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On the volume of unit vector fields on spaces of constant
sectional curvature
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Abstract. A unit vector field X on a Riemannian manifold determines a submanifold in the
unit tangent bundle. The volume of X is the volume of this submanifold for the induced Sasaki
metric. It is known that the parallel fields are the trivial minima.

In this paper, we obtain a lower bound for the volume in terms of the integrals of the
2i-symmetric functions of the second fundamental form of the orthogonal distribution to the
field X.

In the spheres S2k+1, this lower bound is independent of X. Consequently, the volume of
a unit vector field on an odd-sphere is always greater than the volume of the radial field. The
main theorem on volumes is applied also to hyperbolic compact spaces, giving a non-trivial lower

bound of the volume of unit fields.
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1. Introduction

Let Mn be a closed oriented Riemannian manifold and X a unit vector field defined
on M . The volume of X was defined in [GZ] by

vol(X) = vol
(
X(M)

)
,

where X : M → T 1M is seen as a smooth section on the unit tangent bundle T 1M ,
endowed with the Sasaki metric, and vol

(
X(M)

)
is the volume of the submanifold

X(M) ⊂ T 1M .
A metric formula for the volume of a unit vector field X is given by (see [GZ]

and [J])

vol(X) =
∫

M

√
det(Id + (∇X)t(∇X))ν =
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=
∫

M

(
1 +

n∑

a=1

‖∇ea
X‖2 +

∑

a<b

‖∇ea
X ∧∇eb

X‖2 + . . .

. . . +
∑

a1<···<an−1

‖∇ea1
X ∧ · · · ∧ ∇ean−1

X‖2

) 1
2

ν,

(1)

where n =dim(M), ν is the volume form and {ei}n
i=1 is an orthonormal local

frame. It follows from that formula that vol(X) ≥ vol(M) and equality holds if
and only if X is parallel.

Closed Riemannian manifolds do not admit, in general, globally defined parallel
vector fields. Hence, one may expect that volume minimizing unit vector fields
should be interesting for their symmetric properties. The following problem may
be interesting.

Given a closed oriented Riemmannian manifold M with vanishing Euler char-
acteristic, what is the infimum (possibly a minimum) for the volume of all globally
defined unit vector fields on M?

Perhaps, from a geometric viewpoint, the first closed Riemannian spaces to be
studied are constant curvature spaces. In this class, the simplest ones are the flat
tori and the unit round spheres of odd dimension. Closed spaces with constant
negative curvature would come next.

Herman Gluck and Wolfgang Ziller proved the following result.

Theorem ([GZ]). The unit vector fields of minimum volume on S3 are precisely
the Hopf vector fields and no others.

Here, Hopf vector fields on S3 are unit vector fields tangent to classical Hopf
fibrations. Hopf vector fields VH can be defined on any S2k+1 and it is easy to see,
for example [GZ], that their volume is

vol(VH) = 2kvol(S2k+1).

Later on, David Johnson showed

Theorem ([J]). Hopf fibrations on the round S5 are not local minima of the vol-
ume functional.

In fact, the method used in this proof may be extended to any S2k+1, k ≥ 2.
See also [GmLf] for the instability of Hopf flows on spheres of radius r.

So, the problem of minimizing volume functional is open on spheres of odd
dimension higher than 3.

A very interesting example of unit vector field defined on Sn minus one point
was given by Sharon Pedersen [P]. We will denote this vector field by VP . The
volume of VP was calculated in [P] and, on the odd-spheres S2k+1, is

vol(VP ) =
√

2πk vol(S2k+1).
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Note that this volume is much smaller than the volume of Hopf field.
Finally, we should mention that in the case of odd dimensional spheres S2k+1,

k ≥ 2, H. Gluck and W. Ziller announced in [GZ] that a lower bound for the
volume of unit vector fields should be

k∑

i=0

(
k
i

)2

(
2k
2i

)vol(S2k+1).

In this paper we prove the following Theorem.

