smith, Ledet and Kemper: a generic
polynomial for G-extensions over K. It is known that the existence of a generic
Galois G-extension over K is equivalent to that of a generic polynomial for G-
extensions over K [Me; Sm; Le2; Ke]. Thus Noether’s problem plays the same
role in this situation.

Now we consider the case G = Dn, the dihedral group of order 2n. Saltman
shows that if K is an infinite field, charK � n and n is odd, then there exists a
generic Galois Dn-extension over K [Sa1, Theorem 3.5]; unfortunately the answer
to Noether’s problem in this case is rather incomplete, see [Ka]. Not much is
known about the existence of a generic Galois Dn-extension over K if char K �= 2
and n is a power of 2. Black obtained several results in this direction [Bl]. She
showed that a generic Galois D8-extension (resp. D4-extension) over K did exist
if K was an infinite field with char K �= 2. On the other hand, Ledet exhibited
the generic polynomial for G-extensions over K if K is an infinite field with char
K �= 2 and G is the dihedral group (resp. the quasi-dihedral group, the modular
group) of order 16 [Le1]. (The definitions of all these groups will be explained
at the beginning of Section 3.) What we will prove in this paper is that K(G)
is rational over K when K is any field and G is any one of the above groups.
See Theorems 3.1, 3.2 and 3.3. In some sense our results help to show why the
constructions of Black and Ledet have to exist. It is amusing to compare these
results with [Sa1, Theorem 5.11] which shows that Q(G) is never rational if G is
any abelian group whose exponent is divisible by 8, while our results show that
this phenomenon is not true for non-abelian groups. A final remark: Gröbner
proves that K(G) is rational if G is the quaternion group [Gr]. We will present a
proof of Gröbner’s result, which may be easier than Gröbner’s original proof and
will prelude the idea of the proof of Theorem 3.1.

We shall organize this paper as follows. We will recall some preliminaries
and discuss the general situation of the rationality problem of K(Dn) in Section 2;
the rationality problem of K(D4) together with Gröbner’s Theorem will be proved
also. Section 3 contains the main results of this paper; we shall solve the rationality
problem of three certain groups of order 16. The rationality problem of other
groups of order 16 will be discussed in a separate paper.
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Notations and terminologies. A field extension L over K is rational if L is
purely transcendental over K; L is called stably rational over K if there ex-
ist elements y1, · · · , yN which are algebraically independent over L such that
L(y1, · · · , yN ) is rational over K. The dihedral group of order 2n is defined as〈
σ, τ : σn = τ2 = 1, τστ−1 = σ−1

〉
, which is denoted by Dn. The quaternion

group of order 8 is defined as
〈
σ, τ : σ4 = τ4 = 1, σ2 = τ2, τστ−1 = σ−1

〉
. Recall

the definition K(G) at the beginning of this section: K(G) = K(xg : g ∈ G)G.
The representation space of the regular representation of G over K is denoted by
W = ⊕g∈GK · x(g) where G acts on W by g · x(h) = x(gh) for any g, h ∈ G.
Finally, if L1 and L2 are extension fields of a field K such that G acts on L1 and
L2 by K-automorphisms, we will say that L1 is G-isomorphic to L2 overK if there
is an isomorphism ϕ : L1 −→ L2 from L1 onto L2 over K with ϕ(σ · u) = σ · ϕ(u)
for any σ ∈ G, any u ∈ L1.

§2. Generalities

We recall a variant of Hilbertsatz 90 which has been used by many people under
different disguises.

Theorem 2.1 ([HK2, Theorem 1]). Let L be a field and G be a finite group acting
on L(x1, · · · , xm), the rational function field of m variables over L. Suppose that

(i) for any σ ∈ G, σ(L) ⊂ L;
(ii) the restriction of the action of G to L is faithful;
(iii) for any σ ∈ G, 


σ(x1)

.

.

.
σ(xm)


 = A(σ)




x1

.

.

.
xm


 + B(σ)

where A(σ) ∈ GLm(L) and B(σ) is an m× 1 matrix over L. Then L(x1, · · · , xm)
is G-isomorphic to L(z1, · · · , zm) with σ(zi) = zi for any σ ∈ G, any 1 ≤ i ≤ m.
In particular, L(x1, · · · , xm)G � LG(z1, · · · , zm), i.e. L(x1, · · · , xm)G is rational
over LG.

