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c© 2004 Birkhäuser Verlag, Basel

Commentarii Mathematici Helvetici

On the Gabai–Eliashberg–Thurston Theorem

Ko Honda, William H. Kazez and Gordana Matić

Abstract. We present a new, completely three-dimensional proof of the fact, due to the com-
bined work of Gabai and Eliashberg–Thurston, that every closed, oriented, connected, irreducible
3-manifold with nonzero second homology carries a universally tight contact structure.
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Introduction

A contact structure on a 3-manifold M is a completely nonintegrable field ξ of
tangent 2-planes on M . It is locally defined as the kernel of a smooth 1-form α
such that α ∧ dα is nowhere vanishing. A contact structure ξ on M is called tight
if there is no embedded disc D2 ⊂ M such that for all points in ∂D, the tangent
space to D is equal to ξ. If there is such an overtwisted disc D, the contact
structure is called overtwisted. Bennequin [2] showed that the standard contact
structure on R

3 is tight. Eliashberg [5] showed that the classification of overtwisted
contact structures up to isotopy on an arbitrary closed 3-manifold coincides with
their homotopy classification as 2-plane fields. This gives a complete answer to
the question of existence and uniqueness for overtwisted structures.

Until recently, to decide if a contact structure is tight or to construct tight
contact structures, one of two techniques was used. Either the contact structure
was shown to be semi-fillable (i.e., a component of the convex boundary of a
symplectic manifold), hence tight by Eliashberg and Gromov [7], [15], or it had a
tight cover. One rich source of fillable examples is surgery on Legendrian links [6],
[14]. The other is a theorem of Thurston and Eliashberg [9] that a taut foliation
can be perturbed to obtain a semi-fillable contact structure. This, coupled with
the work of Gabai [10] on the existence of taut foliations, gives the most general
existence theorem to date.
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Theorem 0.1 (Gabai–Eliashberg–Thurston). Let M be a closed, oriented, con-
nected, irreducible 3-manifold with H2(M, Z) �= 0. Then M carries a universally
tight contact structure.

In [20], the authors proved the following variant of the above theorem for
manifolds with boundary:

Theorem 0.2. Let (M,γ) be an oriented, compact, connected, irreducible, sutured
3-manifold which has nonempty boundary, is taut, and has annular sutures. Then
(M,γ) carries a universally tight contact structure.

Our approach to contact topology is built upon the seminal work of Giroux [11].
He identified and developed one of the crucial tools in the subject, convex surfaces,
and described how a family of closed curves ΓΣ on the surface Σ, the dividing set
of Σ, determines the contact structure in the neighborhood of the convex surface.
This notion was extended to surfaces with Legendrian boundary by Kanda [22],
[23]. In [13] Giroux described what happens to a convex surface during an isotopy
by something like a movie of the changing dividing set. Honda [16] defined the
notion of a bypass to capture the most basic change of the dividing set under
an isotopy. In [19, 20], we defined the notion of a convex decomposition that
is the contact topology analogue of Haken decompositions and sutured manifold
decompositions. This has allowed us to both classify and construct tight contact
structures. One can think of these methods as cut-and-paste contact topology:
we analyze and build tight contact structures by decomposing them and/or gluing
them back together along convex surfaces.

Our interest in reproving Theorem 0.1 is twofold. First, if the starting point
is a sutured manifold decomposition and the goal is to build a universally tight
contact structure, it should not be necessary (indeed it is not) to construct a taut
foliation à la Gabai [10], perturb it into a contact structure, and argue using sym-
plectic filling techniques that the resulting contact structure is universally tight
(this was the path taken by Eliashberg–Thurston in [9]). Our other motivation is
to use these theorems as guidelines in the development of a cut-and-paste theory of
contact topology. This theory contrasts with foliation theory right from the start.
Given a tight contact structure, it is very easy to produce convex decompositions
of the space (see [20]). On the other hand, given two pieces of a manifold, each
with a universally tight contact structure, it is surprisingly difficult to find gluing
theorems which allow one to conclude that the contact structure on their union is
universally tight. In the theory of taut foliations, the relative difficulty levels of
the two appear to be switched.

