Comment. Math. Helv. 79 (2004) 350–361 0010-2571/04/020350-12 DOI 10.1007/s00014-003-0797-2

© 2004 Birkhäuser Verlag, Basel

Commentarii Mathematici Helvetici

On the zero set of semi-invariants for tame quivers

Christine Riedtmann and Grzegorz Zwara

Abstract. Let **d** be a prehomogeneous dimension vector for a finite tame quiver Q. We show that the common zeros of all non-constant semi-invariants for the variety of representations of Q with dimension vector $N \cdot \mathbf{d}$, under the product of the general linear groups at all vertices, is a complete intersection for $N \geq 3$.

Mathematics Subject Classification (2000). 14L24, 16G20.

 ${\bf Keywords.} \ {\rm Semi-invariants, \ quivers, \ representations.}$

1. Introduction

Let k be an algebraically closed field, and let $Q = (Q_0, Q_1, t, h)$ be a finite quiver, i.e. a finite set $Q_0 = \{1, \ldots, n\}$ of vertices and a finite set Q_1 of arrows $\alpha : t\alpha \to h\alpha$, where $t\alpha$ and $h\alpha$ denote the tail and the head of α , respectively.

A representation of Q over k is a collection $(X(i); i \in Q_0)$ of finite dimensional k-vector spaces together with a collection $(X(\alpha) : X(t\alpha) \to X(h\alpha); \alpha \in Q_1)$ of k-linear maps. A morphism $f : X \to Y$ between two representations is a collection $(f(i) : X(i) \to Y(i))$ of k-linear maps such that

$$f(h\alpha) \circ X(\alpha) = Y(\alpha) \circ f(t\alpha)$$
 for all $\alpha \in Q_1$.

By $\sigma(X)$ we denote the number of pairwise non-isomorphic indecomposable direct summands occurring in a decomposition of X into indecomposables. According to the theorem of Krull–Schmidt, $\sigma(X)$ is well-defined. The dimension vector of a representation X of Q is the vector

$$\dim X = (\dim X(1), \dots, \dim X(n)) \in \mathbb{N}^{Q_0}.$$

We denote the category of representations of Q by $\operatorname{rep}(Q)$, and for any vector $\mathbf{d} = (d_1, \ldots, d_n) \in \mathbb{N}^{Q_0}$

$$\operatorname{rep}(Q, \mathbf{d}) = \prod_{\alpha \in Q_1} \operatorname{Mat}(d_{h\alpha} \times d_{t\alpha}, k)$$

is the vector space of representations X of Q with $X(i) = k^{d_i}, i \in Q_0$. The group

$$\operatorname{Gl}(\mathbf{d}) = \prod_{i=1}^{n} \operatorname{Gl}(d_i, k)$$

acts on $\operatorname{rep}(Q, \mathbf{d})$ by

$$((g_1,\ldots,g_n)\star X)(\alpha)=g_{h\alpha}\cdot X(\alpha)\cdot g_{t\alpha}^{-1}.$$

Note that the $Gl(\mathbf{d})$ -orbit of X consists of the representations Y in $rep(Q, \mathbf{d})$ which are isomorphic to X.

We call **d** a prehomogeneous dimension vector if $\operatorname{Gl}(\mathbf{d}) \star T$ is an open orbit for some T in $\operatorname{rep}(Q, \mathbf{d})$. Such a representation T is characterized by $\operatorname{Ext}^1_Q(T, T) = 0$ [9]. If Q admits only finitely many indecomposable representations, or equivalently if the underlying graph of Q is a disjoint union of Dynkin diagrams of type \mathbb{A} , \mathbb{D} or \mathbb{E} [6], every vector **d** is prehomogeneous. Indeed, any representation is a direct sum of indecomposables and therefore $\operatorname{rep}(Q, \mathbf{d})$ contains finitely many orbits, one of which must be open.

Let **d** be prehomogeneous, and let $f_1, \ldots, f_s \in k[\operatorname{rep}(Q, \mathbf{d})]$ be the irreducible monic polynomials whose zeros $Z(f_1), \ldots, Z(f_s)$ are the irreducible components of codimension 1 of $\operatorname{rep}(Q, \mathbf{d}) \setminus \operatorname{Gl}(\mathbf{d}) \star T$, where $\operatorname{Gl}(\mathbf{d}) \star T$ is the open orbit. It is easy to see that

$$g \cdot f_i = \chi_i(g) \cdot f_i$$

for $g \in Gl(\mathbf{d})$, where $\chi_i : Gl(\mathbf{d}) \to k^*$ is a character. A regular function with this property is called a semi-invariant. By [11], any semi-invariant is a scalar multiple of a monomial in f_1, \ldots, f_s , and f_1, \ldots, f_s are algebraically independent. We denote by

$$\mathcal{Z}_{Q,\mathbf{d}} = \{ X \in \operatorname{rep}(Q,\mathbf{d}); f_i(X) = 0, i = 1, \dots, s \}$$

the closed subscheme of $\operatorname{rep}(Q, \mathbf{d})$ of common zeros of all non-constant semiinvariants. Obviously we have $\operatorname{codim} \mathcal{Z}_{Q,\mathbf{d}} \leq s$, and equality means that $\mathcal{Z}_{Q,\mathbf{d}}$ is a complete intersection.

