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1. Introduction

The purpose of this article is to determine the forms of the exceptional simple
classical Lie superalgebras, that is, of the Lie superalgebras G(3), F(4) and the
one-parameter family D(2, 1;a), o € F\{0, —1}, (see [K]). Unless otherwise stated,
F will denote a ground field of characteristic # 2,3 and F will be an algebraic
closure of F'. The definition of the above mentioned superalgebras over such fields
is the same as for fields of characteristic 0.

All these forms are intimately related to quaternion or octonion algebras, so
let us first review some of their properties.

A quaternion algebra is a central simple associative algebra of degree 2 over F,
that is, a form of the algebra Mato(F'). In what follows, all the (unlabeled) tensor
products will be over F. Then, identifying F ® Q with Mato(F), it turns out that
the trace t(z) and the determinant n(zx) of any x € @ are in F' (not just in F') and
hence, for any z € Q, 2% —t(z)z +n(x)1 = 0, and the map z + & = t(x)1l —z is an
involution of @ (that extends to the canonical symplectic involution on Maty(F)).
Then z + Z = t(x)1 and 2% = Tz = n(z)l for any € . The subset of trace
zero elements QU of a quaternion algebra @ is closed under [z,y] = zy — yx and

Supported by the Spanish DGES (Pb 97-1291-C03-03), DGI (BFM2001-3239-C03-03), and
by a grant from the Spanish Direccién General de Ensenanza Superior e Investigacién Cientifica
(Programa de Estancias de Investigadores Espafioles en Centros de Investigacién Extranjeros),
while visiting the University of Wisconsin at Madison.



Vol. 79 (2004) Quaternions, octonions and exceptional Lie superalgebras 209

is, therefore, a form of the simple Lie algebra Ay = sly(F). It is well known that
the converse is valid too. A quaternion algebra is either a division algebra, if its
norm does not represent 0, or it is isomorphic to Mata(F).

Any octonion algebra (or Cayley—Dickson algebra) over F' can be built starting
with two copies of a quaternion algebra: C' = @ ® Qu, and a nonzero scalar o € F,
with multiplication given by the fact that @ becomes a subalgebra of C' and

z(yu) = (yr)u = (yu)z  (2u)(yu) = ayz

for any z,y € Q (see [ZSSS, Chapter 2]). The trace ¢, norm n and involution of @
are extended to C' by means of
Ho+yu) =) nle+ye) =n@) —o®n(y) TFpE=7-yu

for any z,y € Q and, in this way, the degree two equation 22 — t(z)z 4+ n(z)1 =0
and the properties 24z = t(z)1 and 2z = Zz = n(z)1, are still valid for any z € C.
As for quaternion algebras, there is exactly a Cayley—Dickson algebra whose norm
represents 0, which is said to be the split Cayley—Dickson algebra. All the other
octonion algebras are division algebras.

One of the interesting features of the octonion algebras is that the forms of the
exceptional simple Lie algebra G, over fields of characteristic # 2, 3, are precisely
the Lie algebras of derivations Der C' of the octonion algebras. Moreover, the
subspace of trace zero elements C0 = {z € C : t(x) = 0} is the unique seven
dimensional irreducible module for Der C' (see [J,S]).

Moreover, given an octonion algebra C, the linear map C? — Endp(C) such
that z + L, (the left multiplication by ), satisfies L2 = L,» = —n(x)L, for
any « € CY, and hence it extends to a homomorphism of the Clifford algebra of
(C% —n), CI(C°, —n) — Endp(C), which, by simplicity, restricts to an isomor-
phism of the even Clifford algebra C1¢¥(C?, —n) 2 Endy(C). Since the orthogonal
Lie algebra o(CY,n) = o(CY, —n) lives inside C1¢”(C?, —n), this provides an irre-
ducible eight-dimensional representation of o(C’O, n): the spin representation.

The exceptional simple classical Lie superalgebras over F' are the Lie superal-
gebras G(3), F(4) and D(2,1;a) (o € F\ {0, —1}) whose even and odd parts are
given by

g % 91

G(3) A1 ©Go UepV

F(4) Ay @ B3 UopW (1)
D(2,1;a) | A1 A10A | UpUepU

where U is the two dimensional irreducible module for sla(F), V is the seven
dimensional irreducible module for Go and W is the spin module for Bs.
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Using that dim Homyu, (U ®3 U, F) = dimHomy, (U ® U, A1) = 1 and also
dim Homg, (V ®3 V, F) = dimHomg, (V ® V,G2) = 1 and dim Homp, (W @5
W, F) = dim Homp, (W ®3 W, Bg) = 1 (this is well known in characteristic 0, in
general it is easy for A, and for Go and B3 can be readily obtained along the
lines of the proofs of [EM1, Theorem 8] and [EM2, Theorem 7]), the multiplication
of odd elements is shown to be given for G(3) and F(4) by the unique, up to a
nonzero scalar, symmetric bilinear map g7 x g7 — gg which is gg-invariant, whose
projection on each simple summand of g is nonzero and which makes g a Lie
superalgebra. For D(2,1;a) (o # 0, —1), there is a whole one-parameter family of
such multiplications, and this is why the « appears.

Given a Lie superalgebra g = g5 @ g7 with multiplication [, ] over F' and a
nonzero scalar 0 # p € F, a new multiplication [, ], is defined on g by means of

[yl = ple,y] it 2,y € g1,
[z,y], = [z,y] if at least one of x or y are even.

Denote by g, the Lie superalgebra with this new bracket, g,, is said to be equivalent
to g. It is clear that if u € F2, then gy is isomorphic to g. The following result is
a reformulation of [K, Proposition 5.3.2], with some minor corrections, restricted
to the superalgebras that are being considered here:

Proposition 1.1.

(i) If a Lie superalgebra g over F is a form of the Lie superalgebra g over F'
(that is, F @ g 2 g) then g5 is a form of gy and the gg-module g7 is a form
of the gg module g7.

(ii) In case g = G(3) or F'(4) and g5 is a form of g5 and the gg-module g7 is
a form of the gg module gy then, up to equivalence, there is a unique Lie
superalgebra g = gg @ g7 which is a form of g, with the given Lie bracket in
g and the given structure of g1 as a gg-module.

(ili) If gg is a form of A1 ® A1 @ A1 and g7 is a gg-module which is a form of
UpU®pU (being U the two dimensional irreducible module for slo(F'))
then, up to equivalence, there is a one-parameter family of Lie superalgebras
g = g5 D g7 such that each superalgebra in this family is a form of D(2,1; )
for some a.

In the sequel, it will be used several times, without further comment, the fol-
lowing uniqueness property: if M and N are two finite dimensional completely
reducible modules for a Lie algebra s (or associative algebra) and F @ M =
F @ N as modules for F ® s, then M = N (note that for irreducible M
and N, they are isomorphic if and only if Homg(M,N) # 0, if and only if
Hompg (F'® M, F @ N) #0).