We have used the search for cut-and-paste proofs of the Gabai–Eliashberg–
Thurston theorem as a method for finding new gluing theorems. Theorem 0.2 was
proved using gluing techniques (pioneered by Colin [3, 4]). The key gluing theorem
used in the proof was:



504 K. Honda, W. H. Kazez and G. Matić CMH

Theorem 0.3 (Colin [4]). Let (M, ξ) be an oriented, compact, connected, irre-
ducible, contact 3-manifold and S ⊂ M an incompressible convex surface with
nonempty Legendrian boundary and ∂-parallel dividing set ΓS. If (M \ S, ξ|M\S)
is universally tight, then (M, ξ) is universally tight.

The condition ∂S �= ∅ is important in the proof of Theorem 0.3. Therefore,
Theorem 0.3 is not applicable when M is a closed 3-manifold and the first cut in
the sutured manifold decomposition is along a closed surface.

There is also a gluing theorem along incompressible tori, due to Colin [4]. In
[20], we rephrased and gave a slightly different proof of this result, and presented
a foliation-theory-free proof of the existence theorem for tight contact structures
in the case of a closed, irreducible, toroidal manifold (without the assumption
H2(M, Z) �= 0).

The main Gluing Theorem of this paper is in many ways a simultaneous gen-
eralization of the above two gluing theorems – along tori and along surfaces with
boundary. For the purposes of this paper, it suffices to prove a gluing result for
atoroidal manifolds, along closed convex surfaces Σ of genus g > 1 that satisfy the
extremal condition

〈e(ξ),Σ〉 = ±(2g − 2),

where the left-hand side is the Euler class of ξ evaluated on Σ. (Note that the
condition is trivially satisfied for genus one surfaces.) Tight contact structures ξ
on M satisfying this condition are said to be extremal along Σ, since

−(2g − 2) ≤ 〈e(ξ),Σ〉 ≤ 2g − 2,

by the Bennequin inequality [2, 8]. With the understanding that the necessary
terminology will be explained in Section 1, the precise statement of the Gluing
Theorem is as follows:

Theorem 0.4 (Gluing Theorem). Let (M, ξ) be an oriented, compact, irreducible,
atoroidal contact manifold which is extremal along a closed, convex, incompressible
surface Σ, and let Σ0 and Σ1 be the boundary components of M \Σ corresponding
to Σ. Suppose that, for each i = 0, 1, Σi is fully straddled in M \ Σ with a
straddling set S

i, and the dividing curves of Σi are straddled if and only if they are
unstraddled in Σ1−i. Then (M, ξ) is universally tight if and only if (M \Σ, ξ|M\Σ)
is universally tight.

The two key ingredients in the proof of Theorem 0.1 are the above Gluing
Theorem (Theorem 0.4) along closed surfaces Σ satisfying the extremal condition
and a good understanding of universally tight contact structures on Σ× [0, 1]. One
of the main results of [21] is Theorem 0.5, which gives the classification of extremal
tight contact structures on Σ× [0, 1] in the case of two parallel dividing curves on
each boundary component. This result, and its implications for covering spaces of
Σ × [0, 1], are enough to construct contact structures satisfying the hypotheses of
the Gluing Theorem.
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Theorem 0.5. Let Σ be a closed oriented surface of genus g≥2 and M =Σ×[0, 1].
Write Σi = Σ × {i}, i = 0, 1. Suppose that ΓΣi

is the union of a pair γi, γ
′
i of

parallel nonseparating curves which cobound an annulus Ai ⊂ Σi and that ΓΣ0

is not isotopic to ΓΣ1 . (Here the Σi are oriented in the same way, and Ai is
the negative region (Σi)− of Σi \ΓΣi

.) Choose a characteristic foliation F on ∂M
which is adapted to ΓΣ0	ΓΣ1 . Then there exist, up to isotopy rel boundary, exactly
4 tight contact structures which satisfy the boundary condition F , and all of them
are universally tight. Moreover, for each of the 4 tight contact structures, both Σ0

and Σ1 are fully straddled, and the 4 cases correspond to the 4 possible choices for
the set of straddled curves Γ(S), consisting of exactly one curve from each ΓΣi

.