Main Theorem. Let X be a unit vector field on a compact Riemannian and
oriented manifold M2k+1. Then

vol(X) ≥
∫

M

(
1 +

k∑

i=1

(
k

i

)(
2k

2i

)−1

|σ2i(X⊥)|
)

ν, (2)

where σ2i(X⊥) is the 2i-th elementary symmetric function of the second funda-
mental form of the distribution orthogonal to X (that is not necessarily integrable).
When k ≥ 2, equality holds if and only if X is totally geodesic and X⊥ is integrable
and umbilic.

When M has constant sectional curvature, we may apply an integral formula
for the symmetric functions σ2i, see [A] or [BLR], to get the following

Corollary 1. Let X be a unit vector field on S2k+1 then

vol(X) ≥
k∑

i=0

(
k
i

)2

(
2k
2i

)vol(S2k+1).

Note that there are no totally geodesic one dimensional foliations of S2k+1 such
that the normal bundle be integrable (see Section 5). So, the last point of Main
Theorem implies

Corollary 2. There is no unit vector field on S2k+1, k ≥ 2, with volume equal to
k∑

i=0

(k
i)

2

(2k
2i)

vol(S2k+1).

Let VR be a radial vector field on S2k+1\{±p}, that is, a totally geodesic vector
field obtained by means of the exponential map of S2k+1 at p. The field VR is such
that its normal bundle is integrable and its leaves are umbilical submanifolds of
S2k+1 \ {±p}.

Direct computations of the volume of a radial vector field VR on S2k+1 with
two antipodal singularities leads to
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Corollary 3. Let X be any non-singular unit vector field on S2k+1, then

vol(VR) ≤ vol(X).

The value of the bound in Corollary 1, which is the volume of the radial field,
was estimated by Pedersen in [P] and she shown that

vol(VR) ≈
√

πk vol(S2k+1).

Then, the volumes of the mentioned vector fields on S2k+1, when k ≥ 2, hold
the inequality

vol(S2k+1) < vol(VR) < vol(VP ) 
 vol(VH).

Finally, applying Main Theorem with [BLR] to spaces of negative constant
curvature one gets

Corollary 4. Let M2k+1 be a compact, oriented, Riemannian manifold with con-
stant sectional curvature c < 0. Let X be a unit vector field on M . Then,

vol(X) ≥
k∑

i=0

(
k
i

)2|c|i
(
2k
2i

) vol(M).

We should remark that Corollary 1 confirms the lower bound announced for
the volume on unit vector fields on odd dimensional spheres appearing in [GZ].

Also, Corollary 2 brings some light to a comment appearing in [J] (see page
927, line −9) about whether certain calibration on T 1S2k+1 is tangent to the graph
of a flow on S2k+1.

The paper is organized as follows. In Section 2 we expound some algebraic
details that we will use afterwards. In Section 3, we present in the Fundamental
Lemma a basic formula for the volume of a diagonal matrix (the Main Theorem
when X⊥ is integrable). In Section 4 we analyze the reduction of an arbitrary
vector field to one with X⊥ integrable. And finally, in Section 5, we prove the
Main Theorem and its corollaries.

2. Algebraic preliminaries

The volume of a linear transformation T : V n → V n is the volume of the graph of
the cube under T . That is, if ϕ : V → V × V is given by ϕ(v) = (v, Tv), then

vol(T ) = vol
(
ϕ(V )

)
.

In order to calculate the volume of ϕ(V ) we do the following. We define the
application

ϕ∗ : V × . . .(n) × V −→ Λn(V × V )
(v1, . . . , vn) �→ ϕ(v1) ∧ · · · ∧ ϕ(vn)
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which is multilinear and anti-symmetric. By the universal property, ϕ∗ defines a
unique application that we denote by the same letter, ϕ∗ : ΛnV → Λn(V × V ),
such that

ϕ∗(v1 ∧ · · · ∧ vn) = ϕ(v1) ∧ · · · ∧ ϕ(vn).