Let T_1, \ldots, T_r be pairwise non-isomorphic indecomposable representations of Q such that $\operatorname{Ext}_Q^1(T_i, T_j) = 0$ for any $i, j \leq r$. In [8] we showed that there is a positive integer N such that $\mathcal{Z}_{Q,\mathbf{d}}$ is a complete intersection and irreducible for any dimension vector $\mathbf{d} = \sum_{i=1}^r \lambda_i \operatorname{dim} T_i$ with $\lambda_i \geq N$, $i = 1, 2, \ldots, r$. Now our goal is to prove that N is quite small in case Q is tame; i.e., every connected component Δ of Q is either a Dynkin quiver or an extended Dynkin quiver. Our methods are completely different.

Assume that Q is tame, and set

$$N(Q) = \max N(\Delta),$$

where Δ ranges over the connected components of Q and where

$$N(\Delta) = \begin{cases} 1 & \text{if } |\Delta| = \mathbb{A}_m \text{ or } \mathbb{A}_m, \\ 2 & \text{if } |\Delta| = \mathbb{D}_m, \mathbb{E}_6, \mathbb{E}_7 \text{ or } \mathbb{E}_8, \\ 3 & \text{if } |\Delta| = \widetilde{\mathbb{D}}_m, \widetilde{\mathbb{E}}_6, \widetilde{\mathbb{E}}_7 \text{ or } \widetilde{\mathbb{E}}_8, \end{cases}$$

and $|\Delta|$ denotes the underlying non-oriented graph of the quiver Δ . Note that $N(K) \leq N(Q)$ for any subquiver K of Q.

Theorem 1.1. Suppose Q is tame. Let T_1, \ldots, T_r be pairwise non-isomorphic indecomposable representations of Q such that $\operatorname{Ext}_Q^1(T_i, T_j) = 0$ for any $i, j \leq r$. Choose positive integers $\lambda_1, \ldots, \lambda_r$ and set $\lambda = \min \lambda_i$, $\mathbf{d} = \sum_{i=1}^r \lambda_i \operatorname{dim} T_i$. Then $\mathcal{Z}_{Q,\mathbf{d}}$ is

(i) a complete intersection provided $\lambda \geq N(Q)$,

(ii) irreducible provided $\lambda \geq N(Q) + 1$.

Note that the case of a Dynkin quiver of type \mathbb{A}_n has been treated by Chang and Weyman in [5].

In case k is the field \mathbb{C} of complex numbers, the fact that $\mathcal{Z}_{Q,\mathbf{d}}$ is a complete intersection implies that $\operatorname{rep}(Q, \mathbf{d})$ is cofree as a representation of the subgroup $Sl(\mathbf{d}) = \prod_{i=1}^{n} Sl(d_i)$ of $Sl(\mathbf{d})$; i.e., $\mathbb{C}[rep(Q, \mathbf{d})]$ is a free module over the ring $\mathbb{C}[rep(Q, \mathbf{d})]^{Sl(\mathbf{d})}$ of $Sl(\mathbf{d})$ -invariant polynomials [13, §17], [8].

Example. Let us consider the quiver

with the dimension vector $\mathbf{d} = \lambda \cdot \mathbf{e}$, $\lambda \in \mathbb{N}$ and $\mathbf{e} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ as an example.

There is an indecomposable representation T_1 in $\operatorname{rep}(Q, \mathbf{e})$, whose orbit is open. The complement of the open orbit of $T = T_1^{\lambda}$ in rep (Q, \mathbf{d}) has 4 components of codimension 1, defined by

$$\det\left(X(\alpha_1)\cdots\widehat{X(\alpha_j)}\cdots X(\alpha_4)\right)=0,$$

j = 1, 2, 3, 4, where the hat means "omit $X(\alpha_j)$ ". Using the results developed later, we know that X belongs to $\mathcal{Z}_{Q,\mathbf{d}}$ if and only if X either contains the simple projective P_5 or else the direct sum $\bigoplus_{j=1}^4 P_j$ of the two-dimensional projectives associated to the vertices $1, \ldots, 4$ as a direct summand. It is easy to check that

- Z_{Q,e} is irreducible of codimension 2,
 Z_{Q,2e} has two irreducible components of codimension 3 and 4, respectively,
 Z_{Q,3e} has two irreducible components of codimension 4,
 Z_{Q,λe} is irreducible of codimension 4 for λ ≥ 4.

2. Notations and preliminaries

The varieties considered in this paper are locally closed subsets of a k-vector space. If $\mathcal{A} \subseteq \mathcal{B}$ are two such varieties and \mathcal{B} is irreducible, we denote by $\operatorname{codim}_{\mathcal{B}} \mathcal{A}$ the codimension of \mathcal{A} in \mathcal{B} . In case $\mathcal{B} = \operatorname{rep}(Q, \mathbf{d})$, we omit the subscript \mathcal{B} .