Note that over F, the Lie algebra A1 @Gy (respectively A1 ® B, A1 ® A1 D Aq)
has a unique irreducible and faithful representation of dimension 14 (respectively
16, 8), namely, the one that appears as g7 in (1.1).
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Therefore, our goal of determining the forms of the exceptional simple classical
Lie superalgebras, up to equivalence, reduces to the following problem:

Which forms of Ay @ Go (respectively A1 @ Bs, A1 & A1 @ A1) admit an
absolutely irreducible and faithful representation of dimension 14 (respectively 16,
8)¢

Recall that a module is said to be absolutely irreducible if it remains irreducible
under scalar extensions.

This is the problem we are going to tackle. The main results for G(3) and F'(4)
are:

Theorem G. The forms of A1 ® Gy that admit an irreducible and faithful repre-
sentation of dimension 14 are, up to isomorphism, the Lie algebras sla(F) @ Der C
for an octonion algebra C. The corresponding representation is the tensor product

of the natural two dimensional irreducible module for slo(F) and the irreducible
module C° for Der C.

Theorem F. The forms of A1 & Bs that admit an irreducible and faithful repre-
sentation of dimension 16 are, up to isomorphism, either:

1) slo(F) @ o(C%n) for an octonion algebra C with norm n. In this case
the corresponding representation is the tensor product of the natural two
dimensional irreducible module for sl(2,F) and of the spin module C for
0(C% n).

IT) QY@ o(V,q) for a quaternion division algebra Q and a seven dimensional
vector space V', equipped with a nondegenerate quadratic form q such that
the Clifford invariant of (V,q) is the class of Q in the Brauer group Br(F).
In this case, the irreducible module for the even Clifford algebra CI¢¥(V,q)
carries naturally a structure of Q-module (and hence of module for the Lie
algebra QO) and of o(V,q)-module and it is the corresponding irreducible
module for Q@ o(V,q).

Recall that the Clifford invariant of (W, ¢) above is the class in the Brauer group
Br(F') of the central simple algebra CI°’(W,q). Also note that the irreducible
modules in Theorems G and F have not been assumed to be absolutely irreducible.

To establish the main result for forms of D(2, 1; o) we need to introduce a few
more concepts. Following [KMRT] a cubic étale extension L/F of our ground field
F'is given by an étale commutative and associative F-algebra of dimension 3, that
is, either L =F x F x F,or L = F x K for a separable quadratic field extension
K of F, or it is a cubic separable field extension L of F'.

Given a cubic étale extension L/F, a quaternion algebra over L is either a
product of three quaternion algebras over F: @1 X Q2 xQ3,incase L = FXFxF,
or a product Q1 X ()9, where ()1 is a quaternion algebra over F' and (2 a quaternion
algebra over K, in case L = F x K for a quadratic field extension K/F, or a
quaternion algebra @ over the field L, in case L/F is a cubic field extension.
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A trace can be defined naturally for this quaternion algebras ¢t : Q@ — L in a
componentwise way. The set of trace zero elements QU is a Lie algebra, which is
a direct sum of three dimensional simple Lie algebras over the components of L.
Therefore, QY is always a form of A1 @ A & A; and it is easy to prove that any
form of Ay @ A1 @ A; is isomorphic to Q°, for Q a quaternion algebra over a cubic
étale extension of F'.

Also, given a separable field extension E/F of degree m and a central simple
associative algebra A over E of degree n, there is a central simple algebra Ng,p(A)
over F (called the norm or corestriction of A) of degree n™ defined in such a way
that the map Br(E) — Br(F): [A] — [Ng/r(A)], also denoted by Ng/p, is a
homomorphism between the Brauer groups (see [R]). This can be extended to étale

extensions in the following way, if E = Fq X --- X E,. is such an étale extension,
with the E;’s separable field extensions of F', and A = Ay X --- X A,, where A; is
a central simple associative algebra E; (i = 1,...,r), then the norm is defined as

Ng/p(A) = Ng,p(A1) ® --- ® Ng,_/r(A;), which is a central simple associative
algebra, and N, ([A]) = [1;—1 Ng,/r([4i]) € Br(F).

Theorem D. The forms of A1 & A1 & A1 over a field F of characteristic # 2
that admit a faithful and absolutely irreducible representation of dimension 8 are,
up to isomorphism, the Lie algebras QO for a quaternion algebra Q over a cubic
étale extension L/F such that Ni,p([Q]) = 1. The corresponding representation
is given by the irreducible module of the degree 8 central simple associative algebra

Np/r(Q).

Note that the quaternion algebras in Theorem D appear in a completely dif-
ferent context in [KMRT, 43.B] (see also [KMRT, 16.C]).

There will be a section devoted to the proof of each of these Theorems, where
extra results giving information on the central simple Lie superalgebras that appear
as forms of G(3), F(4) or D(2,1;«) will be given. Then, in the final section, the
previous results will be applied to the classification, up to isomorphism, of the
real forms of the exceptional simple classical Lie superalgebras. The real forms of
the finite dimensional simple Lie superalgebras are determined, up to equivalence,
in [K, Theorem 9], but this result contains some inaccuracies. Later on, a more
detailed account was given in [P]. However, for the real forms of the algebras
D(2,1; ) (e € C\ {0,—1}), the results in [P] do not completely determine them:
given two values of the parameter o € C such that the corresponding complex
algebras are isomorphic, the real forms constructed for these values may fail to
be isomorphic. The real forms of the finite dimensional simple Lie superalgebras
other than G(3) and F(4) are described too in [Se].

In ending this introduction, the author would like to express his great appreci-
ation to Professor Georgia Benkart, for her suggestions and support.
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2. Proof of Theorem G

Let g be a Lie algebra over our ground field F', which is a form of A1 @ G2. Then
g = g! @ g2, where g! is a three-dimensional simple Lie algebra (that is, a form of
A1) and g2 is a form of Gg. Thus, g2 = Der C for an octonion algebra C' over F.

Assume that g has a faithful irreducible module M of dimension 14, then
since the minimal dimension of a faithful irreducible module for F @ g is 14, M is
absolutely irreducible and F'® M is the tensor product of the two dimensional irre-
ducible module U for A; = slo(F') and of the seven dimensional irreducible module
V for Go. Then g' C Endg2 (M) (endomorphisms of M as a g?-module), but this
latter algebra is a form of Endz(U), and therefore Endg2(M) is a quaternion alge-
bra Q over F and g = Q,Q] = QY. But, if Q were a quaternion division algebra,
then 14 = dimp M = 4dimg M, a contradiction. Hence, @ = Matg(F) and
g! = sly(F). Moreover, as a Endg2 (M) = Mato(F)-module, M splits as a direct
sum of seven copies of the two dimensional irreducible module for Mata(F'), so that
M =U ®V, where U is the two dimensional irreducible module for g' = sls(F)
and V is a seven dimensional vector space. But then, g2 C Endg: (M) = Endg(V),
since Endg: (U) = F. Hence V' is the unique seven dimensional irreducible module
for g2 = Der C.

