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Abstract. This paper classifies Hermitian structures on 6-dimensional nilmanifolds M = Γ\G
for which the fundamental 2-form is ∂∂-closed, a condition that is shown to depend only on the
underlying complex structure J of M . The space of such J is described when G is the complex
Heisenberg group, and explicit solutions are obtained from a limaçon-shaped curve in the complex
plane. Related theory is used to provide examples of various types of Ricci-flat structures.
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Introduction

Let (M,J, g) be a Hermitian manifold. There is a 1-parameter family of canoni-
cal Hermitian connections on M which can be distinguished by properties of the
torsion tensor T [13, 30]. In particular, there is a unique connection ∇ satisfying
∇g = 0, ∇J = 0 for which g(X,T (Y,Z)) is totally skew-symmetric. The result-
ing 3-form can then be identified with JdΩ, where Ω is the fundamental 2-form
defined by (1). This connection was used by Bismut [4] to prove a local index
formula for the Dolbeault operator when the manifold is non-Kähler, and is the
subject of a number of other interesting results [16, 20]. The properties of such a
connection give rise to what is loosely called ‘Kähler with torsion geometry’, and
if JdΩ is closed but non-zero then g is called a strong KT metric. Such metrics
have applications in type II string theory and in 2-dimensional supersymmetric
σ-models [11, 19, 29].

In four real dimensions, a metric satisfying the strong KT condition is ‘stan-
dard’ in the terminology of Gauduchon [12]. One can be found in the conformal
class of any given Hermitian metric on a compact manifold. But the theory is
very different in higher dimensions. Even-dimensional compact Lie groups pro-
vide a natural class of strong KT structures [28]. In this case, one may choose
J to be a left-invariant complex structure and g to be a compatible bi-invariant
metric. Then ∇ is the flat connection with skew-symmetric torsion g(X, [Y,Z])
corresponding to an invariant 3-form on the Lie algebra. It is therefore natural to
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investigate the situation with regard to other groups.
In this paper, we study KT geometry on 6-dimensional nilmanifolds in which

J and g arise from corresponding left-invariant tensors. If G is a simply-connected
nilpotent Lie group, and if the structure equations of its Lie algebra are rational,
then there exists a discrete subgroup Γ of G for which M = Γ\G is compact [22, 25].
Any left-invariant complex structure on G will pass to a complex structure J on
M but, unless G is abelian, the ∂∂-lemma is not valid for J and in particular there
is no compatible Kähler metric [3, 7, 17, 24]. As we explain in §6, there may or
may not be invariant pseudo-Kähler metrics on (M,J).

Eighteen of the thirty-four classes of real 6-dimensional nilpotent Lie algebras
g admit a complex structure. Exactly four of these classes, all of them 2-step
with b1 � 4 and including the case in which g underlies the complex Heisenberg
algebra, give rise to strong KT metrics. Given that compact nilmanifolds with a
strong KT structure exist, it is perhaps surprising that there are so few classes.
The classification over R is accomplished in §3, after an analysis of the relevant
structure equations over C in §§1,2. A matrix formalism for describing (1,1)-forms
is introduced in an attempt to make the calculations of this paper rather more
enlightening. A striking feature of our classification is that the existence of a
strong KT structure depends only on the complex structure of g, and this poses
the question of understanding the solutions as a subset of an appropriate moduli
space of complex structures.

With this aim, we proceed to a detailed study of the strong KT equations when
G is the complex Heisenberg group and M = Γ\G is the Iwasawa manifold. It is
easy to check that none of the standard complex structures [1] on G are strong KT,
so we were intrigued to discover which ones are. According to the third author’s
joint paper with Ketsetzis [21], essential features of an invariant complex structure
J on M depend on XX, where X is a 2×2 matrix representing the induced action
of J on M/T 2 ∼= T 4. In §4, we prove that the strong KT condition constrains
the eigenvalues of XX to be complex conjugates lying on a curve in the complex
plane. We interpret this result in terms of the action of the automorphism group
of g in §5, and this leads to an explicit description of the solution space. An
analogous study can probably be carried out when G = H3 ×H3 is the product of
real Heisenberg groups, using methods from [14].

A Hermitian manifold is called conformally balanced if the Lee 1-form θ (the
‘trace’ of dΩ) is exact. The study of such structures in relation to the Bismut
connection ∇ is motivated by work of [26], though there are less subtleties in our
invariant context. It was observed in [2] that the vanishing of θ is complementary
to the SKT condition (see §1), and we begin the final section by discussing some
known facts concerning the situation in which the holonomy of ∇ reduces to SU(n).
We list some 6-dimensional Lie algebras giving rise to nilmanifolds admitting such
a reduction, and give an example of a pseudo-Riemannian metric with zero Ricci
tensor.
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1. Complex structure equations

Let (M,J, g) be a Hermitian manifold of real dimension 2n. We shall regard the
complex structure J as the primary object, so the Riemannian metric g is chosen
to render J orthogonal. The fundamental 2-form Ω is then defined by

g(X,Y ) = Ω(X,JY ) (1)

and has type (1,1) relative to J . The Hermitian structure is Kähler if and only if
dΩ = 0, which is equivalent to the vanishing of ∂Ω = (dΩ)2,1.

Somewhat unconventionally, we set

� = 1
2 idJd.

This operator acts as ∂∂ on forms of type (p, p), which it maps to forms of type
(p + 1, p + 1). We shall only be concerned with the case p = 1.

Definition 1.1. We shall say that the Hermitian manifold (M,J, g) is ‘strong KT’
or more briefly ‘SKT’ if �Ω = 0 but dΩ �= 0.

Observe that our definition of SKT excludes the Kähler case.

We wish to combine the notion of SKT with that of an invariant Hermitian
structure on a nilmanifold. First recall the definition of nilpotency for a Lie algebra
g. The descending central series of g is the chain of ideals defined inductively by
g0 = g and gi = [gi−1, g] for i � 1. Then g is nilpotent if gs = 0 for some s. If, in
addition, gs−1 �= 0 then g is said to be s-step.

