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On the zero set of semi-invariants for tame quivers

Christine Riedtmann and Grzegorz Zwara

Abstract. Let d be a prehomogeneous dimension vector for a finite tame quiver Q. We show
that the common zeros of all non-constant semi-invariants for the variety of representations of @
with dimension vector N - d, under the product of the general linear groups at all vertices, is a
complete intersection for N > 3.
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1. Introduction

Let k be an algebraically closed field, and let @ = (Qo,Q1,t, k) be a finite quiver,
i.e. afinite set Qo = {1,...,n} of vertices and a finite set Q1 of arrows « : tae — ha,
where ta and ha denote the tail and the head of «, respectively.

A representation of @ over k is a collection (X (i); i € Qo) of finite dimensional
k-vector spaces together with a collection (X (a) : X(ta) — X (ha); a € Q1) of
k-linear maps. A morphism f : X — Y between two representations is a collection
(f(i): X(i) = Y (4)) of k-linear maps such that

f(ha) o X(a) =Y () o f(ta) for all @ € Q1.

By o(X) we denote the number of pairwise non-isomorphic indecomposable direct
summands occurring in a decomposition of X into indecomposables. According
to the theorem of Krull-Schmidt, o(X) is well-defined. The dimension vector of a
representation X of () is the vector

dim X = (dim X (1),...,dim X (n)) € N9,

We denote the category of representations of @ by rep(Q), and for any vector
d=(dy,...,d,) € N®

rep(Q,d) = [[ Mat(dna X dia, k)
aEQy
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is the vector space of representations X of Q with X (i) = k%, i € Q. The group
Gl(d) = ] Gl(d;, k)
i=1

acts on rep(Q@, d) by

(915 9n) * X)(@) = gha - X (@) - g7

Note that the Gl(d)-orbit of X consists of the representations Y in rep(Q, d) which
are isomorphic to X.

We call d a prehomogeneous dimension vector if G1(d) xT" is an open orbit for
some T in rep(Q, d). Such a representation T is characterized by ExtlQ (T,T)=0
[9]. If @ admits only finitely many indecomposable representations, or equivalently
if the underlying graph of @ is a disjoint union of Dynkin diagrams of type A, D
or E [6], every vector d is prehomogeneous. Indeed, any representation is a direct
sum of indecomposables and therefore rep(Q, d) contains finitely many orbits, one
of which must be open.

Let d be prehomogeneous, and let f1,..., fs € k[rep(Q, d)] be the irreducible
monic polynomials whose zeros Z(f1),...,Z(fs) are the irreducible components
of codimension 1 of rep(Q,d) \ Gl(d) x T, where G1(d) » T" is the open orbit. It is
easy to see that

g-fi=xi(g) - fi

for g € GI(d), where x; : GI(d) — k* is a character. A regular function with
this property is called a semi-invariant. By [11], any semi-invariant is a scalar
multiple of a monomial in f1,..., fs, and fi,..., fs are algebraically independent.
We denote by

Zga={X €rep(Q,d); fi(X)=0,i=1,...,s}

the closed subscheme of rep(@,d) of common zeros of all non-constant semi-
invariants. Obviously we have codim Zg g4 < s, and equality means that Zg g4
is a complete intersection.

Let T1,...,T, be pairwise non-isomorphic indecomposable representations of
@ such that Exté(Ti,Tj) = 0 for any 4,j < r. In [8] we showed that there is a
positive integer N such that Zg 4 is a complete intersection and irreducible for
any dimension vector d = Y_;_; \;dimT; with \; > N, i =1,2,...,r. Now our
goal is to prove that N is quite small in case () is tame; i.e., every connected
component A of @ is either a Dynkin quiver or an extended Dynkin quiver. Our
methods are completely different.

Assume that @ is tame, and set

N(Q) =max N(A),
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where A ranges over the connected components of @Q and where

1 if |A] = Ay, or Ay,
N(A) =492 if ‘A‘ = Dm,Eﬁ,E7 or Eg,
3 if |A] = Dy, K, Er or Eg,

and |A| denotes the underlying non-oriented graph of the quiver A. Note that
N(K) < N(Q) for any subquiver K of Q.

Theorem 1.1. Suppose Q is tame. Let T1,...,T, be pairwise non-isomorphic
indecomposable representations of QQ such that ExtlQ (T3,T;) = 0 for any i,j < r.
Choose positive integers Ay, ..., A\, and set A =min \;, d = Z:Zl N, dimT;. Then
ZQ’d 18

(i) a complete intersection provided X > N(Q),

(ii) drreducible provided A > N(Q) + 1.