This finishes the proof of Theorem G and, therefore, determines the forms of
G(3) up to equivalence. However, something else can be said here.

Lemma 2.1. (See [P, Proposition 5.5].) Let g = g5 @ g7 be a finite dimensional
Lie superalgebra over F with gog = slo(F) @ s and g1 = U ® V, where U is the
natural two-dimensional module for sla(F') and V is a module for s. Assume that
the multiplication of odd elements is given by

[u1 ® v1,u2 @ v2] = b(V1,V2)0u; uy + ©(u1, u2)v1 * v2 (2.1)

for any uy,ue € U and vi,ve € V, for some s-invariant bilinear maps b : V xV —
F (symmetric) and * : V x V — s (skewsymmetric), and where p : U x U — F
is the unique (up to multiplication by nonzero scalars) nonzero skewsymmetric
sly(F)-invariant bilinear form and oy, v, = @(u1, —)ug+¢(uz, —)uy (€ sp(U, ¢) =
slo(F)).

Then for any nonzero scalar v € F, the Lie superalgebras g and g, are isomor-
phic.

Proof. Tt is enough to take an element a € Mata(F') with det(a) = p and to
consider the even linear map ® : g, — g given by ®(z) = aza~! for any z €
slo(F), ®(s) = s for any s € s and P(u ® v) = au ® v for any u € U and
v € V. Then, for any uj,ug € U and v1,v2 € V, Tquy,auy, = p(au1, —)aus +

o(aug, —)au; = a(g@(ul,a*—)ug + @(UQ,a*—)ul) = ,uaaul,uQa_l, because the



214 A. Elduque CMH

adjoint a* of a relative to ¢ is pua~!, and thus

P ([ug @ v1,up ® va],) = pud (b(UL V2) 0y uy + ©(u1,u2)v1 * vz)

= u(b(vl,vg)aauhwa_l + p(u,ug)vy * U2>

= b(Ul, v2>0au1,au2 + M(P(Ul, ’LLQ)’Ul * V9
= b(v1,2)00uy ,auy + P(aU1, auz)vy * va
= [‘I)(ul ®’01),<I)(ug®1)2)]. 0

It is an immediate consequence of this Lemma and of Theorem G that equiv-
alent forms of G(3) are in fact isomorphic. Therefore, the forms of G(3) are
completely determined up to isomorphism once we know which octonion algebra
C is involved in the decomposition of g5 = sla(F') & Der C.

In [BE,BZ], a generalized Tits construction has been considered that extends
the celebrated Tits construction, which gives all the exceptional simple classical
Lie algebras in a unified framework. In particular, given an octonion algebra C
and a simple Jordan superalgebra J with a normalized trace tr over F' (see [BE]
for details), the space

T(C,J) :=DerC & (C° @ J°) @ Der J, (2.2)

where J* = {x € J : tr(x) = 0}, with the superanticommutative product specified
by

Der C and Der J are commuting subsuperalgebras of 7 (C, J),
[D,a®z]=D(a)®@x, [da®z]=a®d(x),
l[a®z,b®y] =tr(zy)Dap + [a,b] @ x x y + 2t(ab)dy

for all D € DerC, d € DerJ, a,b € C°, 2,y € J° where D, ;(c) = [[a,b],c] —
3((ab)c—a(be)) and dy p (2) = 2(yz) —(—1)"¥y(x2) for any ¢ € C and z € J, is a Lie
superalgebra. Moreover, in case J is the Jordan superalgebra of a nondegenerate
superform with trivial even part and two dimensional odd part, denote it by J ,
then 7(C, J) is a form of G(3) with even part sly(F) & Der C.

Then, Theorem G and Lemma 2.1 immediately give:

Corollary 2.2. The F-forms of G(3) are exactly the Lie superalgebras T (C, j)
for an octonion algebra C. Two such forms are isomorphic if and only if so are
the corresponding octonion algebras.
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3. Proof of Theorem F

Now, let g be a Lie algebra over our ground field F' which is a form of A; & Bjs.
Then g = g' @ g2, where g! is a three-dimensional simple Lie algebra and g is
a form of Bs. Assume that g has a faithful irreducible module M of dimension
16. Since the minimal dimension of a faithful irreducible module for § = F ® g is
14 = 2 x 7, it is easy to check that M is absolutely irreducible and M = F'® M is
the tensor product of the two dimensional natural representation for gt = F @ g!
and the spin representation for g2 = F ® g°.
We are left with two different possibilities:

Fi) M decomposes as a sum of two irreducible eight dimensional modules for
g% which, since F' ® Endg2(M) = Endge (M) = Maty(F), must be isomor-
phic (otherwise the centralizer End (M) would be the direct sum of the
centralizer of the two modules). Therefore, M = U ® W for an irreducible
g?-module W and a two dimensional vector space U.

Fii) M is irreducible as g2-module.

In case Fi) above, g! C Endg2 (M) = Endp(U) = Matg(F) and gl = sly(F).

Lemma 3.1. Lets be a form of B3 over F' and let W be an irreducible s-module
of dimension 8. Then there is a Cayley—Dickson algebra C' over F with norm n
such that s is isomorphic to the orthogonal Lie algebra O(Co,n) and, through this
isomorphism, W is the spin module C for O(CO,n).

Proof. Since W = F ® W is the spin representation for Bs, it is known (see the
comments after (1.1)) that there is a unique, up to nonzero scalars, symmetric
bilinear form b : W x W — F which is s-invariant. Thus s can be embedded as
a subalgebra of the orthogonal Lie algebra o(W,b). Consider the trace form on
o(W, b), which is nonzero. Since dims = 21 and dim o(W,b) = 28, the restriction
of the trace form to s is nonzero and, by simplicity of s, nondegenerate. Therefore,
o(W,q) = s ® s (orthogonal relative to the trace form) and [s,5] C s*. Since
s is not an ideal of the simple Lie algebra o(W,b), it follows that [s,5%] # 0 and
thus s embeds as a Lie subalgebra of the orthogonal Lie algebra o(s™) (relative to
the trace form). By dimension count, they are equal. The conclusion is that, up
to isomorphism, s is the orthogonal Lie algebra o(V, q) for some vector space V of
dimension 7 and nondegenerate quadratic form ¢ on V. (Recall that, in general,
not all forms of B3 are such orthogonal Lie algebras.)

