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Abstract. We construct integral bases for the SO(3)-TQFT-modules of surfaces in genus one
and two at roots of unity of prime order and show that the corresponding mapping class group
representations preserve a unimodular Hermitian form over a ring of algebraic integers. For
higher genus surfaces the Hermitian form sometimes must be non-unimodular. In one such case,
genus three at a fifth root of unity, we still give an explicit basis.
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1. Introduction

Integrality properties of Witten–Reshetikhin–Turaev quantum invariants of 3-
manifolds have been studied intensively in the last several years. H. Murakami
[Mu1, Mu2] showed that the SU(2)- and SO(3)-invariants at a root of unity q of
prime order are algebraic integers. This was reproved in [MR2] and generalised
to all classical Lie types in [MW, TY] and then to all Lie types in [Le]. These
integrality properties are crucial for establishing the relationship of the invariants
with the Casson invariant [Mu1, Mu2] and with the perturbative invariants or
Ohtsuki series [Oh1, Oh2, Le].

Quantum invariants fit into Topological Quantum Field Theories (TQFT). This
means in particular that there are representations of mapping class groups associ-
ated with them. (Actually the representations are usually only projective-linear;
equivalently, one has to consider certain central extensions of mapping class groups
here.) If a 3-manifold M is presented as a Heegaard splitting where two handlebod-
ies are glued together by a diffeomorphism ϕ along their boundary, the quantum
invariant of M can be recovered from the representation of ϕ on the TQFT-vector
space V (Σ) associated to the boundary surface Σ.

The TQFT-representations are finite-dimensional and can be defined over a
finite extension of the cyclotomic number field Q(q), where the quantum parameter
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q is a root of unity. They also preserve a non-degenerate Hermitian form 〈 , 〉Σ
on V (Σ) (which may or may not be unitary; this usually depends on the choice of
the embedding of the cyclotomic field into C).

A quite striking result was recently announced by Andersen [An] who proved
that in the SU(n) case the representations are asymptotically faithful (here asymp-
totically means letting the order of q go to infinity). At a fixed root of unity, they
are certainly not faithful, as Dehn twists are always represented by matrices of
finite order. Roberts [R] showed that the representations are irreducible in the
SU(2)-case if the order of q is prime.

An interesting question is to determine the image of the mapping class group
in the TQFT-representations. For the SU(2) and SO(3)-theories, the first author
proved that in the genus one case the image is a finite group [G1]. However in
higher genus, the image is not finite [Fu]; in fact, it contains elements of infinite
order [M]. One might hope that this image is equal to the linear transformations
which are automorphisms of some (yet to be found) structure, just as a linear
transformation of the homology group H1(Σ; Z) is represented by a mapping class
if and only if it preserves the intersection form.

In this paper we are concerned with integrality properties of the TQFT rep-
resentations. For simplicity, we restrict ourselves to the SO(3) case; specifically,
we use a variant of the Vp-theories of [BHMV2] with p an odd prime. Here, p
is the order of the root of unity q. Let O denote the ring of algebraic integers
in the cyclotomic ground field. The main idea to obtain an integral structure on
the TQFT already appears in [G2]. Namely, we define an O-submodule Sp(Σ) of
the TQFT-vector space Vp(Σ) as the O-span of vectors represented by connected
3-manifolds with boundary Σ. The point of this definition is that the submodule
Sp(Σ) is clearly preserved under the mapping class group.

It was shown in [G2] that Sp(Σ) is always a free finitely generated O-module.
One can also rescale the Hermitian form 〈 , 〉Σ on Vp(Σ) to obtain a non-degenerate
O-valued form ( , )Σ on Sp(Σ). This relies on the integrality results for the
3-manifold invariants mentioned above.

The form ( , )Σ is again preserved by the mapping class group. In particular,
the image of the mapping class group in the TQFT-representation Vp(Σ) lies in
the subgroup preserving a lattice defined over O and a non-degenerate Hermitian
form on it.

In what sense is Sp a TQFT defined over O? For instance one might hope that
the form ( , )Σ was unimodular. Here, we show that this is indeed the case in
genus one and two. This is a consequence of our main result which is to describe
explicit bases of Sp(Σ) in genus one and two.

In fact, we will describe two quite different bases in genus one. The first basis
is given in Theorem 6.1. It is

{ω, t(ω), t2(ω), . . . , td−1(ω)}
where ω is the element appearing in the surgery axiom of the Vp-theory and t is
the twist map. It is easy to see that these elements lie in Sp(S1 × S1) and we use
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a Vandermonde matrix argument to show that they form a basis. A crucial step
is to show that the Hermitian form ( , )S1×S1 is unimodular with respect to this
basis.

The second basis given in Theorem 7.1 is of a quite different nature. It is

{1, v, v2, . . . , vd−1}

where v = (z + 2)/(1 + A) (here z is represented by the core of the solid torus).
We call it the v-basis. This time, it is not even obvious a priori that its elements
lie in Sp(S1 × S1). The proof involves two different arguments. One is to show
that the O-span of the v-basis is stable under the twist map. This is shown in
Section 2. In fact, we prove it in the more general context where the skein variable
A is an indeterminate rather than a root of unity. The second ingredient is to
express ω in the v-basis and thereby relate the v-basis to the first basis. This is
done in Section 7.

The v-basis lends itself nicely to finding bases in higher genus. In Section 8,
we describe a basis of Sp(Σ) in genus two consisting of v-colored links in a genus
two handlebody. These links are described by arrangements of curves in a twice
punctured disk. Again, the unimodularity of the Hermitian form with respect to
this basis is a crucial step in the argument.

In principle this method can be used to study Sp(Σ) in higher genus as well. It
turns out, however, that the Hermitian form ( , )Σ is not always unimodular. For
example, a simple argument given in Section 9 shows that it cannot be unimodular
for surfaces of genus 3 and 5, assuming p ≡ 5 (mod 8).

In this paper we will not attempt to deal with the higher genus case in general.
We only give in Section 10 a basis of Sp(Σ) for a surface of genus three when p = 5.
Although in this case the Hermitian form is not unimodular, it is nearly so. This
allows us to find a basis easily in this one case.

Note that our definition of Sp(Σ) is analogous to the construction of integral
modular categories in [MW]; in both cases one constructs integral structures by
considering the span, over the subring of algebraic integers of the coefficient field,
of the morphisms of the geometrically defined category (tangles in the case of
[MW], 3-dimensional cobordisms in the case at hand). It might be that this is not
always enough: It is conceivable that one might be able to enlarge Sp(Σ) in some
way to make the form always unimodular; however this enlargement would not be
generated by 3-cobordisms anymore.

We conclude the paper by showing how the Sp-theory defined over O can be
used to prove a divisibility result for the Kauffman bracket of links in S3. This
generalizes a result of Cochran and Melvin [CM] for zero framed links (see also
[Oh1, KS]).

Notational conventions. Throughout the paper, p ≥ 3 will be an odd integer, and
we put d = (p − 1)/2. From Section 4 onwards, p is supposed to be prime.
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2. The twist map on the Kauffman bracket module of a solid
torus

In this section we define a sequence of submodules K(n) of the Kauffman bracket
skein module of the solid torus S1 × D2 and show that they are preserved under
the twist map. We use the notations of [BHMV1].