We will assume throughout that the representation $T = \bigoplus_{i=1}^{r} T_{i}^{\lambda_{i}}$ is sincere, i.e., $T(l) \neq 0$ for any $l \in Q_{0}$. As the full subquiver K of Q which supports T is still tame with $N(K) \leq N(Q)$, this is no restriction. The assumption excludes oriented cycles as subquivers of Q. Indeed, a sincere representation of an oriented cycle cannot have an open orbit.

The Euler form of Q is the \mathbb{Z} -bilinear form on \mathbb{Z}^{Q_0} defined by

$$\langle \mathbf{d}, \mathbf{e} \rangle = \sum_{i \in Q_0} d_i e_i - \sum_{\alpha \in Q_1} d_{t\alpha} e_{h\alpha}.$$

For $X \in \operatorname{rep}(Q, \mathbf{d}), Y \in \operatorname{rep}(Q, \mathbf{e})$ it can be computed as

$$\mathbf{d}, \mathbf{e} \rangle = [X, Y] - {}^{1}[X, Y],$$

where

$$[X,Y] = \dim_k \operatorname{Hom}_Q(X,Y) \quad \text{and} \quad {}^1[X,Y] = \dim_k \operatorname{Ext}^1_Q(X,Y).$$

The quadratic form

$$q(\mathbf{d}) = \langle \mathbf{d}, \mathbf{d} \rangle$$

associated with the Euler form is the Tits form of Q. It is positive semi-definite as Q is tame and positive definite if Q does not contain extended Dynkin diagrams.

We follow Schofield [12] in order to describe the semi-invariants of $\operatorname{rep}(Q, \mathbf{d})$: For a representation U of Q, the right perpendicular category U^{\perp} is the full subcategory of $\operatorname{rep}(Q)$ whose objects are

$$\{Y; [U,Y] = {}^{1}[U,Y] = 0\}.$$

Dually, $^{\perp}U$ has as objects

$$[Z; [Z, U] = {}^{1}[Z, U] = 0\}.$$

Note that $U^{\perp} = {}^{\perp}(\tau U)$, where τ is the Auslander–Reiten translation for all nonprojective indecomposable direct summands of U and $\tau(P_l) = I_l$, where P_l and I_l are the projective and injective indecomposable representations associated to the vertex $l \in Q_0$, respectively. If ${}^1[U, U] = 0$, the category U^{\perp} is equivalent to the category of representations of a quiver with $n - \sigma(U)$ vertices.

Thus T^{\perp} contains n - r simple objects if $T = \bigoplus_{i=1}^{r} T_i^{\lambda_i}$ is a representation of Q as in the statement of the theorem. If S is one of them, the set

$$\{X \in \operatorname{rep}(Q, \mathbf{d}); \ [X, S] \neq 0\}$$

is a component of codimension 1 of the complement

$$\operatorname{rep}(Q, \mathbf{d}) \setminus \operatorname{Gl}(\mathbf{d}) \star T$$

Non-isomorphic simple objects lead to distinct components, and all components of codimension 1 are obtained in this way. Thus $\mathcal{Z}_{Q,\mathbf{d}}$ is the zero set of n-r (algebraically independent) polynomials. From now on, we will denote the underlying reduced variety of $\mathcal{Z}_{Q,\mathbf{d}}$ by the same symbol. This will cause no confusion since we are only interested in the irreducibility and the dimension of $\mathcal{Z}_{Q,\mathbf{d}}$. We have the following descriptions:

$$\mathcal{Z}_{Q,\mathbf{d}} = \{ X \in \operatorname{rep}(Q,\mathbf{d}); \ [X,S] \neq 0 \text{ for all simple objects } S \in T^{\perp} \} \\ = \{ X \in \operatorname{rep}(Q,\mathbf{d}); \ [S',X] \neq 0 \text{ for all simple objects } S' \in {}^{\perp}T \}.$$

The material presented here can be found in [12]; compare also [8]. In order to obtain part (i) of our theorem it suffices to prove codim $\mathcal{Z}_{Q,\mathbf{d}} \ge n-r$.

Fix a sink $z \in Q_0$; i.e., a vertex z which is the head of some arrows $\alpha_j : y_j \to z$, $j = 1, \ldots, s$, but the tail of none. The vertices y_1, \ldots, y_s need not be distinct. Let E be the simple projective supported at z. By \overline{Q} we denote the full subquiver of Q with $\overline{Q}_0 = Q_0 \setminus \{z\}$ and by $\overline{\mathbf{d}}$ the restriction of \mathbf{d} to \overline{Q}_0 . Note that the orbit of the restriction $\overline{T} = \bigoplus_{i=1}^r \overline{T}_i^{\lambda_i}$ to \overline{Q} is open in $\operatorname{rep}(\overline{Q}, \overline{\mathbf{d}})$. As E is the simple projective supported at z, we have

$$E^{\perp} = \{ X \in \operatorname{rep}(Q); \ X(z) = 0 \},\$$

which we identify with $\operatorname{rep}(\overline{Q})$. There is a short exact sequence

$$0 \to E^{d_z} \to T \to \overline{T} \to 0.$$

Considering the long exact sequence of Hom's and Ext¹'s from it, we find that $E^{\perp} \cap T^{\perp} = E^{\perp} \cap \overline{T}^{\perp} = \overline{T}^{\perp \overline{Q}}$.