Observe that Theorem 0.1 is an existence result, whose proof relies only on the
existence portion of Theorem 0.5. Since the existence of the 4 universally tight
contact structures is much easier to prove than the full classification theorem, the
proof is given in the Appendix, where we derive the existence from Theorems 0.3
and 0.4.

In Section 1, we introduce the notion of straddling and explain the basic prop-
erties. Section 2 contains a proof of the Gluing Theorem. In Section 3, Gabai’s
well-groomed sutured manifold decomposition theory is used to construct a uni-
versally tight contact structure on the cut-open manifold, and then the Gluing
Theorem completes the proof of Theorem 0.1.

We adopt the following conventions:
(1) The ambient manifold M is an oriented, compact 3-manifold.
(2) ξ = positive contact structure which is co-oriented by a global 1-form.
(3) A convex surface S is either closed or compact with Legendrian boundary.
(4) ΓS = dividing multicurve of a convex surface S.
(5) #ΓS = number of connected components of ΓS .
(6) S \ ΓS = S+ ∪ S−, where S+ (resp. S−) is the region where the normal

orientation of S is the same as (resp. opposite to) the normal orientation
for ξ.

(7) |α ∩ β| = geometric intersection number of two curves α and β.

Acknowledgements. The first author thanks the American Institute of Math-
ematics, Stanford University, and IHES for their hospitality. The authors also
thank the referee for pointing out that this paper could be made self-contained by
including a proof of the existence portion of Theorem 0.5.

1. Straddling

The following proposition will be used repeatedly throughout the paper.

Proposition 1.1 (Add = dig). Let (M, ξ) be a tight contact 3-manifold with
convex boundary, Σ a component of ∂M , and γ, γ′ a pair of parallel disjoint curves
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in ΓΣ. Suppose there is a bypass Bα ⊂ M attached along an arc α ⊂ Σ that starts
on γ′, crosses γ, and then ends on a third curve in ΓΣ − (γ ∪ γ′). Let β be a
Legendrian arc in Σ that starts on γ, crosses γ′, ends on a point of ΓΣ − (γ ∪ γ′),
and does not intersect α or any other points of ΓΣ. Then attaching a bypass Bβ

to M along β produces a manifold contact isomorphic to the manifold obtained by
removing a convex neighborhood of Bα.

Proof. Let B ⊂ Σ be a regular neighborhood of the union of α, β, and the annulus
in Σ bounded by γ and γ′ – we assume B is convex with Legendrian boundary.
Let V be a small neighborhood of the union of B, Bα, and Bβ . See Figure 1.
Topologically, V is the product of an annulus and an interval, i.e., a solid torus.
After the necessary edge-rounding, we see that the dividing set of ∂V has two
components, each of which intersects a compressing disk in a single point. There
is a unique tight contact structure on V with this boundary condition, as can
be seen by splitting V along the compressing disk and appealing to Eliashberg’s
uniqueness theorem on a ball [8]. It remains to verify that the contact structure
on V is indeed tight – for this we simply remark that an explicit model can be
found inside the unique (product) tight contact structure on V . Since the contact
structure on V is a product, it follows that adding a bypass along β is equivalent
to removing a bypass along α. �

B
α β

γ′ γ ∼=

Fig. 1. Neighborhood of B

Let (M, ξ) be a tight contact 3-manifold with convex boundary and let Σ be
a connected component of ∂M of genus g which satisfies the extremal condition
〈e(ξ),Σ〉 = −(2g − 2). It follows that Σ− has zero Euler characteristic and is a
disjoint union of annuli Ai, for i = 1, . . . , n. Denote ∂Ai = γ0

i ∪ γ1
i , and call γ0

i

and γ1
i a parallel pair of dividing curves.

We say a dividing curve γj
i is straddled if there is a bypass in M with an

attaching arc αj
i which starts on γ1−j

i , crosses γj
i , and ends on (i) a point of

ΓΣ − (γ0
i ∪ γ1

i ) or on (ii) γ0
i or γ1

i , but only after first going around a nontrivial
loop on Σ which is not parallel to γj

i . Our bypasses may be degenerate, i.e., the
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two endpoints of the arc of attachment are allowed to coincide. The attaching arcs
of these bypasses are called straddling arcs.