Suppose R is a commutative ring with identity and an invertible element A.
The universal example is R = Z[A,A−1] which we also denote by Z[A±]. Recall
that the Kauffman bracket skein module K(M,R) of a 3-manifold M is the free R
module generated by isotopy classes of banded links in M modulo the submodule
generated by the Kauffman relations.

We let z denote the skein element of K(S1 × D2, R) given by the banded link
S1 × J, where J is a small arc in the interior of D2.

As is well known, K(S1×D2, R) is a free R-module on the nonnegative powers
of z, where zn means n parallel copies of z. This also makes K(S1 × D2, R) into
an R-algebra isomorphic to the polynomial ring R[z].

Let t : K(S1×D2, R) → K(S1×D2, R) denote the twist map induced by a full
right handed twist on the solid torus. It is well known (see e.g. [BHMV1]) that
there is a basis {ei}i≥0 of eigenvectors for the twist map. It is defined recursively
by

e0 = 1, e1 = z, ei = zei−1 − ei−2 . (1)

The eigenvalues are given by

t(ei) = µiei, where µi = (−1)iAi2+2i . (2)

Definition 2.1. Let K(n) denote the Z[A±]-submodule of K(S1×D2, Z[A±, 1
1+A ])

generated by {1, v, v2, . . . , vn}, where

v =
z + 2
1 + A

.

Theorem 2.2. The twist map t sends K(n) to itself.

Proof. Consider the basis {(z+2)i}i≥0 of K(S1×D2, Z[A±]). The following Lemma
gives the change of basis formulas.

Lemma 2.3. For each n ≥ 1,

(z + 2)n−1 =
n∑

k=1

(
2n

n − k

)
k

n
ek−1

en−1 =
n∑

i=1

(−1)n−i

(
n + i − 1

n − i

)
(z + 2)i−1.
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Proof. Prove each separately by induction on n using the recursion formula (1). �

Remark 2.4. It follows that
(

2n
n−k

)
k
n ∈ Z, which can also be seen directly:

(
2n

n − k

)
k

n
=

(
2n

n − k

)
(1 − n − k

n
) =

(
2n

n − k

)
− 2

(
2n − 1

n − k − 1

)
.

It is enough to show Theorem 2.2 for the endomorphism −At in place of t. Let
us compute −At in the basis (z + 2)n. Note that −At(ei−1) = (−A)i2ei−1.

−At
(
(z + 2)n−1

)
=

n∑

k=1

(
2n

n − k

)
k

n
(−A)t(ek−1),

=
n∑

k=1

(
2n

n − k

)
k

n
(−A)k2

k∑

i=1

(−1)k−i

(
k + i − 1

k − i

)
(z + 2)i−1,

=
n∑

i=1

(−1)i

(
1
n

n∑

k=i

k

(
2n

n − k

)(
k + i − 1

k − i

)
Ak2

)
(z + 2)i−1,

=
n∑

i=1

(−1)iS1,i,n(A)(z + 2)i−1.

Here, for m ≥ 1, we define

Sm,i,n(A) =
1
n

n∑

k=i

km

(
2n

n − k

)(
k + i − 1

k − i

)
Ak2 ∈ Z[A].

Lemma 2.5.

S1,i,n(−1) =

{
(−1)n, i = n

0 i �= n.

Proof. If we put A = −1, then all µi = 1 and hence −At is the identity. �

The following formula is a very special case of a transformation formula for
terminating hypergeometric series due to Bailey [B, Formula 4.3.1]. This was
pointed out to us by Krattenthaler’s HYP package, [K].

Lemma 2.6.

Sm,i,n = i2Sm−2,i,n + 2i(2i + 1)Sm−2,i+1,n.
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Proof.

Sm,i,n =
1
n

n∑

k=i

km−2
(
(k + i)(k − i) + i2

) (
2n

n − k

)(
k + i − 1

k − i

)
Ak2

= i2Sm−2,i,n +
1
n

n∑

k=i+1

km−2(k + i)(k − i)
(

2n

n − k

)(
k + i − 1

k − i

)
Ak2

(the term with k = i is zero)

= i2Sm−2,i,n +
1
n

2i(2i + 1)
n∑

k=i+1

km−2

(
2n

n − k

)(
k + i

k − i − 1

)
Ak2

= i2Sm−2,i,n + 2i(2i + 1)Sm−2,i+1,n.

Here we use the simple identity:

(k + i)(k − i)
(

k + i − 1
k − i

)
= 2i(2i + 1)

(
k + i

k − i − 1

)
. �

Proposition 2.7. S1,i,n(A) is divisible by (1 + A)n−i in Z[A] for i ≤ n.

Proof. It suffices to show:
[(

d

dA

)k

S1,i,n(A)

]

A=−1

= 0 (3)

for all k = 0, 1, . . . , n − i − 1. Note that d
dASm,i,n = A−1Sm+2,i,n ∈ Z[A]. Thus

(
d

dA

)k

S1,i,n ∈ Span
Z[A±]{Sm,i,n |m odd, 1 ≤ m ≤ 2n − 2i − 1}

for all k in the required range. But using Lemma 2.6 one may decrease m at the
cost of increasing i, and see that

Span
Z[A±]{Sm,i,n |m odd, 1 ≤ m ≤ 2n − 2i − 1} ⊆ Span

Z[A±]{S1,j,n | j < n}.
By Lemma 2.5, S1,j,n(−1) = 0, for j < n, and (3) follows. �

Proof of Theorem 2.2. We have

t(vn−1) = −A−1
n∑

i=1

si,n(A)vi−1,

where si,n(A) = (−1)i(1 + A)i−nS1,i,n(A) lies in Z[A] by Proposition 2.7. �

Remark 2.8. Theorem 2.2 remains valid if we take A to be a root of unity, other
than −1, rather than an indeterminate.
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Remark 2.9. Let K̃(n) be defined as K(n) but with v = (z + 2)/(1 + A) replaced
with ṽ = (z + 2)/(1 − A2). Then a similar argument shows that K̃(n) is stable
under t2, the square of the twist map. (To see this, one should replace −At with
A2t2 in the above and express everything in terms of q = A2. This leads to
polynomials S̃m,i,n(q) defined similarly as the Sm,i,n(A) except that A is replaced
with q and an extra factor of (−1)k is inserted in the sum. The remainder of the
argument is the same.)

3. The SO(3)-TQFTs

Let p ≥ 3 be an odd integer. (In this section, p need not be prime.) We consider
a variation of the 2 + 1 dimensional cobordism category considered in [BHMV2]
whose objects are closed oriented surfaces (with extra structure) with a (possibly
empty) collection of banded points (= small oriented arcs) colored by integers
in the range [0, p − 2]. The morphisms are (equivalence classes of) oriented 3-
dimensional manifolds (with extra structure) with p-admissibly colored banded
trivalent graphs. (Two morphisms are considered equivalent if they are related by
a homeomorphism respecting the boundary identifications.) For the definition of
p-admissibility in the p-odd case see [BHMV2, Theorem 1.15]; see also Section 8.

