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0. Introduction

In this paper, two concepts from representation theory are introduced into alge-
braic topology: Auslander–Reiten triangles and Auslander–Reiten quivers.

The highlights are that existence of Auslander–Reiten triangles characterizes
Poincaré duality spaces (theorem 6.3), that Auslander–Reiten triangles and quivers
over spheres can be computed (theorems 8.12 and 8.13), and that the Auslan-
der–Reiten quiver is a sufficiently sensitive invariant to tell spheres of different
dimension apart (corollary 8.14).

After this brief survey, let me describe the paper at a more leisurely pace.
The idea to use methods from the representation theory of finite dimensional

algebras in algebraic topology comes as follows:
If k is a field and X is a simply connected topological space with dimk H∗(X; k)

< ∞, then the singular cochain differential graded algebra C∗(X; k) is equivalent
by a series of quasi-isomorphisms to a differential graded algebra R which is finite
dimensional over k, by the methods of [5, proof of thm. 3.6] and [6, exam. 6,
p. 146].

Hence it seems obvious to try to study R and thereby C∗(X; k) with methods
from the representation theory of finite dimensional algebras. A natural place to
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start is with the derived category of differential graded modules D(R) which is the
playing ground for homological algebra over R. Note that by [12, thm. III.4.2],
the category D(R) is equivalent to D(C∗(X; k)).

A number of concepts present themselves which are used to analyze the struc-
ture of derived categories in representation theory. I will concentrate on two
important ones: Auslander–Reiten triangles and Auslander–Reiten quivers. Their
definitions are recalled in 1.1 and 2.1 below, but let me make some remarks.

Auslander–Reiten triangles are certain special triangles among the distinguished
triangles in a triangulated category. They are the triangulated counterpart to Aus-
lander–Reiten sequences which pervade representation theory, see for instance [1].
Not all triangulated categories have Auslander–Reiten triangles, but those that do
enjoy many advantages as described in [7], [8], and [13].

The Auslander–Reiten quiver of an additive category is an important structural
invariant. The vertices are certain isomorphism classes in the category, and the
arrows are determined by certain morphisms. One can think of the quiver as an
“X-ray image” of the category. Auslander–Reiten quivers of additive categories
are used extensively in representation theory, see [1].

Auslander–Reiten triangles and quivers are intimately connected: If a suitable
triangulated category has Auslander–Reiten triangles, then they give enough in-
formation to compute the Auslander–Reiten quiver of the category (lemma 2.2),
and they even give the quiver the extra structure of so-called stable translation
quiver (definition 2.3 and corollary 2.4).

Now, one can hope that the tools of Auslander–Reiten triangles and quivers
will be as useful in studying the derived category D(C∗(X; k)) as they are in
representation theory. This paper shows that at least something can be gained:

Section 6 considers Auslander–Reiten triangles, and proves (essentially) that
they exist in the category Dc(C∗(X; k)) if and only if the topological space X has
Poincaré duality over k (theorem 6.3). Here Dc(C∗(X; k)) is the full subcategory
of compact objects of D(C∗(X; k)) (that is, the objects M for which Hom(M,−)
commutes with set indexed coproducts).

Section 7 considers the Auslander–Reiten quiver of Dc(C∗(X; k)), and proves
that it is a weak homotopy invariant of X (proposition 7.1).

Section 8 applies the theory to spheres, and computes the Auslander–Reiten
triangles and the Auslander–Reiten quiver of Dc(C∗(Sd; k)) for d ≥ 2 when the
characteristic of k is zero (theorems 8.12 and 8.13). The quiver consists of d − 1
components, each isomorphic to ZA∞, and it is observed that hence, the quiver
of Dc(C∗(Sd; k)) is a sufficiently sensitive invariant to tell spheres of different
dimension apart (corollary 8.14).

On the way to these results, the indecomposable objects of the category
Dc(C∗(Sd; k)) are determined, and it is proved that each object is the coproduct
of finitely many uniquely determined indecomposable objects (proposition 8.10).
This gives a fairly accurate picture of Dc(C∗(Sd; k)) which may be of independent
interest.
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The initial sections 1 to 5 of the paper are organized as follows: Sections 1 and
2 briefly recall Auslander–Reiten triangles and quivers, and sections 3 to 5 develop
the theory of Auslander–Reiten triangles over a general differential graded algebra
R which has the advantage of being typographically lighter than C∗(X; k), and
not mathematically harder.

Let me end the introduction by giving some notation.
Throughout the paper, k denotes a field.
Differential Graded Algebras are abbreviated DGAs, and Differential Graded

modules are abbreviated DG modules.
Standard notation is used for triangulated categories and for derived categories

and functors. The suspension functor is denoted Σ and the i’th cohomology functor
is denoted Hi. The notation is cohomological (degrees indexed by superscripts,
differentials of degree +1).

Module structures are occasionally emphasized by subscript notation. So for
instance, MR,S indicates that M has compatible right-structures over R and S.

Let S be a DGA over k.
S� denotes the graded algebra obtained by forgetting the differential of S,

and if M is a DG S-module then M � denotes the graded S�-module obtained by
forgetting the differential of M .

The opposite DGA of S is denoted Sop, and has the product s
op· t = (−1)|s||t|ts.

DG right-S-modules are identified with DG left-Sop-modules.
Dc(S) denotes the full subcategory of the derived category D(S) which consists

of compact objects, that is, objects M for which the functor Hom(M,−) commutes
with set indexed coproducts.

Df(S) denotes the full subcategory of D(S) which consists of objects M with
dimk HM < ∞.

I write
D(−) = Homk(−, k).

This duality functor is defined on k-vector spaces. It can also be viewed as defined
on modules, graded modules, or DG modules, and as such it interchanges left-
modules and right-modules. The functor D induces a duality of categories

Df(S)
D��
D

Df(Sop).

Note that DS is a DG left/right-S-module, like S itself.
If D is a triangulated category and M is an object of D, then an object is said

to be finitely built from M if it is in the smallest triangulated subcategory of D
which contains M and is closed under retracts.

