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Abstract. The N-commutator

sN(X1,...,XnN) = Z signo X, (1) - Xo(n)
oceG N

is conjecturally a well-defined nontrivial operation on W (n) = Der K[z] for z = (z1,...,zn) if
and only if N = n? 4 2n — 2. This is proved for n = 2 and confirmed by computer experiments
for n < 5.

Under 2- and 5-commutators the algebra of divergence-free vector fields in two dimensions is
an sh-Lie (strong homotopic Lie) algebra in the sense of Stasheff. Similarly, W (2) is an sh-Lie
algebra with respect to 2- and 6-commutators.
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1. Introduction
1.1. Notations

Let K=R or C. By Z we denote the set of nonnegative integers.

Let U = K[z] for z = (z1,...,2z,) and W(n) = Der K[z] be the Lie algebra
of polynomial vector fields and Diff(n) = Sy(W(n)) the associative algebra of
differential operators with smooth or polynomial coefficients. When Diff(n) is
considered with the commutator rather than juxtaposition as the product, we
write Diff(n); other products will also be used.

A vector space A is called a k-algebra with multiplication w and denoted A =
(A,w), if w is a polylinear map A®---® A — A with k > 2 arguments. Usually,
multiplication is as a bilinear map and instead of w(a,b) one writes aob or a - b.
In such cases we will call A just algebra and write A = (A,0) or A = (A4, ).
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1.2. W(n) with right-symmetric multiplication

On W (n), let o be the multiplication (9; = 9/dx;)
u0; o v0; = v0;(u)0;.

Recall that the multiplication o is right-symmetric if it satisfies the right-symmetric
identity
(X17 X2a X3) = (Xh X37 X2)a

where

(X17X27X3) =Xo0 (X2 o X3) - (Xl © X2) o0 X3

is the associator. Right-symmetric algebras are called also pre-Lie, Vinberg, or
Vinberg-Koszul [1], [12], [17].

Main example. (W (n),o) is right-symmetric.

Observe that usually the action of a vector field on a function is denoted by
X (u), but considering right-symmetric algebras (W (n), o) and the associated Lie
algebras we denote such action by (u)X. Therefore, the commutator given above
for W(n) and the commutator in the Lie algebra obtained from right-symmetric
algebra (W (n), o) differ by a sign.

1.3. Problem formulation

The subspace W (n) C Diff(n) is not a subalgebra with respect to composition. If
X = u;0;, Y = v;0; are differential operators of first order, then their composition

XY= ’Ujaj (ui)ai + Uﬂ}jaiaj

is a differential operator of second order. It has nontrivial quadratic differential
part u;v;0;0;. But W(n) C Diff(n) is a Lie subalgebra: it is closed under commu-
tator since 9;0; = 0;0;. This well-known fact has the following interpretation in
terms of skew-symmetric polynomials. Let &y be a permutation group. Let

Sk(tyy ... ty) = Z Sign oty (1) to(k)
ceSy

be the standard skew-symmetric polynomial. Then instead of ¢; we can substitute
any differential operator from Diff(n).
Clearly, s2(X,Y) = [X,Y] € W(n) for any X,Y € W(n). Does there exist k >

2, such that sy is also a well defined operation on W (n)? Since X; = > u;;0;,1 =
j=1

1,2,...,k, are first order differential operators, X, (1) - - - X5(1) is, in general, a k-th
order differential operator and so is sg(Xy, ..., Xg).

Surprisingly, for some special k = k(n) it might happen that all higher degree
differential parts of s (X1, -, Xg), like quadratic differential part of ss, can be
cancelled for any Xi,..., X, € W(n), but the first order part remains.
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Let us consider W(2). We prove that sg is a well defined non-trivial 6-linear
map on W(2) :

SG(Xl,...,XG) € W(2) for any X1,..., X5 € W(2),

and
36(X1,...,Xg) #0 for some Xy,..., Xg € W(2).

The number 6 here is unique:
sp(X1,...,Xk) =0, forany Xy,...,X; € W(2) and any k > 6

and si(Xy,...,Xx) has a non-trivial quadratic differential part for some Xj, ...,
Xy, € W(2) and any 2 < k < 6.

Consider S(2) C W(2), the Lie subalgebra of divergence free vector fields. We
will prove that on S(2) the unique analog of the above is the 5-commutator:

s5(X1,...,X5) € S(2) for any Xq,...,X5 € S(2)

and
s5(X1,...,X5) #0 for some Xi,...,X5 € 5(2).

Moreover,
k>5= sp(Xy,...,Xk) =0 for any Xq,..., X € 5(2).

If 2 <k <5, then si(Xy,...,Xg) has a non-trivial quadratic differential part for
some Xi,...,X; € S(2).

So, the vector space W (2) can be endowed with a Lie algebra structure with
respect to sg, usually denoted by [, |, and the 6-commutator sg. Similarly, S(2)
can be endowed by a structure of Lie algebra under 2-commutator s, and the
5-commutator s5. These commutators have the following nice properties.

1.4. 5- and 6-commutators and right symmetric products

Let A= W(2) or S(2) and X,Y, Xy, Xs,... € A. It is well known that the right
adjoint representation ad X, defined by (Y)ad X = [V, X], for any X,Y € A is a
derivation. The commutator [X, Y] can be represented in terms of right-symmetric
multiplication: X -Y —Y - X = X oY — Y o X. These facts have analogies for 5-
and 6-commutators.

The following Leibniz rule holds: for any X, X;,..., X5 € S(2) we have

5
[X,85(X1,...,X5)] = 255(X17~-~;Xi—17[X7Xi]aXi+17~-~7X5)~

i=1

To calculate the 5-commutator of Xi,..., X5, one can use right-symmetric
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multiplication:

Z signo X, (1) - Xo(2) - Xo3) - Xo@) - Xo(s)
c€Gs

=Y signo (Xo1) 0 Xo(2) © Xo@) © Xo) © Xos).-
ceGs

In other words,
s5(X1,.. ., X5) = 57" (X4, ..., X5)  forany Xq,...,X5 € S(2).

Usage of right-symmetric multiplication simplifies calculation of 5-commutators.
The 5-commutator satisfies the following 4-left commutativity identity:

Z sign o 55(Xo (1), Xo(2), Xo(3), Xo(4), 55(Xo ) Xo6): Xo(1)) Xo(s), X0)) = 0
c€Gg

for any Xo, X1,...,Xs € S(2).
Similar results are true for 6-commutator. One can calculate 6-commutator by
right-symmetric multiplication:

Z signo X, (1) - Xo(2) - Xo3) - Xo@) - Xo5) - Xo(6)
c€Bg

= > signo (Ko © Xo@) © Xo(@) © Xata) © Xo)) © Xo(o):
c€Gg
for any Xi,...,Xg € W(2). The 6-commutator is 5-left commutative:
Z Sign 0 S¢ (XU(1)7 XU(Q)? Xa(3)7 XO'(4)? XU(S)a

ASICET
56(X0(6)7 XU(’?)a Xa(8)7 XU(9)7 XO'(lO)? XO)) =0

for any Xy, X1,...,X10 € W(2).

A property that the 5-commutator on S(2) has, but the 6-commutator on W (2)
does not, is as follows. It is not true that the a composition of adjoint derivations
is a derivation. Well known that ad is a Lie algebra homomorphism:

[ad X,adY] =ad[X,Y] for any X,Y € W(n).

In general, it is also false that sx(ad X1, ...,ad X}) is a derivation. However, for
S(2) and k =5 it is:

ss(ad X1, ...,ad X5) = ad s5(X1,...,X5) for any Xi,..., X5 € S(2).
A similar result for a 6-commutator is no longer true. For example,
F = sg(ad 01, ad 02, ad x101, ad 201, ad £104, ad x202) € End W (2),
as a linear operator on W (2) is defined by

(ulf)l + UQag)F = 6(6182(1“) + [“)%(ug))(f?l — 6(8%(11,1) + 8162(’11,2))(92.
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We see that F' has nontrivial quadratic differential part, so it is not even a deriva-
tion of the Lie algebra (Vect(2),], ]).
Note also the following relation between 5 and 6-commutators and divergences
of vector fields:
6
SgSym'T(Xh . ,Xg) = Z(—l)i+1(DiV Xz) sgsym.r(Xl’ ce ,Xi7 .. ,Xg),
i=1

TSYm.r
5

for any X1,...,Xg € W(2). Here one can change on the right hand s
despite of the fact that s5 is not well defined on W (2).

The quadratic differential part of the 5-commutator can be represented as a
sum of three determinants (see lemma 7.4). All quadratic differential terms of s5
are cancelled in taking alternative sum:

to ss,

6
g™ (X1, ., Xe) = (=1 (Div X;) s5(X1, .., Xi, ., Xe),
i=1
for any X7,...,Xs € W(2). Recall that s¢ = sg"?"™" on W(2).
Notice that here 6 and 5 can not be changed to smaller numbers. For example,

$5(01, 02, 101, 201, 102) — Div(x101)54(01, 02, 201, x102)
— 30,05 £ 0.

Notice that these results, valid for 5 and 6-commutators, are not valid for lower
degree commutators. Namely, s3, s4 for S(2) and s3, s4, 85 for W(2) have no such
properties. One can state some weaker versions of these statements.

Let gl, K2 be the semi-direct sum of gl, and the identity module. For exam-
ple, if £ =3,4,5, then

k
(X, 7 (X, X)) = s (X X, (XX X, X
i=1

for any X € gl, DK?, and Xq,..., X} € W(2).