We decompose $\mathcal{Z}_{Q,\mathbf{d}}$ as a disjoint union

$$\mathcal{Z}_{Q,\mathbf{d}} = \mathcal{Z}'_{Q,\mathbf{d}} \cup \mathcal{Z}''_{Q,\mathbf{d}},$$

where

$$Z'_{Q,\mathbf{d}} = \{ X \in Z_{Q,\mathbf{d}}; [X, E] = 0 \}$$
 and $Z''_{Q,\mathbf{d}} = \{ X \in Z_{Q,\mathbf{d}}; [X, E] \neq 0 \}.$

We will estimate the codimensions of $\mathcal{Z}'_{Q,\mathbf{d}}$ and $\mathcal{Z}''_{Q,\mathbf{d}}$ in $\operatorname{rep}(Q,\mathbf{d})$ separately.

Throughout the article, $T = \bigoplus_{i=1}^{r} T_i^{\lambda_i}$ will denote a sincere representation of a tame quiver Q, and we set $\lambda = \min \lambda_i \ge 1$ and $\dim T = \mathbf{d}$.

3. The variety $\mathcal{Z}_{Q,\mathbf{d}}''$

Proposition 3.1. A representation X in $Z_{Q,\mathbf{d}}$ belongs to $Z''_{Q,\mathbf{d}}$ if and only if

(i) the restriction \overline{X} to \overline{Q} lies in $\mathcal{Z}_{\overline{Q},\overline{\mathbf{d}}}$

and

(ii) $\operatorname{rank}(X(\alpha_1)\cdots X(\alpha_s)) < d_z.$

In particular,

$$\operatorname{codim} \mathcal{Z}_{Q,\mathbf{d}}'' = \operatorname{codim}_{\operatorname{rep}(\overline{Q},\overline{\mathbf{d}})} \mathcal{Z}_{\overline{Q},\overline{\mathbf{d}}} + \max\left(0, \left(\sum_{j=1}^{s} d_{y_j}\right) - d_z + 1\right).$$

Proof. The second condition just says that E is a direct summand of X, or equivalently that $[X, E] \neq 0$. A representation $X = X' \oplus E$ belongs to $\mathcal{Z}_{Q,\mathbf{d}}$ if and only if

$$[X, S] = [X', S] + [E, S] > 0$$

for any simple object $S \in T^{\perp}$. Equivalently,

$$[X', S] > 0$$

holds for any simple representation $S \in T^{\perp}$ with $[E, S] = \dim S(z) = 0$. These are precisely the simple objects of $\overline{T}^{\perp \overline{Q}}$, and moreover we have

$$[X',S]=[\overline{X'},S]=[\overline{X},S]>0$$

since S(z) = 0.

As for the statement about $\operatorname{codim} \mathcal{Z}_{Q,\mathbf{d}}''$, observe that, in case $d_z > \sum_{j=1}^s d_{y_j}$, any $d_z \times \sum_{j=1}^s d_{y_j}$ -matrix has rank less than d_z , whereas for $d_z \leq \sum_{j=1}^s d_{y_j}$, the subvariety

$$\mathcal{N}_{\mathbf{d}} = \left\{ A \in \operatorname{Mat}\left(d_z \times \sum_{j=1}^{s} d_{y_j}\right); \operatorname{rank} A < d_z \right\}$$

is of codimension $\left(\sum_{j=1}^{s} d_{y_j}\right) - d_z + 1.$

Corollary 3.2. Suppose that $\lambda \ge N(Q)$ and that E is not a direct summand of T. (i) We have

 $\operatorname{codim} \mathcal{Z}''_{Q,\mathbf{d}} - n + \sigma(T) \geq \operatorname{codim} \mathcal{Z}_{\overline{Q},\overline{\mathbf{d}}} - (n-1) + \sigma(\overline{T}).$

(ii) If moreover $d_z < \sum_{j=1}^s d_{y_j}$, we have

$$\operatorname{codim} \mathcal{Z}_{Q,\mathbf{d}}'' - n + \sigma(T) \ge \operatorname{codim} \mathcal{Z}_{\overline{Q},\overline{\mathbf{d}}} - (n-1) + \sigma(\overline{T}) + \lambda - N(Q).$$

In order to prove this result, we need some information about the number $\sigma(\overline{T})$ of pairwise non-isomorphic indecomposables occurring as direct summands of \overline{T} . We start by estimating $\sigma(\overline{U})$ for an indecomposable representation U:

Lemma 3.3. For an indecomposable representation $U \neq E$ of Q, we have

$$\sigma(\overline{U}) \le 1 + N(Q) \cdot \left(\left(\sum_{j=1}^{s} \dim U(y_j) \right) - \dim U(z) \right).$$

Proof. As U is indecomposable, we may assume Q to be connected. We use the following abbreviations:

dim
$$U(z) = u$$
, dim $U(y_j) = u_j, j = 1, ..., s$, $u' = \left(\sum_{j=1}^s u_j\right) - u$.