Note that the case of a Dynkin quiver of type A,, has been treated by Chang
and Weyman in [5].

In case k is the field C of complex numbers, the fact that Zg q is a complete
intersection implies that rep(Q,d) is cofree as a representation of the subgroup
Si(d) = [Ii—, Sl(d;) of Gl(d); i.e., Clrep(Q,d)] is a free module over the ring
Clrep(Q, d)]8"D) of SI(d)-invariant polynomials [13, §17], [8].

Example. Let us consider the quiver

1 2 3 4

« @3
5
11 11
3
There is an indecomposable representation 7; in rep(Q,e), whose orbit is open.
The complement of the open orbit of T = T} in rep(Q,d) has 4 components of
codimension 1, defined by

det (X(ozl) X (ay)- ~-X(a4)> -0,

with the dimension vector d = A-e, A € N and e = as an example.

J = 1,2,3,4, where the hat means “omit X («;)”. Using the results developed
later, we know that X belongs to Zg g if and only if X either contains the simple
projective Ps or else the direct sum @?:1 P; of the two-dimensional projectives
associated to the vertices 1,...,4 as a direct summand. It is easy to check that

e 2 is irreducible of codimension 2,
20 .2¢ has two irreducible components of codimension 3 and 4, respectively,
20 3¢ has two irreducible components of codimension 4,
Z0.xe is irreducible of codimension 4 for A > 4.
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2. Notations and preliminaries

The varieties considered in this paper are locally closed subsets of a k-vector space.
If A C B are two such varieties and B is irreducible, we denote by codimg A the
codimension of A in B. In case B = rep(Q,d), we omit the subscript B.

We will assume throughout that the representation 7' = @;_, Ti)‘i is sincere,
ie, T(l) # 0 for any I € Q. As the full subquiver K of @ which supports T is
still tame with N(K) < N(Q), this is no restriction. The assumption excludes
oriented cycles as subquivers of (). Indeed, a sincere representation of an oriented
cycle cannot have an open orbit.

The Euler form of Q is the Z-bilinear form on Z®?° defined by

(d,e) = Z d;e; — Z dtoCha-

1€Qo ac@Qq

For X € rep(Q,d), Y € rep(Q, e) it can be computed as
<dve> = [va] - 1[Xa Y])
where
[X,Y] =dimz Homg(X,Y)  and  '[X,Y] = dim; ExtH(X,Y).

The quadratic form

q(d) = (d,d)

associated with the Euler form is the Tits form of ). It is positive semi-definite as
Q is tame and positive definite if @) does not contain extended Dynkin diagrams.

We follow Schofield [12] in order to describe the semi-invariants of rep(Q, d):
For a representation U of @, the right perpendicular category U~ is the full sub-
category of rep(Q) whose objects are

{v: [U,Y] ="[U,Y] = 0}.
Dually, +U has as objects
{2, [z,u]="[z,U] =0}

Note that U+ = +(7U), where 7 is the Auslander—Reiten translation for all non-
projective indecomposable direct summands of U and 7(F;) = I;, where P, and I,
are the projective and injective indecomposable representations associated to the
vertex | € Qo, respectively. If 1[U, U] = 0, the category U is equivalent to the
category of representations of a quiver with n — o(U) vertices.

Thus T contains n — r simple objects if T = @:21 Ti/\i is a representation of
Q@ as in the statement of the theorem. If S is one of them, the set

{X €rep(Q,d); [X,5] # 0}
is a component of codimension 1 of the complement

rep(Q,d) \ GI(d) x T.
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Non-isomorphic simple objects lead to distinct components, and all components
of codimension 1 are obtained in this way. Thus Z¢ q is the zero set of n—r (alge-
braically independent) polynomials. From now on, we will denote the underlying
reduced variety of Zg q by the same symbol. This will cause no confusion since
we are only interested in the irreducibility and the dimension of Zg 4. We have
the following descriptions:

Zg.a = {X €rep(Q,d); [X,S] # 0 for all simple objects S € T*}
= {X €rep(Q,d); [S, X] # 0 for all simple objects S’ € +T}.
The material presented here can be found in [12]; compare also [8]. In order to
obtain part (i) of our theorem it suffices to prove codim Zg 4 > n — r.
Fix a sink z € Qo; i.e., a vertex z which is the head of some arrows o : y; — 2,
j=1,...,s, but the tail of none. The vertices y1,...,ys need not be distinct. Let