But W is the spin module for 5 = FF ® s = o(V,q), so that the representa-
tion of s on W comes from an isomorphism of the even Clifford algebra CI1¢¥(V q)
onto Endp(W), which shows that the Clifford invariant of (V, q) is trivial. Com-
plementing V' with an orthogonal complement of dimension 1 we obtain an eight
dimensional quadratic form with trivial discriminant and Clifford invariant and
a result of Pfister applies (see [KMRT, (35.2)]) to show that (V,¢) is similar to
(C’O, n) for a Cayley—Dickson algebra C' with norm n, as required. O
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This Lemma settles part I) of Theorem F.

In case Fii) above, by Schur Lemma and since F' ® Endg2 (M) = Endgz (M) =
Mats (F), Endg2(M) is a quaternion division algebra @@ and gl € Q,Q] = Q"
There are two possibilities for g2 [J,S]: either it is isomorphic to the orthogonal
Lie algebra o(V, ¢) for some seven dimensional vector space with a nondegenerate
quadratic form, or it is isomorphic to the Lie algebra Skew(D, j) of skew symmetric
elements of a central division algebra D of degree 7 relative to an orthogonal
involution j. In this last case, if K/F is a quadratic field extension which splits
@, K® D is again a division algebra over K (because 2 and 7 are relatively prime,
see [R, Corollary 7.2.4]) and hence K ® s = sly(K) & Skew(K ® D,1®j), but this
is in contradiction with case Fi).

Therefore, in case Fii) above, up to isomorphism, s = Q°@o(V, q) for some regu-
lar quadratic space (V, ¢). By uniqueness, M must be isomorphic to the irreducible
module for the even Clifford algebra Ci¢¥(V,q) and, by density, Ci¢*(V,q) =
Endg(M) = Maty(Q). This shows that the Clifford invariant of (V,q) is the
class of @ in Br(F).

Conversely, given a seven dimensional regular quadratic space (V, q) with Clif-
ford invariant [Q] for some division quaternion algebra @, CI¢¥(V, q) = Endg (M)
for some Q-vector space M of dimension 4. Then M is an irreducible and faithful
module of dimension 16 for the Lie algebra Q° @ o(V, q), where the action of QU is
given by the structure of M as a @)-vector space, and the action of o(V, q) by its
embedding as a Lie subalgebra of CI¢(V, q).

This completes the proof of Theorem F.

Exactly as for G(3), two equivalent forms of F'(4) of type I) in Theorem F are
actually isomorphic, thanks to Lemma 2.1. Also, in [BZ,BE], it has been shown
that the Tits construction 7 (C,J), this time with J the simple Jordan superalge-
bra Da, are forms of F'(4). Given any 0 # « € F, the Jordan superalgebra D,, has
even part with basis {e, f} and odd part with basis {z,y} and the multiplication
is given by:

62:67 f2:f7 ef:07

1 1
zy =e+ af, ex:§x:fx, eyiiy:fy.

(3.1)

The same arguments as for G(3) give:

Corollary 3.2. The F-forms of F(4) of type 1) in Theorem F are exactly the Lie
superalgebras T (C, Da) for an octonion algebra C. Two such forms are isomorphic
if and only if so are the corresponding octonion algebras.

For forms of F(4) corresponding to case II) of Theorem F, it is not known
wether equivalent superalgebras are isomorphic. However, some partial results
can be given. First, Lemma 2.1 can be strengthened to:
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Lemma 3.3. Let g = g5 @ g7 be a finite dimensional Lie superalgebra with g5 =
QY@ s for a quaternion algebra Q and such that § = F ® g satisfies the conditions
of Lemma 2.1 (with sly(F) = F ® Q°). Then for any a € Q withn(a) = pu#0, g
is isomorphic to g,.

Proof. If QQ = Matg(F) this is given by Lemma 2.1. Otherwise, @ is a quaternion
division algebra contained in Ends(g7), so that g7 is a vector space over Q. The
map ® : g, — g given by ®(q) = aga™!, ®(s) = s and ®(z) = az for any ¢ € QY,
s € S and z € g7 gives the desired isomorphism (by extending scalars, this is the
same map as in Lemma 2.1). O

Let now g be a form of F'(4) of type II) in Theorem F, so that g5 = Q @o(V,q).
We can assume that the discriminant of (V, ¢) is trivial, since we can substitute ¢
by any nonzero scalar multiple. Let 7 be the canonical involution of CI(V, q) (the
one that fixes V' elementwise) and denote also by 7 its restriction to Cl1¢¥(V, q) &
Endg(M). Let us denote by A a fixed isomorphism C1°?(V, q) = Endg (M) . Then
there is an e-hermitian form h: M x M — @ (e = £1), that is

h(am,n) = ah(m,n), h(m,n) = eh(n,m)

for any a € Q, m,n € M (a — a denotes the standard involution in @), such
that the involution 7 in Ci¢¥(V,q) corresponds to the adjoint * relative to h in
Endg(M). Since o(V,q) C Skew(C1**(V,q),7) = Skew(Endg (M), *), h is invari-
ant under the action of o(V,q) on M (where @ is regarded as a trivial o(V,q)-
module). Besides, for any a € Q0 and m,n € M, [a,h(m,n)] = ah(m,n) —
h(m,n)a = h(am,n) + h(m,an), and thus h is invariant under the action of Q°,
considering @ as a module for Q¥ under the adjoint map. As such, the map
a — a— ais a Q'-homomorphism. In consequence, the unique (up to scalars)
gg-invariant map M ® M — QY is given by m ® n — h(m,n) — h(m,n) =
h(m,n) — eh(n,m). But after scalar extension, there is a unique such invari-
ant map and it is symmetric (it is given by the multiplication of odd elements in
F(4)). Therefore ¢ = —1 and the map given by m @ n +— h(m,n) + h(n,m) is the
only, up to scalars, gg-invariant map M ® M — QO.
Moreover, considering o(V, ¢) as a trivial Q"-module, the maps

I'"MeM—oV,q)* Q:o(V,q) — o(V,q)"
men — (go [ t(h(go.m,n))) Y = (W’ — tTv(@V))

where ¢t is the trace in @, try the trace in Endp(V) and ¢.m denotes the action
of o(V,q) in M, are Q° @ o(V, g)-invariant and, therefore, the only, up to scalars,
gg-homomorphism M @ M — g5 is T = Q~IT'. Note that the action of o(V,¢) on
M is given by embedding o(V, q) in Ci¢¥(V, q) and then using the isomorphism A,
thus @.m = A(p)(m), for any ¢ € o(V,q) and m € M.
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Since we can scalar h conveniently, the above argument shows that the multi-
plication of odd elements in a form g of F'(4) of type II), with g5 = QY@ o(V,q)
and g7 = M as above, is

[m,n] = (h(m,n) + h(m,n)) + 6T (m @ n) (3.2)

for all m,n € M, where ¢ is a suitable nonzero scalar.
Lemma 3.4. Let g be a form of F(4) of type II) in Theorem F, with g5 =

Q'@ o(V,q) such that the discriminant of q is trivial and its Clifford invariant is
[Q]. Then for any v € V with q(v) # 0, g is isomorphic to g_,)-

Proof. Consider the automorphism Int(v) of C1¢¥(V, ¢) given by x +— vazv~" for any
x € Cl®*(V,q) (the multiplication is performed in CI(V,q)). It clearly commutes

with the canonical involution 7, because Int(v)(w) = ql(;z If)v w=—s,(w) €V (sy

denotes the reflection relative to the hyperplane orthogonal to v) for any w € V.
Moreover, Int(v) restricts to the isomorphism ¢ — s,ps, of o(V,q).