1. Auslander–Reiten triangles

Sections 1 and 2 are introductory.
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This section recalls the definition of Auslander–Reiten triangles and a few of
their properties.

Let D be a triangulated category.

Definition 1.1. A distinguished triangle

M
µ−→ N

ν−→ P
π−→

is called an Auslander–Reiten triangle if

(i) Each morphism M −→ N ′ which is not a section factors through µ.
(ii) Each morphism N ′ −→ P which is not a retraction factors through ν.
(iii) π �= 0.

This version of the definition is taken from [11, def. 2.1]. By [11, sec. 2], it is
equivalent to the original definition, [8, 3.1], in the setup of [8].

Given an object P , there may or may not exist an Auslander–Reiten triangle
as in the definition. But if there does, then it is determined up to isomorphism by
[8, prop. 3.5(i)]. This allows the following definition.

Definition 1.2. Given an object P . Suppose that there is an Auslander–Reiten
triangle as in definition 1.1. Then M is denoted τP , and the operation τ is called
the Auslander–Reiten translation of D.

Note that τP is only defined up to isomorphism.

Remark 1.3. By [11, lem. 2.3], in an Auslander–Reiten triangle, the endomor-
phism rings of the end terms M and P are local. In particular, M and P are
indecomposable.

Hence the following definition.

Definition 1.4. Suppose that for each object P with local endomorphism ring,
there exists an Auslander–Reiten triangle as in definition 1.1. Then D is said to
have Auslander–Reiten triangles.

Note that in the situation of the definition, some authors would only say that
D has right Auslander–Reiten triangles.

2. The Auslander–Reiten quiver

This section recalls the definition of the Auslander–Reiten quiver and its connec-
tion with Auslander–Reiten triangles.

Let D be an additive category.
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A morphism M
µ−→ N is called irreducible if it is neither a section or a retrac-

tion, but satisfies that in any factorization µ = ρσ, either σ is a section or ρ a
retraction.

Definition 2.1. The Auslander–Reiten quiver of D has as vertices the isomor-
phism classes [M ] of indecomposable objects. It has one arrow from [M ] to [N ]
when there is an irreducible morphism M −→ N and no arrows from [M ] to [N ]
otherwise.

This is the simplest version of the Auslander–Reiten quiver. There are versions
with various embellishments, but I will not consider any of those.

Now let D be a k-linear triangulated category where each Hom space is finite
dimensional over k and each indecomposable object has local endomorphism ring.
The following lemma is immediate from [8, prop. 3.5].

Lemma 2.2. Let M −→ N −→ P −→ be an Auslander–Reiten triangle. Suppose
that N ∼= ∐

j Nj is a splitting into indecomposable objects, and let N ′ be some
indecomposable object. Then the following statements are equivalent.

(i) There is an irreducible morphism M −→ N ′.
(ii) There is an irreducible morphism N ′ −→ P .
(iii) There is a j so that N ′ ∼= Nj.

This shows that if D has Auslander–Reiten triangles, then knowledge of the
Auslander–Reiten triangles gives full knowledge of the Auslander–Reiten quiver.

Moreover, there is the notion of stable translation quiver.

Definition 2.3. A quiver is said to be a stable translation quiver if it is equipped
with an injective map τ called the translation, which sends vertices to vertices in
a way so that the number of arrows from τ [P ] to [N ′] equals the number of arrows
from [N ′] to [P ].

Corollary 2.4. If D has Auslander–Reiten triangles, then the Auslander–Reiten
quiver, equipped with the map [P ] �→ [τP ] induced by the Auslander–Reiten trans-
lation, is a stable translation quiver.

Proof. By [11, sec. 2], the left hand end term τP of an Auslander–Reiten triangle
determines the triangle up to isomorphism. In particular, τP determines P up to
isomorphism, so the map [P ] �→ [τP ] is injective.

Moreover, lemma 2.2 implies that the Auslander–Reiten quiver has an arrow
[τP ] = [M ] −→ [N ′] if and only if it has an arrow [N ′] −→ [P ]. �



Vol. 79 (2004) Auslander–Reiten theory 165

3. Derived categories

Sections 3, 4, and 5 develop the theory of Auslander–Reiten triangles over a general
DGA denoted R.

This section collects some lemmas on derived categories of DG modules.

Setup 3.1. In the rest of the paper, R denotes a DGA over the field k satisfying:

(i) R is a cochain DGA, that is, Ri = 0 for i < 0.
(ii) R0 = k.
(iii) R1 = 0.
(iv) dimk R < ∞.

Note that R/R≥1 ∼= k is a DG left/right-R-module.

First a general lemma which holds by [9, thm. 5.3].

Lemma 3.2. Let S be a DGA over k. Then the objects of Dc(S) are exactly the
ones which are finitely built from SS.

The rest of this section deals with R, the DGA from setup 3.1. If M is a DG
left-R-module, then a semi-free resolution F −→ M is called minimal if the differ-
ential ∂F takes values in R≥1F , whence k ⊗R F and HomR(F, k) have vanishing
differentials. See [6, chp. 6] for general information on semi-free resolutions. The
following lemma is well known although I give a few extra details; see [5, appendix].

Lemma 3.3. Let M be a DG left-R-module for which u = inf{ i | HiM �= 0 } is
finite, and for which each HiM is finite dimensional over k.

(i) There is a minimal semi-free resolution F −→ M which has a semi-free
filtration with quotients as indicated,

Σ−uR(γ0) Σ−uR(γ1) Σ−u−1R(γ2) · · ·
�
� �

� �
� �

� �
� �

�
0 ⊆ F (0) ⊆ L(1) ⊆ F (1) ⊆ L(2) ⊆ F (2) ⊆ · · · ⊆ F,

�
� �

� �
� �

�

Σ−u−1R(δ1) Σ−u−2Rm(δ2) · · ·
where superscripts (γj) and (δj) indicate coproducts. Each γj and each δj

is finite, and γ0 �= 0.
(ii) I have

F � ∼=
∐

j≤−u

Σj(R�)(βj),

where each βj is finite.
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The following truncation lemma uses that R0 is k, and is an exercise in linear
algebra.