1.5. Strongly homotopic (sh-) algebras, n-Lie algebras, and (n — 1)-left
commutative algebras

For vector spaces M and N set TF(M,N) = Hom (M®* N) if k > 0, let
T°(M,N) = N and T*(M,N) =0 if k < 0.

Let T*(M,N) = @, T*(M, N). Let A*M be the k-th exterior power of M. Set
C*(M, N) = Hom (AFM, N) € T*(M, N), let C°(M,N) = N, and C*(M, N) = 0
if k< 0. Set C*(M,N) = @, C*(M, N).

Let Q = {w;,wa,...} be a set of polylinear maps w; € C*(A4,A4). Let (4,9)
be an algebra with vector space A and signature Q [13] which means that A is
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endowed with the i-ary multiplication w;. Call A an Q-algebra and in case where
Q ={w;} set A= (4,w;).
An algebra (A,w) is called an n-Lie [8], Filipov or Nambu algebra, if

w(ar,...,ap-1,w(@p,...,02,-1)) =
n—1

w(ana ... ,W(al, ceey Op—1, a’n-‘ri)? ai+17 ceey a2n—1);
=0

(A,w) is (n — 1)-left commutative if

Z Signgw(aa(1)7 <o Qo(n—-1), w(aa(n)v <+ Qo (2n—2) a2n—1)) =0,
0€G2n—2

and n-homotopy Lie if

Z sign o W(ag (1) - -+ Ao(n—1)s W(Ao(n)s - - » Qo (2n—2)s Go(2n—1))) = 0,
0€Gan_1

for any ay,...,as,_1 € A.
Finally, an algebra (A, Q), where Q = {w1, wa, ...} is called a strongly homotopy
Lie or sh-Lie [14], if

Z (—1)(j_1)isignawj (Wil@o(1)s -+ Uo(i)), Qo (it1)s - - - Ao(itj—1)) = 0,
i+j=k+1,4,j>1

for any k=1,2,..., and any ai,...,a;4+j—1 € A.

In particular, an n-homotopy Lie algebra is an sh-algebra if € consists of only
one non-zero multiplication, w,.

Suppose now that € consists of two elements ws and w,. Then the condition
that (A4, Q) is sh-Lie means that (A,ws) is a Lie algebra, (4, w,) is a n-homotopy
Lie and wy, is a n-cocycle of the adjoint module of the Lie algebra (A, ws).

In [5] it is established that, over the field of characteristic 0, any n-Lie algebra
is (n—1)-left commutative and any (n—1)-left commutative algebra is n-homotopy
Lie. Here we prove that (S(2),ss) and (W (2), s¢) are 4- and 5-left commutative,
respectively. Hence, (S(2),s5) is 5-homotopy Lie and (W(2),s¢) is 6-homotopy
Lie.

The algebra S(2) endowed with multiplications w1, ws, ws, . .., such that w; = s;
for i = 2,5 and w; = 0 for i # 2,5, is an sh-algebra. In particular, s5 is a 5-cocycle
of the adjoint module of the Lie algebra S(2). Moreover, the following relations
hold for any X1,...,Xs € S(2):

Z (—1)i+j8gsym'r([Xi,Xj},Xl, e ,XZ', ey Xj, PPN X6) = O,
1<i<j<6

> XS (X K Xe)] = 0.
1<i<6
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1.6. Primitive commutators

For any two vector fields their commutator is once again a vector field. One can
repeat this procedure k — 1 times and construct from any k vector fields a new
vector field. This can be done in many ways. One can get a linear combination
of such commutators. So, in general there are many ways to construct invariant
k-operation on S(n) or W(n). We call the invariant operations obtained in such
ways standard. Call any k-linear invariant non-standard operation on W (n) or its
subalgebra a primitive k-commutator. We prove that the 5-commutator and the
6-commutator are primitive.

S(2): Any divergence free vector field in two variables can be represented in
terms of the generating function u as a Hamiltonian vector field

Hu = 81 (u)@z — 82(’&)81

Let u = (uy,us,us, ug,us), and Du = (Duy, Dug, Duz, Duy, Dus) be term-wise
derivative along the field D; let 012 = 9105. Set

(91U
qu
[u] = det | O?u
612u
dsu

We find that the formula for the 5-commutator on S(2) is rather simple:
SS(Hul s Hu27 Hue,a Hu47 Hu5) = _3H[“]

W(2): Let X; = u;101 + u; 202 € W(2) for i = 1,...,6. We will show that
the 6-commutator sg(X7, ..., Xg) can be presented as a linear combination with
integral coeflicients of fourteen 6 x 6 determinants of the form

U1 U271 U3 1 Ugq,1 U511 Ue, 1
U2 U22 U3 2 Uq42 U552 Us 2 0;
* * * * * *

where ¢ = 1,2. The exact formula for 6-commutator is given in theorem 11.1.

I know similar formulas for n = 3 and 4. Perhaps, in better notations, they can
be presented as understandable ones, but at the moment they look too lengthy
and incomprehensible.

1.7. Related results

Left identities of W (n) as a right-symmetric algebra was considered in [4]. There
are many works about identities of W (n) as a Lie algebra (see references in [15]).
Identities of W(2) as a Lie algebra was described in [11].
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2. Main results

Theorem 2.1. Let N = n? +2n — 2. Then

(1) sp = s.™" on W(n), for any k > N. In particular, sy is well defined on
Wn), if k> N.

(i) sk =0 is an identity on W(n) for any k > N + 1.

(iil) (W(n),sn) is (N — 1)-left commutative. In particular, (W (n),sy) is N-
homotopy Lie.

(iv) ad X € Der (W (n), sx) for any X € W(n) and for any k > N.

(v) adX € Der (W(n),sx) for any X € W(n) such that 0;0;(X) = 0,i,j =
1,...,n. Here k is any integer > 0.

Theorem 2.2. (i) s5 #0 on S(2).
(ii) s5 is a 5-commutator on S(2).
(iii) s¢ = 0 is an identity on S(2).
(iv) 5-commutator s5 on S(2) is primitive.
(v) s5 = s5""™" on S(2).
(vi) ad s5(X1,...,X5) = s5(ad X1,...,ad X5) for any X1,..., X5 € S(2).
(vil) (S(2),s5) is a 4-left commutative algebra.
(viii) (S(2), {s2,85}) is an sh-Lie algebra.

Theorem 2.3. (i) s¢ # 0 on W(2).
(ii) sg is a 6-commutator on W (2).
ili) sy =0 is an identity on W(2).

Eiv) 6-commutator sg on W(2) is primitive.
(v) s6 = sg"/"™" on W(2).
(vi) For any X4,...,Xe € W(2),
6
s6(X1,. .., Xg) = Z(—l)i“Diin s5(X1,..., X4, ..., Xe).

i=1

(vii) (W(2), sg) is a 5-left commutative algebra.
(viii) (W(2),{s2, s6}) is an sh-Lie algebra.

A natural question arises: Is it possible to construct nontrivial N- commutators
on W(n) forn >27? If N =n%+2n—2, then sy is a well defined N-commutator
on W(n),n > 1 (theorem 2.1, (i)).

Conjecture. sy(Xi,...,Xn) #0 for some Xq,...,Xn € W(n).

We have checked this conjecture by a computer for n = 2,3, 4.
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3. k-commutators by right-symmetric multiplications

The aim of this section is to prove that for any n there exists N = N(n) such that
for any k > N, s, = s.”"™" on W(n).

3.1. The Lie algebra of polynomial vector fields

By setting degx; = 1 for all ¢ we endow U with the standard grading U = @s>oUs;
and a filtration U; = ©4>, Uy, so
U=Uy DU DU D ---.

These grading and filtration induce a grading and a filtration on L = W (n):
L=®s>_1Ls, Ls={(x%0;|ael}, |aj=s+1,i=1,...,n),
L=L_12D2Lo DL D, Lip=®®s>ils.

These grading and filtration are compatible with the right-symmetric multiplica-

tion:
Ls o Lk g Ls+k7 Es o Ek g £k+sa

for any k,s > —1. In particular, they induce grading and filtration on W(n) as a
right-symmetric algebra and as a Lie algebra.
Since W (n)"s¥™ is graded,
LyoLs; C Ly for any s > —1.
In particular, L is a right-symmetric subalgebra of L = W (n)"*¥™. Hence, it is a
Lie subalgebra of W(n); clearly, Ly C W (n)™¥™ is associative and isomorphic to
the matrix algebra Mat,,, whereas Ly C W(n) as a Lie algebra isomorphic to gl,,.

3.2. D-invariant polynomials

Let f = f(t1,...,tr) be an associative noncommutative polynomial,
f= Z Nig e biy - g
[ERTR ]
i.e., f is a linear combination of monomials t(;y = ;, ...%;, where i1,...,4 run
through elements 1,. .., k, possibly repeated. Later on we replace t; with elements

of some 2-algebras. Since our algebras may be non-associative, we assume that
every monomial #(;) has a left-normed bracketing, i.e., t(;) = (- -~ ((ti, ti,)ti;) -+ )ts,-

Let A = (A,0) be an algebra with multiplication o. Suppose that B is a
subspace of A. Since f is a linear combination of monomials of the form ¢;y, one
can substitute instead of ¢; elements of B and calculate f using the multiplication
of the algebra A. So, we obtain a map fp: B®---® B — A defined by

fe(b1, ... bg) = f(b1,... b).