By definition, for an orthonormal basis {ei}n
i=1 of V

vol(T ) = vol
(
ϕ(V )

)
= ‖ϕ∗(e1 ∧ · · · ∧ en)‖ = ‖ϕ(e1) ∧ · · · ∧ ϕ(en)‖.

This expression is evidently independent of the orthonormal basis chosen.

Proposition. Let T be an endomorphism and A = (aij) the matrix of T associated
to some orthonormal basis. Then,

vol(T ) =
(

1+
∑

1≤i,j≤n

a2
ij +

∑

i1<i2
j1<j2

(
det Aj1j2

i1i2

)2

+ . . .

. . . +
∑

i1<···<in−1
j1<···<jn−1

(
det A

j1...jn−1
i1...in−1

)2

+ (detA)2
) 1

2

,

(3)

where Aj1...jk

i1...ik
is the submatrix of A corresponding to the rows (i1 . . . ik) and the

columns (j1 . . . jk).

Proof. For simplicity, let us denote the basis of V × V by
{
ei = (ei, 0),

en+i = (0, ei)
}n

i=1
. The n-vector ϕ∗(e1 ∧ · · · ∧ en) is:

ϕ(e1) ∧ · · · ∧ ϕ(en) =
(

e1 +
n∑

i=1

ai1en+i

)
∧ · · · ∧

(
en +

n∑

i=1

ainen+i

)
.

Now we want to express the n-vector ϕ(e1) ∧ · · · ∧ ϕ(en) in the natural basis
of Λn(V × V ), {ei1 ∧ · · · ∧ ein

∣
∣ 1 ≤ i1 < · · · < in ≤ 2n}. Performing the product

in the last equation we get

ϕ(e1) ∧ · · · ∧ ϕ(en) = e1 ∧ · · · ∧ en+

+
∑

1≤i,j≤n

aije1 ∧ · · · ∧ ej−1 ∧ en+i ∧ ej+1 ∧ · · · ∧ en+

+
∑

i1<i2
j1<j2

(ai1j1ai2j2 − ai1j2ai2j1)e1 ∧ · · · ∧ ej1−1 ∧ en+i1 ∧ ej1+1 ∧ · · ·

· · · ∧ ej2−1 ∧ en+i2 ∧ ej2+1 ∧ · · · ∧ en + . . .

. . . +
∑

i1<···<in−1
j1<···<jn−1

(−1)jn−1det(Aj1...jn−1
i1...in−1

)ejn
∧ en+i1 ∧ · · · ∧ en+in−1+

+ det(A)en+1 ∧ · · · ∧ e2n,
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where, in the last sum, jn is the only element of {1, . . . , n} \ {j1, . . . ,
jn−1} and Aj1...jk

i1...ik
is the submatrix of A corresponding to the rows (i1 . . . ik) and

the columns (j1 . . . jk).
Then, the coefficients of ϕ(e1) ∧ · · · ∧ ϕ(en) in the basis of Λn(V × V ) are all

the minor determinants of A, and also the 1 correspondent to e1 ∧ · · · ∧ en. With
this, we can calculate ‖ϕ(e1)∧ · · · ∧ϕ(en)‖2 adding the squares of each coefficient,
as we have proclaimed in (3). �

For simplicity, from now on we will call volume of the matrix A to the right
side of (3). If we change the orthonormal basis in V obviously the volume of A
will remain the same but not each minor which appears in (3). For this reason,
we will try to obtain another similar matrix B = PAP−1 in such a way that we
can calculate the volume of the endomorphism easily.

This change of basis in V will represent an orthonormal change of frame in
M2k+1 when we will identify A with the second fundamental form of the distribu-
tion X⊥.

3. Volume of a diagonal matrix

Fundamental Lemma. Let D be a diagonal matrix of dimension 2k with positive
entries. We have

vol(D)2 ≥
(

1 +
k∑

i=1

(
k
i

)

(
2k
2i

)σ2i(D)

)2

, (4)

where σ2i(D) are the elementary symmetric functions of order 2i of the elements
of the diagonal. The equality holds if and only if D = λ Id 2k.