Note that $u' \ge 0$ since U is indecomposable and $U \ne E$. If $u = 0, \overline{U} = U$ is indecomposable and $\sigma(\overline{U}) = 1$. In case u' = 0, the map

$$[U(\alpha_1), \cdots, U(\alpha_s)] : \bigoplus_{j=1}^s U(y_j) \to U(z)$$

is an isomorphism, and again \overline{U} is indecomposable. Thus we may suppose u > 0and u' > 0.

Recall that the value of the Tits form $q(\operatorname{\mathbf{dim}} U)$ equals 0 or 1, as Q is tame. We compute:

$q(\operatorname{\mathbf{dim}} U - \operatorname{\mathbf{dim}} E) = q(\operatorname{\mathbf{dim}} U) + q(\operatorname{\mathbf{dim}} E) - \langle \operatorname{\mathbf{dim}} U, \operatorname{\mathbf{dim}} E \rangle - \langle \operatorname{\mathbf{dim}} E, \operatorname{\mathbf{dim}} U \rangle$ $= q(\dim U) + q(\dim E) + u' - u \le 2 + u' - u.$

As q is positive definite or positive semi-definite in case Q is a Dynkin quiver or an extended Dynkin quiver, respectively, we obtain:

$$u \leq \begin{cases} u'+2 \leq 2u'+1 & \text{if } Q \text{ is an extended Dynkin quiver} \\ u'+1 & \text{if } Q \text{ is a Dynkin quiver.} \end{cases}$$

Now clearly \overline{U} has at most $\sum_{j=1}^{s} u_j$ indecomposable direct summands, and thus

$$\sigma(\overline{U}) \leq \sum_{j=1}^{s} u_j = u + u' \leq \begin{cases} 1 + 3u' & \text{if } Q \text{ is an extended Dynkin quiver,} \\ 1 + 2u' & \text{if } Q \text{ is a Dynkin quiver,} \end{cases}$$

which proves the lemma except in case $|Q| = \mathbb{A}_n$ or $|Q| = \mathbb{A}_{n-1}$.

If $|Q| = \mathbb{A}_n$, we have $u \leq 1$ and hence $\sigma(\overline{U}) \leq 1 + u'$. In case $|Q| = \widetilde{\mathbb{A}}_{n-1}$, the number of indecomposable (possible isomorphic) direct summands in a decomposition of \overline{U} is at most 1 + u'. This can be seen by inspecting the list of indecomposable representations of Q. Such representations are string or band representations, and they are described by words (non-oriented paths) in Q (see [4] for details).

Proof of Corollary 3.2. We set

$$t'_{i} = \left(\sum_{j=1}^{s} \dim T_{i}(y_{j})\right) - \dim T_{i}(z), \ i = 1, \dots, r$$

 $t' = \sum_{i=1}^{r} t'_i.$

and

Note that, by definition,

$$\sum_{i=1}^r \lambda_i t'_i = \left(\sum_{j=1}^s d_{y_j}\right) - d_z.$$

Our lemma implies:

$$\sigma(\overline{T}) \leq \sum_{i=1}^{r} \sigma(\overline{T_i}) \leq r + N(Q) \cdot t' \leq r + \left(\sum_{i=1}^{r} \lambda_i t'_i\right) - (\lambda - N(Q)) \cdot t'$$
$$= \sigma(T) + \left(\sum_{j=1}^{s} d_{y_j}\right) - d_z - (\lambda - N(Q)) \cdot t'.$$

Combining this with Proposition 3.1 we find that

$$\operatorname{codim} \mathcal{Z}_{Q,\mathbf{d}}'' - n + \sigma(T) = \operatorname{codim}_{\operatorname{rep}(\overline{Q},\overline{\mathbf{d}})} \mathcal{Z}_{\overline{Q},\overline{\mathbf{d}}} + \left(\sum_{j=1}^{s} d_{y_j}\right) - d_z + 1 - n + \sigma(T)$$
$$\geq \operatorname{codim}_{\operatorname{rep}(\overline{Q},\overline{\mathbf{d}})} \mathcal{Z}_{\overline{Q},\overline{\mathbf{d}}} - (n-1) + \sigma(\overline{T}) + (\lambda - N(Q)) \cdot t'.$$

As $t'_i \ge 0$ for all *i*, this yields part (i) of Corollary 3.2. Part (ii) follows from the fact that $\sum_{i=1}^r \lambda_i t'_i = \left(\sum_{j=1}^s d_{y_j}\right) - d_z > 0$ implies $t'_i > 0$ for some *i* and hence t' > 0.