A closed convex surface Σ of genus g > 1 which is a connected component of
∂M is fully straddled if the following hold:

(1) ξ is extremal along Σ and satisfies 〈e(ξ),Σ〉 = −(2g − 2).
(2) The components of Σ− are pairwise nonparallel annuli.
(3) There is a collection S = {αi} of straddling arcs (called a straddling set)

and a corresponding collection of bypasses B = {Bαi
} in M such that:

(a) at least one curve in each parallel pair of ΓΣ is straddled by a bypass
in B,

(b) every curve in ΓΣ is straddled by at most one bypass in B,
(c) if i �= j, then either Bαi

and Bαj
are disjoint or intersect only at the

endpoints of their corresponding arcs of attachment, and
(d) S is an essential family, i.e., Σ+ − ∪n

i=1αi has no disk components.
(Equivalently, a thickening of Σ− ∪ (∪n

i=1αi) is an incompressible
subsurface of Σ.)

Remark 1.2. Condition 3(d) is a sufficient condition to ensure that homotopically
trivial dividing curves do not appear after all the bypasses of B are attached onto Σ.

The following two propositions describe the persistence of full straddlings under
the operations of taking covers and attaching bypasses.

Proposition 1.3. Let (M, ξ) be a tight contact manifold with convex boundary,
and let (˜M, ˜ξ) be a finite cover. If Σ is a boundary component of (M, ξ) which is
fully straddled, then the preimage ˜Σ of Σ is fully straddled in (˜M, ˜ξ).

Proof. Let S be the straddling set for Σ and B the corresponding set of bypasses.
Their preimages ˜S and ˜B satisfy all of the axioms necessary for ˜Σ to be fully strad-
dled, except that there may be several arcs in ˜S which straddle the same dividing
curve of ˜Σ. Removing extra components of ˜S decreases the Euler characteristics
of the complementary regions. Thus no disk components are produced, and ˜Σ is
fully straddled. �

Proposition 1.4. Let (M, ξ) be a tight contact manifold with convex boundary,
Σ a boundary component of M which is fully straddled, and S a corresponding
straddling set. Let α be an arc of S which straddles the dividing curve γ. Suppose
there exists an arc α′ ⊂ Σ disjoint from α such that α′ starts on γ, crosses the
dividing curve γ′ parallel to γ, and ends on a point of ΓΣ − (γ ∪ γ′), while inter-
secting no other points of ΓΣ. Then the manifold (M ′, ξ′), obtained by attaching
a bypass along α′ to (M, ξ), also is fully straddled along the boundary component
Σ′ corresponding to Σ. If (M, ξ) is (universally) tight, then so is (M ′, ξ′).
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Proof. By Proposition 1.1, attaching a bypass along α′ to (M, ξ) is equivalent to
digging Bα from (M, ξ). Hence if (M, ξ) is (universally) tight, then (M ′, ξ′) is also
(universally) tight.

We now verify the full straddling. Observe that digging the bypass Bα to obtain
Σ′ decreases #ΓΣ by two. The new collection of straddling arcs S

′ is defined to be
S − {α}. To see that S

′ is an essential family of arcs, it is necessary to relate the
complementary region Ω′ = Σ′

+ − (∪β∈S′β) to the corresponding complementary
region Ω = Σ+ − (∪β∈Sβ). Now, it is not difficult to see that Ω′ is obtained from
Ω by attaching a band. This can only decrease the Euler characteristic of the
complementary regions. Hence S

′ is an essential family. �

Given a connected component Σ of ∂M which is fully straddled, define Γ(S) to
be the union of dividing curves of Σ which are straddled by the (full) straddling
set S. In view of the following proposition, Γ(S) is an invariant of the universally
tight contact structure ξ (under suitable conditions).