Vol. 79 (2004) N-commutators 525

Sometimes we endow A by several multiplications. In such cases, we will write
fp instead of fp when A is considered with multiplication o. Notice that B may
be not closed under multiplication o. Whenever it is clear from the context, we
reduce the notation fp to f.

We endow the space of differential operators Diff(n) by three multiplications: -,
oand [, ] stand for composition, right-symmetric multiplication and commutators.
We will sometimes write fW(n) = f and f{,’V(n) = frsymr,

Define a multiplication e : Diff(n) ® Diff(n) — Diff(n) by setting

ud* @ vd’ = Z (5) 00?7 ()0, for any a,3 € ZT.
YELY v F#0

Let us extend the right-symmetric multiplication o from the space of first order

differential operators to the space of all differential operators by setting

ud® 0 vd°® = vdP (u)d*.

Let D = L_;. A polynomial f = f(t1,...,t;) or, more precisely, fpig(n), D-
invariant if
k

[f(Xla R 7Xk?)a6i] = Zf(Xla s aXs—la [Xsaﬁi]aXs-‘rlv e 7Xk)

s=1

for any Xy,...,X; € Diff(n) and ¢ = 1,...,n. Here we do not specify what
multiplication in Diff(n) we use in the calculation of fpig(,) because

[X,0]=X-0;—0;- X =X009; —0; 0 X, for any X € Diff(n).

By this observation, D-invariance of fbiﬁ(n) and fBiﬁ(n) are equivalent notions.

For X = > wu,0“ € Diff(n), where u, € U, set
a€Zr—+

| X | = the highest degree with respect to 9

and
[|X|| = the lowest degree with respect to 0.

Obviously,
| X +Y]>min{|X|,|Y]}, [|X+Y]| <max{||X]|],]|Y]|} for any X,Y € Diff(n).
For any X,Y € Diff(n) we have
X-Y=XoY+XeY, |XeV|>|X| ifXeY 0. (1)
Lemma 3.1. Let X1,..., Xy € Diff(n) be such that | X;| > s foranyi=1,2,...,k
and ||sp(X1,..., Xg)|| <s. Then
sk( X1y, Xi) =prs(s7V" (X, .0, X)),

where pry is the projection onto the space (u0* | a € Z1}, |a| = s).
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Proof. By formula (1) we can express the composition X1y -...- X, () as a linear
combination of elements of the form X = (... ((Xy(1)0Xo(2)) - - ) 0 Xo(k), Without
any e, and elements of the form X7 = (... ((Xoa) * Xo(2)) --.) * Xo(k), where
* = o or & and the number of the o’s is at least one. Notice that | X ¢ Y| > | X]| if
|X e Y| # 0. Therefore,

X" >s, if X" #0.

Since
se(X,., Xp) = Y X, + XY,
gES)
15k (X1,..., Xp)|] < s, ‘ Z signo X! | > s, ‘ Z signo X/| > s,

it follows that
||8k(X1,,Xk)H = |Sk(X1,,Xk)| =S

and
se( X1, Xi) = pro(s,™(Xq, ..o, Xi)).

Corollary 3.2. Suppose that sip(X1,...,X,) € W(n) forany X1,..., X, € W(n).
Then
Sk(Xl, . 7Xk) = S};Sym'r(Xl, .. ,Xk).

Lemma 3.3. Let s, = s.°Y"" on W(n) and D a derivation of (Diff(n),-) that
preserves W(n). Then D is a derivation of the k-algebra (W(n),s.”™"), i.e.,

k
D(S;sym'T(Xl, .. ;Xk)) = Z S;Sy?n.T.(Xl, . ,Xi_l, D(Xi)7Xi+17 A 7Xk)
1=1

for any X1,..., X, € W(n).
Proof. We have
D(s™ " ( Xy, ..., Xy)) =

(corollary 3.2)
= l)(Sk()(l7 N 7ch)) =

(since D € Der Diff(n))

k
= se(X1,.... Xio1, D(X3), Xisr, ., Xp).
i=1

Since D(W(n)) € W(n) by hypothesis,
Sk(Xl, ey Xifl,D(Xi),_Xi+17 .. ,Xk) S W(n)
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for any Xi,..., Xy € W(n). Thus by corollary 3.2,
sp(X1,. ., Xic1, D(X5), Xig1, o, Xi)
= V(X X1, D(X0), Xias - Xk).
Hence, for any Xi,..., X € W(n) we have

D(sp>"™ " (Xy, ., X)) = D s ™ (X0, X1, D(XG), Xigs - Xg).

i=1

Corollary 3.4. Let s, = s,”Y"" on W(n). Then for any X € W(n) the deriva-
tion ad X generates also a derivation of (W(n),s.”™"). In particular, ad X is
a derivation of the algebra (W (n), sp249n—2). Similarly, ad X is a derivation of

(S(2), s5) for any X € S(2).

4. How to calculate L_i-invariants
4.1. (L,U)-modules

Let L = W(n) and U = Clzy, ..., x,] with the standard grading and M a graded
L-module. The subspace of L_j-invariants, My = ML-1 = (m € M | (m)d; = 0),
has a natural structure of an Lo-module. Make M into an Ly-module by setting
L1My = 0. Call the Lop-module My the base of the L-module M.

Let M an (L, U)-module, if M is a right U-module such that

(mu)X = mfu, X]+ (mX)u, for any m € M,u e U, X € L.

Let M be an (L,U)-module. Call M an (L,U)-module with base My = M*-1
if M, as a U-module, is a free module with base Mj.

The main construction of (L, U)-modules ([16]) is the following. Let My be an
Lo-module such that MyL; = 0. Set

M = Homl[¥ |(U(L), Mo) ~ U @ M.

Clearly, M = TP°"W(Mj) is the space of tensor fields with polynomials coefficients
with fiber Mj.

Examples. U = T?°"%(K), where K is the trivial Lo-module, is the space of func-
tions; (L, U)-module L itself has base L_1, the dual to the identity representation
of Lo.

If L =5, _1, then the adjoint module has no structure of an (L, U)-module.

We will use realization of (L, U)-modules given in [2]. Notice that our construc-
tion is general than Rudakov’s construction. For example, in case of two-sided Witt
algebras (L, U)-modules in our sense can not be obtained as a co-induced modules.
The algorithm how to calculate L_j-invariants [2] is given below.
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4.2. Escorts and supports

Let ¢, = (0,...,0,1,0,...,0) € Z" (all coordinates except i-th are 0). Let & be
the root system on W(n) with respect to Cartan subalgebra spanned by {z;0;|i =
1,...,n} and a!,... , aF € £ Then

[2:0;,2°0;] = (B; — 6:;)2"0;.

n

So, we can identify any root with n-tuple o = (ay,...,an) = Y. aje;, where
i=1

—1<a4 foralli=1,...,n. For a € £ denote by

Lo, = (z*"99;li=1,...,n)

its root space.
Assign to any ¢ € T*(L, L) a polylinear map esc (/) € T*(L,L_,), called the
escort of 1, by the rule

esc (w)(Xh e ’Xk) = w(Xh s 7Xk3)a
1 k

if X; € Lyi, and o' +--- 4+ aF = —¢, for some s = 1,...,n. Here a',... o are
some roots from &. If al + .-+ a¥ # —¢, for any s € {1,2,...,n}, then set

esc (¥)(Xy,...,Xg) =0.

So, having defined esc (¢)(Xy,...,X) for root elements Xi,..., X we extend
esc (¢¥)(Xy,...,Xg) by polylinearity to any Xi,...,Xs. We see that esc(v) €
T(L,L_4) if and only if 1 is of degree 0.

Observe that —eg can only be represented as a sum of k roots in finitely many
ways. Therefore, the space

Supp, = @al,...,akeg,a1+...+ak=—esLal Q-+ Q@ Lk,
called the s-support of 1 or just s-support, is finite dimensional for any s €
{1,...,n}. Call
supp = @4_,supp,

the support. So, the escort of any D-invariant &-graded map v € T*(L, L) of
degree 0 is uniquely defined by the restriction to its support.

Let V(L) be the monomial basis of L = W{(n) consisting of the vectors of
the form x0;, where o € Z%} and i € {1,...,n}. Denote by V the basis of supp

obtained by tensoring the basis vectors of V(L). We will write (a1, ..., a;) instead
of a1 ® --- ® ag. So,

V == U?:l ‘/S 5
where

Vs = {(al,...7ak) |a; €V (L), ale&, where o ... +aF :—es,lzl,...,k}.
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As was shown in [2], any E-graded D-invariant map can be uniquely recovered
by its escort. Namely,

w(Xla-“,Xk) - Z Eal(Xl)"'Eak<Xk)eSC(w)(alv"'7ak)7 (2)
(a1,...,ar)EV
where
9%(v)

Egoo, (v05) = dij—;

4.3. Cup-products

Given an algebra A with multiplication %, define the cup-product on the space
T*(A, A) by setting

Y — P(ay,...,ap41) = Z sign o Y(ag(1), - - Ao(k)) * P(Ao(kt1)s - - > Qo (k+1))
(TEG]@,Z
for ¢ € TF(A, A) and ¢ € T'(A, A) then define 1) — ¢ € T**(A, A), where
6}@,1 = {J S 6k+l | 0(1) < < (T(]i:)7 O’(k—l—l) << O’(/C—i—l)}.

Suppose that A has an associative multiplication - and a right-symmetric mul-
tiplication o. Denote by > and > cup-products induced by multiplications - and
o correspondingly.