Let g be a real 2n-dimensional nilpotent Lie algebra. Assigning an almost
complex structure J : g → g is equivalent to choosing an n-dimensional subspace
Λ of g∗c such that Λ ∩ Λ = {0}. For the purpose of this paper, we shall call such
a subspace of g∗c ‘maximally complex’. The endomorphism J extends uniquely to
a left-invariant almost complex structure (also denoted by J) on any Lie group G
with Lie algebra g. The subspace Λ generates the space of (1,0)-forms relative to
J , and this is a complex structure if and only if I(Λ) is a differential ideal. (We
use I(S) to denote the ideal generated by a subset S of the exterior algebra

∧∗
g.)

By a ‘nilmanifold with an invariant complex structure’ we mean an even-
dimensional nilmanifold Γ\G endowed with a complex structure J arising from
g. It is important to note that (G, J) will not in general be a complex Lie group.
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Theorem 1.2. Let M = Γ\G be a 6-dimensional nilmanifold with an invariant
complex structure J . Then the SKT condition is satisfied by either all invariant
Hermitian metrics g or by none. Indeed, it is satisfied if and only if J has a basis
(αi) of invariant (1, 0)-forms such that






dα1 = 0
dα2 = 0
dα3 = Aα12 + Bα22 + Cα11 + Dα12 + Eα12

(2)

where A,B,C,D,E are complex numbers such that

|A|2 + |D|2 + |E|2 + 2Re(BC) = 0. (3)

We indicate αi ∧ αj by αij (or −αji), and use similar notation for forms of
arbitrary degree. Thus, the symbol α stands more for the choice of basis than for
an individual element.

The third equation in (2) means that

dα3 ∈ ∧2〈α1, α1, α2, α2〉.
and the resulting complex structure J is of ‘nilpotent’ type in the language of [6].
Observe that the system (2) automatically satisfies d2 = 0 and therefore defines a
Lie algebra irrespective of the values of A,B,C,D,E. The resulting isomorphism
classes are listed in §3, where we distinguish those compatible with (3).

We shall divide the proof of Theorem 1.2 into two parts. The second part is
devoted to a mainly computational derivation of the structure equations (2), and
is relegated to the next section. However, it is instructive to begin by assuming
(2) and deducing (3) from it. This we do immediately, and in passing we shall see
that the choice of metric is irrelevant.

Let Ω be the fundamental 2-form of some J-Hermitian metric, and set

Ω =
3∑

i,j=1

xij αij , (4)

where xij ∈ C are constant coefficients with xji = −xij . The positive definiteness
of g implies that the restriction of Ω to any complex line is non-zero. Equivalently,

Ω(V, JV ) = g(V, V ) > 0 (5)

for any vector V �= 0 in the complexified tangent space.
Given that Jdα3 differs from dα3 by changing the sign of E, an easy calculation

gives
Jdα3 ∧ dα3 = (|A|2 + BC + CB + |D|2 + |E|2)α1122. (6)

The vanishing of this 4-form is precisely (3), which can now be deduced from (2)
via

Lemma 1.3. Given (2), (M,J, g) is SKT for any invariant Hermitian metric g

if and only if Jdα3 ∧ dα3 = 0.
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Proof. Observe that x33 �= 0. Indeed, if (Vi) is a basis of (1,0)-vectors dual to (αi)
then (5) implies that −ix33 = Ω(V3, JV 3) > 0. On the other hand, all the terms
in (4), with the exception of x33α

33, are eliminated by two differentiations. Thus,
the SKT condition is satisfied for any compatible metric if and only if �α33 = 0.

Let Ψ = Jdα3 ∧ dα3, and observe that

2�α33 = dJd(iα33) = idJ(dα3 ∧ α3 − α3 ∧ dα3)

= d(Jdα3 ∧ α3 + α3 ∧ Jdα3)

= Jdα3 ∧ dα3 + dα3 ∧ Jdα3

= Ψ + JΨ

since J2 = 1 on 2-forms. But Ψ is a form of type (2,2) relative to J (or any other
almost complex structure on the real 4-dimensional space underlying 〈α1, α2〉), so
JΨ = Ψ. ��

The Lee form of a Hermitian manifold (M,J, g) of real dimension 2n is the
1-form

θ = J ∗ d ∗ Ω = −Jd∗Ω (7)

where d∗ is the formal adjoint of d with respect to g. The formula ∗Ω =
Ωn−1/(n − 1)! implies that d(Ωn−1) = θ ∧ Ωn−1. Equivalently,

� = dΩ − 1
n−1

θ ∧ Ω

satisfies � ∧ Ωn−2 = 0, and is therefore a primitive form.
Almost Hermitian manifolds with θ = 0 have in the past been called semi-

Kähler or cosymplectic, though a Hermitian structure is also called balanced if
θ = 0. In this case, we are therefore talking about Hermitian manifolds of Gray–
Hervella class W3 [15]. Since 〈d∗Ω, σ〉 = 〈Ω, dσ〉 for all 1-forms σ, the vanishing of
θ is equivalent to Ω being orthogonal to the image of d in

∧2
g∗, a fact exploited

in the study [1].
Under a conformal change g̃ = e2fg, the Lee form transforms as

θ̃ = θ + 2(n − 1)df. (8)

The Hermitian structure is conformally balanced if θ is exact, for in that case f
can be chosen so that θ̃ = 0.

In real dimension 4, the SKT condition is equivalent to d∗θ = 0. The following
result is given in [2, Remark 1], but merits a proof in our setting.

Proposition 1.4. A Hermitian manifold (M,J, g) of real dimension 2n � 6 can
only be SKT if θ �= 0.

Proof. Suppose that θ = 0. Since d∗Ω = −∗ d ∗Ω and ∗Ω is proportional to Ωn−1,
the (2n−1) form Φ = Ωn−2∧∂Ω vanishes. Thus ∂Ω is a primitive (2,1)-form, and

0 = ∂Φ = (n − 2)Ωn−3 ∧ ∂Ω ∧ ∂Ω + Ωn−2 ∧ ∂∂Ω.
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Primitivity implies that Ωn−3 ∧ ∂Ω ∧ ∂Ω is proportional to ‖∂Ω‖2, so ∂∂Ω = 0
now implies that ∂Ω = 0 and M is Kähler. But this is excluded in Definition 1.1.