Take z an odd element in the center of CI(V,q) with 22 = 1 (recall that we
are assuming that the discriminant of ¢ is trivial). Then Int(v) = Int(vz) and
vz € Cl°(V,q). Let ¢ € Endg(M) be given by ¢ = A(vz). Since vzr(vz) =
—vzzv = —v* = —q(v),

—— (3.3)
Now, for any m,n € M and ¢, € o(V, q):

B (. (w(m)), v(m)) = h(A)e(m), B(n))
h(ww LA (p)v(m), v(n))
- q<v>h(A<sv¢sv><m>,n>
= —q()h((sup5.):m,n)

and trv((svgosv)'y) =try (ga(svfysv)), so that
T (p(m) @ ¢(n)) = —q(v)s, T(m @ n)s, (3.4)

for any m,n € M.

Finally define the even linear map ® : g_,(,y — ¢ by means of ®(a) = qa,
B(p) = 5,95, and ®(m) = h(m) for any a € Q°, ¢ € o(V,q) and m € M. From
(3.2), (3.3) and (3.4) we conclude that @ is an isomorphism. O

Corollary 3.5. Let g be a form of F(4) of type II) in Theorem F, with g5 =
QY @ o(V, q) such that the Clifford invariant of q is [Q] and q is universal. Then

any Lie superalgebra equivalent to g is in fact isomorphic to g.

As we shall see in the last section, this is what happens over the real field.
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4. Proof of Theorem D

Let us first consider the following example. Take the real Lie algebra g = sl2(R) @
slo(C). Tt has a faithful and irreducible eight dimensional module M = R? ®p
C?, where R? and C? are the natural modules for the simple ideals sla(R) and
slo(C) of g, which is not absolutely irreducible (for instance, one checks that
Endg(M) = EndSZQ(C)((CQ) >~ (C). Therefore, contrary to the situation in the
previous paragraphs, absolute irreducibility will have to be imposed here.

Before proceeding further, let us recall briefly some facts concerning the norm
or corestriction (see [R]). Given a finite Galois field extension E/F, an element o
in the Galois group Gal(E/F) and a (not necessarily associative) E-algebra R, the
E-algebra 0! R is defined on the same ring R (same addition and multiplication)
but with the new scalar product given by pu(c~1r) = o= (o(p)r), for any p € E
and 7 € R, where the elements of 0~ 'R are denoted ¢~ 1r, r € R. Assume that L
is an intermediate field, ' C L C E and let G = Gal(E/F), H = Gal(E/L) and
01y... ,0pn € G such that G = Ho1 U...UHo, (disjoint union). Then if r; = 0;1
fori=1,... ,n, G=1HU...UT,H and the restriction of 71,... ,7, to L give
the different embeddings L — E.

Let A be an algebra over L, then the E-linear map

E®FA—>®O';1(E®LA)
i=1
l@ar (o7 (1 ®a),... 0. (1®a))

is an isomorphism of FE-algebras. Assume now that A is associative, then for
any o € G there is a permutation 7 such that o;0 € HO'W(Z-), i=1,...,n. Let
030 = Yi0r(s)> with v; € H for any 7. On the F-algebra

A:ol_l(E®LA) ®E‘"'®EU;1(E®LA)

consider, for any o € GG, the o-semilinear automorphism ®, given by

0 (@1 o7 (1 @ a)) = @i (07 (ilita(n) @ an(i))

fora; € Aand u; € E,i=1,...,n. Then &,9, = &,., &; = 1, and therefore,
{r € A: ®,(x) =z Vo € G} is an F-subalgebra of A, called the norm of A and
denoted by Ny ,r(A). It does depend only on the L-algebra A and not on £ or the
transversal chosen. Moreover, if A is central simple over L, so is Ny ,p(A) over F
and A= E®p Ny, p(A).

We are in position now to prove Theorem D. Let g be a Lie algebra over a
ground field F' of characteristic # 2, which is a form of A1 ® Ay ® Ay, and let M
be a faithful and absolutely irreducible eight dimensional module for g. There are
three different possibilities for g:
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Di) g=g'®g?®g?, where each g’ (i = 1,2, 3) is a three dimensional simple Lie
algebra over F. Thus g = Q© fo a quaternion algebra over L = F x F x F,
or

Dii) g = g! @ g2, where g! is a three dimensional simple Lie algebra over F' and
g2 is a three dimensional simple Lie algebra over a quadratic field extension
K of F. Here g = QY for a quaternion algebra over L = F x K, or

Diii) g is a three dimensional simple Lie algebra over a separable cubic field
extension L of F, so that g = QU for some quaternion algebra over L.

The proof of Theorem D will be split according to these three possibilities.

Assume first that we are in case Di), then g' C Endg2g,3(M), which is a
quaternion algebra over F' (extending scalars to the the algebraic closure it becomes
isomorphic to End(U) 2 Mato(F)). Denote by Q1 this quaternion algebra, which
acts as endomorphisms of M. Then g' C [Q1,Q1] = Q? and, by dimension count,
g1 = Q(l) and Q1 = F1® gl. In the same vein, there are quaternion algebras
Q2 and Q3 so related to g2 and g3. Since the actions of g!, g2 and g® on M
commute, so do the actions of @1, @2 and @3 and thus there is a homomorphism
of associative algebras

Q1 ®Q2® Q3 — Endp(M)

which, by simplicity and dimension count, is an isomorphism. Hence Q1 ® Q2 ®
Q3 2 Endp(M) = Matg(F) and, with L = F x F x F and Q = Q1 X Q2 X Q3,
g=Q" and Np/r(Q) = Q1®Q2® Q3 gives the trivial class in Br(F), as required.