If B is a subspace of A then one can consider cup-products

—: C*(B, A) x C*(B, A) — C*(B, A).

We use the cup-products for A = Diff(n) and B = W (n) or S(n). Sometimes
the cup-product of 1 € C*(A,B) and ¢ € C!(A, B) lies in C**(B, B). Such
fortunate situations occur in calculating of sy, for sufficiently large k + [.

5. Sufficient condition for a D-invariant form with skew-symmet-
ric arguments to be zero

Lemma 5.1. Consider the following problem of linear programming

m
Zl‘i:’l“, O0<xz; <l;;, i=-1,0,...,m—1,
1=—1

flz_1,20, .. @) = Z ix; — min.
Then

min f(2_1,20, ..., Tm) = mr — Z (m —i)x;
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and this value is attained for x_1 = l_1,20 = lgy. .., Tm_1 = lm_1 and x,, =
m—1
i=—1

m—1
Proof. Since x, =17 — Y, x;, it follows that

1=—1
m—1
f(x—lvaw ..,.’L‘m) =mr— Z (m—z)x,
i=—1
Thus,
m—1
f(l‘—l’xo, cee 7xm) <mr— Z (m — Z)lz
i=—1
and the inequality can be converted to equality if x; = l;,4 = —1,0,...,m — 1,
m—1
and o, =7 — Y, L.

i=—1

Theorem 5.2. Let A = ®;>_1A; be graded algebra, D = A_1, and M = @®;>,M;
be D-graded module,
A M; €My, i>gq,

such that AP = A_y and MP = M,. Suppose that ¢» € T*(A, M) is a 0-graded
polylinear map and skew-symmetric in v arguments. Let ig be number such that

Z dim A4; <r< Z dim A;.

—1<i<ig —1<i<ig+1

If
kt+qg<r(io+2)— Y (ig+1—1i)dim A

—1<i<ig

and 1 is D-invariant then ¢ = 0.

Proof. We prove that esc (¢) = 0. Suppose that it is not true and ¢ # 0. Then
there exist homogeneous aq,...,a; € A such that ¥(ai,...,a;) # 0 and |a;| +
-+ + |ag| is minimal. We have

Y e THA,M)P =

k

(911,[)((11, .. .,ak) = Z’l/)(ah .. .,aj_l,ai(aj),aj_‘_l, - ,ak).

j=1
As |ai| + ... + |ag| is minimal with property ¥ (aq,...,ar) # 0 and
jar]+ -+ la] > Jar| + -~ +faj1| + 0iay)] + laja| + - - + aal,
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we obtain that
0#Y(a,...,ar) € MP = M,.

Since v is graded with degree 0, this means that we can choose homogeneous
elements aq,...,a; € A such that

Play,...,ax) #0, Jaa|+ - +ar] = [¢(ar, ..., ax)| = ¢.

As 1) is skew-symmetric in 7 arguments, the set {ay, ..., ax} should have at least
r linear independent elements. Denote them by a;,,...,a;,.
Suppose that among a;,,...,a,, there are [; elements of A;. Then
r=>Y_1 (3)
i>—1

and

i0+1
Since r < Y I, from (3) it follows that

i=—1

Li=0, i>ig+1

and
i0+1
r=>Y 1 (5)
i=—1
So, among elements a;,,...,a;, there are [_; elements of degree —1, [y elements

10 10
of degree 0, etc, l;, elements of degree ig and finally r — > I; >r— > dim A,
i=—1 i=—1

elements of degree ig 4+ 1. Since |a;| > —1 for any 7 € {1,...,k}, we obtain that

k T
lv(ar, ... ax)| = Z|ai| > (=)(k—r)+ Z lai,| > f(l-1,105- s lig+1),
i=1

s=—1
where
io+1
FUisloy L) =r —k+ > il
i=—1
According to lemma 5.1 and our condition,
io+1
min f(l_1,lo,. . ligg1) =7 —k+ (o +1)r — > _ (g +1—i)dim A4; > q.
i=—1

Therefore,
[v(a, ... ax)| > q.
In particular,
V(ay,... ax) € MP,

which is a contradiction.
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Corollary 5.3. Let ¢ € T°(S(2),5(2)) be a D-invariant 0-graded form with 8
skew-symmetric arguments. Then ¢ = 0.

Proof. Recall that S(2) denotes the subalgebra of W (2) consisting of derivations
with divergence 0. Let A = S(2). Then dim A_; = 2,dim Ag = 3,dim 4; =
4, since A_l = (81,82>, AO = <1’182,’I’1(91 — $282,$281>, Al = <$%61,IL’%81 —
2%11’282,.%%62 - 2%1%281, IE%82> Thus,

In other words, ig = 0 for r = 8. Furthermore, for kK = 9,¢g = —1,r = 8,79 = 0.
We see that

k+q=8<9=r(io+2)— » (ig+1—i)dim A;=80+2)—-2-2-1-3.

—1<i<ip
Therefore, all conditions of theorem 5.2 are fulfilled and ¢ = 0 for A = S(2).

Corollary 5.4. Let ¢ € T*(W(2),W(2)) be a D-invariant form with 10 skew-
symmetric arguments. Then 1 = 0.

Proof. Take A = W(2). Then dim A_; = 2,dim Ay = 4,dim A; = 6, since
A,1 = <01,82>, AO = <$iaj : i,j = 1,2), A1 = (;Ui.’lfjas : i7j,8 = 1,2,i < ]> For
r =10,k =11,q = —1 we see that

dim A_; +dim Ag=2+4<r=10<dim A_; +dim Ag +dim A; =2+ 4 +6.
Hence ig = 0, and

k+q=10<12=r(o+2)— Y  (ip+1—i)dim A; =10(0+2)—2-2—1-4.
—1<i<ig

Therefore, by theorem 5.2, ¥ = 0 on A = W (2).
Corollary 5.5. s = 0 is an identity on W(n), if k > n?+ 2n.

Proof. Let A =W(n).
We have dim A_; = n,dim Ay = n? dim A; = n?(n + 1)/2. We see that for
r=k>n?+2n,
dim A_; +dim Ag =n+n? <r.

Therefore ig > 0. Hence, if ig = 0 then
k+q=r—1<r+r—2n—n?=r0+2)—2dim A_; — dim A,.
If ig9 >0, n > 1, then 2dim A_; < dim A; and

r(io+2)— Y (io+1—i)dim 4;

—1<i<ig



Vol. 79 (2004) N-commutators 533

=r—2dimA_y+ »  idimA;+(ig+1)(r— Y dim 4)

1<i<ig —1<i<ig

>r—2dimA_ + Y idimA; >7r— 1.
1<i<io
Notice that s; are graded D-invariant of degree 0. Let v be a composition of
s with the projection onto M =< ud®, |a| = ¢ > . We see that ¢» and M obey
the hypotheses of theorem 5.2, if n > 1.
If n =1, it is easy to check that s3 = 0, and s = 0, for any k& > 3.
So, we have proved ¥ = 0 for A = W(n).

Corollary 5.6. Let i € T H41=5(W(n), W(n)),n > 1, be skew-symmetric in
r > (3n? 4+ 6n — 5)/2 arguments. Then 1 = 0. In particular, (W (n), $,24on_2) is
(n? + 2n — 3)-left commutative.

Proof. Let A =W (n). For ¢ = =1,k = 2n% +4n — 5,7 > (3n%? + 6n — 5)/2, it is
easy to see that ig > 0.
Check that the case ig > 0 is impossible. If n = 2 then we obtain a contradic-
tion with the conditions
r<k=11

and
dimA_; +dimAg +dimA; =12 < r.

Let n > 2. Then we will have
dimA_; +dimAg +dim A; =n+n* +n*(n+1)/2<7r <k =2n?+4n — 5,
and
ng—n2—6n—|—5§0.
For n > 3,
n® —n?—6n+5>2n”—6n+5>0,

and again obtain a contradiction.

So, ig = 0. Then

k+qg=2n>+4n—-6<2n?+4n—5<2r —2dim A_; — dim Ay.

Hence, the condition of theorem 5.2 is satisfied. Thus, ¢ = 0 for A = W (n).

Notice that 2(n? + 2n — 3) > (3n? + 6n — 5)/2 if n > 1. Therefore, the

(n? 4 2n — 3)-left commutativity condition, as a condition for a D-invariant form
with 2(n? + 2n — 3) skew-symmetric arguments, is an identity on W (n).

6. Invariant N-operation on vector fields

Let 71,...,m,—1 are fundamental weights of sl,,. Let R(7y) be irreducible sl,-
module with highest weight ~.
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Lemma 6.1. The sl,,-module A" 2(R(2m1)®@R(m,_1)) does not contain R(2m,_1)
as a submodule.

Proof. T am grateful to R.Howe for the following elegant proof of this lemma.

One can argue that the full (n —2) tensor power of R(271)® R(m,—1) does not
contain R(2m,_1). Indeed, the (n—2) tensor power of this tensor product is equal
to the tensor product of the (n — 2) tensor powers of each factor.

The representation R(2m) corresponds to the diagram with one row of length
two. The representation R(m,_1) corresponds to the diagram with one column of
length n — 1. So, the question then becomes, does the Young diagram with n — 3
columns of length n, and two columns of length n — 1, appear in the indicated
tensor product?