��

It is amusing to view this result in the light of Theorem 1.2. Suppose that
n = 3 and that (2) holds. Referring to (4), we may set

x12 = z, x21 = −z, x11 = ix, x22 = iy

with x, y > 0 and xy > |z|2 to reflect positivity. The condition that Ω be orthog-
onal to dα3 becomes

Az + i(Bx − Cy) + Dz = 0. (9)

Proposition 1.4 implies that this is incompatible with the inequality

|A|2 + |D|2 + 2Re(BC) � 0 (10)

from (3) unless all the coefficients vanish.
The incompatibility between (9) and (10) is clear if Ω assumes the standard

form
Ω0 = 1

2 i(ω11 + ω22 + ω33). (11)

For then z = 0, x = y; thus B = C and Re(BC) = |B|2. The general case is far
less obvious, but follows by setting B = y = 1 (which is no real restriction) and
applying

Remark 1.5. Let A,C,D, z ∈ C be such that x = C + i(Az + Dz) is real. Then

|A|2 + |D|2 + 2Re C � 0 ⇒ x � |z|2.
To verify this, set F = i(Az + Dz) so that

x = Re C + Re F � Re C + |F | � − 1
2 (|A|2 + |D|2) + (|A| + |D|)|z|.

If x > |z|2 then
2|z|2 − 2(|A| + |D|)|z| + |A|2 + |D|2 < 0

which (as a quadratic in |z| with non-positive discriminant) is impossible.

2. Reducing the coefficients

This section is devoted to completing the proof of Theorem 1.2 by arriving at (2).
Our starting point is [27, Theorem 1.3], which we mildly re-state as

Theorem 2.1. A maximally complex subspace Λ of g∗c is the (1, 0)-space of a
complex structure if and only if Λ has a basis (αi) for which dα1 = 0 and dαi ∈
I({α1, . . . , αi−1}) for i � 2.
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Recall that I stands for ‘ideal’. In dimension 6 this result provides the generic
structure equations

dα1 = 0,

dα2 = a1α
12 + a2α

13 + a3α
11 + a4α

12 + a5α
13,

dα3 = b1α
12 + b2α

13 + b3α
11 + b4α

12 + b5α
13 + c1α

23 + c2α
21 + c3α

22 + c4α
23

(12)
where ai, bj , ck ∈ C. We therefore need to establish the vanishing of nine coeffi-
cients, namely a∗ and b2, b5, c1, c4. (The new names C,D,−A,−B for b3, b4, c2, c3

are carefully chosen to simplify formulae in subsequent sections.) We follow a type
of decision tree in order to eliminate the coefficients one by one, but suppress the
detailed calculations. The latter can be carried out by hand, though the procedure
itself was refined by computer (Maple and Mathematica versions are available from
the authors).

The system defined by (12) does not in general define a Lie algebra as d2 (it
is clearer to type this as dd) may not vanish. A valid solution must therefore
satisfy both ddαi = 0 and the SKT condition �Ω = 0. On a computer, the
operator � = − 1

2d ◦ (−iJ) ◦ d can be executed by treating −iJ as the substitution
αj → −αj . If dd = 0 then � = ∂∂, but in general �Ω may have a non-zero (3,1)
component. To avoid this embarrassment, we shall restrict attention to

αij�Ω = αi ∧ αj ∧ �Ω (13)

which we identify with its coefficient relative to the standard 6-form α123123. (Ac-
tually we shall only ever take i = j in (13).)

A first calculation reveals that α11�Ω = x33|c1|2. The positive definiteness of
Ω implies that c1 = 0. Independently, the α232 component of ddα3 equals |c4|2, so
c4 = 0. To simplify matters, we now consider two cases: a5 �= 0 and a5 = 0 (the
choice of subscript 5 is partly a matter of taste).

Case 1. Suppose a5 �= 0. Subtracting a multiple of α2 from α3 we may suppose
that b5 = 0. Using ddα3 (we mean of course ‘the vanishing of ddα3’) gives c3 = 0.
Using ddα2 now gives a4 = 0 and b1 = b2 = 0. To sum up, a4, b1, b2, b5, c1, c3, c4

are all zero. If p denotes the α131 component of ddα3 then p = a2c2 + b4a5 and

0 = α22�Ω = (|a2|2 + |a5|2)x22 − (Re p)x33.

This contradicts a5 �= 0. �

Case 2. Suppose a5 = 0. We divide into two subcases: c3 �= 0 and c3 = 0.

Case 2.1. Suppose c3 �= 0. Inspecting only ddα3 already gives a1 = a2 = 0 and
b5 = 0. Using ddα2 then gives a4 = 0. Returning to ddα3 gives b2 = a3 = 0. To
sum up, a∗, b2, b5, c1, c4 are all zero so we recover (2). The proof of Lemma 1.3
amounts to nothing more than an application of the equation α33�Ω = 0, which
yields (3). In this way we arrive at the conclusion of Theorem 1.2 that represents
the generic solution to the SKT hypothesis. �
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Case 2.2. Suppose c3 = 0. Using ddα2 shows that a4 = 0 (even if a1 = a2 = 0).
We now divide into two subsubcases: c2 �= 0 and c2 = 0.

Case 2.2.1. Suppose c2 �= 0. Using ddα2 and ddα3 respectively gives a2 = 0 and
b5 = 0. Then α22�Ω = x33|b2|2, whence b2 = 0. Using ddα3 gives a1 = 0. It
follows that

0 = α33�Ω = x33(|b1|2 + |b4|2 + |c2|2)
and the solution reduces to 





dα1 = 0
dα2 = a3α

11

dα3 = b3α
11.