Proposition 2.2. Let K be any infinite field and G be a finite group. Let ρ :
G −→ GL(V ) be a faithful representation of G where V is some finite-dimensional
vector space over K. If the fixed field K(V )G is stably rational over K, then there
exists a generic Galois G-extension over K.

Remark. Proposition 2.2 is a “cheap” special case of Saltman’s Theorem about
retract rational extensions [Sa2; Sa3, Theorem 2; Bl, Remark of Theorem 1.1]; it
is weaker than Saltman’s Theorem, but its proof is easier.
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Proof. Let W be the representation space of the regular representation of G. Thus
K(G) = K(W )G. Consider the action of G on K(V ⊕ W ). By Theorem 2.1
K(V ⊕W )G is rational over K(V )G and K(W )G. Since K(V )G is stably rational,
it follows that K(G) = K(W )G is also stably rational. Hence there exists a positive
integer m such that K(W )G(w1, · · · , wN ) is rational over K where N = (m−1)n.
(Remember that n = |G|.)

Consider the diagonal action of G on Wm = W ⊕ W ⊕ · · · ⊕ W (m copies of
W ). By Theorem 2.1 K(Wm)G = K(W )G(y1, · · · , yN ) is rational over K.

Now we can identify K(Wm) = K(x(i)
g : 1 ≤ i ≤ m, g ∈ G) and remember

that K(Wm)G is rational over K. Imitate Saltman’s proof of [Sa1, Theorem 5.1].
All we need to do is to define a G-equivariant map ϕ : K[x(i)

σ : 1 ≤ i ≤ m, σ ∈
G] −→ L (in the notations of [Sa1, Theorem 5.1]), i.e. we should find elements
α1, · · · , αm ∈ L and define ϕ(x(i)

σ ) = σ · αi under the condition that t evaluated
at the ϕ(x(i)

σ )’s is a unit. Note that we should prove a “multi-variable” version of
[Sa1, Lemma 5.2]. But this is not difficult and is omitted. �

Theorem 2.3 ([HK1, (2.7) Lemma]). Let K be any field, a, b ∈ K − {0} and
σ : K(x, y) −→ K(x, y) be a K-automorphism defined by σ(x) = a/x, σ(y) = b/y.
Then K(x, y)<σ> = K(u, v) where

u =
x − a

x

xy − ab

xy

, v =
y − b

y

xy − ab

xy

.

Moreover, x + (a/x) = (−bu2 + av2 + 1)/v, y + (b/y) = (bu2 − av2 + 1)/u,
xy + (ab/(xy)) = (−bu2 − av2 + 1)/(uv).

Theorem 2.4 ([AHK, Theorem 3.1]). Let G be any group whose order may be
finite or infinite. Suppose that G acts on L(x), the rational function field of one
variable over a field L. Assume that, for any σ ∈ G, σ(L) ⊂ L and σ(x) =
aσ ·x+bσ for some aσ, bσ ∈ L with aσ �= 0. Then L(x)G = LG or LG(f(x)) where
f(x) ∈ L[x] is of positive degree.

Theorem 2.5 (Kuniyoshi [Ku;Mi]). Let K be a field with char K = p > 0 and
G be a p-group. Then K(V )G is rational over K for any representation ρ : G −→
GL(V ) where V is a finite-dimension vector space over K.

Proof. Since char K = p > 0 and |G| = pm, any representation of G can be
triangulated. Apply [HK1, (2.2) Theorem]. �

Let G = Dn =
〈
σ, τ : σn = τ2 = 1, τστ−1 = σ−1

〉
.

Proposition 2.6. Let char K = 0 or char K � n and let ζ be a primitive n-th root
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of unity. If ζ + ζ−1 ∈ K, then K(Dn) is rational over K. In particular, K(D4)
is rational over K.

Remark. Compare with [Bl, Proposition 2.1 and Theorem 3.3].

Proof. Define V = ⊕n
i=1K · xi and let Dn act on V by

σ : x1 �→ x2 �→ · · · �→ xn �→ x1,

τ : xi �→ xn−i for 1 ≤ i ≤ n − 1,

xn �→ xn.