Lemma 3.4. (i) Let M be a DG left-R-module for which u = inf{ i | HiM �= 0 }
is finite. Then there exists an injective quasi-isomorphism of DG left-R-
modules U −→ M with U j = 0 for j < u.

(ii) Let N be a DG left-R-module for which v = sup{ i | HiN �= 0 } is finite.
Then there exists an surjective quasi-isomorphism of DG left-R-modules
N −→ V with V j = 0 for j > v.

Lemma 3.5. (i) Let M and N in Df(R) be given. Then I have

dimk HomD(R)(M,N) < ∞.

(ii) If M is an indecomposable object of Df(R), then the endomorphism ring
HomD(R)(M,M) is local.

Proof. (i) This is trivial if N is isomorphic to zero, so I can suppose that it is not.
Let F −→ M and G −→ N be semi-free resolutions chosen according to

lemma 3.3(i). Since I have dimk R < ∞, lemma 3.3(ii) implies dimk F j < ∞
and dimk Gj < ∞ for each j.

As N is in Df(R) and is not isomorphic to zero, the same is true for G, so
u = inf{ i | HiG �= 0 } and v = sup{ i | HiG �= 0 } are finite. By using both parts of
lemma 3.4, I can replace G with a truncation G′ so that G′ is concentrated between
degrees u and v, and so that G and G′ are connected by two quasi-isomorphisms.
As G′ is a truncation of G, I have dimk G′j < ∞ for each j.

But dimk F j < ∞ and dimk G′j < ∞ for each j and G′ concentrated between
degrees u and v imply

dimk HomR(F,G′)j < ∞
for each j, and so

HomD(R)(M,N) ∼= H0(RHomR(M,N)) ∼= H0(HomR(F,G′))

also has dimk HomD(R)(M,N) < ∞.
(ii) By part (i) and [14, p. 52], it is enough to see that idempotent morphisms

in Df(R) split. But by [3, prop. 3.2] they even do so in D(R) because D(R) is a
triangulated category with set indexed coproducts. �

Lemma 3.6. There is the inclusion Dc(R) ⊆ Df(R).

Proof. This is clear by lemma 3.2 because RR is in Df(R). �

Remark 3.7. Lemmas 3.5 and 3.6 say that Df(R) and Dc(R) are triangulated
categories of the type considered in the latter part of section 2, so the results of
section 2 apply to them.
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Lemma 3.8. Let F and N be DG left-R-modules with

F � ∼=
∐

j≤−u

Σj(R�)(βj)

and with N j = 0 for j > v. Then

sup{ i | Hi(HomR(F,N)) �= 0 } ≤ −u + v.

Proof. This follows since

HomR(F,N)� ∼= HomR�(F �, N �) ∼=
∏

j≤−u

Σ−j(N �)βj

is zero in degrees > −u+v, because the highest degree contribution to the product
comes from Σu(N �)β−u which is certainly zero in degrees > −u + v. �

Lemma 3.9. Let M and N be in Df(R). Then

sup{ i | Hi(RHomR(M,N)) �= 0 }
= − inf{ i | HiM �= 0 } + sup{ i | HiN �= 0 }.

Proof. If M or N is isomorphic to zero, then the equation just says −∞ = −∞, so
I can suppose that neither M or N is isomorphic to zero. Then u = inf{ i | HiM �=
0 } and v = sup{ i | HiN �= 0 } are finite.

By lemma 3.3(i), pick a semi-free resolution F −→ M with

F � ∼=
∐

j≤−u

Σj(R�)(βj).

By lemma 3.4(ii), replace N with a quasi-isomorphic truncation with N j = 0 for
j > v.

Since RHomR(M,N) ∼= HomR(F,N) holds, what I must prove is

sup{ i | Hi(HomR(F,N)) �= 0 } = −u + v.

Here ≤ follows from lemma 3.8, so it remains to show

H−u+v(HomR(F,N)) �= 0. (1)

For this, note that the semi-free filtration of F in lemma 3.3(i) gives a semi-split
exact sequence of DG left-R-modules,

0 → Σ−uR(γ0) −→ F −→ F ′ → 0, (2)

with γ0 �= 0. Here the left hand term is just F (0), and F ′ is the quotient F/F (0).
From the part of the semi-free filtration which continues up from F (0) follows

(F ′)� ∼=
∐

j≤−u

Σj(R�)(β
′
j). (3)
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Since the sequence (2) is semi-split, applying HomR(−, N) gives a short exact
sequence of complexes,

0 → HomR(F ′, N) −→ HomR(F,N) −→ ΣuNγ0 → 0.

The long exact cohomology sequence of this contains

H−u+v(HomR(F,N)) −→ H−u+v(ΣuNγ0 ) −→ H−u+v+1(HomR(F ′,N)).

The middle term is Hv(Nγ0) which is non-zero. The last term is zero because
lemma 3.8 and equation (3) imply

sup{ i | Hi(HomR(F ′, N)) �= 0 } ≤ −u + v.

But then the first term is non-zero, proving equation (1). �

4. Auslander–Reiten triangles over a DGA

Recall R, the DGA from setup 3.1. This section gives a criterion for the existence
of Auslander–Reiten triangles in Dc(R) (proposition 4.3), and a formula for Aus-
lander–Reiten triangles when they exist (proposition 4.4).

Lemma 4.1. Let P be an object of Dc(R) with local endomorphism ring. Then
there is an Auslander–Reiten triangle in Df(R),

Σ−1(DR
L⊗R P ) −→ N −→ P −→ .