Conversely, with L and Q = Q1 x Q2 x Q3 as above, if Ny ,r([Q]) = 1, then
Q1 ® Q2 ® Q3 = Matg(F), so that Q1 ® Q2 ® Q3 = Endp(M) for an eight
dimensional vector space M over F. By means of the map

Qe Qe Q) — Q1 ® Q2@ Q3 = Endp (M)
(z1,20,23) — 21 ®101+1Q0101+101® 23

M becomes a faithful and absolutely irreducible module for g = Q(l) &) Qg &) Qg

Now assume that we are in case Dii). Here L = F x K with K a quadratic field
extension of F' and g = g' @ g2, where g! (respectively g?) is a three dimensional
simple Lie algebra over F (respectively K). Moreover, gt = Q? (respectively
g’ = Qg) for a quaternion algebra over F' (respectively K). Let Q = Q1 x Q2 be the
corresponding quaternion algebra over L and let ¢ be the nontrivial automorphism
in the Galois group of the quadratic extension K/F.

Now the K-linear map given by

Kog=(Kog)og e g — (Ko Q1) 8k Q@ 1 Q2
1® — (1®m1)®1®f1(1)
79 - (101) Q11
P - (1)1
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takes g C K ® g isomorphically into Ny ,p(Q) = Q1 ® Ng/p(Q2) (which is an
F-subalgebra of (K ® Q1) ®x Q2 ®x 1 1(Q2)). Besides, K @ g generates (Q1 ®
K)®k Q2 ®k t71Q2 = K ® (Q1 ® Ng,r(Q2)), so g generates Q1 ® N/ r(Q2).

If g admits a faithful eight dimensional absolutely irreducible module M the
there is a commutative diagram

g — Endp(M)

! !
K®g — Endg(K® M)

The argument for case Di) shows that the bottom map embeds in a commutative
diagram
K®g — Endg(K® M)
l I
(Q1©K)®r Qe@x 7 'Q2 — Endg(K M)

whose bottom map is an isomorphism. Since g generates Q1 ® Ng/p(Q2), by
dimension count this last bottom map restricts to an isomorphism N, Q) =
Q1 ® Ng/p(Q2) = Endp(M), so Ni/p(Q) gives the trivial class in the Brauer
group.

Conversely, if Nz, ¢([Q]) = 1, there is an isomorphism of F-algebras Ny, (Q) =
Q1® Nk, r(Q2) = Endp(M) for some eight dimensional vector space M, and since
g generates Np,/p(Q), this gives an absolutely irreducible and faithful eight dimen-
sional module for g.

Finally, in case Diii), g = QO for a quaternion algebra over a cubic separable
field extension L of F' and either L/F = E/F is a cyclic Galois field extension, or
there is a Galois field extension E/F containing L with Galois group isomorphic to
the symmetric group Ss. In any case there is a cyclic group of order 3: {1, 0, 02}
of G = Gal(E/F) and the restrictions of 1,0,02 to L give the three different
embeddings of L into E. As for Dii), there is a sequence of maps

g E®g=(E®Le) @0 (E®Lge)®o *(E®Lg)
S (E®,Q)®pc YE®LQ)®p o 2(E®L Q)

which takes g into Np,p(Q) and shows that g generates Np,p(Q). A similar
argument as for Dii) concludes the proof of Theorem D.

Given a form of G(3) or a form of F'(4) such that its even part contains an ideal
isomorphic to sla(F'), it was shown in Corollaries 2.2 and 3.2 that this form is given
by a Tits construction 7 (C,J) for a Cayley—Dickson algebra C' and a suitable
Jordan superalgebra J. In the same vein, some forms of the Lie superalgebras
D(2,1;«) appear as Tits constructions. Assume that g is a form of some D(2, 1; )
such that g contains an ideal isomorphic to sla(F') and g is of type Di). Then
because of Theorem D and the fact that the class of any quaternion algebra in the
Brauer group has order 1 or 2, necessarily gg = sla(F) @ QY & QY for a quaternion
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algebra @ over F. Note that in this situation, the map Q° @ Q¥ — o(Q,n)
(the orthogonal Lie algebra relative to the norm of @) which assigns to any pair
(p,q) of elements in QY the map = € Q — px — xq is an isomorphism, so that
g5 = sla(F) @ o(Q,n). We are then in the situation of the next Lemma, whose
first part has been proved in [BE]:

Lemma 4.1. Let Q be a quaternion algebra over F' and let U be a two dimensional
space with a nonzero skew-symmetric form ¢ : U x U — F. For u,v € U, let
Ouw € sp(U, @) = sla(F) (the symplectic Lie algebra) be given by

Ouw(W) = p(v, w)u + @(u, w)v.

For nonzero a, 8 € F, let g = gg © 97 be the superalgebra with

g5 =spU,p) @ Q" @ Q"
gi=U®Q

and with multiplication given by

o the usual Lie bracket in gg,

o [(fipq)u®a] = f(u) ©r+u® (pr—zq),

o w20 ey = (Hay)ou, —ap(,0)@y - y2), ~Be(u, v) @y - go) )
foru,weU, z,y € Q, f € spU,¢) and p,q € Q°. Then:

(i) g is a Lie superalgebra if and only if « + = —1, and in this case, g is a
form of the exceptional classical simple Lie superalgebra D(2,1;«). Denote
it by go(a) (@ #0,—1).

(i) Ifa,o/ € F\{0,—-1}, Q,Q" are quaternion algebras and gg(c) = gor(a’),
then Q and Q' are isomorphic. Moreover, if Q is a quaternion division
algebra, go(a) = go (&) if and only if either o = « or &/ = —(1+4«), while
if Q is the algebra Mata(F'), go(o) = go(') if and only if

a’e{a,é,—(l—i—a) -1 o _(HO‘)}.

"T+a’l1+a’ @

Proof. The first part has been proved in [BE, Lemma 3.1]. For (ii), note first
that if go(a) = ggs(a’), then the even parts are isomorphic and this forces that
the Lie algebras Q° and (Q’)Y are isomorphic, but this implies that Q and Q’
are isomorphic too (the norm n of @) is determined by n(1) = 1 and 8n(p) is the

trace of ad?7 for any p € QY, so the norm n is determined by the Lie algebra QO).
Moreover, the map:

go(a) = go(— (1+a))
(f:p@) = (f,q,p)

UKL —URQT
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is an isomorphism. Besides, if @) is the algebra Mato(F'), as shown in the proof of
[BE, Lemma 3.1], gg(c) is the Lie superalgebra I'(1, &, —(1 4+ «)) in the notation
of [Sc, §1. Example 5] and the same arguments that work in characteristic zero
are valid here.