Let W = ⊕g∈Dn
K · x(g) be the space of regular representation of Dn. Note

that V is a subrepresentation of W , because we may define W0 = ⊕n
i=1K ·x′

i where
x′

i = x(σi) + x(σiτ). Then xi �→ x′
i for 1 ≤ i ≤ n provides an equivariant map

from V onto W0.
By Theorem 2.1 K(W ) is Dn-isomorphic to K(V )(x̃1, x̃2, · · · , x̃n) with λ(x̃i) =

x̃i for any λ ∈ Dn. Hence K(Dn) = K(W )Dn = K(V )Dn(x̃1, x̃2, · · · , x̃n). Thus it
suffices to show that K(V )Dn is rational over K.

Define yi =
∑n

j=1 ζi(j−1)xj for 0 ≤ i ≤ n − 1.
Since ζ + ζ−1 ∈ K, it follows that [K(ζ) : K] ≤ 2.
Case 1. ζ ∈ K.
Note that K(x1, · · · , xn) = K(y0, y1, · · · , yn−1) and σ(yi) = ζ−iyi, τ(yi) =

ζ−2iyn−i for 0 ≤ i ≤ n − 1.
Apply Theorem 2.1. We get

K(y0, y1, · · · , yn−1)Dn = K(y1, yn−1)Dn(z1, · · · , zn−2)

with σ(zi) = τ(zi) = zi. Now K(y1, yn−1)Dn = K(t, y1)Dn where t = yn−1/y1 and
σ(y1) = ζ−1y1, σ(t) = ζ2t, τ(y1) = ζ−2ty1, τ(t) = ζ4/t. Apply Theorem 2.4. It
suffices to show that K(t)Dn is rational over K. However, it is clear that K(t)Dn

is rational by Lüroth’s Theorem.
Case 2. ζ /∈ K and Gal(K(ζ)/K) = {id, ρ} where ρ(ζ) = ζ−1.
Extend the actions of σ, τ , ρ to K(ζ)(x1, · · · , xn) by σ(ζ) = τ(ζ) = ζ, ρ(xi) =

xi for 1 ≤ i ≤ n.
Note that

K(x1, · · · , xn)<σ,τ> = {K(ζ)(x1, · · · , xn)<ρ>}<σ,τ>

= K(ζ)(x1, · · · , xn)<σ,τ,ρ>

= K(ζ)(y0, · · · , yn−1)<σ,τ,ρ>

where σ(yi) = ζ−iyi, τ(yi) = ζ−2iyn−i, ρ(yi) = yn−i. Since 〈σ, τ, ρ〉 � Dn × Z2

acts on K(ζ)(y1, yn−1) faithfully, we may apply Theorem 2.1. Thus it suffices to
show that K(ζ)(y1, yn−1)<σ,τ,ρ> is rational over K.
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Define t = yn−1/y1. Then σ(t) = ζ2t, σ(y1) = ζ−1y1, τ(t) = ζ4/t, τ(y1) =
ζ−2ty1, ρ(t) = 1/t, ρ(y1) = ty1. By Theorem 2.4, if K(ζ)(t)<σ,τ,ρ> is rational over
K, so is K(ζ)(t, y1)<σ,τ,ρ> over K.

Define m = n, if n is an odd integer; m = n/2 if n is an even integer. Then
the restriction of σ to K(ζ)(t) is of order m. Define u = tm. It follows that
K(ζ)(t)<σ> = K(ζ)(u) and τ(u) = 1/u, ρ(u) = 1/u. Now K(ζ)(u)<τ,ρ> =
K(ζ)(u)<τρ,ρ> ={K(ζ)(u)<τρ>}<ρ> =K(u)<ρ> =K(u+(1/u)) is rational over K.

�

Theorem 2.7 (Gröbner [Gr]). Let G be the quaternion group. Then K(G) is
rational over K for any field K.

Proof. Because of Theorem 2.5, we may assume that char K �= 2. Recall the
notations at the end of Section 1. We write G =

〈
σ, τ : σ4 = τ4 = 1, σ2 =

τ2, τστ−1 = σ3
〉
.

Define V = ⊕4
i=1K · xi with σ : x1 �→ x2, x2 �→ −x1, x3 �→ −x4, x4 �→ x3,

τ : x1 �→ x3, x2 �→ x4, x3 �→ −x1, x4 �→ −x2.
Note that V is a faithful subrepresentation of the regular representation W =

⊕g∈GK ·x(g). In fact, we may take x1 = x(1)−x(σ2), x2 = σ ·x1, x3 = τ ·x1, x4 =
τσ ·x1. Now apply Theorem 2.1. Thus it remains to prove that K(x1, x2, x3, x4)G

is rational over K.
Define y1 = x1/x4, y2 = x2/x4, y3 = x3/x4, y4 = x4.
It is straightforward to check that

σ : y1 �→ y2/y3, y2 �→ −y1/y3, y3 �→ −1/y3, y4 �→ y3y4,

τ : y1 �→ −y3/y2, y2 �→ −1/y2, y3 �→ y1/y2, y4 �→ −y2y4.