Proof. If the components of the matrix D are {λ1, . . . , λ2k}, it is easy to see that
the square of the volume of D (the sum of the squares of all the minors) expressed
in (3) is

vol(D)2 = 1 +
2k∑

i=1

λ2
i + . . . +

∑

i1<···<i2k−1

(
λ2

i1 · · ·λ2
i2k−1

)
+ λ2

1 · · ·λ2
2k. (5)

We can span the square of the right side of (4) to obtain:
(

1+
k∑

i=1

(
k
i

)

(
2k
2i

)σ2i(D)
)2

= 1 +
k∑

i=1

(
k
i

)2

(
2k
2i

)2 σ2
2i +

k∑

i=1

2

(
k
i

)

(
2k
2i

)σ2i+

+
∑

1≤i<j≤k

2

(
k
i

)(
k
j

)

(
2k
2i

)(
2k
2j

)σ2iσ2j =
2k∑

j=0

j∑

i=0

(
k
i

)(
k

j−i

)

(
2k
2i

)(
2k

2j−2i

)σ2iσ2j−2i.

(6)

Recall that
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σj(D) = σj =
∑

i1<···<ij

λi1 · · ·λij

that σ0 = 1 and, if j > 2k, then σj = 0.
Inequality (4) is basically a relation between polynomials in the variables {λi}

and then we must compare the terms of the same degree on each side of the
inequality.

The last equality of (6) groups the different terms of degree 2j. That is, in

(

1 +
k∑

i=1

(
k
i

)

(
2k
2i

)σ2i(D)

)2

the terms of degree 2j in the λi are exactly
j∑

i=0

(
k
i

)(
k

j−i

)

(
2k
2i

)(
2k

2j−2i

)σ2iσ2j−2i.

From (5) and (6), in order to prove the Lemma, we have to show that:

∑

i1<···<ij

λ2
i1 · · ·λ2

ij
≥

j∑

i=0

(
k
i

)(
k

j−i

)

(
2k
2i

)(
2k

2j−2i

)σ2iσ2j−2i. (7)

for j = 1, . . . , 2k.
Note that in the sum of the right hand several terms appear twice (in fact, all

the terms or all except one depending on the parity of j).
From the well-known inequality

(
a2
1 + a2

2 + . . . + a2
n

) ≥ 1
n

(
a1 + a2 + . . . + an

)2

we get
∑

i1<···<ij

λ2
i1 · · ·λ2

ij
≥ 1

(
2k
j

)
( ∑

i1<···<ij

λi1 · · ·λij

)2

=
1

(
2k
j

)σ2
j . (8)

In order to compare σ2
j with the products σ2iσ2j−2i we use the formula in

[HLP, pg. 52]. This formula is valid when the λi’s are positive. If we normalize
the symmetric functions we have

pi =
1

(
2k
i

)σi,

and then, see [HLP],

p2
i ≥ pi−1pi+1 i = 1, . . . , 2k − 1. (9)

In (9), equality holds if and only if all λi’s have the same value. From this
equation we can obtain easily

p2
j ≥ pj−2pj+2,

and consecutively we get
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σ2
j ≥

(
2k
j

)2

(
2k

j−2s

)(
2k

j+2s

)σj−2sσj+2s for all possible j and s. (10)

We show here the proof of the case j even. The other case is completely similar.
Assume that j is even. From (8) and (10) we have, for all s = 0, . . . , j/2,

∑

i1<···<ij

λ2
i1 · · ·λ2

ij
≥

(
2k
j

)

(
2k

j−2s

)(
2k

j+2s

)σj−2sσj+2s.