(14)

By subtracting a multiple of α3 from α2 (or swapping the two if b3 = 0), this
solution can be subsumed into that of Theorem 1.2. �

Case 2.2.2. Suppose c2 = 0 so that c∗ = 0. The vanishing of ddα3 implies that
b5 = 0 and consequently that either a1 = a2 = 0 or b4 = 0. In the former case, the
vanishing of α22�Ω and α33�Ω gives b2 = 0 and b1 = b4 = 0 respectively, and we
obtain (14). The final situation to deal with is therefore that a4, a5, b4, b5, c∗ all
vanish. This implies that

0 = α22�Ω = x22|a2|2 + x23a2b2 + x32a2b2 + x33|b2|2
= iΩ(a2V2 + b2V3, a2V 2 + b2V 3),

(15)

in the notation of (5). Unless a2 = b2 = 0, the restriction of Ω to the complex line
spanned by a2V2 + b2V3 is zero, which is impossible. Exactly the same argument
applied to α33�Ω gives a1 = b1 = 0 and we are left with only a3, b3 non-zero,
whence (14). �

Remark 2.2. An invariant complex structure J always induces a complex Lie
algebra structure on the i-eigenspace g1,0 of gc. In the 6-dimensional nilpotent
case, g1,0 is either abelian or isomorphic to the complex Heisenberg algebra. In the
former case, J is itself called abelian, and this is equivalent to asserting that d maps
the subspace Λ1,0 of g∗c into Λ1,1. The complex structure given by Theorem 1.2 is
therefore abelian if and only if E = 0. So SKT does not imply that the complex
structure is abelian. This is in contrast with the result that if a 2-step nilpotent
Lie group admits an invariant HKT structure then the hypercomplex structure
must be abelian [8].

3. Real Lie algebras

Theorem 1.2 can be used to classify explicitly the real 6-dimensional nilpotent Lie
algebras admitting an SKT structure. Before explaining this, we shall introduce a
formalism that will eventually help to understand and manipulate (2). Namely, we
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shall use complex 2× 2 matrices to describe certain forms of type (1,1) by setting

Yα = Aα12 + Bα22 + Cα11 + Dα12 (16)

where

Y =
(A B
C D

)
(17)

so that
dα3 = Yα + Eα12. (18)

The exact positioning of the coefficients may seem strange, but follows a logic that
is revealed in (25) below. The subscript α indicates the basis relative to which the
construction is made.

Operations on 2-forms now translate into matrix operations in a natural way.
For example,

Xα ∧ Yα = tr(XY#)α1122

where

Y# = adjY =
(

D −B
−C A

)
= (detY)Y−1

is the transpose of the matrix of cofactors. Moreover,

Yα = Y
#

α

and so
Yα ∧ Yα = tr(YY)α1122.

Example 3.1. The complex coefficients A,B,C,D are meant to be thought of as
those in (2). In an illustration, we compute

dα3 ∧ dα3 = (tr(YY) − |E|2)α1122

Jdα3 ∧ dα3 = (tr(YY) + |E|2)α1122

dα3 ∧ dα3 = tr(YY#)α1122 = 2(detY)α1122.

(19)

The middle equation is a more succinct version of the SKT formula (6).

The following result relies on the classification of [27], whose notation we freely
adopt.

Theorem 3.2. A 6-dimensional nilmanifold M = Γ\G admits an invariant SKT
structure if and only if the Lie algebra g is isomorphic to one of

(0, 0, 0, 0, 13 + 42, 14 + 23)
(0, 0, 0, 0, 12, 14 + 23)
(0, 0, 0, 0, 12, 34)
(0, 0, 0, 0, 0, 12).
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In particular, g is 2-step and b1(M) � 4.

Proof. The possibility that g is abelian is precluded by Definition 1.1. Vanishing
of the real and imaginary components of dα1, dα2 in (2) implies immediately that
b1(g) � 4. Nomizu’s theorem [25] tells us that the de Rham cohomology of the
compact quotient M is captured by that of the subcomplex of invariant forms, so
b1(M) = b1(g). The fact that dα3 ∈ ∧2(ker d) means (in the notation of [27]) that
(g2)o = V2 equals g, which is therefore 2-step.

Using the methods of [27], any 2-step nilpotent Lie algebra with b1 � 4 is
isomorphic to one of

(i) (0, 0, 0, 0, 12, 13), (ii) (0, 0, 0, 0, 13 + 42, 14 + 23),

(iii) (0, 0, 0, 0, 12, 14 + 23), (iv) (0, 0, 0, 0, 12, 34),

(v) (0, 0, 0, 0, 0, 12), (vi) (0, 0, 0, 0, 0, 12 + 34).

(20)

For example, in case (i) there is a real basis (ei) of 1-forms for which dei = 0 for
1 � i � 4, de5 = e12 and de6 = e13. We need to eliminate (i) and (vi), and prove
existence in the other cases.

Given (2), write dα3 = σ1+iσ2 in real and imaginary components, and consider
the real 2 × 2 matrix B = (bij) associated to the bilinear form

σi ∧ σj = bijα1122.

Under the SKT assumption, equations (19) give

−B =
(|E|2 + Re U Im U

Im U |E|2 − Re U

)

(21)

where U = −detY = BC − AD. Using de5, de6 in place of σ1, σ2 is merely a
change of real basis and must yield a matrix congruent to B. It follows that, in
the above examples,

B is the zero matrix for (i) and (v),
B has rank 1 for (iii) and (vi),
detB �= 0 for (ii) and (iv).

In case (vi), we may rescale α3 so that dα3 is real. This implies that dα3 is a
(1,1)-form and E = 0. Since B has rank 1, the matrix (21) has zero determinant
so U = 0. This means that B = 0, which is a contradiction. In case (i) we already
know that B = 0 so that E = 0 = U . Thus, dα3 = Yα is a (1,1)-form with
rank Y � 1. But the image 〈e12, e13〉 of d in

∧2
g∗ is divisible by the real 1-form

e1 and must therefore be generated by e1 ∧Je1. But this contradicts the fact that
d(g∗) is actually 2-dimensional.

The remaining cases are distinguished by the rank and signature of B, and
it is easy to check that the coefficients in (3) can be chosen to realize the four
possibilities. ��
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Example 3.3. The irrelevance of the choice of Hermitian metric is special to the
nilpotent situation. The third Lie algebra listed in Theorem 3.2 corresponds to
the product H3 ×H3 where H3 is the real Heisenberg group. A simple example in
which the SKT condition is metric dependent is provided by H3 × S3, where S3

is identified with SU(2). We may choose a real basis of 1-forms such that

de1 = 0, de2 = 0, de3 = e12, de4 = e56, de5 = e64, de6 = e45.

Setting ω1 = e1 + ie2, ω2 = e3 + ie4, ω1 = e5 + ie6 gives





dω1 = 0

dω2 = 1
2 (i ω11 − ω33)

dω3 = 1
2 (ω23 + ω32).