Proposition 1.5. Let M be a compact, oriented, hyperbolic 3-manifold (i.e.,
int(M) admits a complete hyperbolic metric), ξ be a universally tight contact struc-
ture on M , and Σ be an incompressible, fully straddled component of ∂M . If γ
and γ′ form a parallel pair of ΓΣ and γ is straddled, then γ′ is unstraddled, i.e.,
there is no bypass in (M, ξ) which straddles γ′.

Proof. We argue by contradiction. Let S be a full straddling set for Σ, B be the
corresponding set of bypasses, and α be the arc in S which straddles γ. Suppose
there exists a straddling arc β for γ′.

Claim. There is a finite cover π : (˜M, ˜ξ) → (M, ξ) in which components α̃ and ˜β
of preimages of α and β straddle a parallel pair of dividing curves γ̃ and γ̃′, and
are disjoint.

Proof of Claim. To prove the claim we use the following theorem of Allman–
Hamilton [1].

Theorem 1.6 (Abelian subgroup separability). Let M be a hyperbolic 3-manifold.
Then abelian subgroups H of π1(M, ∗) are separable, i.e., for any g ∈ π1(M, ∗)−H
there exists a finite index subgroup K ⊃ H which does not contain g.

Let σ be the core of the annulus A bounded by γ and γ′. If α intersects only
two dividing curves, let α be a closed loop formed by the union of α and a subarc
of σ. From the definition of a straddling arc, α is not in the subgroup 〈σ〉 gen-
erated by σ. According to Theorem 1.6, after passing to a finite cover, we may
assume that α intersects 3 distinct dividing curves. Similarly, we may assume
that β intersects 3 distinct dividing curves. Next, by applying Theorem 1.6 to the
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trivial subgroup H ={e} (or by using residual finiteness), there exists a finite cover
˜M whose fundamental group does not contain σk. Let α̃ be a component of the
preimage of α which intersects a component ˜A of the preimage of A in an arc. If k
is large enough, there is a component ˜β of the preimage of β which straddles the
other boundary component of ˜A and is disjoint from α̃. This proves the claim. �

Now, Proposition 1.1 shows that attaching a bypass along ˜β from the exterior
of ˜M produces a contact structure isomorphic to the one obtained by digging out
the bypass in ˜M attached along α̃, and, in particular, this new contact structure
must be universally tight. On the other hand, ˜β is assumed to be the attaching arc
for a bypass in ˜M , and it follows that attaching a bypass along ˜β to the outside
of ˜M produces an overtwisted disk. This is a contradiction. �

2. Gluing along surfaces which are fully straddled

Proof of Theorem 0.4. The proof that (M, ξ) is tight also applies to finite covers
of (M, ξ), in light of Proposition 1.3. The atoroidal Haken hypothesis allows us
to assume that M is hyperbolic. As a consequence, M has a residually finite
fundamental group. Therefore, any overtwisted disk that exists in the universal
cover also exists in some finite cover, and the proof below will also imply that
(M, ξ) is universally tight.

The general strategy for proving tightness is explained in detail in [20] and
[18], so we will only provide a brief summary. Arguing by contradiction, we assume
(M, ξ) contains an overtwisted disk D. There exists a sequence Σ = Σ0,Σ1, . . . ,Σn

of isotopic surfaces, where each step is a single bypass attachment and Σn is disjoint
from D. Since we can extricate D from (isotopic copies of) Σ in stages, if we show
that each ξ|M\Σi

is tight, this implies the tightness of ξ|M . Now, for universal
tightness, we pass to a large finite cover ˜M of M and extricate some lift ˜D of D
from the preimage ˜Σ of Σ. Lifting to a cover has the following advantages:

1. A bypass which is #Γ-increasing can be made trivial by using the residual
finiteness of M .

2. A bypass whose attaching arc intersects only two distinct curves but is not
trivial or #Γ-increasing can be made to intersect three distinct curves by
Theorem 1.6.