The variation consists of replacing the p1-structures of [BHMV2] with struc-
tures put forward by Walker [W] and Turaev [Tu]. Surfaces are equipped with a
Lagrangian subspace of their first homology. We use homology with rational co-
efficients when considering Lagrangian subspaces. Cobordisms are equipped with
integer weights, as well as Lagrangian subspaces for the target and source. This
is also described in [G2]. We will denote this category by C. We call the objects
of this category e-surfaces, and call the morphisms 3-e-manifolds.

The procedure of [BHMV2] defines a TQFT-functor Vp on C over a commutative
ring R containing p−1, a primitive 2pth root of unity A and a solution of κ2 =
A−6−p(p+1)/2. The number κ here plays the role of κ3 in [BHMV2]. Here we use
the term TQFT slightly loosely as the tensor product axiom does not hold unless
only even colors are used in the cobordism category. The even colors correspond
to irreducible representations of SU(2) which lift to SO(3). Therefore the Vp-
theory for odd p is considered a SO(3) variant of the Witten–Reshetikhin–Turaev
SU(2)-TQFT.

For us it is convenient to use odd colors as well as even colors. However, if we
insist that only even colors be used in coloring the banded points on the surfaces,
then we do obtain an honest TQFT with the tensor product axiom, but we are
still allowed us to use the language of odd colors to describe states. This will be
useful in Sections 8 and 10.

If M is a 3-e-manifold viewed as morphism from Σ to Σ′ in C, we denote
the associated endomorphism from Vp(Σ) to Vp(Σ′) by Zp(M). (It is denoted by
(Zp)M in [BHMV2]). If M is a closed 3-e-manifold viewed as morphism from ∅ to
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∅, Zp(M) induces multiplication by a scalar from R = V (∅). This scalar is denoted
by 〈M〉. If M is a 3-e-manifold viewed as morphism from ∅ to Σ, let [M ] denote
Zp(M)(1) ∈ V (Σ). ([M ] is denoted by Zp(M) in [BHMV2]). We call such an
element [M ] a vacuum state. If M is connected, [M ] is called a connected vacuum
state.

The modules Vp(Σ) are always free over R. They also carry a nonsingular
Hermitian form [BHMV2]:

〈 , 〉Σ : Vp(Σ) × Vp(Σ) → R

given by

〈[N1], [N2]〉Σ = 〈N1 ∪Σ −N2〉 .

Here −N2 is the 3-e-manifold obtained by reversing the orientation, multiplying
the weight by −1, and leaving the Lagrangian on the boundary alone.

If Σ is an e-surface with no colored points, and H is a handlebody (weighted
zero) with boundary Σ, then Vp(Σ) has a specified isomorphism to a quotient of
the skein module K(H,R) [BHMV2, p. 891]. In fact if H is a subset of S3 then
two skein elements in H represent the same element of Vp(Σ) if and only if they
are equal as “maps of outsides” in Lickorish’s phrase [Li].

Let S1 × S1 denote an e-surface of genus one with no colored points. Let d
denote (p − 1)/2. It turns out that d is the dimension or rank of Vp(S1 × S1).
In fact, the module Vp(S1 × S1) is isomorphic as an R-module to the quotient
of K(S1 × D2, R) = R[z] by the ideal generated by ed − ed−1 ∈ R[z]. It follows
[BHMV1, p. 696] that ep−1 = 0 in Vp(S1 × S1) and ed+i = ed−1−i. Thus the
module Vp(S1 ×S1) has indeed rank d with the basis {e0, e1, . . . , ed−1}. Note that
this basis is the same, up to reordering, as the even basis {e0, e2, . . . , ep−3}.

Let Σg denote an e-surface of genus g with no colored points on the boundary.
The rank of the free module Vp(Σg) is given by the formula [BHMV2, Cor. 1.16]

rank (Vp(Σg)) =
(p

4

)g−1 d∑

j=1

(
sin

2πj

p

)2−2g

.

This is the same as 2−g times the dimension of V2p(Σg) (this fact comes from a
tensor product formula, see [BHMV2, Thm. 1.5]). Note that V2p(Σg) is an SU(2)-
TQFT module, with dimension given by the SU(2) Verlinde formula at level p−2
(where the colors are again the set of integers in the range [0, p − 2]).

In genus 2, we have

rank (Vp(Σ2)) =
d(d + 1)(2d + 1)

6

as will be seen by an explicit counting argument in Section 8.
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4. Some facts from elementary number theory

In the remainder of this paper, we assume p is an odd prime. We continue to use
the notation d = (p − 1)/2.

In this section, we collect some notation and a few elementary number-theoreti-
cal facts. To be specific we pick particular values for A and κ. We put A = ζ2p

where ζn = e2πi/n, and also use the notation1

q = A2.

We may then take κ = A−3(−i)(p+1)/2. Note that ζ2p ∈ Z[ζp]. Thus the coefficient
ring is R = Z[ζp,

1
p ] if p ≡ −1 (mod 4), and R = Z[ζp, i,

1
p ] = Z[ζ4p,

1
p ] if p ≡ 1

(mod 4). Of course, the coefficient ring remains unchanged if A is replaced by
another primitive 2p-th root of unity, and κ is changed accordingly.

We let η denote 〈S3〉, the invariant of S3 with weight zero, and put D = η−1.
Then using equations on [BHMV2, p. 897]

D =
i
√

p

q − q−1
=

i
p+1
2

q − q−1

(
1
2

2p∑

m=1

(−1)mAm2

)
. (4)

In particular

D2 =
−p

(q − q−1)2
. (5)

We denote by O the ring of integers in R. Note that O = Z[ζp] if p ≡ −1
(mod 4), and O = Z[ζp, i] = Z[ζ4p] if p ≡ 1 (mod 4).

The following notation will be useful. If x, y are elements of O (or, more
generally, of its quotient field), we write x ∼ y if there exists a unit u ∈ O such
that x = uy.

Lemma 4.1. (i) 1 − A is a unit in O, and 1 − q ∼ 1 + A.
(ii) One has D ∈ O. Moreover, D ∼ (1 − q)(p−3)/2 = (1 − q)d−1.
(iii) The quantum integers [n] = (qn−q−n)/(q−q−1) are units for 1 ≤ n ≤ p−1.
(iv) If 0 ≤ i, j ≤ d− 1 and i �= j, then the twist coefficients µi (see (2)) satisfy

µi − µj ∼ 1 − q.
(v) Put λi = −qi+1 − q−i−1. If 0 ≤ i ≤ d − 1, then λ0 − λi ∼ (1 − q)2.

Proof. The fact that 1 − A is a unit follows easily from the fact that A is a zero
of the 2p-th cyclotomic polynomial 1 − X + X2 − . . . + Xp−1. This proves (i). It
is well-known that p ∼ (1 − q)p−1 (see e.g. [MR2, Lemma 3.1]). Together with
Formulas (4) and (5), this shows (ii). Observing that [n] ∼ 1 + q2 + . . . + q2n−2,
(iii) is also shown in [MR2, Lemma 3.1]. For (iv), observe that µi = µp−2−i so that
the set of µi in question is equal to the set of µ2i = q2i2+2i for i = 0, 1, . . . d − 1.