If K(y1, y2, y3)<σ,τ> is rational over K, so is K(y1, y2, y3, y4)<σ,τ> over K by
Theorem 2.4.

Define z1 = y1, z2 = y2/y1, z3 = y3. Then

σ : z1 �→ z1z2/z3, z2 �→ −1/z2, z3 �→ −1/z3,

τ : z1 �→ −z3/z1z2, z2 �→ 1/z3, z3 �→ 1/z2.

Define z = z1(1 + (z2/z3)). Then K(y1, y2, y3)<σ> = K(z1, z2, z3)<σ> =
K(z, z2, z3)<σ>. Now apply Theorem 2.3 with a = b = −1, i.e. define

u =
z2 − a

z2

z2z3 − ab

z2z3

, v =
z3 − b

z3

z2z3 − ab

z2z3

.

It follows that K(z, z2, z3)<σ> = K(z, u, v).
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Now it is easy to check that

τ : u �→ −v, v �→ −u, z �→ λ/z

where λ = −2 − (z2/z3) − (z3/z2).
Since

−(z2/z3)−(z3/z2) = (z2 + (−1/z2))(z3 + (−1/z3)) − (z2z3 + 1/(z2z3))

= {(−bu2+av2+1)(bu2−av2+1)−(−bu2−av2 + 1)}/(uv)

= {bu2 + av2 − (bu2 − av2)2}/(uv)

by the last statement of Theorem 2.3 (here a = b = −1 in the present situation),
we find that

λ = −2 − {u2 + v2 + (u2 − v2)2}/(uv)

= −(u + v)2{(u − v)2 + 1}/(uv).

Define p = u + v, x = u − v, y = 2zuv/(u + v). We can check that

τ : p �→ −p, x �→ x, y �→ A/y

where A = −(x2 + 1)(x2 − p2).
Define t = p2, q1 = y + (A/y), q2 = p{y − (A/y)}. We find that

K(z, u, v)<τ> = K(p, x, y)<τ> = K(t, x, q1, q2)

with the relation
q2
1 − (q2/p)2 = 4A, (1)

because [K(t, x, q1, q2, p) : K(t, x, q1, q2)] ≤ 2, and K(t, x, q1, q2, p) = K(x, q1, y −
(A/y), p) = K(p, x, y). (Note that the last equality holds because we can solve y
within the field K(x, q1, y − (A/y), p).)

Now we will simplify the relation (1). It becomes

tq2
1 − q2

2 = −4(x2 + 1)(x2 − t)t.

Dividing by t2 on both sides, we get

(1/t)q2
1 − (q2/t)2 = −4(x2 + 1){(1/t)x2 − 1}. (2)

From (2), it is obvious that t ∈ K(x, q1, q2/t). Thus

K(t, x, q1, q2) = K(t, x, q1, q2/t) = K(x, q1, q2/t)

is rational over K. �
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§3. Main results

Without loss of generality we will assume that K is any field with charK �= 2
throughout this section, because Theorem 2.5 will take care of the case char K = 2.

Let G =
〈
σ, τ : σ8 = τ2 = 1, τστ−1 = σa

〉
. If a = −1, then G is the dihedral

group; if a = 3, then G is the quasi-dihedral group; if a = 5, G is the modular
group [Le1]. In the quasi-dihedral group G, let u = σ, v = στ , then G can be
defined as

〈
u, v : u4 = v2, vuv−1 = u3

〉
, which is the definition of this group given

in [Le1].
We will find a faithful subrepresentation of W = ⊕g∈GK · x(g), the regular

representation of G. Define

xi = x(σi) + x(σiτ) for 0 ≤ i ≤ 7.

Then ⊕7
i=0K · xi is a G-subspace of W and σ(xi) = xi+1 and τ(xi) = xai

for 0 ≤ i ≤ 7 where the index i + 1 or ai is understood to be taken modulo 8.
By Theorem 2.1, in order to prove the rationality problem of K(G), it suffices to
consider the case of K(x0, x1, · · · , x7)G.