4. Reflection functors

We define two new quivers \widetilde{Q} and $Q': \widetilde{Q}$ is obtained from Q by adding a vertex z' and arrows $\beta_j: z' \to y_j, j = 1, \ldots, s$. Deleting z and $\alpha_1, \ldots, \alpha_s$ in \widetilde{Q} yields Q'. Note that Q' is tame as well. We denote by E' the simple injective representation of Q' supported at z'.

We consider the reflection functor

$$\mathcal{F}: \operatorname{rep}(Q) \to \operatorname{rep}(Q')$$

associated with z. Recall that

$$(\mathcal{F}X)(i) = \begin{cases} X(i) & i \neq z' \\ \ker\left(\bigoplus X(y_j) \xrightarrow{[X(\alpha_1),\dots,X(\alpha_s)]} X(z)\right) & i = z', \end{cases}$$

and that

$$(\mathcal{F}X)(\beta_l): (\mathcal{F}X)(z') \to (\mathcal{F}X)(y_l) = X(y_l)$$

is the inclusion of $(\mathcal{F}X)(z')$ into $\bigoplus_{j=1}^{s} X(y_j)$ followed by the projection to $X(y_l)$ (see [1], [6]). The functor \mathcal{F} restricts to an equivalence

$$\mathcal{F}: (\operatorname{rep}(Q))' \to (\operatorname{rep}(Q'))'$$

from the full subcategory $(\operatorname{rep}(Q))'$ of $\operatorname{rep}(Q)$ whose objects do not contain E as a direct summand, or equivalently have no non-trivial morphisms to E, to the full subcategory $(\operatorname{rep}(Q'))'$ of $\operatorname{rep}(Q')$ whose objects do not contain E' as a direct summand.

Suppose that E is neither a direct summand of T nor an element of T^{\perp} . This implies that [T, E] = 0 and ${}^{1}[T, E] > 0$ and thus the vector $\mathbf{d}' \in \mathbb{Z}^{Q'_{0}}$, where Q'_{0} denotes the set of vertices of Q', defined by

$$d'_x = \begin{cases} d_x, & x \neq z' \\ \left(\sum_{j=1}^s d_{y_j}\right) - d_z, & x = z' \end{cases}$$

has positive entries. Indeed, we have

$$d'_{z'} = \left(\sum_{j=1}^{s} d_{y_j}\right) - d_z = -\langle \mathbf{d}, \dim E \rangle = -[T, E] + {}^1[T, E] > 0.$$
(4.1)

Note that in fact we have $d'_{z'} \geq \lambda$ as ${}^{1}[T_i, E] > 0$ for some *i* implies ${}^{1}[T, E] \geq \lambda_i \geq \lambda$. We let $\widetilde{\mathbf{d}}$ be the dimension vector for \widetilde{Q} which coincides with \mathbf{d} on Q_0 and with \mathbf{d}' on Q'_0 .

As E is not a direct summand of T, the latter belongs to $(\operatorname{rep} Q)'$. Therefore $\mathcal{F}T$ lies in $(\operatorname{rep} Q')'$, and we have $\dim \mathcal{F}T = \mathbf{d}', {}^{1}[\mathcal{F}T, \mathcal{F}T] = {}^{1}[T,T] = 0$, and thus \mathbf{d}' is prehomogeneous. Choose T' in the open orbit of $\operatorname{rep}(Q', \mathbf{d}')$. As T' is isomorphic to $\mathcal{F}T$, we have $T' = \bigoplus_{i=1}^{r} (T'_{i})^{\lambda_{i}}$ with T'_{i} indecomposable, pairwise non-isomorphic and ${}^{1}[T'_{i},T'_{j}] = 0$ for all i,j. Moreover, we know $T^{\perp} \subseteq (\operatorname{rep} Q)'$, as E does not belong to T^{\perp} , and $(T')^{\perp} \subseteq (\operatorname{rep} Q')'$, as $d'_{z'} = [T',E'] > 0$. We conclude that $(T')^{\perp}$ is equivalent to $\mathcal{F}(T^{\perp})$, the category of representations of a quiver with n - r vertices. Hence $\mathcal{Z}_{Q',\mathbf{d}'}$ is given by n - r equations as well. We decompose $\mathcal{Z}_{Q',\mathbf{d}'}$ as a disjoint union $\mathcal{Z}_{Q',\mathbf{d}'} = \mathcal{W}'_{Q',\mathbf{d}'} \cup \mathcal{W}''_{Q',\mathbf{d}'}$, where

$$\mathcal{W}'_{Q',\mathbf{d}'} = \{ X' \in \mathcal{Z}_{Q',\mathbf{d}'}; \ [E',X'] = 0 \}$$

and

$$\mathcal{W}_{Q',\mathbf{d}'}'' = \{ X' \in \mathcal{Z}_{Q',\mathbf{d}'}; \ [E',X'] \neq 0 \}.$$

Proposition 4.1. Suppose E is neither a direct summand of T nor an element of T^{\perp} . Then we have

(i) $\operatorname{codim} \mathcal{Z}'_{Q,\mathbf{d}} = \operatorname{codim}_{\operatorname{rep}(Q',\mathbf{d}')} \mathcal{W}'_{Q',\mathbf{d}'}$

- and
 - (ii) $\mathcal{Z}'_{Q,\mathbf{d}}$ is irreducible if $\mathcal{W}'_{Q',\mathbf{d}'}$ has this property.