Therefore, by lifting as necessary so that each bypass satisfies Conditions 1 and
2 above, we obtain a sequence

(˜M0 = M, ˜Σ0 = Σ, ˜ξ0 = ξ), (˜M1, ˜Σ1, ˜ξ1), . . . , (˜Mn, ˜Σn, ˜ξn),

where ˜Σi ⊂ ˜Mi, ˜Mi+1 is a finite cover of ˜Mi, ˜ξi is the pullback of ξ to ˜Mi, ˜Σi+1 is
obtained from the preimage of ˜Σi by isotoping across a bypass Bαi

whose arc of
attachment αi intersects three distinct dividing curves, and a lift ˜D of D in ˜Mn is



510 K. Honda, W. H. Kazez and G. Matić CMH

disjoint from ˜Σn. Here i = 0, . . . , n−1. If we can show that ˜ξi|˜Mi\˜Σi
is universally

tight for all i, we are done. This involves making sure that at each step the contact
structure is fully straddled and satisfies the conditions of the theorem.

To simplify notation, we will suppress the index i and still write M for the
finite cover of M and Σ for the preimage of Σ. Start with Σ and M , and take
a finite cover so that the isotopy takes place across a bypass Bα which intersects
three distinct dividing curves. Denote the copies of Σ in M \ Σ by Σj , j = 0, 1,
and let S

j be the straddling set for Σj . By Proposition 1.3, Σ is fully straddled
on both sides (i.e., on Σ0 and on Σ1). Suppose we are digging Bα from the Σ0

side and reattaching Bα onto the Σ1 side. This gives us the surface Σ′, which is
parallel to and disjoint from Σ. By Proposition 1.5, the curve γ straddled by α
must be in Γ(S0), and hence is straddled by an arc β0 of S

0. Since γ is straddled
by an element of S

0 if and only if γ is not straddled by any element of S
1, it follows

that the parallel curve γ′ is straddled by an arc β1 ∈ S
1.

As in the proof of Proposition 1.5, we may use Theorem 1.6 and pass to a larger
finite cover so that α and β0 are both disjoint from β1.

It is clear that digging Bα preserves universal tightness. Since α and β1 are
disjoint, Proposition 1.1 tells us that, on M \Σ, digging Bα is equivalent to attach-
ing a bypass B′

β1
along β1 onto the Σ0 side, i.e., M \ (Σ ∪ Bα) is contactomorphic

to M ′ = (M \ Σ) ∪ N(B′
β1

), where N(F ) is a small neighborhood of F . Applying
Proposition 1.1 once more, attaching a bypass B′

β1
along β1 onto the Σ0 side is

equivalent to digging Bβ0 . If we write ∂M ′ = (Σ′)0 	 Σ1, then (Σ′)0 ⊂ M ′ is
fully straddled, with a straddling set obtained by dropping β0 from S

0. By yet
another application of Proposition 1.1, attaching a bypass B′

α to Σ1 ⊂ M ′ along
α is equivalent to digging a bypass Bβ1 along β1. In other words, M ′ ∪ N(B′

α) is
contactomorphic to M ′ \ Bβ1 and also to M \ Σ′. Therefore, ξ|M\Σ′ is universally
tight and is fully straddled by S

0 − {β0} on the (Σ′)0 side and S
1 − {β1} on the

(Σ′)1 side (by applying Proposition 1.4).
We can now inductively construct (˜Mi, ˜Σi, ˜ξi) that are fully straddled on both

sides which satisfy the conditions of the theorem, by choosing finite covers where
Conditions 1 and 2 are met. This ensures universal tightness of each step and
finishes the proof. �

3. The Gabai–Eliashberg–Thurston Theorem

Proof of Theorem 0.1. According to Gabai [10], there is a well-groomed sutured
manifold decomposition of M ,

M
Σ� (M1, γ1)

S1� · · · Sn−1� (Mn, γn) = ∪(B3, S1 × I),

where Σ is an oriented nonseparating surface representing a nontrivial class in
H2(M ; Z). Since the toroidal case was already discussed in [20], we assume that
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M is atoroidal and the genus of Σ is ≥ 2. Since M and Σ are closed, γ1 = ∅. For
i ≥ 1, Si may be chosen to have nonempty boundary (see [20], Theorem 1.3 for a
statement of this version of Gabai’s theorem). It follows that for i ≥ 2, (Mi, γi) has
annular sutures, that is, all sutures are annuli, every component of ∂Mi contains
at least one suture, and every component of Mi has nonempty boundary.