Theorem 3.1. If G is the dihedral group, then K(G) is rational over K.

Proof. Define yi = xi − xi+4, yi+4 = xi + xi+4 for 0 ≤ i ≤ 3. Because of Theorem
2.1, it suffices to show that K(y0, y1, y3, y4)<σ,τ> is rational over K. Note that
σ : y0 �→ y1 �→ y2 �→ y3 �→ −y0, τ : y0 �→ y0, y1 �→ −y3, y2 �→ −y2, y3 �→ −y1.

Let π = Gal(K(
√−1)/K). If

√−1 ∈ K, then π is the trivial group; if
√−1 /∈

K, then π = 〈ρ〉 where ρ(
√−1) = −√−1. In the sequel, we shall take the following

convention: if we write the action of ρ, it is understood that
√−1 /∈ K; however,

if
√−1 ∈ K, the reader can just forget ρ even when we write the action of it.
We will extend the actions of σ, τ, ρ to K(

√−1)(y0, y1, y2, y3) by requiring
σ(
√−1) = τ(

√−1) =
√−1 and ρ(yi) = yi for 0 ≤ i ≤ 3. Note that

K(y0, · · · , y3)<σ,τ> = {K(
√−1)(y0, · · · , y3)<ρ>}<σ,τ>

= K(
√−1)(y0, · · · , y3)<σ,τ,ρ>.

Define z1 =
√−1y1+y3, z2 =

√−1y2−y0, z3 = −√−1y1+y3, z4 = −√−1y2−
y0. Then

σ : z1 �→ z2 �→ √−1z1, z3 �→ z4 �→ −√−1z3,

τ : z1 �→ −√−1z3, z2 �→ z4, z3 �→ √−1z1, z4 �→ z2,

ρ : z1 �→ z3, z2 �→ z4, z3 �→ z1, z4 �→ z2.

Define u1 = z2/z1, u2 = z4/z3, u3 = z2z4, u4 = z4
1 . We get that

K(
√−1)(z1, z2, z3, z4)<σ2> = K(

√−1)(u1, u2, u3, u4)
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and the actions of σ, τ, ρ are given by

σ : u1 �→ √−1/u1, u2 �→ −√−1/u2, u3 �→ u3/(u1u2), u4 �→ u4
1u4,

τ : u1 �→ √−1u2, u2 �→ −√−1u1, u3 �→ u3, u4 �→ u4
3/(u4

1u
4
2u4),

ρ : u1 �→ u2 �→ u1, u3 �→ u3, u4 �→ u4
3/(u4

1u
4
2u4).

Define w1 = u3+(u3/(u1u2)), w2 = u1u2, w3 = u1+(1/u2), w4 = u3
1u2u

−2
3 u4.

Then
σ : w1 �→ w1, w2 �→ 1/w2, w3 �→ √−1(w2 + (1/w2) + 2)/w3, w4 �→ −w4,

τ : w1 �→ w1, w2 �→ w2, w3 �→ √−1(w2 + (1/w2) + 2)/w3, w4 �→ −1/w4,

ρ : w1 �→ w1, w2 �→ w2, w3 �→ (w2 + (1/w2) + 2)/w3, w4 �→ 1/w4

Thus the action of στ is given by

στ : w1 �→ w1, w2 �→ 1/w2, w3 �→ w3, w4 �→ 1/w4.

Define w5 = (w2 − (1/w2))(1−w4)/(1+w4). Then K(
√−1)(w1, w2, w3, w4) =

K(
√−1)(w1, w2, w3, w5) and σ(w5) = −(w2−(1/w2))2/w5, στ(w5) = w5, ρ(w5) =

−w5.
Now K(

√−1)(w1, w2, w3, w5)<σ,τ> = K(
√−1)(w1, w2, w3, w5)<σ,στ>. More-

over, K(
√−1) (w1, w2, w3, w5)<στ> = K(

√−1)(w1, w3, w5, w2 + (1/w2)).
Define s = w1, t = w2 + (1/w2), x = w3, y =

√−1w5. Then

σ : s �→ s, t �→ t, x �→ √−1(t + 2)/x, y �→ (t2 − 4)/y,

ρ : s �→ s, t �→ t, x �→ (t + 2)/x, y �→ y.