Proof. By construction, X belongs to $\mathcal{Z}'_{Q,\mathbf{d}}$ if and only if $\mathcal{F}X$ is isomorphic to some $X' \in \mathcal{W}'_{Q',\mathbf{d}'}$, but unfortunately the functor \mathcal{F} cannot be made into a regular map from

$$\operatorname{rep}(Q, \mathbf{d})' = \{ X \in \operatorname{rep}(Q, \mathbf{d}); \ [X, E] = 0 \}$$

On the zero set of semi-invariants for tame quivers

 to

$$\operatorname{rep}(Q', \mathbf{d}')' = \{ X' \in \operatorname{rep}(Q', \mathbf{d}'); [E', X'] = 0 \}.$$

We use the following détour (compare [7] and Section 4.2 in [3]): The set

$$\left\{ X \in \operatorname{rep}(\widetilde{Q}, \widetilde{\mathbf{d}}); \sum_{j=1}^{s} X(\alpha_j) X(\beta_j) = 0, \ [X(\beta_1), \dots, X(\beta_s)]^t \text{ injective}, \\ [X(\alpha_1), \dots, X(\alpha_s)] \text{ surjective} \right\}$$

is a principal $\operatorname{Gl}(d'_{z'})$ -bundle over $\operatorname{rep}(Q, \mathbf{d})'$ and a principal $\operatorname{Gl}(d_z)$ -bundle over $\operatorname{rep}(Q', \mathbf{d}')'$ via the projections π and π' deleting z' and z, respectively. Hence the claim follows from $\pi^{-1}(\mathcal{Z}'_{Q,\mathbf{d}}) = (\pi')^{-1}(\mathcal{W}'_{Q',\mathbf{d}'})$.

5. Proof of Theorem 1.1

We proceed by induction on the number n of vertices of Q. We may assume the theorem to be true for $\mathcal{Z}_{\overline{Q},\overline{\mathbf{d}}}$. First we treat the cases that

(i) E is a direct summand of T

and

(ii) E belongs to T^{\perp} .

In both cases, we have that E is a direct summand of X for all $X \in \mathcal{Z}_{Q,\mathbf{d}}$; i.e., $\mathcal{Z}''_{Q,\mathbf{d}} = \mathcal{Z}_{Q,\mathbf{d}}$. Indeed, in case (i) this follows from the fact that $\operatorname{Hom}_Q(E,T) \neq 0$, which is a closed condition. In case (ii), E is a simple object in T^{\perp} .

As any direct summand $T_i \not\simeq E$ of T belongs to $\bot E$, we have

$$\dim T_i(z) - \sum_{j=1}^{\circ} \dim T_i(y_j) = \langle \dim T_i, \dim E \rangle = [T_i, E] - {}^1[T_i, E] = 0.$$

By Lemma 3.3, $\overline{T_i}$ is indecomposable, and therefore

$$\sigma(\overline{T}) = \begin{cases} r-1 & \text{in case (i),} \\ r & \text{in case (ii).} \end{cases}$$

The induction hypothesis together with Corollary 3.2 implies the first part of our theorem. We conclude from Proposition 3.1 that $\mathcal{Z}_{Q,\mathbf{d}} \simeq \mathcal{Z}_{\overline{Q},\overline{\mathbf{d}}} \times \mathcal{N}_{\mathbf{d}}$, where

$$\mathcal{N}_{\mathbf{d}} = \{A \in \operatorname{Mat}\left(d_z \times \sum_{j=1}^{s} d_{y_j}\right); \operatorname{rank} A < d_z\}.$$

The second part follows from the fact that the set $\mathcal{N}_{\mathbf{d}}$ is irreducible in case $d_z \geq \sum_{j=1}^{s} d_{y_j}$.

(iii) Finally, suppose that E is neither a direct summand of T nor does it belong to T^{\perp} , or equivalently that $d_z < \sum_{j=1}^{s} d_{y_j}$. Using Corollary 3.2 and its dual, Proposition 4.1 and remembering that the codimension of any irreducible

component of $\mathcal{Z}_{Q,\mathbf{d}}$ is at most n-r, we see that the theorem is true for $\mathcal{Z}_{Q,\mathbf{d}}$ if and only if it holds for $\mathcal{Z}_{Q',\mathbf{d}'}$.

In case either T contains a preprojective direct summand or T^{\perp} a preprojective representation, we may apply a series of reflection functors until we reach the situation that a simple projective either is a direct summand of T or else belongs to T^{\perp} , and we can reduce by (i) or (ii). This finishes the proof in case Q is of finite representation type as any indecomposable representation is preprojective.