E be the simple projective supported at z. By Q we denote the full subquiver of
Q with Q, = Qo \ {z} and by d the restriction of d to Q,. Note that the orbit

.. = =i = . . - T . .
of the restriction T' = @;_, T;" to Q is open in rep(Q,d). As E is the simple
projective supported at z, we have

E+ ={X €rep(Q); X(z) =0},

which we identify with rep(Q). There is a short exact sequence
0—E: T —>T—0.
Considering the long exact sequence of Hom’s and Ext'’s from it, we find that
EtATL =Bt NT =77
We decompose Zg g as a disjoint union
Zga=2gaY Z2q.a
where
Zé,d ={X € Zqaq; [X,E]|=0} and Zé;,d ={X € Zgq; [X,E] #0}.

We will estimate the codimensions of Zg, 4 and Z7) 4 in rep(Q, d) separately.

Throughout the article, ' = @._, Tf‘i will denote a sincere representation of
a tame quiver @, and we set A =min \; > 1 and dim 7T = d.

3. The variety Z 4

Proposition 3.1. A representation X in Zg q belongs to Zéé’d if and only if
(i) the restriction X to Q lies in 254

and
(ii) rank(X(aq1)--- X(as)) < ds.
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In particular,
codim Z7) 4 = codim, . &5 ) Zg,q T max (07 (Z Clyj) —d, + 1).
j=1

Proof. The second condition just says that F is a direct summand of X, or equi-
valently that [X, E] # 0. A representation X = X’ & E belongs to Zg 4 if and
only if

[X,S]=[X",S]+[E,S] >0

for any simple object S € T+. Equivalently,
(X', 5] >0
holds for any simple representation S € T+ with [E,S] = dim S(z) = 0. These

are precisely the simple objects of Tla, and moreover we have
(X', 8] =[X",5]=[X,S]>0

since S(z) = 0.

As for the statement about codim Zg’d, observe that, in case d, > Z‘;:l dy;,

any d, x ijl d,,-matrix has rank less than d, whereas for d, < Z;=1 dy,, the
subvariety
Na = {A € Mat (dz x Zdyj>; rank A < dz}
j=1

is of codimension (22:1 dyj) —d, +1. O
Corollary 3.2. Suppose that A > N(Q) and that E is not a direct summand of T.
(i) We have
codim 2 g —n+o(T) > codim Z5 5 — (n — 1) + o(T).
(ii) If moreover d, < 2;21 dy,;, we have
codim 2 g —n+o(T) > codim Z5 5 — (n — 1) + o(T)+ X — N(Q).

In order to prove this result, we need some information about the number U(T)
of pairwise non-isomorphic indecomposables occurring as direct summands of 7.

We start by estimating o(U) for an indecomposable representation U:

Lemma 3.3. For an indecomposable representation U # E of Q, we have

o(U)<1+N(Q)- ((idim U(yj)> — dim U(z)).
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Proof. As U is indecomposable, we may assume @ to be connected. We use the
following abbreviations:

dimU(z) =u, dimU(y;) =u;,j=1,...,s, u' = <Zu1> - u.

j=1

Note that «/ > 0 since U is indecomposable and U # E. If u = 0, U = U is

indecomposable and o(U) = 1. In case u’ = 0, the map
[Ulan), - Ule)] - P U(;) = Ul2)
j=1

is an isomorphism, and again U is indecomposable. Thus we may suppose u > 0
and v’ > 0.

Recall that the value of the Tits form ¢(dimU) equals 0 or 1, as @ is tame.
We compute:
¢(dimU — dim E) = ¢(dimU) + ¢(dim F) — (dim U, dim E) — (dim E, dim U)

=q(dimU) + ¢(dimE) + v’ —u <2+ v —u.

As ¢ is positive definite or positive semi-definite in case @ is a Dynkin quiver or
an extended Dynkin quiver, respectively, we obtain:

< u' +2<2u' +1 if Q is an extended Dynkin quiver,
u
Tl +1 if Q is a Dynkin quiver.

Now clearly U has at most ijl u; indecomposable direct summands, and thus

o(T) < zs: W=t < 1+ 3u: ?f Q %s an exteflded .Dynkin quiver,
= 1+ 2w’ if @ is a Dynkin quiver,

which proves the lemma except in case |Q| = A, or |Q] = A,_1.