By Theorem 2.3, define

u =
x − a

x

xy − ab

xy

, v =
y − b

y

xy − ab

xy

where a =
√−1(t + 2), b = t2 − 4, and we find that K(

√−1)(w1, w3, w5, w2 +
(1/w2))<σ> = K(

√−1)(s, t, x, y)<σ> = K(
√−1)(s, t, u, v).

If
√−1 ∈ K, then K(

√−1)(s, t, u, v) = K(s, t, u, v) is rational as we expect.
From now on, assume

√−1 /∈ K and ρ actually exists. We shall find the action
of ρ on u and v. Remember ρ(

√−1) = −√−1 and ρ(a) = −a, ρ(b) = b. Now

ρ(u) =

t + 2
x

+
ax

t + 2
t + 2

x
y +

abx

(t + 2)y

=
x − a

x
bx

y
− ay

x

,

ρ(v) =
y − b

y
t + 2

x
y +

abx

(t + 2)y

= −√−1
y − b

y
bx

y
− ay

x

.
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Define w = (1 +
√−1)u/v. Then ρ(w) = w.

It is laborious, but not difficult, to verify that

ρ(u) =
x − a

x
bx

y
− ay

x

=
u

bu2 − av2
. (3)

Here is a cheating way to demonstrate the above identity. By Theorem 2.3, the
right-hand side of Identity (3) is equal to (y +(b/y)− (1/u))−1. It is really routine
to check that the left-hand side of Identity (3) is equal to (y + (b/y) − (1/u))−1.

In conclusion, we find ρ(u) = c/u where c = w2/{(t2 − 4)w2 + 2(t + 2)}.
Define p = λu/w where λ = (t2 − 4)w2 + 2(t + 2). Then ρ(p) = λ/p.
Now K(

√−1)(s, t, u, v)<ρ> = K(
√−1)(s, t, w, p)<ρ>. We may show that

K(
√−1)(s, t, w, p)<σ> is rational over K(s, w) by applying [HK1, (2.4) Theo-

rem]. Here we provide a direct proof of it. Note that K(
√−1)(s, t, w, p)<σ> =

K(s, t, w, p1, p2) where p1 = p + (λ/p), p2 =
√−1(p − (λ/p)). Note that

p2
1 + p2

2 = 4λ = 4(t2 − 4)w2 + 8(t + 2).

Define r = t + 2. Then t2 − 4 = r(r − 4) and we get

p2
1 + p2

2 = 4r(r − 4)w2 + 8r.

Dividing by r2 on both sides, it turns out that

(p1/r)2 + (p2/r)2 = 4w2 − 16(1/r)w2 + 8(1/r).

8(1/r)(1 − 2w2) = (p1/r)2 + (p2/r)2 − 4w2.

Thus r ∈ K(w, p1/r, p2/r).
It follows that

K(
√−1)(s, t, u, v)<ρ> = K(s, t, w, p1, p2) = K(r, s, w, p1/r, p2/r)

= K(s, w, p1/r, p2/r)

is rational over K. �

Theorem 3.2. If G is the quasi-dihedral group, then K(G) is rational over K.

Proof. We shall show that K(x0, · · · , x7)G is rational over K where σ : x0 �→ x1 �→
· · · �→ x7 �→ x0, τ : x0 �→ x0, x1 ↔ x3, x2 ↔ x6, x4 �→ x4, x5 ↔ x7.

The proof is almost the same as that in Theorem 3.1. We shall make the same
change of variables, but the action may not be the same as in the proof of Theorem
3.1. We shall indicate the main modifications.
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We shall define yi, zi, ui, vi, wi by the same way as in Theorem 3.1. The
actions of σ and ρ are the same. But we shall be careful about the action of τ .
Note that

τ :y0 �→ y0, y1 �→ y3, y2 �→ −y2, y3 �→ y1,

z1 �→ √−1z3, z2 �→ z4, z3 �→ −√−1z1, z4 �→ z2,

u1 �→ −√−1u2, u2 �→ √−1u1, u3 �→ u3, u4 �→ u4
3/(u4

1u
4
2u4),

v1 �→ v1, v2 �→ v2, v3 �→ −√−1v2/v3, v4 �→ −v4
1/(v2

2v4),

w1 �→ w1, w2 �→ w2, w3 �→ −√−1(w2 + (1/w2) + 2)/w3, w4 �→ −1/w4.