If Q is not representation finite, we are left with the situation that no preprojective representation is a direct summand of T nor an element of T^{\perp} . Dually, we may assume T does not contain a preinjective direct summand either. Indeed, suppose a simple injective representation E' is a direct summand of T or belongs to ${}^{\perp}T$, a situation we will reach after a series of (inverse) reflection functors. Then apply the dual of the first or the second reduction step above; recall that $\mathcal{Z}_{Q,\mathbf{d}}$ has a dual description as

 $\mathcal{Z}_{Q,\mathbf{d}} = \{ X \in \operatorname{rep}(Q, \mathbf{d}); \ [S', X] \neq 0 \text{ for all simple objects } S' \in {}^{\perp}T \}.$

The following lemma finishes the proof of Theorem 1.1.

Lemma 5.1. Let Q be an extended Dynkin quiver. Suppose T is a regular representation with an open orbit. Then T^{\perp} contains a non-zero preprojective representation.

Proof. Consider a Bongartz completion \widetilde{T} for T [2]; i.e., an exact sequence

$$0 \to kQ \to \widetilde{T} \to \bigoplus_{i=1}^{\prime} T_i^{\nu_i} \to 0$$

for which the induced map

$$\operatorname{Hom}_Q\left(T_l, \bigoplus_{i=1}^r T_i^{\nu_i}\right) \to \operatorname{Ext}_Q^1(T_l, kQ)$$

is surjective for l = 1, ..., r. There is a \mathbb{Z} -linear map $\partial : \mathbb{Z}^{Q_0} \to \mathbb{Z}$, called defect, such that any indecomposable representation Y of Q is preprojective, regular and preinjective if and only if $\partial(\operatorname{dim} Y)$ is negative, zero and positive, respectively (see for instance [10]). As T is regular, $\partial \widetilde{T} = \partial k Q < 0$ and therefore \widetilde{T} contains an indecomposable preprojective direct summand Y, and $Y \in T^{\perp}$. Indeed, we have ${}^1[T, Y] = 0$ for all direct summands of \widetilde{T} and [T, Y] = 0 since Y is preprojective and T is regular [10, Theorem 3.6.5]. \Box

Example. Working out the following example, one can see that if Q is not tame, it may happen that both T and T^{\perp} belong to the set of regular representations:

As $q(\mathbf{d}) = 1$, there exists an irreducible $T \in \operatorname{rep}(Q, \mathbf{d})$ having an open orbit. The simple objects in T^{\perp} have dimension vectors

3	1	1	1	1	0	1	1	1	0	0	1	1	0	1		0	1	0	1	1	and	0	0	1	1	1	
		3		,			2		,			2			,			2			and			2			·

It is easy to check that these simple objects are regular representations of Q.

Acknowledgments. The second author gratefully acknowledges support from the Polish Scientific Grant KBN No. 5 PO3A 008 21 and Foundation for Polish Science. He also thanks the Swiss Science Foundation, which gave him the opportunity to spend a year at the University of Berne.

References

- I. M. Bernstein, I. N. Gelfand and V. A. Ponomarev, Coxeter functors and Gabriel theorem, Russ. Math. Surveys 28 (1973), 17–32.
- [2] K. Bongartz, Tilted algebras, in: Representations of Algebras, Lecture Notes in Math. 903 (1981), 26–38.
- [3] K. Bongartz, Minimal singularities for representations of Dynkin quivers, Comment. Math. Helv. 63 (1994), 575–611.
- [4] M. Butler and C. M. Ringel, Auslander-Reiten sequences with few middle terms and applications to string algebras, Comm. Algebra 15 (1987), 145–179.
- [5] C. Chang and J. Weyman, Representations of quivers with free module of covariants, Preprint.
- [6] P. Gabriel, Représentations indécomposables, Séminaire Bourbaki 1973/74, Lecture Notes in Math. 431 (1975), 143–169.
- [7] H. Kraft and Ch. Riedtmann, Geometry of representations of quivers, LMS lecture notes 116 (1985), 109–147.
- [8] Ch. Riedtmann and G. Zwara, On the zero set of semi-invariants for quivers, Preprint 2002, http://www.mat.uni.torun.pl/~gzwara/semii1.ps.
- [9] C. M. Ringel, The rational invariants of tame quivers, Inv. Math. 58 (1980), 217–239.
- [10] C. M. Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Math. 1099, Springer Verlag, 1984.
- [11] M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya J. Math. 65 (1977), 1–155.
- [12] A. Schofield, Semi-invariants of quivers, J. London Math. Soc. 43 (1991), 385–395.
- [13] G. W. Schwarz, Lifting smooth homotopies of orbit spaces, Inst. Hautes Études Sci. Publ. Math. 51 (1980), 37–135.

Ch. Riedtmann	G. Zwara
Mathematisches Institut	Faculty of Mathematics and Computer Science
Universität Bern	Nicholas Copernicus University
Sidlerstr. 5	Chopina 12/18
CH 3012 Bern	PL-87-100 Toruń
Switzerland	Poland
e-mail: christine.riedtmann@math-stat.unibe.ch	e-mail: gzwara@mat.uni.torun.pl

(Received: October 23, 2002)