On the other hand, if @ is a division algebra and ® : gg(a) — ggo(a') is an
isomorphism, since Q° is not isomorphic to sly (F) and any automorphism of QP
extends to an automorphism of @), which is inner, it follows that either

®((f,p,9) = (Int(g)(f), Int(a)(p), Int(b)(¢)), or
®((f,p,9) = (Int(g)(f), Int(b)(q), Int(a)(p))

for any f € slo(F), p,q € Q°, where g € GL(U), a,b are invertible elements in
Q and Int(g)(f) = gfg~! and similarly for Int(a),Int(b). Take h € GL(U) with
det h = n(a)n(b)~!. Then the linear map

U go(a) = gola)
(f:p,a) = (Int(h)(f), Int(a~")(p), Int(b~")(q))
u® 2z — h(u) ®a b

is an automorphism. Composing with it and changing the value of g, we may
assume that either

((f,p,0) = (Int(g)(f),p,q)  or  ®((f,p.q)) = (Int(9)(f), q.p)-

By standard arguments, it follows that there are h € Endp(U) and p € Endp(Q)
such that ®(u@z) = h(u)@p(z) for any v € U and z € Q, with gfg~ h(u) = h(fu)
for any f € sp(U,¢) and u € U. Therefore g~'h commutes with any element in
sp(V, ¢) and hence, since we can scalar g, we may assume that h = g.

In case @((f,p, q)) = (Int(g)(f),p, q)7 we must have too p(pzr — zq) = pp(x) —
p(x)q for any = € Q and p,q € Q°. This gives p(p) = pz, p(q) = zq, with z = p(1).
It follows that z commutes with all the elements in Q°, so p is the multiplication
by a nonzero scalar p. Then for any u,v € U and 2,y € Q, [P(u® ), P(v @ y)] =
®([u®z,v®y]), and this gives

ﬂ2 (t('fy)ag(u),g(v)7 _an(g(u)a g(’U))(JUy - y'f)a (1 + a/)(p(g(u%g(v))(jy - :Ij(l?))
= (Hay)g0u0g™", —ap(u, v)(wy — ya), (1 + a)p(u,v) @y — jo)
forany ,y € Qand u,v € U. But oy(,) 4(,) = (det 9)90ung~ "t and (g(u), g(v)) =
(det g)¢(u,v), thus giving % detc = 1 and p?(det c)o’ = a, so that o’ = a.

On the contrary, if <I>((f, D, q)) = (Int(g)(f)7 q, p), the same arguments as before
give that p(x) = pZ for a nonzero scalar p € F and that —a/ =1+ «a. ]
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As in the previous sections, this gives that some forms of the Lie superalgebras
D(2,1;a) are given by the Tits construction. Here a quaternion instead of an
octonion algebra is used and the Jordan superalgebra that appears is the simple
Jordan superalgebra D, in (3.1):

Corollary 4.2. (See [BE, Theorem 4.2].) Let Q be a quaternion algebra and
a € F\{0,—1}. Then T(Q,D,) is a form of the Lie superalgebra D(2,1; ).

There is another family of forms of some D(2,1; «) whose even part contains
an ideal isomorphic to sla(F). It corresponds to case Dii). Let g5 = sla(F) @ QY,
where () is a quaternion algebra over a quadratic field extension K of F' with
Ng/r([Q]) = 1. By the Albert-Riehm-Scharlau Theorem (see [KMRT, (3.1)]), @
admits a K /F-involution of the second kind 7. Then if Gal(K/F) = {1,t}, Q is a
four dimensional K-module for Q @ ¢~ 1Q by means of

(r®q).x = px7(q) (4.1)

for any p,g,x € Q. Let W = {z € Q : 7(z) = x}. W is a four dimensional
vector space over I' which is fixed by the action of the F-subalgebra Ng /¢ (Q) of
Q ®x ¢~ 1Q, and hence becomes an irreducible module for Ny /r(Q). Note that
the Lie F-algebra Q° embeds in Ng/r(Q) by means of ¢ — ¢®@1+1® v~ 1q. This
makes W a module for the Lie F-algebra Q.

Tensoring with K we have the following isomorphisms of Lie algebras and
modules (over K):

KoQ"—Q"®qQ° KoW —Q

(4.2)
1®qw (q,—7(q)) 1@z —

where the K-vector space Q is a module for the Lie K-algebra Q° @ Q° by means
of (p,q).x = pr — xq for any p,q € Q¥ and = € Q. Since the dimension of the
K-vector space Homgogqoo(Q @k Q,K) = Homo(Q,n)(Q ®k Q,K) is 1 and the
dimension of Homog00(Q®k Q, Q) is 2 (after scalar extension, Q° QY becomes
slo(F) @ slo(F) and Q = U ® 5 U, with U the natural two dimensional module for

slo(F), and these computations are easy), it follows that

Homgo(W @ W, F) = F-span(z ® y — t(zy)),
Homgo (W @ W, W) = K-span(z ®@ y +— zy — yI).
Note that for any x,y € W, t(Ty) = t(7(Zy)), so t(Ty) € F and, by dimension
count, Q¥ 2 o(W, t(Zy)), the orthogonal Lie algebra relative to this bilinear form.
The analogous result to Lemma 4.1 in this case is the following:

Proposition 4.3. Let K/F be a quadratic field extension, let Q) be a quaternion
algebra over K with Ni,p([Q]) =1, 7 a K/F-involution of the second kind on Q
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and W the set of fized elements by 7. Let U be a two dimensional space with a
nonzero skew-symmetric form ¢ : U xU — F. Foru,v € U, let oy, € sp(U, p) =
slo(F) as in Lemma 4.1. For nonzero p € K, let g = g ® g7 be the superalgebra
with

g5 = sp(U,p) @ Q"
gr=UcW

and with multiplication given by
o the usual Lie bracket in gg,
o [(fip)u@a]=[f(u)®@z+u® (pr+27(p)),
o @ 0@y = (HEy)ows, —pplu, v) (g - ya)),
foru,v e U, z,y €W, f € sp(U, ) and p,q € Q°. Then:
(i) g is a Lie superalgebra if and only if p+ 1(n) = —1, and in this case, g is a
form of the exceptional classical simple Lie superalgebra D(2,1;u). Denote
it by 8q/x (1)-

(ii) gq (1) does not depend on the involution 7. If other K/F-involution is
used, an isomorphic Lie superalgebra is obtained.

(iil) If 0 # p,p’ € K satisfy p+ o(p) = =1 = p' + ('), and Q,Q" are quater-
nion algebras over K with K/F-involutions of second kind, then gg k(1) =
g0k (1) if and only if Q is isomorphic to Q' (as K-algebras) and either
po=porp =u(p)=—14p).

Proof. By extending scalars to K and using (4.2), it follows that K ® g is the
K-superalgebra considered in Lemma 4.1 with a = p and 8 = (), whence (i)
follows.