By the results of [20], the sutured manifold decomposition

(M2, γ2)
S2� (M3, γ3)

S3� · · · Sn−1� (Mn, γn) = ∪(B3, S1 × I),

gives rise to a convex decomposition

(M2,Γ2)
(S′

2,σ2)� (M3,Γ3)
(S′

3,σ3)� · · · (S′
n−1,σn−1)� (Mn,Γn) = ∪(B3, S1),

and then (and this requires that each of the (Mi,Γi) above have annular sutures)
(M2,Γ2) carries a universally tight contact structure by Theorem 6.1 of [19]. Note
that the proof of Theorem 6.1 in [19] uses the perturbation of a taut foliation into
a universally tight contact structure; we gave a foliation-theory-free proof of the
same fact in [20].

Gabai’s construction gives (M1, γ1 = ∅) S1� (M2, γ2), so to apply Theorem 6.1
of [19], it is necessary to produce a convex structure (M1,Γ1) with annular sutures

(in particular, Γ1 �= ∅) and a splitting surface (S′
1, σ1) such that (M1,Γ1)

(S′
1,σ1)�

(M2,Γ2). Let Σ0 and Σ1 be the components of ∂M1 corresponding to the original
splitting surface Σ. Since S1 is well-groomed, the components of S1 ∩Σi, i = 0, 1,
are parallel oriented nonseparating curves in the isotopy class si. Let Ai be an
annular neighborhood of a curve dual to si, and denote ∂Ai = δi 	 δ′i. (Here, two
closed curves α, β on the same closed surface are dual if |α ∩ β| = 1.) Now define
Γ1 = δ0 	 δ′0 	 δ1 	 δ′1. The convex structure (M1,Γ1) is defined by decreeing that
Σi \ Ai ⊂ (Σi)+ and Ai ⊂ (Σi)− if and only if the orientation induced from Σ
agrees with the outward-pointing normal orientation on Σi.

Now, (S′
1, σ1) is defined so that S′

1 = S1 and σ1 is the unique dividing set
which is ∂-parallel and gives rise to (M2,Γ2) after the splitting. The bypasses
corresponding to the ∂-parallel dividing curves straddle curves of Γ1. Due to the
well-grooming of S1, there is a unique choice of straddled curve for each pair δi	δ′i.
It now follows that there is a universally tight contact structure on (M1,Γ1) and
that ∂M1 is fully straddled with Γ(S) = δ0 	 δ1, for example.

Next consider M = M1∪(Σ×[0, 1]), where we identify Σi with Σ×{i}, i = 0, 1.
By Theorem 0.5, there is a (unique) universally tight contact structure on Σ × I
with Γ∂(Σ×I) = δ0	δ′0	δ1	δ′1 and Γ(S) = δ′0	δ′1. We may then apply Theorem 0.4
twice to obtain a universally tight contact structure on M . �
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Appendix

In this section we show that the 4 universally tight contact structures described
in Theorem 0.5 exist. On Σ × [0, 1], we have boundary conditions ΓΣi

= γi 	 γ′
i,

i = 0, 1. For convenience, we introduce notation which singles out the straddled
curve on each Σi – the 4 potentially tight contact structures, distinguished by the
4 possible choices of the set of straddled curves Γ(S), are written [γ0, γ1], [γ0, γ

′
1],

[γ′
0, γ1], and [γ′

0, γ
′
1]. The next proposition shows how to construct two of these

structures in a special case.

Proposition 3.1. Assume curves γ0 and γ1 on Σ have a common dual curve δ.
For each i = 0, 1, orient δ and then orient γi and γ′

i using the boundary orien-
tation ∂(Σi)− = γi + γ′

i and the requirement that 〈γi, δ〉 = +1. (Here 〈, 〉 is the
intersection form.) Then two of the universally tight contact structures described
in Theorem 0.5 exist and are written as [γ0, γ1] and [γ′

0, γ
′
1].