In order to obtain the coefficient of σj−2sσj+2s in the general expression (7),
we use the previous inequality to obtain

2

(
k

j
2−s

)(
k

j
2+s

)

(
2k
j

)
∑

i1<···<ij

λ2
i1 · · ·λ2

ij
≥ 2

(
k

j
2−s

)(
k

j
2+s

)

(
2k

j−2s

)(
2k

j+2s

)σj−2sσj+2s (11)

for s = 1, . . . , j/2 and when s = 0,
(

k
j/2

)2

(
2k
j

)
∑

i1<···<ij

λ2
i1 · · ·λ2

ij
≥

(
k

j/2

)2

(
2k
j

)2 σ2
j . (12)

The case s = 0 is not different from the others (s > 0) when j is odd. Therefore,
to show (7) we must see that the sum of the coefficients of (11) for all s = 1, . . . , j/2
with the coefficient of (12) is exactly 1. That is, we have to prove that

2
j/2∑

s=1

(
k

j
2−s

)(
k

j
2+s

)

(
2k
j

) +

(
k

j/2

)2

(
2k
j

) = 1,

or, equivalently,
(

2k

j

)
= 2

j/2−1∑

l=0

(
k

l

)(
k

j − l

)
+

(
k

j/2

)2

=
j∑

l=0

(
k

l

)(
k

j − l

)
. (13)

But this equality holds because both combinatorial expressions can be calcu-
lated from the expansion (1 + x)2k directly as well as from

(
(1 + x)k

)2 in this
way:

2k∑

j=0

(
2k

j

)
xj = (1 + x)2k = (1 + x)k(1 + x)k =

=

(
k∑

q1=0

(
k

q1

)
xq1

)(
k∑

q2=0

(
k

q2

)
xq2

)

=
2k∑

j=0

∑

q1+q2=j

(
k

q1

)(
k

q2

)
xq1+q2 =

=
2k∑

j=0

j∑

l=0

(
k

l

)(
k

j − l

)
xj .
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The coefficients of xj in both sides of the this equality give (13).
Finally, we remark that in this the proof, as well the proof of the odd case,

the inequalities become equalities if and only if all λi’s are equal, that is, when
λ = λ1 = λ2 = . . . = λ2k. �

The Fundamental Lemma provides an inequality when λi ≥ 0 where {λ1, . . . λ2k}
are the components of the diagonal matrix D. If we follow carefully the proof we
can observe that the expression can be a little more general. If D is an arbitrary
diagonal matrix with elements λi ∈ R we get

vol(D) ≥
k∑

i=0

(
k
i

)

(
2k
2i

)σ2i

({|λj |}2k
j=1

) ≥
k∑

i=0

(
k
i

)

(
2k
2i

)
∣
∣σ2i

({λj}2k
j=1

)∣∣.

4. Reduction to the diagonal case

A unit vector field X on M2k+1 defines a, possibly non-integrable, distribution of
dimension 2k, say X⊥. At each point, the (non-symmetric) second fundamental
form of this distribution has an associated endomorphism. Let A be its matrix
with respect to some basis. The eigenvalues of A can be real or complex numbers.

When all the eigenvalues are real, we have in fact that X⊥ is integrable. In
this case the endomorphism is symmetric and hence we can choose an orthonormal
local basis who diagonalizes A. When X⊥ is not integrable, we can assure at least,
through an orthonormal change of frame, that there exists a local basis in which
the matrix associated is of type

B =

























λ1 ∗ · · ·
0

. . .
... λr

∗ · · ·

0 0
...

...

a1 b1

−b1 a1

∗ · · ·
∗ · · ·

0 0
...

...

. . .
. . .

...
...

∗ ∗
· · · 0
· · · 0

as bs

−bs as

























.

That is, B is a matrix with an upper triangular part (the λis) and another part
composed with 2 × 2 submatrices along the diagonal. The components under the
diagonal are all zero and the components above the diagonal are not important.
The λi’s represent the real eigenvalues and the

(
ai bi

−bi ai

)
the complex ones.
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With the aim to prove the Main Theorem for the general case, we will need
several steps in order to reach the diagonal case (when X⊥ is integrable). Along
these consecutive transformations we must control the volume of the matrices and
also the values of the σ2i that appear in the lower bound of (2).

Lemma 1. From a generic matrix A and the matrix B described above, we have,

vol(A) = vol(B) and σi(A) = σi(B) for all i.