Since the diagram of R(m,_1) has only one column, all of the components of
its (n — 2) tensor power will have at most (n — 2) columns. Since the diagram of
R(2m) has only one row, all the components of its (n—2) tensor power will contain
at most n — 2 rows. Now taking the tensor product of these two representations,
we can say that all components of the tensor product will have diagrams which fit
in an I'-shaped region with (n —2) columns and (n — 2) rows. But the diagram of
the representation we are asking about does not fit in to this region, so it cannot
be a component.

Corollary 6.2. s,2,9, o has no quadratic differential part on W (n).

Proof. Since, as sl,-modules,
Ly = R(2my + mp1) ® R(m1) = R(2m1) @ R(mp—1),
we obtain an isomorphism of sl,-modules
APLy =2 AF(R(2m) ® R(Tn_1)).
Consider the homomorphism of sl,,-modules
Pks /\k7”27"L1 — R(smp—_1),

induced by
p(Xa A A X2 y)

=prs(sk’Diﬁv(n)(81, cee ,8n,1‘181, ce ,xnﬁl, cen ,.13167“ ce ,.anan,Xl, AN 7Xk7n2fn))7

where prs : Diff(n) — (0% : |a] = s) & R(sm,—1) is the projection map.

Since A"L_1 ® AP Lo = C, it is clear that p,219,_2 2 should give a homomor-
phism of A"~ 2(R(m)® R(m1 +7p_1)) to R(2m,_1). By lemma 6.1 this homomor-
phism is trivial. Thus,

Sp2yon—2(X1,. .., Xn21on_2) € W(n) for any Xi,..., X,249,_2 € W(n).
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Lemma 6.3. If k =n?+2n—2 and k = n>+2n—1, then s, (X1,..., X;) € W(n)
for any X1,..., X € W(n).

Proof. For k = n? + 2n — 2 this follows fI‘OI2n corollary 6.2. For k = n?+2n —1 we
see that esc (sx) has support A"L_1 ® A™ ~1Lo ® A" 1Ly and s,(01, ..., Op,ar,

v Ap2_1, X1, ..., Xp—1), where a1,...,a,2_1 € Lo, X1,...,X—1 € Ly, never
gives quadratic terms, as

\sk(al,...,8n,a1,...,an,l,Xl,...7Xn,1)| = —]..

7. The quadratic differential parts for k-commutators in two vari-
ables

Let Diff(n) be the subspace of differential operators of order s, and pr : Diff(n) —
Diffs(n) the projection.

Lemma 7.1. For any X1,..., X, € W(2),
pT’l(Sk(Xl,...,Xk)) :0,
if 1> 2.

Proof. If k > 6 then by corollary 5.5 and lemma 12.1, s = 0 is an identity. If
k = 6, then s, y(2) has only a linear part. If £ < 5 then s;, can be decomposed into
a cup-product of so and s;_s. We know that so can only give differential operators
of first order. So, s3 = sy — s1 and s4 = So — o can give differential operators
at most second order. As far as s5 = s3 — ss, the following reasoning shows that
the differential operators of third order can not be represented as s5(X1,..., Xs)
for any X1,...,X5 € W(2). For L = W(2), support for an escort map of pr;ss
with a maximal [ should contain {0y, 02, x201,a,b, c}, where a,b,c € Ly. Easy
calculations then show that [ < 2 if k = 5.

Remark. One can prove that if [ > n then pri(sg(Xi,..., X)) = 0 for any &
and X1,..., X, € W(n).

Lemma 7.2.
pra(s3(X1, Xo, X3))

(w1) Xy (z1)X2 (x1)X3
=—| (z2)X; (72) X (2)X3 | OF
O2((21)X1) O2((w1)X2) O2((1)X3)
)
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(1) X1 (z1) X2 (z1
(z2) X1 (z2) X2 (z2
02((z2)X1) O2((72)X2) O2((22)X3)

(z1)X1 (z1) X2 (x1)X3
(z2) X1 (z2) X2 (

N ((w2)X1) 01 ((z2)X2) O1((22)X3)

for any X1, X5, X3 € W(2).

Lemma 7.3.
pT2(54(X1 ..... X4))

) X1 (z1) X2 (x ) X3

) X1 (x2) X2

1 1((z1)X2)

1 2((71)X2)

0102

for any X1

Lemma 7.4.
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for any X1,..., X5 € W(2).

To prove these statements one needs to calculate their escorts. A sufficient
number of examples of similar calculations will be given below.

8. Exact formula for 5-commutator

Theorem 8.1. Let U be an associative commutative algebra with two commuting
derivations 01 and Jy. Then

s5(D12(u1), Di2(u2), D12(us), Di2(ua), D12(us)) = —3D12([u1, ug, us, ua, us)),
for any uq,...,us € U, where

Oruq 01 us O1us Oy O1us

Oauq Oattg Ous Ootiy Oaus

[U1, Uz, U3,U4,U5] = 312U1 Bqu 8%u3 812U4 8%11,5
010uy 010uy 010uz 0102uy O0102us

822u1 8§u2 8§U3 622U4 6§u5

and Dlg(u) = 81 (u)@z — 32(u)81

Proof. By polynomial principle [6] we can assume that U = Z[z1, 22] with 9; = 8%1

and 9y = 8%'
Let L; be graded components for S(2) = (X € Wy : DivX = 0) and a,b,c €
Lo, X € L. Notice that

550" (95,0, X) = [0i,a] 0 X + [a, X] 00 + [X, 0] o a
=—a00;X + X 00;a € Ly.

Therefore,
55(01,02,a,b, X)

= —s5""" (91,0, X) 0 Ba(a) + s57"" (D2, b, X ) 0 01 (a)
+55"" (01,0, X) 0 Oa(b) — 557" (D2, a, X ) 0 01 (b)
=+4+(bohX — X o0d1b)odsa— (bodX — X 0dsb) 0 d1a
(X 0da—aodX)odb— (X o0da—aodX)odb
— (@0 X — X 001a) 0 dsb+ (03X — X 0dsa) 0 dib
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+(bohX — X 0d1b)odra— (bo DX — X 0 0sb) 0 d1a
= —a0[01X,02b] + [X,D2b] 0 ra + a o [02X,01b] — [X, 1] 0 Daa
+bo [01X, 0pa] — [X, 0pa] 0 9yb — bo [0:X, Dra) + [X, Dra] o Dab.
We see that non-zero components for esc (s5) are
$5(01, 0o, 1201, X101 — anQ,xfag) = 60s,
55(01, 0, 2001, 101 — 220y, 1201 — 2211205) = 601,
55(81,82,@81,10182,2:%31 — 2x12905) = —60s,
55(01, 0o, 2001, 210, T20s — 221220;) = —60,
$5(01, 02,2101 — xgﬁg,x1627x§82 —2x12901) = —60s,
85(01, 02,2101 — X202, 2109, 1:%81) = —60;.
It is easy to check, that
esc (s5™"™")(Dy2(ur), ..., Di2(us)) = =3pr—y Dia([us,. .., us)),
for any u1,...,us € C[zy,x2], such that |ui| + - + |us| = 11.

It remains to use (2) for D-invariant form s;°Y"" and use lemma 7.4.

9. 5-commutator of adjoint derivations

Lemma 9.1. Let U be {01, 02 }-differential algebra, i.e., an associative commuta-
tive algebra with two commuting derivations 01,02, and S(2) be the subspace of
vector fields without divergence of W(2). Then

ad s5(X1,...,X5) = ss(ad X1, ...,ad X5),
for any X1,..., X5 € S(2).

Proof. Consider a multilinear polynomial f with 6 variables defined by

flto tr, . ts) = (to)si(tr, ... ts) = Y signo [+ [[to, to()] toiz)], -]
ceBs

We see that f is polylinear and skew-symmetric in all variables except the first
one. Important properties for us are: fg (o) is D-invariant and £-graded. Therefore,
f can be uniquely restored from its escort. We see that

supp = supp(f) = L_1 ® A’L_1 ® A\’Lo ® Lo
® L_1®ANL_1®Ly® AL
® Li®L1®NLy®L
& Ly®NL_1®ANLy® Ly
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@& Ly @AN’L_; ® A3Ly.

Here by L; we denote the graded components for S(2) = (X € W(2) : DivX = 0).
Let (a,b,c) = (2201, 101 — 202, 2102). Then
F = 524(0y,02,a,b,¢) € End W(n),

is defined by
(u161 + uQ(f?g)F = 6(8182(U1) + 68%(7.142))81 — 6(({9%7.141 + 8132u2)82. (6)

In other words,
(u181 + UQaQ)F = 76D12(5‘1 (Ul) + 5‘2(u2))

Set s¢4(X1,...,Xk) = sp(ad X1, ...,ad Xy)), where ad : L — End L.

Let us prove (6). We have
F=F + F, + F3,

where
Fy = 5340y, a,b)-ad[0, c] + s34(0y, b, ¢)-ad|0s, a] + s44(1, ¢, a)-ad[Da, b]

534Dy, a,b) - ad[dy, c] — s44(Da, b, ¢) - ad[0y, a] — 53%(Da, ¢, a) - ad[d1, b],

Fy =
s = sgd(al, Oa,a) - ad b, c] + sgd(alﬁg, b) - adlc,a] + sgd(al,a%c) - ad|a, b].
Further,
= —sgd(al,b, c)- 0 + sgd(é‘l,c, a) - O,

Fy = 5840y, a,b) - Oy + 534(0s, ¢, a) - 01,

F3 = —255401,05,a) - ad c — s44(0y,0a,b) - adb — 2 54%(0y, Da, ¢) - ad a.