Proof. Lemmas 3.5(i) and 3.6 show that the theory of [10, sec. 4] applies to D(R).
The natural equivalence

D(HomD(R)(P,−)) � HomD(R)(−,DR
L⊗R P ) (4)

holds for P equal to RR, and therefore also holds for the given P because P is in
Dc(R) and therefore finitely built from RR by lemma 3.2. Hence [10, prop. 4.2]
gives an Auslander–Reiten triangle in D(R),

Σ−1(DR
L⊗R P ) −→ N −→ P −→ . (5)

Moreover, (5) is in Df(R), and so is an Auslander–Reiten triangle in Df(R): As

P is finitely built from RR, it follows that DR
L⊗R P is finitely built from R(DR).

But then DR
L⊗R P is in Df(R) because R(DR) is in Df(R). And P is also in

Df(R) by lemma 3.6. So both end terms in (5) are in Df(R), and the long exact
cohomology sequence then proves the same for the middle term. �

Lemma 4.2. An Auslander–Reiten triangle in Dc(R) is also one in Df(R).
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Proof. Note again that lemmas 3.5(i) and 3.6 show that the theory of [10, sec.
4] applies to D(R). Hence [10, lem. 4.3] gives that each object in Dc(R) is a so-
called pure-injective object of D(R). So by [10, prop. 3.2], each Auslander–Reiten
triangle in Dc(R) is an Auslander–Reiten triangle in D(R), and so in particular in
Df(R). �

Proposition 4.3. The category Dc(R) has Auslander–Reiten triangles if and only
if R(DR) is in Dc(R).

Proof. On one hand, suppose that R(DR) is in Dc(R). Let P be an object of Dc(R)
with local endomorphism ring. Lemma 4.1 gives an Auslander–Reiten triangle in
Df(R) with P as right hand end term. In the present situation, I claim that the
triangle is in fact in Dc(R), and so is an Auslander–Reiten triangle in Dc(R).

To see this, note that as P is in Dc(R), it is finitely built from RR by lemma

3.2 whence DR
L⊗R P is finitely built from R(DR). But since R(DR) is in Dc(R),

it follows that DR
L⊗R P is in Dc(R). And as both DR

L⊗R P and P are in Dc(R),
so is the middle term in the distinguished triangle from lemma 4.1, so the triangle
is in Dc(R).

On the other hand, suppose that Dc(R) has Auslander–Reiten triangles. The
endomorphism ring of RR is k which is local, so let

M −→ N −→ R −→
be an Auslander–Reiten triangle in Dc(R). By lemma 4.2 this is even an Auslan-
der–Reiten triangle in Df(R). By lemma 4.1 there is also an Auslander–Reiten
triangle in Df(R),

DR
L⊗R R −→ N ′ −→ R −→,

and as the two Auslander–Reiten triangles have the same right hand end term,
they are isomorphic by [8, prop. 3.5(i)]. In particular, the left hand end terms are
isomorphic, so

M ∼= DR
L⊗R R ∼= R(DR),

and here the left hand side is in Dc(R) so R(DR) is also in Dc(R). �

Proposition 4.4. Suppose that Dc(R) has Auslander–Reiten triangles.
(i) Let P be an object of Dc(R) with local endomorphism ring. Then there is

an Auslander–Reiten triangle in Dc(R),

Σ−1(DR
L⊗R P ) −→ N −→ P −→ .

(ii) The Auslander–Reiten translation of Dc(R) is given by

τ(−) = Σ−1(DR
L⊗R −).
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Proof. (i) The distinguished triangle here is the one from lemma 4.1, so is an
Auslander–Reiten triangle in Df(R). The first part of the proof of proposition 4.3
shows that it is also an Auslander–Reiten triangle in Dc(R) provided R(DR) is in
Dc(R). And this holds by proposition 4.3 because Dc(R) has Auslander–Reiten
triangles.

(ii) This is immediate from part (i); cf. definition 1.2. �

5. Poincaré duality DGAs

Recall R, the DGA from setup 3.1. This section considers the situation where
R(DR) is in Dc(R) and (DR)R is in Dc(Rop), cf. proposition 4.3. Theorem 5.1
shows that this is equivalent to HR having Poincaré duality.

Note that by the proof of theorem 5.1, it is also equivalent to R being a so-called
Gorenstein DGA; cf. [5].

Theorem 5.1. With d = sup{ i | HiR �= 0 }, the following conditions are equiva-
lent.

(i) R(DR) is in Dc(R) and (DR)R is in Dc(Rop).
(ii) There are isomorphisms of graded HR-modules HR(DHR) ∼= HR(Σd HR)

and (DHR)HR
∼= (Σd HR)HR.

Proof. To facilitate the proof, here are three more conditions, each equivalent to
the ones in the theorem.

(iii) dimk ExtR(k,R) < ∞ and dimk ExtRop(k,R) < ∞.
(iv) There are isomorphisms of graded k-vector spaces ExtR(k,R) ∼= Σ−dk and

ExtRop(k,R) ∼= Σ−dk.
(v) There are isomorphisms R(DR) ∼= R(ΣdR) in D(R) and (DR)R

∼= (ΣdR)R

in D(Rop).

(i) ⇒ (iii) Duality gives

ExtRop(k,R) ∼= ExtR(DR,Dk) ∼= ExtR(DR, k) = (∗). (6)

When (i) holds, lemma 3.2 implies that R(DR) is finitely built from RR, and then
ExtR(DR, k) is finite dimensional over k since ExtR(R, k) ∼= k is finite dimensional
over k. Equation (6) then shows that ExtRop(k,R) is finite dimensional over k.
This gives half of (iii), and the other half follows by symmetry.

(iii) ⇒ (i) Let F −→ R(DR) be a minimal semi-free resolution picked according
to lemma 3.3(i). Continuing the computation from equation (6) gives

(∗) = H(RHomR(DR, k)) ∼= H(HomR(F, k)) ∼= HomR�(F �, k�), (7)

where the last ∼= is by minimality of F . When (iii) holds, ExtRop(k,R) is finite
dimensional over k, and equations (6) and (7) then show that HomR�(F �, k�) is
finite dimensional over k. This means that there are only finitely many summands
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ΣjR� in F �, so the semi-free filtration of F in lemma 3.3(i) must terminate after
finitely many steps. So F and therefore R(DR) is finitely built from RR, whence
R(DR) is in Dc(R). This gives half of (i), and the other half follows by symmetry.