It follows that d(ω33) = 0 and ∂∂ω22 = dω2 ∧ dω2 = 0, so (11) satisfes �Ω0 = 0.
On the other hand, �ω13 = − 1

4 iω1223 and the general 2-form (4) determines an
SKT metric if and only if x13 = −x31 = 0.

4. Invariant forms on Iwasawa

The real Lie algebra (0, 0, 0, 0, 13 + 42, 14 + 23) underlies the complex Heisenberg
group G and the Iwasawa manifold M , defined in the next paragraph. We shall
summarize the relevant facts concerning invariant complex structures in this case,
though important background for §§4,5 can be found in [21, 27]. The reader is
implicitly referred to these papers for further explanation of a number of points.

Given

G =









1 z1 z3

0 1 z2

0 0 1



 : zi ∈ C





,

we let Γ be the discrete subgroup for which zi are Gaussian integers. Then M is
the set Γ\G = {Γg : g ∈ G} of right cosets. It is a homogeneous space relative to
the action of G by right translation that persists on the quotient, though we shall
be interested in the projections of tensors that are invariant by left translation
on G.

The complex 1-forms ω1 = dz1, ω2 = dz3, ω3 = −dz3+z1dz2 satisfy dω3 = ω12

and span the (1, 0) space Λ0 of the bi-invariant complex structure J0 on M . It
is known that, in addition to J0, any left-invariant complex structure on G leaves
invariant the real 4-dimensional subspace

D = 〈Re ω1, Im ω1,Re ω2, Im ω2〉 (22)

that arises from a principal T 2-fibration M → T 4. As a consequence, the generic
invariant complex structure on M has a space Λ of (1,0)-forms generated by a
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basis of the type 




α1 = ω1 + aω1 + bω2

α2 = ω2 + cω1 + dω2

α3 = ω3 + xω1 + yω2 + uω3

(23)

with a, b, c, d, x, y, u ∈ C. In any case, if Λ = 〈α1, α2, α3〉 is maximally complex it
defines an invariant almost complex structure on M that we denote by JX,x,y.

The effect of JX,x,y on a real basis (ei) can be deduced by setting

ω1 = e1 + ie2, ω2 = e3 + ie4, ω3 = e5 + ie6,

though little is to be gained from this, apart from verifying the real equations
de5 = e13 + e42 and de5 = e14 + e23. The integrability condition for JX,x,y is
readily expressed in terms of (23) as dα3 ∧ α123 = 0 (equivalently dα3 ∧ α12 = 0).
This reduces to

u = bc − ad = −detX (24)

where

X =
(
a b
c d

)
.

Using (16), we may consider the simple 2-form

α12 = ω12 + aω12 + bω22 + cω11 + dω12 − uω12

= ω12 + cω11 + dω12 − aω21 − bω22 − uω12

= Xω + ω12 − uω12.

(25)

We write the characteristic polynomial of XX as c(x) = x2 − γx + δ, so that

γ = tr(XX), δ = det(XX) = |u|2 (26)

(notation of [21]).
The formulae

α1122 = −α12 ∧ α12 = (1 − γ + δ)ω1122 = c(1)ω1122

α112233 = α1122 ∧ α33 = c(1)(1 − δ)ω112233
(27)

express volume changes associated to a switch of basis from ω to α. As a conse-
quence, Λ ∩ Λ = {0} if and only if

δ �= 1 and c(1) �= 0 (28)

and these are the conditions that ensure that JX,x,y is well defined. From now on,
we assume that (24) and (28) hold. For simplicity, we also suppose x = y = 0,
and denote JX,0,0 simply by JX. It will become obvious that reducing to this case
causes no loss of generality, the key point being that dα3 (and so (31) below) does
not involve x, y. An underlying reason for the irrelevance of x, y is provided in §5.

One may invert (25) so as to express ω12 in terms of the α’s. Up to the overall
factor c(1), the corresponding formula is given by reversing the signs of a, b, c, d:
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Lemma 4.1. c(1)ω12 = −Xα + α12 − uα12.

Proof. Consider the bases (ω1, ω2, ω1, ω2), (α1, α2, α1, α2). The second is related
to the first by the block matrix

M =

(
I X

X I

)

in a row-by-row fashion. Set Z = (I − XX)−1 so that c(1) = det(Z−1). By first
observing that

XZ = Z(Z−1X)Z = Z(I − XX)XZ = ZX(I − XX)Z = ZX,

it is easy to verify that

M−1 =

(
Z −ZX

− XZ Z

)

.

The coefficients 1, c, d,−a,−b,−u featuring in (25) are the 2×2 minors of the 2×
4 matrix M = (I |X), corresponding to the Mathematica command Minors[M, 2].
The coefficients of ω12 are therefore given by

Minors[(Z | −ZX), 2] = (detZ)Minors[(I | −X), 2],

using a well-known property of minors. ��

Proposition 4.2. The complex structure JX is SKT if and only if the eigenvalues
of XX satisfy the equation

(1 + |z|2) |1+z|2 = 8|z|2 (29)

illustrated in the Figure.

It follows easily that all points of the curve are realized except for z = 1 that
is excluded by (28) (see Theorem 5.2 below).

Proof. We first prove that JX is SKT if and only if

1 − 6δ + δ2 + γ + γδ = 0. (30)

Using Lemma 4.1,

c(1)dα3 = c(1)ω12 + uc(1)ω12

= −Xα + α12 − uα12 + u(−X
#

α + α12 − uα12)

= −(Xα + uX
#

α) + (1 − δ)α12

= (−X + δX
−1

)α + (1 − δ)α12.

(31)

Comparing this with (18) yields

c(1)Y = −X + δX
−1

, c(1)E = 1 − δ. (32)
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Thus

c(1)2 tr(YY) = tr(XX − 2δI + δ2(XX)−1) = γ − 4δ + δ2(γ/δ)

and (30) follows from Lemma 1.3 and (19).

-4 -3 -2 -1 1 2

-3

-2

-1

1

2

3

Figure. The curve (29) and the circle |z| = 1.