Proof. The desired contact structures are built by specifying a convex decom-
position of (Σ × I,ΓΣ0 	 ΓΣ1). Let δ × I be the first splitting surface, and let
Γδ×I consist of two ∂-parallel dividing curves. Figure 2(A) shows (Σ× I)\(δ × I).
Figure 2(B) shows one possible dividing curve configuration on Σ × {0}. After
rounding corners and isotoping the dividing set (Figure 2(C)), we obtain a convex
structure on M1 = (Σ× I)\(δ× I) where ΓM1 consists of a pair of dividing curves,
one at the core of each vertical annulus on ∂M1.

There is now a canonical “product” decomposition of (M1,ΓM1) along disks
which intersect the dividing curves twice. We show just one step of the remaining
decomposition. Let ε be an arc in Σ\δ that connects the two vertical annuli of ∂M1.
Figure 2(D) shows the unique convex structure on ε×I that is consistent with the
intersection pattern of ε× I and ΓM1 . Splitting along ε× I, rounding corners, and
isotoping produces (M2,ΓM2) and is shown in Figures 2(E) and (F). Continuing
in this fashion produces a convex decomposition of (Σ × I,ΓΣ0 	 ΓΣ1), where
all splitting surfaces are ∂-parallel. By Theorem 0.3, this convex decomposition
defines a universally tight contact structure on Σ × I.

Depending on how the dividing set on δ × I was chosen, the universally tight
contact structure just constructed has both γ0 and γ1 straddled, or both γ′

0 and
γ′
1 straddled. Therefore, we have constructed both [γ0, γ1] and [γ′

0, γ
′
1]. �

Applying this proposition to the special case of γ0 = γ1 immediately gives:

Corollary 3.2. If γ is a nonseparating curve in Σ, then there exist universally
tight contact structures of the form [γ, γ] and [γ′, γ′].

The rest of the proof consists of small successive improvements of Proposi-
tion 3.1, using the Gluing Theorem. Recall that the Gluing Theorem implies that
two universally tight contact structures on Σ×I with ΓΣi

consisting of two parallel
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+
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Fig. 2

curves can be glued across a common boundary component to give a universally
tight contact structure if and only if the dividing sets match, and the curve that is
straddled on one side is not straddled on the other. An application of the Gluing
Theorem then gives:

Proposition 3.3. If γ is a nonseparating curve in Σ, then the 4 universally tight
contact structures [γ, γ], [γ, γ′], [γ′, γ], and [γ′, γ] on Σ × I exist.
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Proof. By Corollary 3.2, we know that universally tight contact structures of the
form [γ, γ] and [γ′, γ′] exist. The Gluing Theorem implies the tightness of [γ, γ′] =
[γ, γ] ∪ [γ′, γ′] and [γ′, γ] = [γ′, γ′] ∪ [γ, γ]. �

This can be used to strengthen Proposition 3.1.

Proposition 3.4. If γ0 and γ1 on Σ have a common dual curve δ, then the 4
universally tight contact structures [γ0, γ1], [γ0, γ

′
1], [γ

′
0, γ1], and [γ′

0, γ
′
1] exist.

Proof. Again, the Gluing Theorem implies the universal tightness of [γ0, γ
′
1] =

[γ0, γ1] ∪ [γ′
1, γ

′
1] and [γ′

0, γ1] = [γ′
0, γ

′
1] ∪ [γ1, γ1]. �

The next theorem is the existence portion of Theorem 0.5.

Theorem 3.5. Let γi ⊂ Σ, i = 0, 1, be nonseparating curves, and let γ′
i be

their parallel copies. Then there exist tight contact structures of all 4 types:
[γ0, γ1], [γ0, γ

′
1], [γ

′
0, γ1], and [γ′

0, γ
′
1].

Proof. Let γ0 = β0, β1, β2, . . . , βn = γ1 be a sequence of nonseparating curves such
that |βi ∩ βi+1| = 1. Since adjacent curves βi, βi+1 have common duals, we can
construct a universally tight contact structure by stacking a sequence of universally
tight contact structures supplied by Proposition 3.4. As long as we ensure that
the same curve is not straddled on both sides of the gluing surface, the resulting
contact structure will be universally tight. It is clear, with a final application of
Proposition 3.3 to adjust the straddled curves at the ends, that all 4 configurations
of straddled curves can be achieved. �
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