1 Warning: In many places (e.g. in [MR2]), q denotes A4 rather than A2.
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These powers of q are all distinct, which implies

µi − µj ∼ 1 − qn ∼ 1 − q

for some 0 < n < p. This proves (iv). Similarly, (v) follows from λ0 − λi ∼
(1 − qi+2)(1 − qi). �

Remark 4.2. It is well-known that 1 − q is a prime in Z[q] = Z[ζp]. But if p ≡ 1
(mod 4), then 1 − q is not a prime in O = Z[ζ4p] (it splits as a product of two
conjugate prime ideals).

5. Associated integral cobordism functors

In [G2], a cobordism functor from a restricted cobordism category to the category
of free finitely generated O-modules is described. Let C′′ denote the subcategory
of C defined by considering only nonempty connected surfaces and connected mor-
phisms between such surfaces. This represents a further restriction of C than that
considered in [G2], but it suffices for our purposes.

Definition 5.1. ([G2]) If Σ is a connected e-surface, define Sp(Σ) to be the O-
submodule of Vp(Σ) generated by connected vacuum states. If N : Σ → Σ′ is a
morphism of C′′ then Zp(N) sends [M ] ∈ Sp(Σ) to [M ∪Σ N ] ∈ Sp(Σ′). In this way
we get a functor from C′′ to the category of finitely generated O-modules. We also
rescale the Hermitian form on Vp(Σ) to obtain an O-valued Hermitian form

( , )Σ : Sp(Σ) ⊗O Sp(Σ) → O,

defined by
([N1], [N2])Σ = D〈[N1], [N2]〉Σ = D〈N1 ∪Σ −N2〉.

This form takes values in O by the integrality result for closed 3-e-manifolds
[Mu2, MR2]. These theorems are also used in proving that Sp(Σ) is finitely gen-
erated [G2].

Remark 5.2. Over a Dedekind domain such as O, a finitely generated torsion-
free module is always projective, but it need not be free. (The typical examples
are non-principal ideals in O.) Somewhat surprisingly, however, it turns out that
the modules Sp(Σ) are always free. This is proved in [G2]. We will not actually
make use of this fact in genus 1 and 2: freeness will follow from the construction
of explicit bases.

Definition 5.3. A Hermitian form on a projective O-module S is called non-
degenerate (or non-singular) if its adjoint map S → S∗ is injective. It is called
unimodular if the adjoint map is an isomorphism.
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Note that if S is free and M is the matrix of the Hermitian form in some basis,
then the form is non-degenerate (resp. unimodular) if detM is non-zero (resp. a
unit in O).

In our situation, the form ( , )Σ is always non-degenerate (since the original
form 〈 , 〉Σ on Vp(Σ) is). We will show that ( , )Σ is unimodular in genus 1 and 2.

There is a standard basis {uσ} of Vp(Σg) given by p-admissible even colorings
σ of the graph

· · ·
(where there are g loops) embedded in a 3-e-handlebody Hg of genus g with bound-
ary the e-surface Σg (see [BHMV2, 4.11]). One may actually use any trivalent
graph in Hg to which Hg deformation retracts. (In the case g = 1, this is the same
as the basis given by the elements ei.) These basis elements lie in Sp(Σg) because
the denominators appearing in the Jones–Wenzl idempotents needed to expand
colored graphs into skein elements are invertible in O (see [MR2]). Warning: the
uσ do not generate Sp(Σg) over O.

Proposition 5.4. The elements uσ are orthogonal for the form ( , )Σg
. Moreover,

one has
(uσ, uσ)Σg

∼ Dg ∼ (1 − q)(d−1)g.

Proof. By [BHMV2, Theorem 4.11] one has that 〈uσ, uσ〉Σg
is equal to η1−g = Dg−1

times a product of non-zero quantum integers or their inverses, which are units in
Z[q] by Lemma 4.1. Since the form ( , )Σg

is just a rescaling of the form 〈 , 〉Σg
,

the result follows. �

One of the reasons to study the form ( , )Σg
is that it is preserved by the

TQFT-action of the mapping class group. More precisely, let Γ̃(Σ) denote the
central extension of the mapping class group Γ(Σ) of Σ realized by the subcategory
of C ′′ consisting of e-manifolds homeomorphic to Σ×I such that the colored graph
is given by I times the colored banded points of Σ. This homeomorphism need not
respect the boundary identification at Σ × {1}, but should respect the boundary
identification at Σ×{0}. In fact considering this boundary identification at Σ×{1},
defines the quotient homomorphism from Γ̃(Σ) to Γ(Σ), which has kernel Z given
by the integral weights on Σ × I with standard boundary identifications. The
group Γ̃(Σ) is isomorphic to the signature extension (see e.g. Atiyah [At], Turaev
[Tu].) This extension can be described nicely using skein theory [MR1].

Proposition 5.5. The group Γ̃(Σ) acts on Vp(Σ) preserving the O-lattice Sp(Σ)
and the O-valued Hermitian form ( , )Σ.

Proof. This follows from the definition of Sp(Σ) and the fact that the group Γ̃(Σ)
preserves the original Hermitian form 〈 , 〉Σ. �
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The module Sp(Σ) can be described using the notion of ‘mixed graph’. Recall
the element

ω = D−1
d−1∑

i=0

〈ei〉ei ∈ K(S1 × D2, R).

Here 〈ei〉 = (−1)i[i + 1]. It plays an important role in the surgery axioms of the
Vp-theory.

By a mixed graph in a weighted 3-manifold M, we mean a trivalent banded
graph in M whose simple closed curve components may possibly be colored ω or by
integer colors in the range [0, p−2] and whose other edges are colored p-admissibly
by integers in the range [0, p − 2]. A mixed graph can be expanded multilinearly
into a R-linear combination of colored graphs. The result should be thought of
as a superposition of e-morphisms. If the graph is a link and every component is
colored ω, we say the link is ω-colored. A mixed graph in a handlebody H specifies
an element in Vp(∂H).

Theorem 5.6. A mixed graph in a connected 3-e-manifold M with boundary Σ
represents an element of Sp(Σ). If H is a 3-e-handlebody with boundary e-surface
Σ then Sp(Σ) is generated over O by elements specified by mixed graphs in H.

Proof. The first statement follows from the fact that Vp satisfies the surgery axiom
(S2) [BHMV2, p. 889]. The second statement follows from the fact that any con-
nected 3-manifold with boundary Σ can be obtained by a sequence of 2-surgeries
to H [BHMV2, Proof of Lemma p. 891]. �

Remark 5.7. Suppose that we know that some collection T of elements of Vp(Σ)
lie in the O-lattice Sp(Σ). Then SpanO(T ) is a O-sublattice of Sp(Σ). This sub-
lattice might not be invariant under Γ̃(Σ). Let G = {gi} ∈ Γ̃(Σ) be a finite set
of elements whose image in Γ(Σ) generate. The sequence of submodules of Sp(Σ):
SpanO(T ), SpanO(T ∪G(T )), SpanO(T ∪G(T )∪G(G(T ))), , . . . etc. must stabilize
in an O-sublattice of Sp(Σ) which is invariant under the mapping class group. This
procedure is well suited to computer investigation. The basis given in Section 7
was originally found by this procedure. We used the computer program Kant [D]
starting with T = {e0, e1, . . . , ed−1} in Sp(S1 × S1).