(iii) ⇒ (iv) Assume (iii). The proof that (iii) implies (i) considered a minimal
semi-free resolution F −→ R(DR) obtained from lemma 3.3(i), and proved that
the semi-free filtration of F in 3.3(i) terminates after finitely many steps. But then
F must be bounded because dimk R < ∞ implies that R itself is bounded. Now,
the dual of F −→ R(DR) is

RR
∼= D(R(DR))

ρ−→ DF,

and this is a K-injective resolution of RR where DF is bounded because F is.
Also, lemma 3.3 gives that Rk has a semi-free resolution G −→ Rk with

G� ∼=
∐
j≤0

Σj(R�)(βj), each βj finite. (8)

The canonical morphism

Rk −→ RHomRop(RHomR(k,R), R) (9)

is represented by the composition of the morphisms

G −→ HomRop(R,DF ) ⊗R G −→ HomRop(HomR(G,R),DF ),

where the first is given by g �→ ρ ⊗ g, and the second is canonical. The first
morphism is clearly a quasi-isomorphism. The second is easily seen even to be an
isomorphism, because DF is bounded and because G satisfies equation (8). So the
canonical morphism (9) is an isomorphism, and so,

0 = sup{ i | Hi(Rk) �= 0 }
= sup{ i | Hi(RHomRop(RHomR(k,R), R)) �= 0 }
(a)
= − inf{ i | Hi(RHomR(k,R)) �= 0 } + sup{ i | HiR �= 0 }
= − inf{ i | Hi(RHomR(k,R)) �= 0 } + d,

where (a) follows from lemma 3.9. The lemma can be used because (iii) implies
that RHomR(k,R) is in Df(Rop), while RR is certainly in Df(Rop). This shows

inf{ i | Hi(RHomR(k,R)) �= 0 } = d.

On the other hand,

sup{ i | Hi(RHomR(k,R)) �= 0 }
(b)
= − inf{ i | Hik �= 0 } + sup{ i | HiR �= 0 }
= d,

where (b) is again by lemma 3.9.
The last two equations show that H(RHomR(k,R)) is concentrated in degree

d. Lemma 3.4 now implies that RHomR(k,R) itself is isomorphic in D(Rop) to a
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DG right-R-module concentrated in degree d. This DG right-R-module must have
the form Σ−dk

(α)
R , so I get

RHomR(k,R) ∼= Σ−dk
(α)
R .

Inserting this into equation (9) proves α = 1, so all in all

RHomR(k,R) ∼= Σ−dkR

holds. Taking cohomology gives half of (iv). The other half follows by symmetry.

(iv) ⇒ (iii) This is clear.
So now, the equivalence of (i), (iii), and (iv) is established. I close the proof by

establishing the equivalence of (ii), (iv), and (v).

(ii) ⇒ (iv) This is immediate from the Eilenberg-Moore spectral sequence

Epq
2 = Extp

HR(k,HR)q ⇒ Extp+q
R (k,R)

as found in [5, 1.3(2)], and the corresponding spectral sequence over Rop.

(iv) ⇒ (v) Equation (6) gives that (iv) implies

ExtR(DR, k) ∼= Σ−dk.

Using a minimal semi-free resolution of R(DR), it is easy to see that this implies
half of (v), and the other half follows by symmetry.

(v) ⇒ (ii) This follows by taking cohomology. �

Theorem 5.1 and proposition 4.3 combine to give the following corollary.

Corollary 5.2. With d = sup{ i | HiR �= 0 }, the following conditions are equiva-
lent.

(i) Both Dc(R) and Dc(Rop) have Auslander–Reiten triangles.
(ii) There are isomorphisms of graded HR-modules HR(DHR) ∼= HR(Σd HR)

and (DHR)HR
∼= (Σd HR)HR.

6. Auslander–Reiten triangles over a topological space

Sections 6, 7, and 8 form the topological part of this paper. They develop the the-
ory of Auslander–Reiten triangles and quivers over topological spaces, and apply
the theory to spheres.

This section proves that existence of Auslander–Reiten triangles characterizes
Poincaré duality spaces (theorem 6.3), and gives a formula for Auslander–Reiten
triangles when they exist (proposition 6.5). Theorem 6.3 is the first main result
of this paper.
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Notation 6.1. In sections 6, 7, and 8, singular cohomology and singular cochain
DGAs are only considered with coefficients in the field k. So when X is a topolog-
ical space, H∗(X; k) and C∗(X; k) are abbreviated H∗(X) and C∗(X). Moreover,
D(C∗(X; k)) is abbreviated D(X), and this is combined freely with other adorn-
ments. So for instance, Dc(Xop) stands for Dc(C∗(X; k)op).

Remark 6.2. If X is a simply connected topological space which satisfies
dimk H∗(X) < ∞, then C∗(X) is equivalent by a series of quasi-isomorphisms
to a DGA, R, satisfying the conditions of setup 3.1, by the methods of [5, proof
of thm. 3.6] and [6, exam. 6, p. 146].

By [12, thm. III.4.2] the derived categories D(R) and D(C∗(X)) = D(X) are
equivalent. Hence the results of sections 3, 4, and 5 on D(R) also apply to D(X).

Theorem 6.3. Let X be a simply connected topological space with dimk H∗(X)
< ∞. Then the following conditions are equivalent.

(i) Both Dc(X) and Dc(Xop) have Auslander–Reiten triangles.
(ii) X has Poincaré duality over k.

Proof. This is immediate from corollary 5.2, since condition (ii) of that corollary
applied to C∗(X) just says that X has Poincaré duality over k. �

Remark 6.4. If k has characteristic zero, then C∗(X) is equivalent by a series of
quasi-isomorphism to a commutative DGA by [6, cor. 10.10]. Hence Dc(X) and
Dc(Xop) have Auslander–Reiten triangles simultaneously.