Proof. The matrices A and B represent the same endomorphism but for different
orthonormal bases. Hence B = PAP−1 for some orthogonal matrix P and we
have directly

vol(A) = vol(B).

By definition, the elementary symmetric functions σi satisfy the equation

det(A − tId ) =
n∑

i=0

(−1)iσn−i(A)ti.

But,

det(A − tId ) = det
(
P (A − tId )P−1

)
= det(PAP−1 − tId ) =

= det(B − tId ) =
n∑

i=0

(−1)iσn−i(B)ti.

Then, σi(A) = σi(B) for all i = 1, . . . , n. �

From B, we make another matrix C taking just the real eigenvalues as well as
the 2 × 2 boxes corresponding to the complex eigenvalues. We fill in with zeros
the rest of the matrix. That is, we define

C =























λ1 0 · · ·
0

. . .
... λr 0 0 · · ·

· · · 0
...

a1 b1

−b1 a1

0 · · ·
0 · · ·
. . .

. . .

...
...

0 0

· · · 0
· · · 0

as bs

−bs as























.

The endomorphism associated to C is possibly quite different from that of B.
This construction is completely artificial but we obtain the following.
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Lemma 2. If B and C are the matrices described above, then

vol(B) ≥ vol(C) and σi(B) = σi(C) for all i.

The volumes will be equal if and only if B = C.

Proof. In order to calculate the volume of B we need the squares of all the minor
determinants. The value of some of these determinants form the volume of C
while the rest provides the inequality. These remaining determinants are formed
with the entries above the diagonal. For this, in vol(B) ≥ vol(C) we will get the
equality when all the components above the diagonal be zero, that is, when B = C.

It is also trivial that σi(B) = σi(C) for all i = 1, . . . n. The σi is just the sum
of all the diagonal determinants of order i. The matrices B and C have the same
components in the diagonal and under the diagonal all the elements are zero. Thus
the diagonal determinants calculated with entries in B or in C will have the same
value. �

From C, we take the absolute values of the elements of the diagonal and we
define C̃.

C̃ =























|λ1| 0 · · ·
0

. . .
... |λr| 0 · · ·

· · · 0
...

|a1| b1

−b1 |a1|
0 · · ·
0 · · ·
. . .

. . .

...
...

0 0

· · · 0
· · · 0

|as| bs

−bs |as|























.

It is straightforward from the definition that

vol(C) = vol(C̃) and |σ2i(C)| ≤ σ2i(C̃) for all i. (14)
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Finally, from C̃ we construct the diagonal matrix D,

D =





















|λ1| 0 · · ·
0

. . .
... |λr|

√
a2
1 + b2

1 0
0

√
a2
1 + b2

1

. . .
√

a2
s + b2

s 0
0

√
a2

s + b2
s





















.

Lemma 3. Let C̃ and D be as described above. Then we have

vol(C̃) = vol(D) and σi(C̃) ≤ σi(D) for all i.

When the dimension is greater or equal than 4, the σi’s inequality will be an
equality if and only if C̃ = D, (that is, bj = 0 for all j).

Proof. In order to improve the notation, let us assume that the λi and the aj are
all positive avoiding the need to write |λi| or |aj |.

In order to obtain vol(C̃), if we calculate the determinants of order 1 we note
that the possible differences with vol(D) appear in the components

(
ai bi

−bi ai

)
. In

this case, the squares of the determinants of order 1 will add up

2a2
i + 2b2

i .

For the corresponding elements in D,
(√

a2
i +b2i 0

0
√

a2
i +b2i

)
, we get the same value

(√
a2

i + b2
i

)2

+
(√

a2
i + b2

i

)2

= 2a2
i + 2b2

i .

For the determinants of order 2, in C̃ we have

det2
(

ai bi

−bi ai

)
= (a2

i + b2
i )

2,

but in D we have also

det2
(√

a2
i + b2

i 0
0

√
a2

i + b2
i

)
= (a2

i + b2
i )

2.