6. First integral basis in genus 1

By a slight abuse of notation, we let ω denote the element in Sp(S1 × S1) given
by coloring the core of S1 × D2 with ω. Let t also denote the induced map on
Vp(S1 × S1) given by giving S1 ×D2 a full right handed twist. Note that tn(ω) ∈
Sp(S1 × S1) for all n.



272 P. M. Gilmer, G. Masbaum and P. van Wamelen CMH

Theorem 6.1. {ω, t(ω), t2(ω), . . . , td−1(ω)} is a basis for the module Sp(S1×S1).
The form ( , )S1×S1 is unimodular.

Note that it follows in particular that the O-span of {ω, t(ω), t2(ω), . . . , td−1(ω)}
is stable under the action of the mapping class group Γ̃(S1 × S1).

Proof. Recall that µi = (−1)iAi2+2i denotes the eigenvalue of ei under the twist
map t. We have that

tj(ω) = D−1
d−1∑

i=0

〈ei〉µj
iei .

Note that 〈ei〉 = (−1)i[i + 1] is a unit by Lemma 4.1(iii). The matrix W which
expresses {ω, t(ω), t2(ω), . . . , td−1(ω)} in terms of {e0, e1, . . . ed−1} has as deter-
minant a unit (the product of the 〈ei〉) times D−d times the determinant of the
Vandermonde matrix [µj

i ] where 0 ≤ i, j ≤ d − 1. Moreover by Lemma 4.1(iv)

det[µj
i ] = ±

∏

i<j

(µi − µj) ∼ (1 − q)d(d−1)/2 .

As D ∼ (1 − q)d−1, we conclude that

det W ∼ (1 − q)−d(d−1)/2 . (6)

In particular, this determinant is non-zero, hence the tj(ω) are linearly indepen-
dent. Let W denote the O-module spanned by the tj(ω). Clearly W ⊂ Sp(S1×S1).
Now we know by Proposition 5.4 that (ei, ei) ∼ (1 − q)d−1 (here we simply write
( , ) for the Hermitian form ( , )S1×S1). Therefore the matrix for ( , ) with re-
spect to the orthogonal basis {e0, e1, . . . , ed−1} has determinant (1− q)d(d−1). By
(6) it follows that the matrix for ( , ) with respect to {ω, t(ω), t2(ω), . . . , td−1(ω)}
has unit determinant. (Here we use that 1 − q = 1 − q−1 ∼ 1 − q.) In other
words, the form ( , ) restricted to W is unimodular. But then W must be equal
to Sp(S1 × S1). This completes the proof. �

Corollary 6.2. If H is a 3-e-handlebody with boundary the e-surface of Σ and Σ
has no colored points in the boundary, then Sp(Σ) is generated over O by elements
represented by ω-colored banded links in H.

Proof. By the above theorem, each ei (in particular e1 = z) can be expressed as
an O-linear combinations of the elements tj(ω). Therefore every mixed graph can
be written as an O-linear combination of ω-colored banded links in H. The result
now follows from Theorem 5.6. �
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7. Second integral basis in genus 1

Consider K(d− 1) in the notation of Section 2, now taking A = ζ2p. Let V denote
its image in Vp(S1 × S1). In other words V is the O-submodule of Vp(S1 × S1)
generated by {1, v, v2, . . . , vd−1}, where v = (z + 2)/(1 + A).

Theorem 7.1. One has V = Sp(S1 × S1). In particular, {1, v, v2, . . . , vd−1} is a
basis for the free module Sp(S1 × S1).

We refer to this basis as the v-basis of Sp(S1 × S1). We originally found it by
the procedure outlined in Remark 5.7. Since Γ̃(Σ) preserves Sp(S1 ×S1), we have
the following Corollary.

Corollary 7.2. V = SpanO{1, v, v2, . . . , vd−1} is stable under the action of the
mapping class group Γ̃(S1 × S1).

Remark 7.3. The mapping class group Γ̃(S1 × S1) is a central extension of
SL(2, Z). Its image in GL(Vp(S1 × S1)) is generated by κ times the identity
matrix (the central generator acts as multiplication by κ), the twist map t, and
the so-called S-matrix. The entries of the S-matrix in the ei-basis are well-known.
One can therefore write down its entries in the v-basis (using the change of ba-
sis formulas in Lemma 2.3). The fact that these entries lie in O is by no means
obvious. We originally proved this fact using some identities involving binomial
coefficients. The argument is similar to the proof that the v-basis is stable under
the twist map t given in Section 2, but considerably more complicated. We found
proofs of these identities using Zeilberger’s algorithm together with some identities
from [B] as above. In particular the Gosper command in the Mathematica package
“Fast Zeilberger” (V 2.61) by Peter Paule and Markus Schorn, [Z] was used. As
the proof we give below is much simpler, we omit the details of this computation.

Proof of Theorem 7.1.

Lemma 7.4. One has ω ∈ V .

Proof. Let λi = −qi+1 − q−i−1. Recall [BHMV1] that ei is an eigenvector with
eigenvalue λi for the endomorphism c of K(S1 × D2, Z[A±]) given by sending a
skein element in S1 × D2 to the same skein element circled by a meridian.

Let 〈 , 〉H be the Hopf pairing (i.e. the symmetric bilinear form on Vp(S1×S1)
which sends two elements x, y to the bracket of the zero-framed Hopf link with
one component cabled by x, and the other component cabled by y). Then

〈ω, ei〉H =

{
〈ω〉 = D, if i = 0

0 if 1 ≤ i ≤ d − 1.
(7)
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Note that 〈z − λi, ei〉H = 0 for 1 ≤ i ≤ d − 1, and 〈z − λi, e0〉H = λ0 − λi (since
〈z, e0〉 = 〈z〉 = −q − q−1 = λ0). It follows that

ω = D
d−1∏

i=1

z − λi

λ0 − λi
(8)

since the pairing 〈 , 〉H is non-degenerate. (Note the similarity with the polyno-
mials Qn of [BHMV1].)

Since D ∼ (1 − q)d−1 and λ0 − λi ∼ (1 − q)2 by Lemma 4.1, it follows that

ω ∼
d−1∏

i=1

z − λi

1 − q
∼

d−1∏

i=1

z − λi

1 + A
(9)

(where ∼ means equality up to multiplication by a unit). Now

z − λi = (z + 2) − (2 + λi)

= (z + 2) − (1 − qi+1)(1 − q−i−1)

= (z + 2) + ui(1 + A)2

where ui ∈ O. It follows that

(z − λi)/(1 + A) ∈ SpanO{1, v} ,

and so (9) implies ω ∈ V , proving the lemma. �

By Theorem 2.2, K(n) hence V is stable under the twist map t. It follows that

W = SpanO{ω, t(ω), . . . , td−1(ω)} ⊆ V .