Proposition 6.5. Let X be a simply connected topological space with dimkH∗(X)
< ∞ which has Poincaré duality over k, and write d = sup{i | Hi(X) �= 0}.

(i) Let P be an object of Dc(X) with local endomorphism ring. Then there is
an Auslander–Reiten triangle in Dc(X),

Σd−1P −→ N −→ P −→ .

(ii) The Auslander–Reiten translation of Dc(X) is given by

τ(−) = Σd−1(−).

Proof. (i) Theorem 6.3 gives that Dc(X) has Auslander–Reiten triangles. Propo-
sition 4.4(i) says that there is an Auslander–Reiten triangle in Dc(X),

Σ−1(DC∗(X)
L⊗

C∗(X)
P ) −→ N −→ P −→ .

But it is easy to see from Poincaré duality for X over k that DC∗(X) is isomorphic
to Σd C∗(X) in the derived category of DG left/right-C∗(X)-modules. So in fact,
the Auslander–Reiten triangle is the one given in the proposition.

(ii) This is immediate from part (i); cf. definition 1.2. �
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7. The Auslander–Reiten quiver over a topological space

Recall the conventions from notation 6.1. When X is a topological space, I can
consider the Auslander–Reiten quiver of Dc(X).

Moreover, when X is simply connected with dimk H∗(X) < ∞ and with
Poincaré duality over k, then Dc(X) has Auslander–Reiten triangles by theorem
6.3 so the Auslander–Reiten quiver of Dc(X) is a stable translation quiver by
corollary 2.4, which applies by remark 3.7.

Proposition 7.1. The Auslander–Reiten quiver of Dc(X) is a weak homotopy
invariant of X.

Moreover, if X is restricted to simply connected topological spaces with

dimk H∗(X) < ∞
which have Poincaré duality over k, then the Auslander–Reiten quiver of Dc(X),
viewed as a stable translation quiver, is a weak homotopy invariant of X.

Proof. If X and X ′ have the same weak homotopy type, then C∗(X) and C∗(X ′)
are equivalent by a series of quasi-isomorphisms as follows from [6, thm. 4.15].
Hence D(X) and D(X ′) are equivalent categories by [12, thm. III.4.2], and so the
same holds for Dc(X) and Dc(X ′). This implies both parts of the proposition. �

8. Spheres

Recall the conventions from notation 6.1. The d-dimensional sphere Sd has Poincaré
duality over any field, so for d ≥ 2 the category Dc(Sd) has Auslander–Reiten tri-
angles by theorem 6.3.

This section determines the Auslander–Reiten triangles in Dc(Sd) for d ≥ 2
when k has characteristic zero (theorem 8.12). As a consequence follows the de-
termination of the Auslander–Reiten quiver of Dc(Sd) (theorem 8.13). It is ob-
served that the quiver is a sufficiently sensitive invariant to tell spheres of different
dimension apart (corollary 8.14). These are the paper’s second main results.

To determine the Auslander–Reiten triangles, I must first determine the pos-
sible end terms, that is, the objects of Dc(Sd) with local endomorphism rings.
Lemmas 3.5(ii) and 3.6 imply that these are exactly the indecomposable objects,
and the determination of these takes up parts 8.1 to 8.11.

Setup 8.1. In this section, d ≥ 2 is always assumed.
Let A be the graded algebra k[T ] with deg T = −d + 1, and view A as a DGA

over k with vanishing differential.
Now A/A≤−1 ∼= k can be viewed as a DG right-A-module, kA. Let F −→ kA

be a K-projective resolution.
Let E = HomAop(F, F ) be the endomorphism DGA of F .
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For the following lemma, note that F acquires the structure FA,E in a canonical
way.

Lemma 8.2. There are quasi-inverse equivalences of categories,

Df(Aop) � F
L⊗E−

RHomAop (F,−)
� Dc(E).

Proof. It is easy to check that kA is a compact object of D(Aop) (see also setup
8.3). Hence the methods of [4, sec. 2] give quasi-inverse equivalences of categories,

T � F
L⊗E−

RHomAop (F,−)
� D(E), (10)

where T is a certain full triangulated subcategory of D(Aop) which contains kA.
Since kA is in T, so is every object finitely built from kA. It is easy to check that

such objects are exactly the ones in Df(Aop). Moreover, under the equivalences
(10), the object kA in T corresponds to the object

RHomAop(F, kA) ∼= RHomAop(F, F ) ∼= EE

in D(E), so objects finitely built from kA correspond to objects finitely built from
EE. By lemma 3.2 these are exactly the objects of Dc(E).

So the equivalences (10) restrict to the quasi-inverse equivalences stated in the
lemma. �

To go on, it is convenient to make a specific choise of F .

Setup 8.3. Let me construct a morphism of DG right-A-modules

Σd−1A −→ A,

that is, Σd−1k[T ] −→ k[T ], by Σd−11k[T ] �→ T . The mapping cone is easily seen
to be a minimal K-projective resolution of kA, and from now on I will use this
mapping cone as F .

Observe
F � ∼= ΣΣd−1A�  A� ∼= ΣdA�  A�. (11)

Lemma 8.4. Suppose that k has characteristic zero. Then E is equivalent by a
series of quasi-isomorphisms to C∗(Sd).

Proof. The sphere Sd is a so-called formal space, so since k has characteristic zero,
C∗(Sd) is equivalent by a series of quasi-isomorphisms to H∗(Sd) viewed as a DGA
with vanishing differential (see [6, exam. 1, p. 142]). Hence it is enough to see that
E is equivalent by a series of quasi-isomorphisms to H∗(Sd) viewed as a DGA with
vanishing differential.
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H∗(Sd) is a very simple DGA: It has a copy of k in degree zero, spanned by
1
H∗(Sd)

, and another copy of k in degree d, spanned by some element, say S.
The cohomology of E is

HE = H(HomAop(F, F )) ∼= H(HomAop(F, kA)) = (∗),
and as F is minimal, this is

(∗) ∼= HomAop(F, kA)� ∼= Hom(Aop)�(F �, k�)
(a)∼= Hom(Aop)�(ΣdA�  A�, k�) ∼= Σ−dk�  k�,

where (a) is by equation (11). So HE also has copies of k in degrees 0 and d.
Let e be a cycle in Ed whose cohomology class spans the copy of k in degree d

of HE. It is now easy to check that there is a quasi-isomorphism of DGAs

H∗(Sd) −→ E

given by 1
H∗(Sd)

�→ 1E and S �→ e, proving the lemma. �

Lemma 8.4 and [12, thm. III.4.2] imply the following lemma.