When we look at the determinants of order 2 that separate the entries of the
2 × 2 boxes in C̃, we found the following results:
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2det2
(

λi 0
0 aj

)
= 2λ2

i a
2
j , 2det2

(
λi 0
0 bj

)
= 2λ2

i b
2
j ,

4det2
(

ai 0
0 aj

)
= 4a2

i a
2
j , 4det2

(
ai 0
0 bj

)
= 4a2

i b
2
j ,

4det2
(

bi 0
0 aj

)
= 4a2

jb
2
i , 4det2

(
bi 0
0 bj

)
= 4b2

i b
2
j .

But in D we get the same values:

2det2
(

λi 0

0
√

a2
j + b2

j

)

= 2λ2
i (a

2
j + b2

j ),

4det2
(√

a2
i + b2

i 0

0
√

a2
j + b2

j

)

= 4(a2
i + b2

i )(a
2
j + b2

j ).

We can observe that this argument is valid for the determinants of any order.
A full proof can be given for the general case. We have presented here the kernel of
the proof and we prefer to save the reader the boring details. Thus we can assert

vol(C̃) = vol(D).

In order to check the inequality of the σi’s, we remark that the diagonal de-
terminants that do not separate the 2 × 2 boxes corresponding to the complex
eigenvalues are exactly the same in C̃ that in D. Just the diagonal determinants
in C̃ that take only one ai and the equivalent in D that take just one root

√
a2

i + b2
i

are equal if and only if bi = 0 (if ai > 0). Then,

σi(C̃) ≤ σi(D) for all i = 1, . . . , n.

We can observe that in dimension 2 or 3 it can happen σ2(D) = σ2(C̃) but
with b1 �= 0. When n ≥ 4, we will have that σi(C̃) ≤ σi(D) is an equality just
when bi = 0 for all i (C̃ = D). �

Redefining the elements of D, after several steps, we have reduced a general
matrix A to a diagonal one,

D =









λ1 0 · · · 0

0
. . .

...
0 λ2k









,

where all λi are positive.



Vol. 79 (2004) Volume of unit vector fields 313

5. Proof of the Main Theorem and consequences

Proof of Main Theorem. Let X be a unit vector field and {e1, e2, . . . e2k,
e2k+1 = X} a local frame on M2k+1. Let A be the matrix of the second fun-
damental form of the complementary distribution to X (possibly non-integrable).
The matrix A defines an endomorphism of the subspace X⊥

x ⊂ TxM for all x ∈ M .
From an algebraic viewpoint, X⊥

x is a vector space of dimension 2k endowed with
a scalar product.

From the expression of the volume of a unit field (1), we omit the terms where
the acceleration ∇XX is involved. Thus,

vol(X) ≥
∫

M

vol(A)ν, (15)

where equality holds if and only if X is totally geodesic (∇XX = 0).
Now we recall the modifications described in Section 4. These transforma-

tions represent, at each point of M , a change of the second fundamental form
endomorphism of X⊥.

Through an orthonormal change of basis in X⊥ we can modify the matrix A as
we have described in Lemma 1 obtaining in this way an upper triangular matrix B
with maybe 2× 2 boxes in the diagonal. The matrix C introduced before Lemma
2 is nearly diagonal, with the exception of the 2 × 2 diagonal blocks. Taking the
absolute values of the entries of the diagonal we define C̃. Finally, let D be the
diagonal matrix like in Lemma 3 (with positive components). Thus,

∫

M

vol(A)ν =
∫

M

vol(B)ν ≥
∫

M

vol(C)ν =
∫

M

vol(C̃)ν =
∫

M

vol(D)ν. (16)

Also by Lemmas 1, 2 and 3 and from (14) we have the inequalities

σ2i(D) ≥ σ2i(C̃) ≥ |σ2i(C)| = |σ2i(B)| = |σ2i(A)|. (17)

Thus, using (15), (16), Fundamental Lemma and (17) consecutively,

vol(X) ≥
∫

M

vol(D)ν ≥
∫

M

(

1 +
k∑

i=1

(
k
i

)

(
2k
2i

)σ2i(D)