Now recall from the proof of Theorem 6.1 that the matrix W which expresses
{ω, t(ω), . . . , td−1(ω)} in terms of {e0, e1, . . . , ed−1} has determinant detW ∼ (1−
q)−d(d−1)/2. Remembering v = (z + 2)/(1 + A) and 1 + A ∼ 1− q, it is easy to see
that the same is true for the matrix which expresses {1, v, . . . , vd−1} in terms of
{e0, e1, . . . ed−1}. Since W ⊂ V, it follows that actually W = V. By Theorem 6.1
we conclude V = Sp(S1 × S1). This completes the proof. �

By a v-colored banded link in a 3-manifold, we mean a banded link whose
components are colored v. As before this should be interpreted as the linear com-
bination (superposition) of the colored banded links that one obtains by expanding
multilinearly. We note that i parallel strands colored v is the same as one strand
colored vi.

Corollary 7.5. If H is a 3-e-handlebody with boundary the e-surface Σ and Σ
has no colored points in the boundary, then Sp(Σ) is generated over O by elements
represented by v-colored banded links in H.
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Remark 7.6. The matrix of the Hermitian form ( , )S1×S1 in the v-basis is easily
computed. One has for 0 ≤ i, j ≤ d − 1

(vi, vj)S1×S1 = D〈vi, vj〉S1×S1 = 〈vi+j , ω〉H = (1 + A)−(i+j)〈(z + 2)i+j , ω〉H
=

1
(1 + A)i+j

(
2i + 2j + 2

i + j

)
1

i + j + 1
〈e0, ω〉H

=
D

(1 + A)i+j

(
2i + 2j + 2

i + j

)
1

i + j + 1
.

Here we have used Lemma 2.3 to express (z + 2)i+j in terms of the en, and then
retained only the e0 term. Indeed, the others are annihilated by the Hopf pairing
with ω since 0 ≤ i + j ≤ 2d − 2 (see (7) and remember that ed+i = ed−1−i in
Vp(S1 × S1)).

It is instructive to check directly that the expression above lies in O (use that
p divides the binomial coefficient

(
2i+2j+2

i+j

)
if d ≤ i + j ≤ 2d − 2).

8. Integral basis in genus 2

Let Σ2 be a closed surface of genus 2. In this section, we describe a basis for the
module Sp(Σ2) and show that the Hermitian form ( , )Σ2 is unimodular.

Let H2 be a regular neighborhood of the hand cuff graph in R3. Then
H2 is a genus 2 handlebody and by Corollary 7.5, Sp(Σ2) is spanned by v-colored
banded links in H2. We think of H2 as P2 × I where P2 is a disk with two holes.

The skein module K(H2, R) is free on the set of isotopy classes of collections
of nonintersecting essential simple closed curves in P2. We refer to these isotopy
classes as arrangements of curves. Such arrangements can be indexed by 3-tuples
of nonnegative integers. Let Cα,β,γ denote the arrangement with γ parallel curves
going around both holes, and within them α parallel curves going around the
left hole, and β parallel curves going around the right hole. See Figure 1 for an
example.

Fig. 1. The arrangement of curves C2,3,1.

Theorem 8.1. Let Cα,β,γ(v) be the element of Sp(Σ2) obtained by coloring each
curve of Cα,β,γ by v = (z + 2)/(1 + A). Then the set

{Cα,β,γ(v) | 0 ≤ γ ≤ d − 1, 0 ≤ α, β ≤ d − 1 − γ}
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is a basis of Sp(Σ2). Moreover, the Hermitian form ( , )Σ2 is unimodular.

Note that Cα,β,γ(v) lies in Sp(Σ2) because v lies in Sp(S1×S1) by Theorem 7.1.

Proof. Let us first describe a basis of Vp(Σ2) consisting of elements represented by
colorings of the hand cuff graph . Let G(i, j, k) be the element defined by
the colored graph

i jk

For this element to exist, k must be even. Then the coloring is p-admissible if
and only if k

2 ≤ i, j ≤ p − 2 − k
2 (see [BHMV2, Thm 1.15]). The standard basis

of Vp(Σ2) would be to take the p-admissible G(i, j, k) with both i and j even. It
is also possible to impose that one or both of i, j be odd [BHMV2, Thm 4.14].
We will need a different basis where i, j are allowed to be both even and odd, but
≤ d − 1. This is given in the following Lemma.

Lemma 8.2. The G(i, j, k) with k even in the range [0, p − 3], and both i and j
in the range [k

2 , d − 1] (but not necessarily even), form a basis of Vp(Σ2).

Remark 8.3. Let G be the basis described in the above Lemma. Let Gk be the
subset of elements of G with middle arc colored k. The cardinality of Gk is (d− k

2 )2.
Thus we see directly that the cardinality of this basis is

∑d−1
j=0(d−j)2 =

∑d
j=1 j2 =

d(d + 1)(2d + 1)/6.

Lemma 8.2 could be proved using the methods of [BHMV2]. Here we give a
different, more direct proof.

Proof of Lemma 8.2. For i in the range [0, p − 2] we let i′ = p − 2 − i. We claim
that

G(i, j, k) ∼ G(i′, j, k) ∼ G(i, j′, k) ∼ G(i′, j′, k)

(where ∼ means equality up to multiplication by a unit in O). It is enough to
prove that G(i, j, k) ∼ G(i′, j, k). This is done in Figure 2. Note that if i is even
and > d − 1 then i′ is odd and ≤ d − 1. Thus the basis of where all i, j are even
may be replaced by the basis of Lemma 8.2. �

Let A(v) be the set of the v-colored elements Cα,β,γ(v) claimed to be a basis
in Theorem 8.1, and let A be the set of the uncolored (i.e. colored by z = e1)
elements Cα,β,γ (in the same range for α, β, γ).

Lemma 8.4. The set A is a basis of Vp(Σ2). Moreover, the basis change from G
to A has determinant ±1.
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i k
=

p̃i k

= c1
p̃i′ k

i

i

= c1c2
i′ k

Fig. 2. The proof that G(i, j, k) ∼ G(i′, j, k). We have put p̃ = p − 2. In the first step,
adding a loop colored p̃ doesn’t change anything, since ep−2 = e0 = 1. In the second
(resp. third) step, we use the equation on the top (resp. bottom) of page 367 of [MV].
In the first equation, the sum reduces to only one term because the other terms involve
graphs which are not p-admissible. In the second equation, the coefficient is also a priori
a sum (coming from the expression for the tetrahedron coefficient in [MV, Theorem 2]).
But in fact here the sum has only one term (because in the notation of [MV] one has
max(aj) = p − 2 = min(bi) for this particular tetrahedron coefficient). The explicit
formulas for c1 and c2 now show that both coefficients are products of non-zero quantum
integers or their inverses and therefore are units in O (see Lemma 4.1).