Now let λ, µ denote the eigenvalues of XX, so that γ = λ + µ and δ = λµ.
Thus, λµ � 0 so λ and µ cannot be real with opposite signs. It is an elementary
but non-trivial fact that if λ, µ are real and non-positive then they are equal [18,
Problem 6, §4.6]. Under the SKT assumption,

γ =
−1 + 6δ − δ2

1 + δ

is non-negative if and only if 3 − 2
√

2 � δ � 3 + 2
√

2. The eigenvalues λ, µ can
only be real if

0 � (λ − µ)2 = γ2 − 4δ =
(

1 − δ

1 + δ

)2

(δ2 − 14δ + 1)

which implies that δ � 7 − √
48 or δ � 7 +

√
48. The various inequalities are

incompatible, and there are no solutions with λ, µ > 0 and it follows that λ = µ.
Thus,

1 − γ + δ = 1 + λ + λ + |λ|2 = |1 + λ|2 > 0
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and (30) translates into (29). ��

Remark 4.3. It is easy to check that equation (29) is unchanged by the substi-
tution

z → 1/z.

We shall see below that this corresponds to reversing the sign of J . Another curve
with a similar shape invariant by both complex conjugation z → z and inversion
z → 1/z is given in polar coordinates by r = esin θ. (This can be generalized by
replacing sin θ by an odd Fourier series.) If we shift the origin to the point z = 1
of self-intersection, (29) becomes

r = −3 cos θ ±
√

2 + cos2 θ.

A true limaçon has the somewhat simpler equation r = 2 cos θ + 1, but the corre-
sponding translate is not invariant under inversion.

5. Moduli space interpretation

Let C denote the set of all invariant complex structures on the Iwasawa manifold
M . This is a subset of the set of all almost complex structures on g (equiva-
lently, maximally complex subspaces of gc), that can in turn be identified with
the homogeneous space GL(6, R)/GL(3, C). It is known that C has four connected
components, and these can be described as follows.

Changing the sign of J corresponds to an overall reversal of orientation, and
corresponds to the transformation

(α1, α2, α3) → (α1, α2, α3). (33)

This identifies the components of C in pairs. Let Ĵ denote the restriction of J to
the real subspace (22) underlying 〈ω1, ω2〉. The remaining two components of C
are distinguished by the orientation of Ĵ or equivalently, by (27), the sign of c(1).
For example

C+ = {JX, x,y : x, y ∈ C, |u| < 1, c(1) > 0} (34)

is the connected component that contains J0.
To fully understand the SKT constraint on complex structures on M , we need

to describe various group actions on C and their effect on the matrix X.

(i) Involution. Referring to (23), can say that the almost complex structure
Ĵ is represented by the matrix (I |X). This is replaced by

(X | I) ≡ (I |X−1
) (35)

under (33) when J, Ĵ are replaced by −J,−Ĵ . The equivalence relation ≡ in-
dicates premultiplication on both halves by an invertible matrix, and reflects a
re-adjustment

(α1, α2) → (α̃1, α̃2)
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into the row echelon form (23) in which α̃i has leading term ωi. Notice that
det(X

−1
) = −1/u, consistent with setting α̃3 = α3/u = ω3 +ω3/u. It now follows

that
−(JX) = J

X
−1 .

If the eigenvalues of X are λ, λ then those of X
−1

are 1/λ, 1/λ, and this justifies
Remark 4.3 and helps to explain why the solution curve has a limaçon shape. The
inner part |z| < 1 corresponds to solutions in the same component as J0 and the
outer part |z| > 1 to the component of −J0. One is an inversion of the other.
The thicker part with |z| < 1 and Im z � 0 fits (after rotation by 45o) into the
semicircular region of the diagram in [21], and represents the SKT solutions most
faithfully. (The rest of the complex plane above does not fit into the diagram
that is a schematic pasting of the real and complex plane best contemplated in 3
dimensions.)

The integrability condition for a left-invariant almost complex structure on an
arbitrary Lie algebra g is invariant under the action of the automorphism group

G = {f ∈ End g : [f(v), f(w)] = f [v, w].}
In the Iwasawa case, G can be identified with the semidirect product GL(2, C)�C

2

consisting of complex 3 × 3 matrices



P q

0 detP



 , P ∈ GL(2, C), q ∈ C
2 (36)

(see [27]). The action on C of P and q can be considered separately.

(ii) Right translation. The normal subgroup C
2 of G can be identified with

the group AdG of inner automorphisms of g. Since J ∈ C is by definition left-
invariant, Ad(g)J equals the right translate of J by g−1 ∈ G. Whilst J0 is fixed
by this action (G being a complex Lie group), all the other orbits have positive
dimension. Moreover, if u �= 0 then JX,x,y lies in the same orbit as JX for any
x, y ∈ C. This is explained in [21], but to avoid duplication we next insert an
infinitesimal version of this fact.

Remark 5.1. The action of the diffeomorphism group on a complex structure J
is detected by the image of

∂ : Γ(T ⊗ Λ0,0) → Γ(T ⊗ Λ0,1)

where T denotes the holomorphic tangent bundle of (M,J). Restricting to in-
variant tensors, a p-form f with values in T can be regarded as a linear mapping
Λ1,0 → Λp,0 and ∂f is calculated by means of the formula

(∂f)(αi) = ∂(f(αi)) − f(∂αi) = −f(∂αi).
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Since ∂α3 = Yα, the dimension of Im ∂ coincides with the rank of Y which equals
2 if and only if u �= 0 (see (18) and (32)). This discussion is relevant to the jumping
of Hodge numbers discussed in [23].

In the SKT context, it is no restriction to impose the condition detX �= 0
since z = 0 is not a solution of (29). In the light of the above remarks, we shall
call the structures JX,x,y for which detX �= 0 the stable points of C and indicate
their entirety by Cst. The quotient Cst/Ad G is then smooth and injects into the
moduli space of all complex structures on M modulo diffeomorphism. For our
calculations, we may always assume that x = y = 0 so that J = JX is completely
determined by Ĵ and the matrix X.

(iii) Outer automorphisms. The quotient G/Ad G can be identified with
GL(2, C), an element of which acts by a change of basis

{
ω1 → p1

1ω
1 + p1

2ω
2

ω2 → p2
1ω

1 + p2
2ω

2.

By analogy to (35), the matrix (I |X) representing Ĵ is transformed into

(P |XP) ≡ (I |P−1XP)

and therefore a left action on C is defined by

P−1 · J = JP−1XP.