Lemma 8.5. Suppose that k has characteristic zero. Then there is an equivalence
of categories

Dc(E) � Dc(Sd)

which leaves the cohomology of an object unchanged.

Combining lemmas 8.2 and 8.5 gives the next lemma.

Lemma 8.6. Suppose that k has characteristic zero. Then there is an equivalence
of categories,

Df(Aop) � Dc(Sd).

Let me now determine the indecomposable objects of Df(Aop).

Definition 8.7. For each m ≥ 0 the element Tm+1 generates a DG ideal (Tm+1)
in A = k[T ], so there is a DG right-A-module

Ym = A/(Tm+1).

Lemma 8.8. Up to isomorphism, the indecomposable objects of the category
Df(Aop) are exactly the (positive and negative) suspensions

ΣjYm

with j in Z and m ≥ 0.
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Proof. When K is a graded right-A�-module, let δK denote K viewed as a DG
right-A-module with vanishing differential. I claim that

K �→ δK

induces a bijective correspondence between the isomorphism classes of k-finite
dimensional graded indecomposable right-A�-modules and the isomorphism clas-
ses of indecomposable objects of Df(Aop).

For this, first note that if M is a DG right-A-module, then the cohomology HM
is a graded right-HA-module. But A has vanishing differential, so HA is just A�, so
HM is a graded right-A�-module. Now in fact, I have that M and δ HM are quasi-
isomorphic. This is easy to prove directly; it is also a well known manifestation of
A� being graded hereditary. (This means that any graded submodule of a graded
projective module is again graded projective. The algebra A� is graded hereditary
because it is a polynomial algebra on one generator.) So I have M ∼= δ HM in
D(A).

Also, if K is a graded right-A�-module, then I have K ∼= HδK.
Observe that this does not set up an equivalence of categories, as the isomor-

phism M ∼= δ HM is not natural. However, it does show that K �→ δK induces a
bijective correspondence between the isomorphism classes of graded right-A�-mo-
dules and the isomorphism classes of D(Aop).

Now, if M is an indecomposable object of Df(Aop), then by the above I have
M ∼= δ HM in Df(Aop). If HM ∼= K1 K2 were a non-trivial decomposition, then

M ∼= δ HM ∼= δ(K1  K2) ∼= δK1  δK2

would clearly be a non-trivial decomposition in Df(Aop), a contradiction. So HM
is a k-finite dimensional graded indecomposable right-A�-module.

On the other hand, if K is a k-finite dimensional graded indecomposable right-
A�-module, then a similar argument shows that δK is an indecomposable object
of Df(Aop).

So K �→ δK induces a bijective correspondence between isomorphism classes
of indecomposables as claimed.

However, the finitely generated graded indecomposable right-A�-modules are
exactly the graded cyclic right-A�-modules. This is a manifestation of A� being a
principal ideal domain, see [15, p. 9] for the ungraded case. The k-finite dimen-
sional among these modules are

Σj(A�/(Tm+1))

with j in Z and m ≥ 0.
By the above correspondence, up to isomorphism, the indecomposable objects

of Df(Aop) are then
δΣj(A�/(Tm+1))

with j in Z and m ≥ 0. And these are exactly the objects ΣjYm. �
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Transporting the objects ΣjYm through the equivalence of lemma 8.6 gives the
indecomposable objects of Dc(Sd).

Definition 8.9. Suppose that k has characteristic zero. For each m ≥ 0 let Zm

be the object of Dc(Sd) obtained by transporting Ym through the equivalence of
lemma 8.6.

Proposition 8.10. Suppose that k has characteristic zero.
(i) Up to isomorphism, the indecomposable objects of Dc(Sd) are exactly the

(positive and negative) suspensions

ΣjZm

with j in Z and m ≥ 0.
(ii) Each object of Dc(Sd) is the coproduct of finitely many uniquely determined

indecomposable objects.
(iii) For each m ≥ 0 the object Zm in Dc(Sd) has

HiZm =
{

k for i = −m(d − 1) and i = d,
0 otherwise.

Proof. (i) This is clear from lemma 8.8 and definition 8.9.

(ii) This follows from feeding lemmas 3.5 and 3.6 into [14, p. 52, thm.].

(iii) It is easy to see that there is a distinguished triangle in D(Aop),

Σ(m+1)(d−1)A −→ A −→ Ym −→ . (12)

It is also easy to prove

Hi(RHomAop(F,A)) ∼=
{

k for i = d,
0 otherwise. (13)

Applying RHomAop(F,−) to the distinguished triangle (12) gives a distinguished
triangle in D(E),

Σ(m+1)(d−1) RHomAop (F,A) −→ RHomAop (F,A) −→ RHomAop (F,Ym) −→,

and the long exact cohomology sequence and equation (13) then prove

Hi(RHomAop(F, Ym)) =
{

k for i = −m(d − 1) and i = d,
0 otherwise. (14)

Now, to transport Ym through the equivalence of lemma 8.6 means first to
transport it through the equivalence of lemma 8.2, secondly to transport the re-
sulting object through the equivalence of lemma 8.5. The first of these steps gives
RHomAop(F, Ym) whose cohomology is in equation (14). And the second step
leaves the cohomology unchanged, viewed as a graded k-vector space. This proves
the proposition’s formula for HiZm. �
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Remark 8.11. It is easy to see that C∗(Sd) itself is an indecomposable object of
Dc(Sd). By proposition 8.10, parts (i) and (iii), the only possibility is

Z0
∼= C∗(Sd)

in Dc(Sd).