Proof. Using the Wenzl recursion formula for the idempotents of the Temper-
ley–Lieb algebra, one can expand the elements of A as O-linear combinations
of elements of the graph basis G. In fact, in the expansion of Cα,β,γ , only those
G(i, j, k) occur where i ≤ α+γ, j ≤ β+γ, and k ≤ 2γ; moreover, G(α+γ, β+γ, 2γ)
occurs with coefficient one. We can find orderings of A and G so that the matrix
which expresses A in terms of G is triangular with ones on the diagonal (use
the lexicographical orderings where γ resp. k is counted first). This implies the
Lemma. �

Let r = d(d+1)(2d+1)/6 be the rank of Vp(Σ2). By Proposition 5.4, the matrix
for ( , )Σ2 with respect to the orthogonal basis G has determinant ∼ (1−q)2(d−1)r.
The preceding Lemma shows that the same holds true for the matrix for ( , )Σ2

with respect to A.
Let N denote the sum over A of the number of curves appearing in each

arrangement. The change of basis matrix for writing A(v) in terms of A is again
triangular and has determinant ∼ (1 − q)−N . Thus the matrix for ( , )Σ2 with
respect to A(v) has determinant ∼ (1 − q)2(d−1)r−2N . The following Lemma 8.5
shows that this determinant is a unit. As in the genus one case (see the proof
of Theorem 6.1), we conclude that A(v) is a basis for Sp(Σ2) and that the form
( , )Σ2 is unimodular on Sp(Σ2).

Lemma 8.5. N = (d − 1)r.

Proof. To count N, we write A = ∪0≤γ≤d−1Aγ , where

Aγ = {Cα,β,γ |0 ≤ α, β ≤ d − γ − 1} .
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Note that |Aγ | = (d − γ)2. The total number of curves appearing in Aγ is

γ(d − γ)2 +
d−γ−1∑

α=0

d−γ−1∑

β=0

(α + β) = (d − 1)(d − γ)2 .

Thus each Aγ contributes d−1 times its cardinality to the count. As
∑d−1

γ=0 |Aγ | =
r, we see that N = (d − 1)r. �

This completes the proof of Theorem 8.1. �

9. Non-unimodularity

Even without knowing an explicit basis of Sp(Σg), it is possible to see that the
form ( , )Σg

is sometimes not unimodular.

Theorem 9.1. If p ≡ 1 (mod 4) and both the genus g and the rank of Vp(Σg) are
odd, then the form ( , )Σg

is not unimodular on Sp(Σg).

For example, if g = 3 and p = 5 then the rank is 15 and the form ( , )Σ3 is not
unimodular on S5(Σ3).

Remark 9.2. We used Mathematica [Wo] to calculate the rank of Vp(Σg) for
small g using the formula [BHMV2, 1.16(ii)]. We found that:

rank (V4k+1(Σ3)) = (1/45)(3 k + 32 k2 + 120 k3 + 200 k4 + 192 k5 + 128 k6)

rank (V4k+1(Σ5)) = (1/14175)(45 k + 864 k2 + 6892 k3 + 30184 k4

+ 83760 k5 + 172512 k6 + 304896 k7 + 458112 k8

+ 542720 k9 + 487424 k10 + 294912 k11 + 98304 k12).

Thus the rank of Vp(Σ3) is odd if p ≡ 5 (mod 8), and the form ( , )Σ3 is not
unimodular in this case. Similarly ( , )Σ5 is not unimodular if p ≡ 5 (mod 8).

Proof of Theorem 9.1. The argument relies on the following result of [G2]. Assume
p ≡ 1 (mod 4) and recall that O = Z[ζ4p] in this case. Put O+ = Z[ζp] ⊂ O. Let
the Lagrangian assigned to Σg be the kernel of the map on the first homology
induced by the inclusion of Σg to Hg and assign Hg the weight zero. Then Hg is
an even (in the sense of [G2]) morphism from ∅ to Σg. Note that the quantum
integers [n] for 1 ≤ n ≤ p − 1 are units in O+. �

Theorem 9.3. [G2] If p ≡ 1 (mod 4) then Sp(Σg) � S+
p (Σg)⊗O where S+

p (Σg) ⊂
Sp(Σg) is a free O+-module. Moreover, one has G ⊂ S+

p (Σg), where G is the col-
ored graph basis of Vp(Σg) (see Proposition 5.4).
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The matrix of ( , )Σg
with respect to G has determinant Dgr ∼ (1 − q)(d−1)gr

where r denotes the rank of Vp(Σg). Let B be a basis of the free O+-module
S+

p (Σg), and let D be the determinant of the matrix expressing B in terms of G.
The matrix of ( , )Σg

with respect to the basis B has determinant ∼ ∆, where

∆ = DD(1 − q)(d−1)gr . (10)

If the form is unimodular, ∆ must be a unit in O, and since ∆ lies in O+, it must
be a unit in O+. But 1 − q is a self-conjugate prime in O+ = Z[q] = Z[ζp], and
since D−1 lies in O+ as well, ∆ can be a unit only if (d − 1)gr is even. Thus one
of g and r must be even (since d − 1 = (p − 3)/2 is odd in our situation). This
completes the proof. �

Remark 9.4. The use of the O+-module S+
p (Σg) can in general not be avoided in

this argument. Here is why. Recall that 1 − q splits in O = Z[ζ4p] as the product
of two conjugate prime ideals p and p. If p is principal (this happens for example
if p = 5), then there exists D ∈ O such that the number ∆ defined as in (10) is a
unit even when (d − 1)gr is odd. Of course, such a D does not exist in O+.

Remark 9.5. If we assign extra structure to Σg and Hg as described above in the
proof of 9.1, then O+ linear combinations of banded links in H represent elements
in S+

p (Σ). Moreover the bases described in Sections 6, 7, 8 for Sp(S1 × S1), and
Sp(Σ2) are actually bases for S+

p (S1×S1), and S+
p (Σ2). There are also plus versions

of Theorem 5.6 and Corollaries 6.2 and 7.5.

Remark 9.6. When restricted to S+
p (Σg), the Hermitian form ( , )Σg

does not
take values in O+, if g is odd. This follows from the proof of Proposition 5.4, since
D �∈ O+. In the next section, we will use the sesquilinear form

( , )+Σg
: S+

p (Σg) × S+
p (Σg) → O+

obtained by multiplying the form ( , )Σg
by iε(g), where ε(g) is zero or one accord-

ingly as g is even, or odd. This form takes values in O+ since iD ∈ O+.

10. Genus three at the prime five

In genus g ≥ 3, one can also try to find a set of banded links in a handlebody
so that one obtains a basis of Sp(Σg) by cabling each curve component with v =
(z + 2)/(1 + A). This is suggested by Corollary 7.5 and the fact that Sp(Σg)
is a free O-module [G2]. In fact, we now find such a set of links giving a basis
for S+

5 (Σ3) (and therefore also for S5(Σ3)) by adapting the above procedures.
These links are described by arrangements of curves in a thrice punctured disk.
Although the Hermitian form and the related O+-valued sesquilinear form are not
unimodular, in this particular situation they are nearly so, and this is essential



280 P. M. Gilmer, G. Masbaum and P. van Wamelen CMH

for our argument. It seems more difficult to find an explicit collection of banded
links with this property for Sp(Σ3) for p > 5, and for Sp(Σg) for g > 4. We plan
to return to this question elsewhere.

We think of the handlebody H3 as P3 × I where P3 is a disk with three holes.
We give H3 weight zero. We equip Σ3 with the Lagrangian given by the kernel of
the map induced on the first homology by the inclusion of Σ3 in P3 × I.