Assume that 7 is another involution of second kind of the K-algebra @, then
there is an invertible element v € @ with 7(u) = w such that 7" = Int(u)7 ([KMRT,
(2.18)] and W’ = ulW = Wu~!, where W' denotes the set of fixed elements by 7'.
Hence the map W — W’ given by & — zu ™! is an isomorphism of Q°-modules
since (pr +27(p))u~! = plzu=) + (zu=1)7'(p) for any p € Q¥ and z € W. Given
0+# p € K with g+ () = —1, denote by g the Lie superalgebra constructed with
7 and by g’ the one constructed with 7. Then the map which is the identity on
gy and takes u®@ 2 € U@ W to u® zu~! gives an isomorphism g = g;(u) (notice

that since 7(u) = u, n(u) = ua € F). Now Lemma 2.1 shows that g and g’ are
isomorphic. This proves (ii).

If go/x(p) and ggr k(1) are isomorphic, so are the Lie F-algebras Q" and
(Q")°. The centroid of any of these algebras is K, so there is a semilinear isomor-
phism between the K-Lie algebras Q° and (Q")° which extends to a semilinear
isomorphism between @ and @’. Thus either Q and Q' are isomorphic as K-
algebras, or @’ is isomorphic to :~1Q. But Q ®x ¢ 'Q = Endx (Q) (see (4.1)), so
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1 T1Q = QP =~ Q as K-algebras. Finally, it is easy to check that the map

EQ/K(#) - QQ/K(L(U))
(fsp) = (f,—7(p))

UKL H—URQT

is an isomorphism. On the other hand, if gg/x (1) = go/k(1'), then extending
1

scalars we get an isomorphism D(2, 1; )= D(2, 1; 1'), so that u’ € {u, —, —(14p),
]

-1 —u —(1+p)
T+p’ 1+p
sibilities for p’ are to be either p or t(u). |

}. But p+¢(p) = =1 = p/ + (') and hence the only pos-

Remark 4.4. Lemma 2.1 and Proposition 1.1 show that the Lie superalgebras
go(a) in Lemma 4.1 (Q a quaternion algebra over F, v € F'\ {0, —1}) are, up to
isomorphism, the Lie superalgebras which are forms of some D(2,1;/3) and such
that its even part is the direct sum of slo(F') and two copies of a three dimensional
simple Lie F-algebra; while the Lie superalgebras gq,x () in Proposition 4.3 (Q
a quaternion algebra over a quadratic field extension K of F' and 0 # pu € K with
w+ () = —1) are, up to isomorphism, the Lie superalgebras which are forms of
some D(2,1; ) and such that its even part is the direct sum of sly(F') and a three
dimensional simple Lie algebra over a quadratic field extension of F'.

5. Real forms of the exceptional simple classical Lie super-
algebras

Our previous results give, in particular, the classification up to isomorphism, and
not just equivalence, of the real forms of the exceptional simple classical Lie su-
peralgebras.

First we need some extra notation, that we take from [K]. The complex Lie
algebra G2 has, up to isomorphism, two real forms, Go.1 = DerC, for C the
split Cayley-Dickson algebra over R, and G2.2 = Der O, where O is the classical
division algebra of real octonions. Accordingly, consider G(3;1) = 7 (C, j) and
G(3;2) = T(0,J) (see Corollary 2.2).

Now, Bjs has four nonisomorphic real forms, namely the orthogonal Lie algebras
o(p,7—p) (p=0,1,2,3) of the quadratic forms x% + et xg - (xg+1 + x%)
For p =0, o(p, 7 —p) = o(7) = 0(Q°, n), while for p = 3, 0(3,4) = o(C°, n), where
C and O are, as above, the two real Cayley—Dickson algebras and n denotes their
norm. In both cases, the quadratic space involved has trivial Clifford invariant.
However, the Clifford invariant of the quadratic spaces with signatures (1,6) and
(2,5) is nontrivial (hence equal to the class of the classical division algebra H of
real quaternions). In both cases, the quadratic form is universal, so Corollary 3.5
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applies. The corresponding forms of F'(4) are denoted by F(4;p) (p = 0,1,2,3)
and their respective even parts are sla(R) @ o(7), su(2) @ o(1,6), su(2) & o(2,5)
and sla(R) @ 0(3,4), according to Theorem F.

The real Lie superalgebras that appear in Lemma 4.1 have even part either
sla(R) @ HY @ HO = slp(R) @ su(2) ® su(2) = sla(R) ® o(4) or sla(R) @ sla(R) @
sla(R) 22 slo(R) @ 0(2,2). Denote the corresponding Lie superalgebras gg(a) and
IMaty () (@) by D(2,1;05p) (p = 0,2, a € R\ {0,—1}). On the other hand, the
Lie superalgebras that appear in Proposition 4.3 have even part sla(R) @ sl (C) =
sl2(R) & o(1,3). Denote the corresponding Lie superalgebras gyfag,(c)/c(@) by
D(2,1;a51), where now a € C with a +a = —1.

Theorem 5.1.

a) G(3) has, up to isomorphism, two real forms: G(2;p), p=1,2.

b) F(4) has, up to isomorphism, four real forms: F(4;p), p=0,1,2,3.

¢) If acC\(RU{z€C:|z| =1}U{z € C:[z+1|=1}U{z € C: 2+ 7 = —1}),
then D(2,1; ) has no real form.

d) If « e R\{0,-1,1,-2, —%}, then D(2,1;a) has four nonisomorphic real
forms: D(2,1;0;2), D(2,1;0;0), D(2,1;1,0) and D(2,1; 52;0).

e) If a=1,-2or —%, then D(2,1; ) = 0sp(4,2) has four nonisomorphic real
forms: D(2,1;1;2), D(2,1;1;0), D(2,1;—1;0) and D(2,1;-1;1).

) If ae{zeC:|z|=1}U{z€C:|z+1|=1}U{z€C:2+z=—1}, but
a ¢ R, then D(2,1; ) has exactly, up to isomorphism, a real form, namely,
D(2,L;051) if ada=—1, D(2,1;5%;1) if |a| =1 and D(2,1;1E2:1) if
la+1] =1.

Proof. For G(3) and F(4) it is clear from the previous results. Now, there are no
cubic field extensions of R and the only quadratic field extension is given by C, and
the quaternion algebras @ over L = RxR xR or L = R x C with trivial N, /g ([Q])
involved are, up to isomorphism, Matg(R) x Mato(R) x Mata(R), Mata(R) x H x H
and Matg(R) x Mate(C). Therefore the even parts are restricted to sla(R) @
sla(R) @ sla(R), sla(R) @ su(2) @ su(2) and sla(R) @ sla(C). In the first two cases,
the Lie superalgebras are described in Lemma 4.1 (or Corollary 4.2) and in the
third case in Proposition 4.3, including the necessary and sufficient conditions for
isomorphisms. Now, one has to take into account simply that for «, 8 € C\{0, —1},
~ oy . 1 -1 —a l14+ao
D(2,1;a) = D(2,1;0) if and only if g € {a, . 1+ a), To'lta —a }
(Note that if || = 1 and f = —(1 + a) and v = 1;—1&, then |6+ 1] = 1 and
vy+5=-1) O
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