It is easy to see that
F3
=2(01 - 02a) -adc—2(02- 01a) - adc
+(01 - 02b) - adb — (02 - O1b) - adb
+2(01 - 02¢) - ada — 2(0s - i) - ada
=2(01-01)-adc— (01 -02) - adb— (02-01) -adb—2(02-02) - ada
=20% - adc —2(0,02) - adb — 203 - ad a.

Note that
((u101 + u202)07 )ad ¢
= [0F (u1) 1 + 07 (u2)0a, x192] = —0F (u1) 0,
(u101 + u202) (0104 - ad b)
= [0102(u1)01 + 0109(u2)02, 2101 — 1202] = 0,
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((u15‘1 + uQé)g)@g)ada
= [622(’&1)61 + 622(’&2)62, xgal] = —822(’&2)81.

Therefore,
(ul 81 + U282)F3

= —28% (u1)82 + 283 (u2)81.

Similarly,
(w101 + u202)(F1 + F»)

= 48182(U1)81 — 48% (u1)82 + 48% (UQ)al — 48182 (u2)82.

From these expressions of Fy, Fy and F3 we obtain (6).
So, by (6), F'=0 on S(2). In particular

esc (f)(X, 01,00, 2201, 2101 — £202,2102) = 0,

for any X € L.
Similar calculations show that non-zero components for esc (f) are

f(2201, 01,0, 2901, 1101 — 1209, Dia(x3)) = 180y,
f(x201, 01, 02,2201, 2102, Dlg(aﬁxg)) =60,
f(@201,01, 02,2101 — 2205, 3105, D1a(2173)) = —601,
f(2101 — 220,01, D2, 2201, 2101 — £202, D1a(23)) = —180s,
f(2101 — 1205, 01, 05, 201, 1101 — 205, D1a(x]x2)) = —60),
(2101 — 220,01, 02,2101 — 1202, 7102, D12($1$§)) = 602,
f(2101 — 220,01, 02, 2101 — 1202, 2102, D1o(x3)) = 180,
f(2102,01, 09,2201, 2102, D1a(2123)) = —602,
f(2102,01, 02,2201, 2101 — CU2527D12($%$2)) = =602,
f(2102,01, 00,2101 — 290, 102, D12(23)) = 1805,

and
f(01,01, 02,2901, 101 — 1209, D12(21)) = — 7202,

f(01,01, 00, 2201, 2101 — 220, D1a(232)) = 180,
f(01,01, 0, 3201, 210, Dya(aiws) = —180,,
f(01,01,02, 2901, 2109, D1o(x323) = 120,
f(01,01, 02,2101 — 2200, 210a, D12(7123)) = 120,,
f(01,01,0, 2101 — 202, 2109, Dia(x173)) = —180),
f(01,01, 2001, 2101 — 2202, 2102, D12(23)) = —180,,
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f(01,01, 2001, 2101 — 120, 2102, D1a(x212)) = 60,
f (01,09, 2201, 2101 — 290, 102, D1a(2313)) = —60s,
f(01, 00,2001, 2101 — 120, 2102, D12(x123)) = 60,
f(01,01, 00, 2201, D1o(x3), Dya(x22)) = —7204,
f(01,01, 02,2201, D1a(2}), D12(2123)) = 3601,
f(01,01,02, 2101 — 1203, D1a(a), Dia(2123)) = 7205,
f(01,01,00, 2101 — 2005, D1o(x3), D1a(23)) = —1080,
f(01,01, 02,2102, D12(2322), D1a(23)) = —3601,
f(O1,01,00, 2102, D12(x722), D1a(z123)) = 240.

Other components of the form f(01,01,02,a,b,X), f(01,0;,a,b,¢,Y), and
f(01,01,02,a,Y,Z) are equal to 0, where a,b,c € Ly, X € L2,Y,Z € Ly and
1= 1, 2. To find f(ag, 81, 82, a, b, X), f(81, 8i, a, b, C, Y) and f(az, 81, 82, a, Y, Z)
one should use the involutive automorphism of W (n) induced by changing of vari-
ables (z1,22) — (z2,21).

Using lemma 9.1 we see that

esc (f) = esc(g),
where D-invariant map g : S(2) ® A5S(2) — S(2) is given by
g(Xl,Xl, A ,X5) = [Xo, Sgsym.r(Xh e ,X5)].

It remains to use (2), theorem 8.1 for D-invariant forms f and g to obtain that
534 = ad s5 for S(2).

10. Exact formulas for the 6-commutator

In this section we prove that 6-commutator sg on W(2) can be given as a sum of
fourteen 6 x 6 determinants.

Theorem 10.1. Let U be associative commutative algebra with two commuting
derivations {817(92}7 X, = um@l + Ui7282 S W(2), Ui 1, Ui 2 € U7 fO’I’i = 1, .. .,6
and

86()(17 .. ,X(;) = Fl(Xh - 7X6)81 + FQ(Xl, L. ,Xﬁ)@g,

where Fg(X1,...,X6) € U,s = 1,2. Then the polynomial Fy is a sum of seven
6 x 6 determinants:

Fi(Xy,...,Xe)
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Uyl U211 U3, Ug1
U1,2 U2,2 us,2 U4q,2
321&1,1 32“2,1 32u3,1 521&4,1
Orui 2 O1ug2 Oruz 2 Oruag
Oau1 2 Oatin 2 Oouz o Oztia2
322U1,2 8§u272 8§U3,2 322U4,2

Ui,1 U2,1 us,1 U4q,1
U1,2 U2,2 us,2 Uq,2

Oqu1 2 Ogug 2 Oouz o O2uia 2

Ui, U211 Uz 1 Ugq
Ui,z U232 U332 U2
31U1,1 31U2,1 31u3,1 81U4,1
62111,1 32U2,1 32163,1 5’2“4,1

Ui, U2,1 u3,1 U4q,1
U1,2 U2,2 us, 2 Ug,2
Oaurn Oougq Oauzq Oaua
61“1,2 31U2,2 31“3,2 31u4,2
32u1,2 32U2,2 52“3,2 5’2U4,2
5'12“1,1 512“2,1 312“3,1 312U4,1

Ui,1 U211 usz1 Uq 1
ui,2 U2,2 us,2 U4q,2
Oruin Orugq Oruzg Orua
Oourn Oougn Oauzq Oaua
81“1,2 31U2,2 31“3,2 31”4,2
5'12“1,1 512U2,1 312U3,1 312“4,1

Ui, U211 usz1 U4q,1
Uy,2 u2,2 usz,2 Uyq,2
31U1,1 31U2,1 31U3,1 31U4,1
Oaui Oougq Oauzq Oaua;
Oaur o Oougo Oouza Oaugo
312U1,2 512“2,2 612U3,2 812U4,2

Us,1
Us,2

Ue,1
Ue,2

5'2“5,1 82u6,1
O1us.2 O1ug 2
Oous 2 O2ug 2
8%11572 8§u6,2

Us,1
Us,2

31U1,1 5'1U2,1 31“3,1 31114,1 5’1U5,1
52“1,1 32“2,1 azus,l 52“4,1 32“5,1
Oaus 2
Ofury Ofugy Ofusy Ofusy Ofus:

Us,1
Us,2

31u5,1
5’2U5,1
511&1,2 5'1“2,2 a1u3,2 51“4,2 31“5,2
8221141’2 8%11,2’2 (‘gu&g 8§u472 8§U5’2

Us,1
Us5,2
Oauus 1
31u5,2
82115,2
312’&5,1

Us. 1
Us,2
O1us 1
Oauus 1
31U5,2
312U5,1

Us.1
Us,2
511&5,1
Oqus 1
Oaus 2
312U5,2

Ue,1
Ue,2
81“6,1
32u6,1
Oaug 2
8%116,1

Ue,1
Ue,2
) Ue,1
32%’,1
31u6,2
agug,g

Ug,1
Ug,2
Oaug 1
61u6,2
32’“6,2
5'12“6,1

Ue,1
Ue,2
O1ue1
Oaug 1
61u6,2
812“6,1

Ue,1
Ue,2
31u6,1
Oaug 1
Oaug 2
812U6,2

CMH
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Ui, U211 Uz 1 U4q,1 Us1 Ue,1
Ui,2 U2,2 usz,2 Uq,2 Us,2 Ue,2
_3 31“1,1 a1u2,1 51“3,1 31“4,1 51u5,1 81U6,1
O1u12 O1uz Oruga Oruss O1us2 O1ue 2
Oou1 2 Otz Oaug o Oattaz Oaus 2 Oaug 2
8%111,1 8%'1,//271 83’11371 8§U4,1 6%’LL571 8%’&671

Here 019 = 0104. Other seven matrices for the Ox-part Fo(X, ..., Xg) are obtained
from these matrices by interchanging all the indices 1 with 2.

Proof. By polynomial principle [6] we can assume that U = Z[z1, 22| with 91 =
and Oy = 8%2.

Let X1 = 81,X2 = 82, [ xl(’)l,ag = 1‘2817@3 = .Tlag,a4 = .13282. Let V be
the set of 6-tuples of the form (X, Xs,a1,...d;,...,as,Xgs), where i = 1,2,3,4
and Xg runs over the basic elements of Wa with order |Xg| = 1.