Consider the set of 15 arrangements of curves in P3

A = {A∅,A1, A2, A3, A1A2, A2A3, A3A1, A1A2A3,

A12, A23, A13, A12A3, A23A1, A31A2, A123} .

Here, A∅ is the empty arrangement, Ai (resp. Aij , resp. A123) is a curve of the
shape pictured in Figure 3 around just the i-th hole (resp. around both the i-th
and j-th hole, resp. around all three holes), and the multiplicative notation AαAβ

means disjoint union of Aα and Aβ . See Figure 3 for two examples. Note that the
total number of curves in A is 22.

Theorem 10.1. The set A(v) = {A∅(v) = A∅, A1(v), A2(v), . . .} consisting of the
curve arrangements in A colored v is a basis of S+

5 (Σ3), and thus also a basis for
S5(Σ3).

Note that it follows in particular that the O+-span of A(v) is stable under the
action of the index two subgroup of even morphisms in the mapping class group
Γ̃(Σ2).

1 2

3

1 2

3
A123

1 2

3
A3

A12

Fig. 3. The graph G and the arrangements of curves A123 and A12A3.

Lemma 10.2. The set A (where its elements are considered as planar banded links
in H3) is a basis of V5(Σ3).

Proof. By the proof of Lemma 8.2, we can find a graph basis G for V5(Σ3) by
5-admissible colorings of the graph G in Figure 3, where the loops are colored
zero or one and the non-loop edges are colored zero or two. If a non-loop edge
is colored two, then the loop at the end of the edge must be colored one. Also,
the number of non-loop edges colored two must be zero, two, or three. This
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summarises 5-admissibility in this case. There are 15 such colorings. Again using
Wenzl’s recursion formula, there is a triangular change of basis with ones on the
diagonal from the basis G to the set A which is therefore also a basis of V5(Σ3). �

Proof of Theorem 10.1. Recall that A(v) consists of the 15 elements of S+
5 (Σ3)

obtained by replacing each of the 22 curves in A with v = (z + 2)/(1 + A). Again
there is a triangular change of basis matrix from A to A(v). Therefore the elements
of A(v) span V5(Σ3) and hence are linearly independent over O+. Consider the
inclusion

SpanO+A(v) ⊂ S+
5 (Σ3) . (11)

The matrix for ( , )+Σ with respect to A(v) has determinant ∼ (1 − q)3·15−2·22 =
1 − q. Since 1 − q is a prime in O+ and S+

5 (Σ3) is also a free O+-module, we
conclude that the inclusion (11) cannot be strict. Thus A(v) is a basis for S+

5 (Σ3).
�

Remark 10.3. Theorem 10.1 remains true if we replace v by ω throughout. The
same proof works.

Remark 10.4. As in Remark 9.4, it is crucial for this argument to use S+
5 (Σ3)

rather than S5(Σ3), since for p = 5 there exists a ∈ O = Z[ζ20] such that 1−q = aa.

Remark 10.5. Kerler has announced in [Ke] a construction of integral bases for
the Reshetikhin–Turaev SO(3) TQFT at the prime p = 5 for any genus.

11. A divisibility result for the Kauffman bracket

In this final section, we let A again be an indeterminate. The fact that v =
(z+2)/(1+ζ2p) lies in Sp(S1×S1) for all odd primes p has the following application
to the Kauffman bracket 〈 〉 of banded links in S3.

Theorem 11.1. Let L be a banded link in S3 with µ components. Let L(z + 2)
denote this link colored z + 2. Then the Kauffman bracket 〈L(z + 2)〉 ∈ Z[A±] is
divisible by (1 + A)µ.

Here the Kauffman bracket is normalized so that the bracket of the empty link
is 〈∅〉 = 1. Note that

〈L(z + 2)〉 =
∑

L′⊂L

2µ−µ(L′)〈L′〉 ,

where the sum is over all sublinks L′ of L, and µ(L′) denotes the number of
components of L′.
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Proof of Theorem 11.1. When we evaluate the Kauffman bracket 〈J〉 of a banded
link J in S3 at A = ζ2p, we obtain the quantum invariant of the pair (S3, J) (where
S3 is given the weight zero) in the normalization

〈J〉|A=ζ2p
= Ip(S3, J) =

〈(S3, J)〉
〈S3〉 = D〈(S3, J)〉 .

This normalization Ip(M,J) of the quantum invariant is precisely the one which
is always an algebraic integer [Mu1, MR2] and which is at the basis of the integral
cobordism functors Sp.

Let f(A) denote the Kauffman bracket 〈L(z + 2)〉 ∈ Z[A±]. Since v = (z +
2)/(1 + ζ2p) ∈ Sp(S1 × S1), we have Ip(S3, L(v)) ∈ Z[ζ2p], for every odd prime p.
Thus

f(ζ2p) = Ip(S3, L(z + 2)) ∈ (1 + ζ2p)µZ[ζ2p], (12)

for every odd prime p.
Now recall the following elementary Lemma (see [Mu1, Lemma 5.5] and note

that −ζ2p is a primitive p-th root).

Lemma 11.2. Suppose f(A) ∈ Z[A±]. Let f (k)(A) denote the k-th derivative of
f(A). Assume 0 ≤ µ < p where p is prime. Then f(ζ2p) ∈ Z[ζp] is divisible by
(1 + ζ2p)µ if and only if f (k)(−1) ≡ 0 (mod p) for every 0 ≤ k < µ.

By this lemma, (12) implies f (k)(−1) ≡ 0 (mod p) for each 0 ≤ k < µ, provided
p is larger than µ. Since there are infinitely many such primes, it follows that
f (k)(−1) = 0 for each 0 ≤ k < µ. But this means that (1 + A)µ divides f(A). �

Corollary 11.3. If L is as in the theorem, then the Kauffman bracket 〈L(z +
[2])〉 ∈ Z[A±] is also divisible by (1 + A)µ.

Proof. This follows immediately from the fact that 2 − [2] = 2 − A2 − A−2 =
(1 − A2)(1 − A−2) is divisible by 1 + A. �

Remark 11.4. In a similar way, Theorem 2.2 remains true if we replace v with
v̂ = (z + [2])/(1 + A) in the definition of K(n). Similarly Theorems 7.1, 8.1, 10.1
remain true if we replace v by v̂.

Remark 11.5. Theorem 11.1 can also be proved by computing the Kauffman
bracket from the (framed) Kontsevich integral via an appropriate weight system.
Actually this proof is an adaptation of an argument going back to Kricker and
Spence [KS, Proof of Thm. 2], but they only considered algebraically split links.
Previously Ohtsuki [Oh1, Prop. 3.4] had obtained a stronger divisiblity result for
〈L(z + [2])〉 using quantum groups, for algebraically split links satisfying some
extra conditions. Later, Cochran and Melvin generalised the Kontsevich integral
argument, and their result [CM, Theorem 2.5] contains Corollary 11.3 for zero-
framed links. (The results of [Oh1, KS, CM] are stated in terms of the Jones
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polynomial, but it is well-known that the Jones polynomial and the Kauffman
bracket are equivalent.) However, the restriction to zero framing is not really
necessary (although a small additional argument is needed). We will not give
details of this alternative proof here, as the techniques are completely different
from the ones in the present paper.
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