If |Q| = A,, we have u < 1 and hence o(U) < 1 +u'. In case |Q| = A,_1,
the number of indecomposable (possible isomorphic) direct summands in a de-
composition of U is at most 1 + «’. This can be seen by inspecting the list of
indecomposable representations of ). Such representations are string or band
representations, and they are described by words (non-oriented paths) in @ (see
[4] for details). O

Proof of Corollary 3.2. We set
t, = (ZdimTi(yj)) —dimT;(2), i=1,...,r
j=1

and

t = Xr:t;.
i=1
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Note that, by definition,

S

i)\it; = <Zdy_7,) —d,.
i=1 i

Jj=1

Our lemma implies:

oT) <Y o) <r+ N@Q) - <r+ <Zw) (A N@Q) -
i=1 i=1

=o(T) + (Zdyj) —d,— (A= N(Q)) -t
j=1
Combining this with Proposition 3.1 we find that

codim 23 g —n +o(T) = codim 73 Z5q + (Z dyj> —d.+1-n+0o(T)
j=1

> COdierp(aﬁ) Za’a — (TL — 1) + U(T) + (/\ - N(Q)) -t

As t/ > 0 for all ¢, this yields part (i) of Corollary 3.2. Part (ii) follows from the
fact that Y, At} = (2;21 dyj) —d. > 0 implies t; > 0 for some ¢ and hence

t' > 0. O

4. Reflection functors

We define two new quivers @ and Q’: C,j is obtained from @ by adding a vertex
2" and arrows §; : 2’ — y;, j =1,...,s. Deleting z and o, ...,a; in @ yields Q'
Note that Q' is tame as well. We denote by E’ the simple injective representation
of Q' supported at 2’.

We consider the reflection functor

F :rep(Q) — rep(Q")

associated with z. Recall that

X (i) i 2
X(a1),..., X (as)]

RO e (@00 !

and that
(FX)(B) + (FX)(Z') = (FX) () = X ()

is the inclusion of (FX)(z') into @;:1 X (y;) followed by the projection to X (y;)
(see [1], [6]). The functor F restricts to an equivalence

F : (rep(Q))" — (rep(Q"))’
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from the full subcategory (rep(Q))’ of rep(Q) whose objects do not contain E as
a direct summand, or equivalently have no non-trivial morphisms to E, to the
full subcategory (rep(Q’))’ of rep(Q’) whose objects do not contain E’ as a direct
summand.

Suppose that E is neither a direct summand of T nor an element of 7. This
implies that [T, E] = 0 and [T, E] > 0 and thus the vector d’ € 790, where Q5
denotes the set of vertices of @), defined by

d:E7 x;ﬁz’
d =
e <Z;_1dyj> —d,, =2

has positive entries. Indeed, we have
', = <Zdyj) —d, = —(d,dimE) = —[T,E]+ Y[T,E] >0.  (4.1)
j=1

Note that in fact we have d’, > X as [T}, E] > 0 for some 7 implies [T, E] > \; >
A. We let d be the dimension vector for @ which coincides with d on Q¢ and with
d’ on Q.

As E is not a direct summand of T', the latter belongs to (rep @Q)’. Therefore
FT lies in (repQ’)’, and we have dim FT = d’, [FT,FT| = [T,T] = 0, and
thus d’ is prehomogeneous. Choose T in the open orbit of rep(Q’,d’). As T” is
isomorphic to FT, we have T’ = @;_, (T})* with T/ indecomposable, pairwise
non-isomorphic and 1[T{,T;] = 0 for all i,j. Moreover, we know T+ C (rep Q)’,
as E does not belong to T+, and (T")+ C (repQ')’, as d’, = [T',E'] > 0. We
conclude that (T")* is equivalent to F(T), the category of representations of a
quiver with n — r vertices. Hence Zgs g/ is given by n — r equations as well. We

decompose Z¢g/,a- as a disjoint union Z¢r ar = We, g UWgy, 4/, where
W/Q’,d’ = {X’ S ZQ/7d/; [E/,X/] = 0}

and
W///,d/ = {XI € ZQlyd/; [E/,X/} 7é 0}

Proposition 4.1. Suppose E is neither a direct summand of T nor an element of
T+. Then we have

(l) COdim ZIQ,d = COdimrep(Q/yd/) WC/Q/,d/
and
(ii) 2 q is irreducible if Wey, 4, has this property.

Proof. By construction, X belongs to Z@d if and only if FX is isomorphic to some
X' e W&%d,, but unfortunately the functor F cannot be made into a regular map
from

rep(Q,d)" = {X €rep(Q,d); [X,E] =0}
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to
rep(Q’,d’) = {X' e rep(Q’,d’); [E', X'] = 0}.