Thus the action of στ is given by:

στ : w1 �→ w1, w2 �→ 1/w2, w3 �→ −w3, w4 �→ 1/w4.

Define w′
3 = (w2 − (1/w2))w3; and we should redefine x = w′

3 in the present
situation. Note that σ(x) = −√−1(t2 − 4)(t + 2)/x, ρ(x) = (t2 − 4)(t + 2)/x. All
the others remain the same.

Thus we define u, v, w by the same way. But a = −√−1(t2 − 4)(t + 2) in the
present situation. Note that

ρ(u) =
x − a

x
bx

y
− ay

x

, ρ(v) =
√−1

y − b

y
bx

y
− ay

x

.

Define w = (1 −√−1)u/v. Then ρ(w) = w as before.
Now ρ(u) = c/u where c = w2/{(t2−4)w2 +2(t2−4)(t+2)}. Define p = λu/w

as before, but with λ = (t2 − 4)w2 + 2(t2 − 4)(t + 2).
It follows that the fixed field is K(s, t, w, p1, p2) = K(r, s, w, p1, p2) where r =

t − 2 and the relation becomes

p2
1 + p2

2 = 4r(r + 4)w2 + 8r(r + 4)2.

We change the above relation as

(
p1

r(r + 4)

)2

+
(

p2

r(r + 4)

)2

= 4
(

w

r + 4

)2

+ 16
1
r

(
w

r + 4

)2

+
8
r
.

Thus r ∈ K(w/(r + 4), p1/{r(r + 4)}, p2/{r(r + 4)}). �

Theorem 3.3. If G is the modular group, then K(G) is rational over K.

Proof. We shall prove that K(x0, · · · , x7)G is rational over K where σ : x0 �→ x1 �→
· · · �→ x7 �→ x0, τ : x0 �→ x0, x1 ↔ x5, x2 �→ x2, x3 ↔ x7, x4 �→ x4, x6 �→ x6.
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Note that τ : y0 �→ y0, y1 �→ −y1, y2 �→ y2, y3 �→ −y3. The situation is different
from the previous two cases, and we cannot copy the proof of them. Fortunately
the present situation turns out to be easier.

Define z0 = y2
0 , z1 = y1/y0, z2 = y2/y1, z3 = y3/y2. Then K(y0, · · · , y3)<σ4> =

K(z0, · · · , z3). Note that

σ : z0 �→ z0z
2
1 , z1 �→ z2 �→ z3 �→ −1/(z1z2z3),

τ : z0 �→ z0, z1 �→ −z1, z2 �→ −z2, z3 �→ −z3.

By Theorem 2.1 it suffices to prove that K(z1, z2, z3)<σ,τ> is rational over K.
Define t = z1z3, x = z1, y = z2. Then we get

σ : t �→ −1/t, x �→ y �→ t/x,

τ : t �→ t, x �→ −x, y �→ −y.

Note that σ2(t) = t, σ2(x) = t/x, σ2(y) = −1/ty. Hence define

u =
x − a

x

xy − ab

xy

=
x − t

x

xy +
1
xy

, v =
y − b

y

xy − ab

xy

=
y +

1
ty

xy +
1
xy

where a = t, b = −1/t. By Theorem 2.3, K(t, x, y)<σ2> = K(t, u, v).
We find that τ(t) = t, τ(u) = −u, τ(v) = −v. The action of σ is given by

σ(u) =
y +

1
ty

ty

x
+

x

ty

, σ(v) =

t

x
− x

ty

x
+

x

ty

.

Define w = u/v. Then σ(w) = −1/w and τ(w) = w.
It is not difficult to check that

y +
1
ty

ty

x
+

x

ty

=
tv

u2 + t2v2
.

Hence we find that σ(u) = t/{u(w + (t2/w))}.
Note that K(t, u, w)<τ> = K(t, u2, w).
Define z = u2(w + (t2/w))/t. Then σ(z) = 1/z.
In summary, we will consider K(t, u2, w)<σ> = K(t, w, z)<σ> with σ(t) =

−1/t, σ(w) = −1/w, σ(z) = 1/z.
Define p = (1−z)/(1+z). Then σ(p) = −p. By Theorem 2.1, K(t, w, z)<σ> =

K(t, w, p)<σ> is rational provided that K(t, w)<σ> is rational. However the ratio-
nality of K(t, w)<σ> follows from Theorem 2.3. �
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