The presence of detP in (36) ensures that the extension from D to g is well defined.
The remaining action by GL(2, C) is less geometrical and the resulting quotient

Cst/G has singularities, an example of which is given after Example 5.3. Now

X → P−1XP, P ∈ GL(n, C) (37)

is an action that gives rise to the theory of consimilarity for n × n matrices X. If
[[X]] denotes the consimilarity class of X (i.e. an orbit for the above action) and
[Y] the similarity class of Y, there is a well defined mapping

φ : [[X]] → [XX]. (38)

This is not a bijection as XX can be zero without X being zero. However, the
general theory of consimilarity developed in [18, §4.6] implies that φ restricts to a
bijection between classes subject to an equal rank condition. In the simple case of
n = 2, we may condense the discussion of this section into

Theorem 5.2. An invariant complex structure J on the Iwasawa manifold is SKT
if and only if it equals JX,x,y where

X = P−1
(0 z
1 0

)
P

with P ∈ GL(2, C), z a solution of (29) different from 1 and x, y ∈ C. Moreover,
such structures lie in the connected components of J0 and −J0 in C.
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Proof. If X has the form given then XX is similar to a diagonal matrix with entries
z, z. Since z �= 1, JX,x,y is well defined. Bearing in mind (from (ii)) that x, y are
irrelevant, Proposition 4.2 implies that JX,x,y is SKT.

Conversely, suppose that J ∈ C is SKT. The complex structures JX,x,y repre-
sented by (23) constitute a dense set of C, and the only missing points are those
arising when one or more of the coefficents become infinite. The SKT condition
involves only dα3, so the only case potentially not covered by (23) is that in which
α3 belongs to the span of ω3 and D. But then Jdα3 ∧ dα3 �= 0 and J cannot
be SKT by Lemma 1.3. The statement about connected components now follows
from the fact that the solutions in Proposition 4.2 all satisfy c(1) > 0 (see (34)).

We may therefore suppose that J = JX,0,0 = JX, and that the eigenvalues z, z
of XX satisfy (29). Assume firstly that z is not real. Choose P ∈ GL(2, C) such
that Y = PXP

−1
satisfies

YY = P(XX)P−1 =
(
z 0
0 z

)
.

In the notation (17), AB + BD = 0 = AC + CD, which implies

A(BC − BC) = 0 = D(BC − BC),

and A = D = 0. We can now premultiply P by a diagonal matrix so as to convert
B to z and C to 1, as required.

Now assume that z ∈ R. The equation YY =
(z 0
1 z

)
would imply that B = 0

and z > 0, which contradicts (29). Thus, XX is again diagonalizable and we need
to solve

YY = z I, (39)

that implies that |A| = |D|. But we can find Q ∈ GL(2, C) such that Ỹ = QYQ
−1

has its last entry D̃ zero. Since Ỹ satisfies (39) in place of Y, we also have Ã = 0,

and we can modify Q so that C̃ = 1 and Ỹ =
(0 z
1 0

)
. ��

Example 5.3. The point z = 1 on the curve is not admissible, because in this
case

α1 = ω1 + ω2 = α2,

and any corresponding tensor J is degenerate. The solutions

z = −2 ±
√

3 ∈ R

are admissible, but since −2 − √
3 = 1/(−2 +

√
3) the J ’s coincide up to an

overall complex conjugation, in accordance with the discussion in (i). These are
the simplest solutions to the SKT equation. The purely imaginary solutions are
z = ±i

√
3 ± 2

√
2, and we presume that there are no rational solutions to (29).
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Let Hz denote the stabilizer of
(0 z
1 0

)
in GL(2, C) for the action (37). It is easy

to verify that if z ∈ R and z = −x < 0 then

Hz =
{(a −cx

c a

)
: |a|2 + |b|2 �= 0

}
∼= GL(1, H) (40)

If z ∈ C � R then Hz is isomorphic to the common subgroup C
∗ obtained by

setting c = 0 in (40). It follows that the SKT structures z = −2 ± √
3 (one of

which is a blob in the Figure) represent singular points in Cst/G.

6. Examples with reduced holonomy

Let M be a Hermitian manifold of dimension 2n, and η an (n, 0)-form on M of
constant norm. Let ∇ be an arbitrary Hermitian connection on M , so that ∇J = 0
and ∇g = 0, and denote its torsion tensor by T . Then

∇η = β ⊗ η,

where β ∈ u(1) is a purely imaginary 1-form. Anti-symmetrizing,

β0,1 ∧ η = dη + (T · η)n,1, (41)

where · stands for a suitable linear mapping. The terms on the right-hand side of
(41) can be identified with the respective intrinsic torsion components W5,W4 [5].

As an application of (41), we may deduce the following well-known result. The
Chern connection is the unique Hermitian connection for which T has no (1, 1)-
component, so that

T ( · , ·) + T (J · , J ·) = 0. (42)

This means that T takes values in the real vector space underlying Λ1,0⊕End(Λ1,0),
and we have (T · η)n,1 = 0. Thus, a closed (equivalently, holomorphic) (n, 0)-form
of constant norm is necessarily parallel with respect to the Chern connection. For
more details, see [2, 9, 20].

For the remainder of this paper, let ∇ denote the Bismut connection and D the
Levi–Civita connection. Recall that ∇ is the unique connection for which g and J
are parallel and the torsion g( · , T ( · , ·)) is totally skew-symmetric. The following
result is closely related to formula (2.7) of [2].

Proposition 6.1. Let M be a compact nilmanifold with an invariant Hermitian
metric. The holonomy of ∇ reduces to SU(n) if and only if M is balanced.

Proof. The basis arising from Theorem 2.1 furnishes us with a closed (n, 0)-form

η = α12···n (43)

of constant norm. To say that the holonomy of ∇ is contained in SU(n) means
that there exists an (n, 0) form ξ satisfying ∇ξ = 0. This equation implies that ξ
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also has constant norm, so η = eihξ for some function h : M → R/2πZ, and (41)
is valid with β = idh.

Since T is determined by dΩ, the last term of (41) determines a non-zero U(n)
equivariant mapping

Λ1,2 ⊗ Λn,0 → Λn,1 ∼= Λn−1,0.