We use the following détour (compare [7] and Section 4.2 in [3]): The set

{X e rep(Q,d); Y X(a;)X(8)) = 0, [X(B1),-.., X(B,)]! injective,

j=1

[X(a1),...,X(ay)] Surjective}

is a principal Gl(d’,)-bundle over rep(Q,d)" and a principal Gl(d,)-bundle over
rep(Q’,d’)’ via the projections 7 and 7’ deleting 2’ and z, respectively. Hence the
claim follows from 7~ (27, 4) = (7') " (Wpy a/)- O

5. Proof of Theorem 1.1

We proceed by induction on the number n of vertices of (). We may assume the
theorem to be true for Z5a- First we treat the cases that

(i) FE is a direct summand of T'
and

(ii) E belongs to T+.
In both cases, we have that I is a direct summand of X for all X € Zg q; i.e.,

0.a = 2qQ,a- Indeed, in case (i) this follows from the fact that Homq(F,T) # 0,

which is a closed condition. In case (ii), F is a simple object in 7.

As any direct summand T; % E of T belongs to ~E, we have

dimT;(z) = Y dim Ti(y;) = (dim T}, dim E) = [T}, E] - '[T;, E] = 0.
j=1

By Lemma 3.3, T; is indecomposable, and therefore

o (T) = r—1 ?n case (1)7
T in case (ii).

The induction hypothesis together with Corollary 3.2 implies the first part of our

theorem. We conclude from Proposition 3.1 that Zg g ~ Z@H x Ng, where

Ng = {A € Mat <dz X Zdy]); rank A < d,}.
j=1

The second part follows from the fact that the set Ny is irreducible in case d, >
¥ dy,.

(iii) Finally, suppose that E is neither a direct summand of T nor does it
belong to T+, or equivalently that d, < Z;Zl dy;. Using Corollary 3.2 and its
dual, Proposition 4.1 and remembering that the codimension of any irreducible
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component of Zg g is at most n — 7, we see that the theorem is true for Zg g if
and only if it holds for Zg/ q/.

In case either T' contains a preprojective direct summand or T a preprojective
representation, we may apply a series of reflection functors until we reach the
situation that a simple projective either is a direct summand of 7" or else belongs
to T, and we can reduce by (i) or (ii). This finishes the proof in case @ is of
finite representation type as any indecomposable representation is preprojective.

If @ is not representation finite, we are left with the situation that no prepro-
jective representation is a direct summand of 7' nor an element of 7. Dually,
we may assume T’ does not contain a preinjective direct summand either. Indeed,
suppose a simple injective representation E’ is a direct summand of T or belongs
to 1T, a situation we will reach after a series of (inverse) reflection functors. Then
apply the dual of the first or the second reduction step above; recall that Zg g has
a dual description as

Zg.a = {X €rep(Q,d); [S', X] # 0 for all simple objects S’ € ~T}.

The following lemma finishes the proof of Theorem 1.1.

Lemma 5.1. Let QQ be an extended Dynkin quiver. Suppose T is a regular repre-
sentation with an open orbit. Then T contains a non-zero preprojective repre-
sentation.

Proof. Consider a Bongartz completion T for T [2]; i.e., an exact sequence

OHkQHT%@TfHO
i=1

for which the induced map
Homyg (Tl, @ Ti”i> — Extég(Tl, kQ)
i=1

is surjective for [ = 1,...,r. There is a Z-linear map 0 : Z9° — Z, called defect,
such that any indecomposable representation Y of @) is preprojective, regular and
preinjective if and only if 9(dim Y") is negative, zero and positive, respectively (see
for instance [10]). As T is regular, 8T = dkQ < 0 and therefore T' contains an
indecomposable preprojective direct summand Y, and Y € T+. Indeed, we have
YT, Y] = 0 for all direct summands of 7" and [T, Y] = 0 since Y is preprojective
and T is regular [10, Theorem 3.6.5]. O

Example. Working out the following example, one can see that if @ is not tame,
it may happen that both T and T belong to the set of regular representations:

¢ & o 1 6 6 6 6
Q:Ni/,d: . .
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As g(d) = 1, there exists an irreducible T' € rep(Q, d) having an open orbit. The
simple objects in T have dimension vectors

31111 01110 01101 01011 00111
and .

) ) b

3 2 2 2 2

It is easy to check that these simple objects are regular representations of Q.
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