We see that supp is generated by elements X1 ® Xo®a; ®---d; ®---®ay ® Xg,
where (Xl,Xg,ah. Y 7(14,)(6) eV

One calculates that

56(01, 0, 205, 201, 1109, 2201) = —20s,

(01,02, 2;0;, 201, 102, T12201) = 201,
$6(01, 0o, 205, k201, £102, x12202) = 205,
56(01, 0o, 205, 001, 1102, £302) = —20,

0
8{1:1

S6

fori=1,2 and
$6(01, 02, 1101, 1201, X020, ¥101) = —20,

56(01, 02, 1101, 2201, 2202, 17202) = 201,
56(01, 0, 2101, 2201, 20, 2205) = —60y,
$6(01, 02,101,109, T20s, x12201) = 205,
$6(01, 02,2101, 1102, 1202, 2501) = —601,
56(01, 00, 2101, 2109, 20, £202) = —20s,
For other (Xi,...,Xg) €V,
s6(X1, ..., Xg) = 0.

Calculations here are not difficult, but tedious. We perform them in one ex-
ample. Let us calculate s¢(Xy, ..., Xg) for

X1 =01, Xo = 09, X3 = 2201, X4 = 7101 — 2202, X5 = 2102, X = 2701.
Since |S€,<)(]_7 ce ,X6)| = —1,

s6(X1,...,X¢6) = Z sign o 55°Y" (Xo(1), Xo(2): Xo(3)) © 83(Xo(4), Xo(5), Xo(6))-
c€G3.3
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Recall that &3 3 is the set of shuffle permutations, o(1) < 0(2) < 0(3), 0(4) <
o(5) < o(6). So,

SG(Xl, .. .,XG) = S%(Xl, .. .,Xﬁ) + Sg(Xl, .. .,X6)7

where
= S
sg = 55"V 2 (quadratic differential part of s3).
Then
Sg(Xh e ,X57 xfal)
_ 2(33:‘%81 4 233133282) o 8182 —+ 2$1$261 o 6% = 462.
We see that
557" (X1, X3, X6) = 53(01, 2201, 1701) = 220, 0 2191 = 0,
and
557" (X1, X3, X6) 0 55" (X2, X4, X5) = 0.
Furthermore,
s57V" (X1, Xa, Xg) = 857" (01, 2101 — $262755§81)
_ 2(%161 _ .’1/‘282) 1o 1:151 — x%@l o 81 = 2$181 - 233161 = Oa
and
Sgsym(X17X4,X6) o SgsyTYL(XQ’Xz;,Xg,) = 0
At last,
57" (X0, X, Xo) = 837" (01, 2102, 2101)
= 2218y 0 210y — 2701 0 Oy = 2210,
S5 (X, Xa, Xa) = 857 (D0, 0201, 2101 — 200
= —120; 0 02 — (2101 — £202) 0 01 = —20},
and
537" (X1, X5, Xg) 0 857" (X2, X3, Xy) = —40s.
Similarly,
557" (X9, X3, X6) = Sgsym(azaxzahxfal) = —x%@ 001 = —2m10y,
sg‘gym(X17X4,X5) _ sgsym(al7x151 - 1‘282,33162)
_ ((Elgl _ anQ) 00y — 33182 o 81 = —282,
and
537" (Xg, X3, Xg) 0 857" (X1, X4, X5) = 0.
We have:

557" (X, X4, X¢) = 55" (02,2101 — 7202, 7101)
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= xfal o 82 = 0,

and

Sgsym'(X27X4,X6) (¢] Sgsym(Xl,X?,,Xg,) = 0
Finally,

s5°"(Xa, X5, Xe) = 55"V (02, 2102, 2701) = 0,

and

Sgsym(XQ,X5,X6) o Sgsym(Xl,Xg,X4) = 0
Thus,

S%(Xl, e ,X5,$%31) = Sgsym(Xl,Xg,, X6) [¢] Sgsym(XZ’ X3,X4) = —482.
Hence
Sﬁ(Xl, oo ,X5,.’£%81) = S%(Xl, ce ,X5,w%5'1) + Slﬁl(Xl, o ,X5,$%({91)
= —40y + 405 = 0.

So, we have constructed esc (sg’y. ). A reconstruction of sg’y™"" by its escort

(see (2)) gives us the formula for sg. By lemma 6.3, s¢ = sg"?""" on W (2).

11. s¢ =0 is an identity on S(2)
Lemma 11.1. s¢ = 0 is an identity on S(2).

Proof. Set
X1 =01,X9 =00,X3 =201, Xy = 2101 — 2202, X5 = 0102,
V= {(leXQ»“'aXG) : |X6‘ =1,X¢ € 5(2)}

Since supp = supp(sg) is generated by elements X7 ®- - -® X, where (X1, ..., Xg) €
V', we need to check that sg(X1,...,Xs) =0, for all (X1,...,Xs) € V. By lemma
6.3,
560" = sg.
We have,
S — S3 ~— S3.
Let (Xl,. . .,X(;) €V and F = SG(Xl,. . ,Xe,).
We see that, s¢(X1,...,Xg) is the alternating sum of elements of the form
Sg(XU(l), Xo—(2)a XU(S)) . 83(X0(4), XU(5), XU(G)), where o € 63,3 are shuffle permu-
tations, i.e., 0(1) < 0(2) < 0(3), 0(4) < 0(5) < ¢(6). Moreover,

SG(Xl, e ,XG)

_ Z SignU [Sg(Xg—(l)’Xa(Q)?XU@))’S3(XU(4)7XU(5)7XJ(6))]'
0€63,3,0(1)<0(4)
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Since |s¢(X71, ..., Xe)| = —1,
SG(Xl, . 7X6) S <8Z>,

for some ¢ = 1,2. Therefore, in calculating F' = sg(X1,...,Xs) we can make
summation only in o € &3 3 such that

53(Xo(1), Xo(2), Xo(3)) € (u0; @ Ju| =1,2),
53(Xo(4), Xo(5), Xo(6)) € (0% : |a] = 1,2).
Since
53(X1, Xo, X) = 83(01,02, X) = [02, X] - 01 + [ X, 01] - Do,

there are two possibilities:
o if 1,2 € {0(1),0(2),0(3)} or 1,2 € {0(4),0(5),0(6)} then (c(4),0(5),0(6)) =
(1,2,s), and (0(1),0(2),0(3)) = (q,r,6), where {q,r, s} = {3,4,5}, and ¢ < r.
o if each of the following subsets {o(1),0(2),0(3)} and {o(4), 0(5),5(6)} contains
exactly one element s € {1,2}.

Therefore,
86(X1, e ,XG) = S%(Xl, e ,XG) =+ Sg(Xl, e ,XG),

where
Sg(Xl, e 7X6)

= 537" (X1, X3, Xo) 0537 (X2, Xy, X5) — 537" (X1, Xy, Xo) 0537 (X2, X3, X5)
+55°Y" (X1, X5, X) 0 55" (Xo, X3, X4) — 557" (X2, X3, X¢) 0 55" (X1, X4, X5)
S5 (X, Xy, Xg) 0 555V ™ (X7, X3, X5) — 850 (X, X5, Xo) 0 s559™ (X1, X3, Xy),
sg(X1,...,Xg)
= —s5""(Xy, X5, X6) 0 53(X1, Xo, X3) + 55"V (X3, X5, X¢) 0 s3(X1, X2, X4)
—s57" (X3, X4, X¢) 0 53(X1, X2, X5).

. . 1 1
Here we use notation s5°Y"™ instead of s™¥™7 or s5°Y""" because s™5¥™7" = g-°Y™
3 3 ) 3

for any right-symmetric algebra.
Notice that
53(01,02,7101) = 0102,

53(01, 02, w201) = — 07,
53(01,02,7109) = 03,
53(01, 02, 2202) = —010s.

Therefore,
8/6/(X1, ey X6>

= S;Sym({ﬁlal — $2827 1‘1(92, X@) o 812 + 2S§8ym($261, x182, XG) o (9182 (7)
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— 55"V (2901, 1101 — 2202, Xg) 0 03.
Now calculate s (X1, ..., Xg) for Xg = 220. By (7) we have
sg(X1,..., X5,270s)
= 2:5%82 00105 + (4x%81 + 6x12207) © 8% =0.

Check that 3/6(X17 SN ,Xﬁ) =0 for X6 = 1‘%82
Let a,b,c € (x201, 1101 — 20, 2105). Notice that

557" (0, a, Xg) = a o [Xe, 0;] + X 0 [0;, 0a]
= a0 9;(Xg) — Xg 0 9;(a),
s5°Y"(9j,b,¢) = bo[c,0;] + co[95,b] = bod;(c) — cod;(b).
By these formulas, it is easy to calculate that
s5°" (X1, X3, Xg) = s3(01, L9071, 5305) = 22901 0 105 = 2210,
557" X, X4, X5) = 83(02, 2101 — 2202, 2102) = 21020 95 = 0,

and
559" (X1, X3, X6) 0 53(X2, X4, X5) = 0.
Furthermore,
57" (X1, Xa, Xo) = 557V (01,2101 — 2205, 7710)
= 2(1’181 — 1’282) o xlag — 1’%82 o 81
= —2.23182 — 233‘182 = —433132,
557" (X, X3, X5) = 857" (0o, 201, 2102) = —x102 0 01 = —0s,
and
s5°"" (X1, X4, X6) 0 s3(X2, X3,X5) =0
Finally,
sgsym(X17X57X6) = 83(81, xla27x%82)
= 233132 o xlag — 1‘%82 9] 82 = 0,
and
Sgsym(X17X5,X6) o Sgsym(XQ,Xg,,le) = 0
Similarly,

557" (X, X3, Xg) 0 55" (X1, Xy, X5) =0,
Tsym(X27X47 Xﬁ) o Sgsym(X17X37X5) = 0
537" (X, X5, X¢) 0 55" (X1, X3, X4) = 0.