Now to the second main results of this paper, which sum up the theory in the
case of spheres. Recall from setup 8.1 the condition d ≥ 2.

Theorem 8.12. Suppose that k has characteristic zero.
(i) In the category Dc(Sd), there is an Auslander–Reiten triangle

Σd−1Z0 −→ Z1 −→ Z0 −→
and an Auslander–Reiten triangle

Σd−1Zn −→ Σd−1Zn−1  Zn+1 −→ Zn −→
for each n with n ≥ 1, where the objects Z are the indecomposable ob-
jects from definition 8.9. Each Auslander–Reiten triangle is a (positive or
negative) suspension of one of these.

(ii) The Auslander–Reiten translation of Dc(Sd) is given by

τ(−) = Σd−1(−).

Proof. (i) By [8, prop. 3.5(i)], Auslander–Reiten triangles are determined up to
isomorphism by their right hand end terms. The right hand end terms are the
objects with local endomorphism rings. As remarked above, lemmas 3.5(ii) and
3.6 give that in the present case, these are exactly the indecomposable objects,
and proposition 8.10(i) says that these are the ΣjZm with j in Z and m ≥ 0. So to
prove part (i) of the theorem, it is clearly enough to see that the Auslander–Reiten
triangles with right hand end terms Zm for m ≥ 0 are as claimed.

By proposition 6.5(i), the left hand end terms of the Auslander–Reiten triangles
are as claimed in the theorem, so let me consider the middle terms. First the Aus-
lander–Reiten triangle ending in Z0,

Σd−1Z0 −→ N −→ Z0
π−→ . (15)

By definition 1.1 the morphism π is non-zero. But by remark 8.11 this morphism is
C∗(Sd) π−→ Σd C∗(Sd). This makes it easy to compute the long exact cohomology
sequence of (15) to get

HiN ∼=
{

k for i = −(d − 1) and i = d,
0 otherwise.

But N is the coproduct of uniquely determined indecomposable objects of Dc(Sd)
by proposition 8.10(ii), and by 8.10, parts (i) and (iii), the only possibility is
N ∼= Z1.
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Next the Auslander–Reiten triangle ending in Zn,

Σd−1Zn −→ N −→ Zn
π−→, (16)

with n ≥ 1. There can be no retraction Σj C∗(Sd) −→ Zn, for else Zn would be
a direct summand in the indecomposable object Σj C∗(Sd) ∼= ΣjZ0. Hence each
morphism Σj C∗(Sd)

γ−→ Zn has πγ = 0. But this shows Hπ = 0, so the long
exact cohomology sequence of (16) splits into short exact sequences. So using
proposition 8.10(iii), the cohomology of N can be read off as

HiN ∼=
{

k for i in {−(n + 1)(d − 1),−n(d − 1), 1, d},
0 otherwise.

Proposition 8.10(ii) says that N is the coproduct of uniquely determined indecom-
posable objects of Dc(Sd). Comparing the cohomology of N with the cohomology
of the indecomposable objects, obtained from 8.10, parts (i) and (iii), leaves only
two possibilities: N is either Σd−1Zn−1  Zn+1 or Σd−1Zn  Zn.

To rule out the latter possibility, note that by remark 3.7, the results of section
2 apply to Dc(Sd). Now suppose by induction that the Auslander–Reiten triangle
ending in Zn−1 is as claimed in the theorem, hence has a summand Zn in its middle
term. By lemma 2.2, (iii) ⇒ (ii), this implies that there is an irreducible morphism
Zn −→ Zn−1. Hence there is an irreducible morphism Σd−1Zn −→ Σd−1Zn−1,
and by lemma 2.2, (i) ⇒ (iii), this implies that Σd−1Zn−1 is a direct summand of
N . So N must be Σd−1Zn−1  Zn+1, proving the theorem.

(ii) This is immediate from part (i), or from proposition 6.5(ii). �

As noted in the above proof, remark 3.7 says that the results of section 2 apply
to Dc(Sd). So by lemma 2.2, knowledge of the Auslander–Reiten triangles gives
full knowledge of the Auslander–Reiten quiver, and by corollary 2.4, the Auslan-
der–Reiten quiver is a stable translation quiver. Applying this to the data from
theorem 8.12 gives the following.

Theorem 8.13. Suppose that k has characteristic zero. Then the Auslander–Rei-
ten quiver of the category Dc(Sd) consists of d − 1 components, each isomorphic
to ZA∞. The component containing Z0

∼= C∗(Sd) is

...
...

...
· · · Σ−2(d−1)Z4·�................·�................·�................·�................·�................· · · ·

����������������������������������������
Σ−2(d−1)Z3 ·�................·�................·�................·�................·

����������������������������������������· · · Σ−(d−1)Z2 ·�................·�................·�................·�................·�................· · · ·
����������������������������������������

Σ−(d−1)Z1 ·�................·�................·�................·�................·
����������������������������������������· · · Z0 ·�................·�................·�................·�................·�................· · · · ,
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where the unbroken arrows are the arrows of the quiver and the dotted arrows
indicate the Auslander–Reiten translation.

The following corollary is clear from theorem 8.13.

Corollary 8.14. Suppose that k has characteristic zero. Then the Auslander–Rei-
ten quiver of Dc(Sd) is a sufficiently sensitive invariant to tell spheres of different
dimension apart.

Acknowledgement. Theorem 6.3 is inspired by Happel’s result [7, thm. 3.4]
which considers a finite dimensional algebra Λ, and says roughly that Dc(Λ) has
Auslander–Reiten triangles if and only if Λ is Gorenstein. This is related to the-
orem 6.3 because the differential graded analogue of the Gorenstein property is
Poincaré duality (see section 5). I thank Henning Krause for directing my attention
to [7].

Other recent papers investigate criteria for the existence of Auslander–Reiten
triangles similar to the ones above, see [2], [10], and [13].

The diagrams were typeset with Paul Taylor’s diagrams.tex.
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