This is equivalent to the SU(n)-equivariant contraction Λ1,2 → Λ0,1 ∼= Λn−1,0 that
extracts the ‘trace’ of ∂Ω. A comparison with (8) (which corresponds to the case
β = 2df) reveals that θ is proportional to Jdh. Using (7), it follows that dd∗Ω = 0
and, by integration, d∗Ω = 0.

Conversely, if θ = 0 then (41) implies that (43) is itself parallel for ∇, so the
global holonomy group reduces to SU(n). ��

Returning to six dimensions, it is an easy matter to list Lie algebras admitting
a balanced Hermitian metric, so that ∇ has reduced holonomy. We restrict atten-
tion to the algebras considered in §3. Case (v) is realized by taking C = 1 and
A,B,D,E zero which is incompatible with (9). But this is the only one excluded:

Corollary 6.2. Each of the Lie algebras

(0, 0, 0, 0, 13 + 42, 14 + 23)
(0, 0, 0, 0, 12, 14 + 23)
(0, 0, 0, 0, 12, 34)
(0, 0, 0, 0, 0, 12, 13)
(0, 0, 0, 0, 0, 12 + 34)

admits a Hermitian structure for which the holonomy group of ∇ is a subgroup of
SU(3).

Proof. Relative to the complex basis (αi) considered in §1, the Hermitian structure
will be the standard one corresponding to (11). The balanced condition B = C is
then independent of A,D,E, and this gives us the flexibility to realize the various
cases as follows. If B = C = 0 then

A = D = 0 and E = 1 gives case (ii),
A = D = 1 and E = 0 gives (vi),
A = E = 1 and D = 0 gives (i),
A = D = 1 and E = 2 gives (iii).
The real basis used to define each of the Lie algebras listed above may bear

a complicated relation to (αi), as in the remaining case that corresponds to the
direct sum of two real Heisenberg algebras. Nonetheless, it is easy to check that
if B = C = i then

A = 1, D = −1 and E = 2 gives (iv)
up to an isomorphism of real Lie algebras. ��
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Example 6.3. The holonomy group will generally equal SU(3) in the situation
described by Corollary 6.2, even if one replaces ∇ by another canonical Her-
mitian connection. But a further reduction takes place in case (vi), namely
(0, 0, 0, 0, 0, 12 + 34), precisely for the Bismut connection. To explain this, let
(αi) be a basis of (1,0)-forms satisfying dα3 = α12 + α12 as in the last proof, and
set

α1 = 1
2 (e1 + ie3), α2 = 1

2 (e2 + ie4), α3 = 1
2 (e6 + ie5).

Relative to the Hermitian structure defined by (11), the Riemannian metric is
locally reducible with De5 = 0, and we claim that

∇α1 = e6 ⊗ α2, ∇α2 = −e6 ⊗ α1, ∇α3 = 0.

These equations define a connection for which ∇g = 0 and ∇J = 0; indeed the
matrix of 1-forms relative to (αi) has values in 〈e6〉 ⊗ u(1). Furthermore, the
torsion g( · , T ( · , ·)) equals
3∑

i=1

ei ⊗ (∧∇ei −dei) = e1 ⊗ e62 + e3⊗ e64− e2⊗ e61 − e4⊗ e63− e6⊗ e12− e6⊗ e34,

and is totally antisymmetric as claimed.

The reduction of the holonomy of ∇ to SU(n) is equivalent to the vanishing of
the 2-form

ρ(X,Y ) = 1
2

n∑

i=1

g(RXY ei, Jei), X, Y ∈ g,

where R is the curvature tensor of ∇. This is not in general equal to the Ricci
tensor of g when there is non-zero torsion, though the situation is just as intriguing
for the Levi–Civita connection of pseudo-Riemannian metric h.

Lemma 6.4. Suppose that (J, h) is an invariant pseudo-Kähler structure on a
nilmanifold M of real dimension 2n. Then the Ricci tensor of h vanishes.

Proof. The hypothesis means that M admits both an invariant complex structure
J and a closed 2-form Ω for which h (defined by (1) with h in place of g) is a
pseudo-Riemannian metric. In the presence of a compatible complex structure,
the equation dΩ = 0 is sufficient to imply that DΩ = 0 and thus DJ = 0, just as
in the familiar (positive-definite) Kähler case. We can therefore apply an equation
of type (41) to deduce that Dη = 0, whence the result. ��

As an example,

Proposition 6.5. The Lie algebra (0, 0, 0, 0, 13 + 42, 14 + 23) associated to the
Iwasawa manifold admits a pseudo-Kähler metric h which is Ricci-flat but not
flat.
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Proof. We take

Ω = e16 + e25 + e34, Je1 = e2, Je3 = −e4, Je5 = −e6.

It is necessary to check that

dΩ = −e1 ∧ de6 − e2 ∧ de5 = −e1 ∧ (e14 + e23) − e2 ∧ (e13 + e42) = 0

and that

J · Ω = (Je1) ∧ (Je6) + (Je2) ∧ (Je5) + (Je3) ∧ (Je4) = Ω.

Setting α1 = e1 + ie2, α2 = e3 − ie4, α3 = e5 − ie6 gives dα3 = α12, so J is
integrable and abelian. Observe that Ĵ has negative orientation, so its connected
component in C does not contain ±J0. The resulting pseudo-metric (1) assumes
the matrix form

(hij) =











0 0 0 0 1 0
0 0 0 0 0 −1
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 −1 0 0 0 0











and has signature (4,2).
A computation reveals that

R1212 =
6∑

m=1
h1mRm

212 = R5
212 = −2,

and so the full Riemann curvature is non-zero. ��

A contrasting situation is provided by the Lie algebra of Example 6.3 with
b1 = 5. For (0, 0, 0, 0, 0, 12 + 34) carries no invariant symplectic form [27], and
does not therefore possess an invariant pseudo-Kähler metric. We suspect that
the remaining four algebras in (20) do admit pseudo-Kähler metrics.

A completely different class of Ricci-flat structures on nilmanifolds, indeed ones
with signature (2n, 2n) that are not invariant, are discussed in [10].
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Università di Torino
Via Carlo Alberto 10
10124 Torino
Italy
e-mail: annamaria.fino@unito.it

M. Parton
Dipartimento di Scienze
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