So, we have established that s§(X1,..., Xg) = 0 for X = 220,. Thus,

86(X1, e ,X5,$%82) = SIG(Xl, .. .,X571‘%82) + Sg(Xl, . 7X5,l‘%82) =0.

547
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Similarly, one can calculate that
s¢(X1,...,X5,X6) =0,
for any Xg = 220 — 2212202, ¥302 — 2012201, v30,. In other words,
esc (sg)(X1,...,X6) =0, for any (X1,...,Xg) € V.
Therefore, by (2) sg = 0 is an identity on S(2).

12. sy =0 is an identity on W (2)
Lemma 12.1. s7 =0 is an identity on W(2).

Proof. We see that esc(s7) is uniquely defined by the homomorphism of sio-
modules f: Ly — L_; given by

F(X) = s7(01, 02,2101, 2202, 2101, 2202, X).

Notice that
L, 2 R(m;) @ R(2my + m2).

This isomorphism of sls-modules can be given by divergence map,
Div: Ly — U,
Ly ={X:DivX =0} = R(2m +m), L ={DivX:XcL}=R(m).
Thus f(X) = A Div(X) for some A € C. Using the decomposition s;°¥"" =

£ . o
5,7V 2 s3, one can calculate that

57(01, 02, 2101, w202, 1101, 220, 2301) = 0.
Therefore, A = 0 and s; = 0 is an identity on W(2).

13. 5- and 6-commutators are primitive

Assume that g = g(t1, ..., tx) is a skew-symmetric multilinear polynomial. We call
g a k-commutator on a class of vector fields, if for any k vector fields X;,..., X
of this class g(Xj,...,Xy) is again a vector field of this class.

Suppose that f is a Lie polynomial with left-normed brackets. Let (A,[, |)
be a Lie algebra. As we have explained above, fil’] AR -®A — Ails amap
obtained from f by substituting elements of A as arguments ¢; and using the
commutator [, ] for the product.

Suppose now that (4,[, ]) is a Lie algebra of vector fields. Then fL’] is the
standard k-commutator for any vector field algebra A. We call the k-commutator
g primitive on A if g, can not be represented as f1[4’] for any left-normed polyno-
mial f.
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Lemma 13.1. There does not exist a Lie polynomial f = f(t1,...,t5) such that
s5(X1,...,X5) = f(Xq,...,X5), for any X4,..., X5 € S(2). Similarly, one can
not represent a 6-commutator on W(2) in the form s¢(X1, ..., Xs) = 9(X1, ..., Xs),
for any X1, ..., X¢ € W(2), where g a is Lie polynomial in 6 variables.

Proof. Let L be a Lie algebra, U(L) its universal enveloping algebra and
A:UL)—-UL)QUL), AX)=X®1+1®X, VXelL,

a comultiplication. For any Xi,..., X € L,
k
AXy - Xp) =)0 Y Xoy e Ko@) @ Xogin) - Xogr)-
=0 O'Elek,l

Thus, for any Xq,..., X, € L,

k
A(Sk(Xl,,Xk)):Z Z Sl(Xh...,Xl)®Sk,l(Xl+1,...7Xk>.
=0 O’EGlyk,I

Therefore, if s is the standard k-commutator, i.e., if s, is obtained from Lie
polynomial, then [10]

k-1

Gy = Zsl(Xhm,Xl) ® sp—1(Xiy1, .-, Xi)
=1

should be identically 0 for any Xi,..., X, € L. Here L = W(2) if k = 6, and
L=S(2)if k=5.

In a calculation of GG}, below we use formulas for quadratic parts of k& commu-
tators (lemmas 7.2, 7.3, 7.4).

Consider the case of 5-commutators. Take

(XlaX27X3aX47X5) = (61,62,3?181 - m232,l‘281,$182).

One can calculate that
Gs

= —40; ® Og — 405 ® 01 — 209 ® x1812 — 409 ® 190102 + 40109 ® 2101
—40102 Q@ 2909 + 42101 ® 0109 — 21’13% ® Oy — 4x909 @ 0109 — 4290109 R 0o
£0.

So, s5 on S(2) can not be obtained from any Lie polynomial.
Consider now the case of 6-commutator. Take

(XlaX2aX3aX47X5,X6) = (ala 82; x1817x2013x1827$%81)'
We see that
83(X1, Xo, X3) ® 83()(47 X5, X@) = 0102 ® (35(}%((“)1 + 2x12909 + 1‘?8% + 21‘%:1326182)7
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Therefore, G has the term of the form 9,9, ® 2307. Collect all terms of Gg of
the form \ 010, ® 230?. Then their sum, denoted by R, should be 0 if s¢ is
standard 5-commutator. As a differential operator of second order, z307 can not
appear in so(X;, X;). Direct calculations then show that the elements of the form
st Xy s X))y g1 < - < il = 3,4,5, may have the part p 2307, u # 0 only in
one case: | = 3, (jl,jg,]g) (4,5, 6) So, R = 010, ®230? # 0. This contradiction
shows that 6-commutator on W (2) is primitive.

14. s; and sg are cocycles

Let d : C*(L, L) — C*¥*1(L, L) be the coboundary operator. Then
dp = d'ip +d"y,

where
dp(Xy, . X)) = D (D)((X5, X5], X0, Xy X X)),
i<j
k+1 .
d"Y(X1,. .., Xiy1) = Z(—l)Hl[Xiﬂ/J(Xh v Xy X))
i=1
Lemma 14.1. d's;”"™" =0, if k is even and d's;”™" = —S};Sffl ", if k is odd.

Proof. This follows from induction in n and the following relation

k+1
SEUT = (D) TR (X X X)) X
i=1

Lemma 14.2. (2d' +d")s; = 0, for any k > n? + 2n — 2.

Proof. By corollary 3.4, ad X € Der(W (n), si), if k > n? + 2n — 2. Therefore,
[Xi7 Sk(Xh B 7Xi7 (R 7Xk+1)]

i—1

Z 1+JSk XZ,X] ...,Xi7...7Xj,...7Xk+1)
7j=1
k+1

+ > (1 se([Xa X5l Xy Xy Xeg),
j=i+1

and
d”Sk(Xl, ey Xk+1)
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= =2 (-D)"sp((Xi, X;), o Xy, X X)),

i<J

In other words, d”s;, = —2d'sy, if k > n?+2n — 2.

Corollary 14.3. dss =0 on S(2).

Proof. By corollary 3.2 and theorems 8.1 and 11.1 s5 = s.™™" and sg =
s¢ /™" = 0 are identities on S(2). Therefore, ds, = d's5 + d"s5 = —d's5s = s¢ = 0
is an identity on S(2).
Corollary 14.4. dsg =0 on W(2).
Proof. By corollary 3.2, lemma 6.3 and lemma 12.1 s = s5™"™"" and s; = s7°Y""

is an identity on W (2). Therefore, by lemma 14.1 and 14.2 d,, = d's¢ + d"s¢ =
—d's¢ = 0 is an identity on W(2).

Remark. One can prove that (L, {sq,s;}) is also sh-Lie, for | = n? + 2n — 2, if
L=W(n)and | =n?+2n — 3, if L = S(n).

Our results can be formulated in terms of generalized cohomology operators.
There are two ways to do it. In the first way one saves the index of nilpotency
d?> = 0, but changes the grading degree. In the second way one saves grading
degree, but changes the index of nilpotency from d? = 0 to d¥ = 0. A cohomology
theory for ¥ = 0 was developed in [7].

Let us show how to do it for left multiplication operators. Let L = W(n) be
the right-symmetric algebra of vector fields, r, right multiplication operator and
I, left multiplication operator, (b)r, = boa, (b)l, = aob. Define a linear operator
d:N*(L,L) — AN*(L, L) by

d:CML,L) — C*"™(L, L),
dp(ar,... akin) = Y signo (- ((aomr1)s - Go(erm Nag) * Mage -

[ASISIN

Then the condition d? = 0 follows from theorem 3.3 of [4].
In the second case we need to consider a coboundary operator with grading
degree +1,
dy: N(L,L) — N (L, L),
dy : ANF(L,L) — A*Y(L, L),

k+1

dlw(ala BERR) ak-l-l) = Z(il)i(w(ah B dh B ak+1))la7¢~

i=1

Then dl2" =0.
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One can construct similar coboundary operators corresponding to right-mul-
tiplication operators. For example,

d,: N*(L,L) — A*(L, L),
dy: A*(L,L) — A*Y(L, L),

k+1

dTw(alv ERE) akJrl) = Z(_l)i(d}(@h SERE) div SRR akJrl))raz"

i=1

has the property dn’+2n—1 = 0.
These constructions have some other modifications that include the case of
more general right-symmetric algebras and their modules.

15. Proofs of main results
Proof of theorem 2.1. This follows from lemmas 6.3, 5.6 and corollary 5.5.

Proof of theorem 2.2. This follows from lemmas 5.3, 9.1, 11.1, 13.1 and corollary
14.3.

Proof of theorem 2.3. This follows from lemmas 12.1, 13.1, 5.4 and corollary 14.4.
We have proved that W (3) has nontrivial 10-commutator. Its restriction to S(3)
is also nontrivial. So, W (3) has two well-defined nontrivial N-commutators: 13-
commutator s13 and 10-commutator s1g. Divergenceless vector fields subalgebra
S(3) has only one nontrivial N-commutator: 10-commutator syg.
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