)

ν ≥

≥
∫

M

(

1 +
k∑

i=1

(
k
i

)

(
2k
2i

) |σ2i(A)|
)

ν,

as we have stated in (2).
When k ≥ 2, the inequalities of Lemmas 2 and 3 will be equalities if and only

if the endomorphism A is diagonalizable (that is, all the eigenvalues are real). The
Fundamental Lemma says that in order to have an equality all the eigenvalues
must be equal. Thus, equality in (2) will be satisfied if and only if X is totally
geodesic and X⊥ is integrable and umbilic, A = λ Id 2k. �

As we mentioned before, the integrals of the σ2i(X⊥) in manifolds of constant
sectional curvature have been calculated in [BLR]. These integrals turn out to be
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independent on the field X. In this way, in S2k+1 and also in compact hyperbolic
spaces the lower bound of Main Theorem is actually a lower bound of the volume
functional.

Theorem ([BLR]). Let Mn+1 be a closed manifold with constant sectional cur-
vature c and X a unit vector field . Then,

∫

M

σi(X⊥)ν =

{(
n/2
i/2

)
ci/2vol(M) if n and i even

0 if n or i odd.

In this way, the proof of Corollary 1 is straightforward. In [P] we find developed
the value of this sum and it can be checked that

k∑

i=0

(
k
i

)2

(
2k
2i

) =
4k

(
2k
k

) .

Then, we can rewrite the lower bound of Corollary 1 in this way

vol(X) ≥ 4k

(
2k
k

)vol(S2k+1).

When we try to look for globally defined unit vector fields on S2k+1 satisfy-
ing minimization conditions of the Main Theorem we find in the mathematical
literature the following result.

Theorem ([BW]). Let M be a complete Riemannian manifold with non-negative
Ricci curvature. If F is a foliation of codimension 1 over M and F⊥, the normal
flow to F , is geodesic, then F is totally geodesic and F⊥ is parallel. Therefore, M
is locally a Riemannian product.

Proof of Corollary 2. If there were on S2k+1 a vector field X who reached the lower
bound of Corollary 1, X would be totally geodesic with orthogonal distribution,
X⊥, also integrable. With this and the previous Theorem showed in [BW], the
sphere would be a Riemannian product. Contradiction. �

Proof of Corollary 3. The distribution orthogonal to VR in M = S2k+1 \ {±p} is
in fact a foliation and the integral leaves are the parallels of S2k+1. From (1) we
have

vol(VR) =
∫

M

( 2k∑

i=0

(
2k

i

)
λ2i

) 1
2

ν =
∫

M

(
(1 + λ2)2k

) 1
2 ν =

∫

M

(
1 + λ2

)k
ν,

where λ is the principal curvature of the leaf. It is well-known that the radius r
of a parallel of the sphere is given by

(1
r

)2

= 1 + λ2.
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If we parametrize the sphere S2k+1 by the latitude θ, then r = cos(θ) and

vol(VR) =
∫

M

(
1 + λ2

)k
ν =

∫ π
2

−π
2

∫

S2k(cos(θ))

( 1
cos2(θ)

)k

ν′dθ =

=
∫ π

2

−π
2

1
cos2k(θ)

vol
(
S2k(cos(θ))

)
dθ =

∫ π
2

−π
2

2π
2k+1

2

Γ
(

2k+1
2

)dθ =

=
22kπ

2k+3
2 (k − 1)!

(2k − 1)!
√

π
=

22k+1πk+1k!
(2k)!

=
4k

(
2k
k

)
2πk+1

k!
=

=
4k

(
2k
k

)vol(S2k+1).

We have remarked before that 4k
(
2k
k

)−1
is equal to the sum expressed in the

Corollary 1. This complete the proof. �

The proof of Corollary 4 is also direct from Main Theorem.
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Universidad de Murcia
Campus Universitario de Espinardo
30100 Murcia
Spain
e-mail: pmchacon@um.es

A. M. Naveira
Dpto. de Geometŕıa y Topoloǵıa
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