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Introduction

Rational surface singularities are the singularities of normal surfaces whose ge-
ometric genus does not change by a desingularization. These singularities were
studied for the first time by Du Val in [3].

Following the works of Artin [1], Spivakovsky (see [15], p. 421) has emphasized
the fact that a complex normal surface singularity is rational if and only if the dual
intersection graph associated with a desingularization of the singularity satisfies
some combinatorial properties.

The dual intersection graph determines by plumbing the topology of the cor-
responding singularity. Conversely, Neumann proved in [13] that the dual intersec-
tion graph associated with the minimal good desingularization of a normal surface
singularity (algebraic or analytic) is determined by the topology of the surface
in a neighbourhood of the singularity. So, to obtain a topological classification
of rational singularities of complex surfaces, it is important to study the graphs
which are the dual intersection graphs associated with a desingularization of these
singularities.

In this work, we study the graphs which satisfy the combinatorial conditions
that characterize dual intersection graphs associated with desingularizations of
rational singularities. Since these graphs are trees, we call them rational trees. We
give several properties of these trees. In particular, we bound their complexity
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by means of an invariant of the tree which is interpreted as the multiplicity of
an associated rational singularity. In this case, we measure the complexity of a
graph by the number of vertices of valency ≥ 3. The properties given in this paper
also lead us to a complete list of the dual intersection graphs associated with the
minimal desingularizations of rational singularities of multiplicity 5 (see [18]). The
lists for the cases of multiplicity 2, 3, and 4 were already given in [3], [1] and [16]
respectively.

1. Rational singularities

In this paragraph, we recall basic properties of rational surface singularities.
A surface singularity is a point x on a complex analytic space X whose local

ring OX,x has Krull dimension 2. The surface singularity is irreducible if the local
ring OX,x is an integral domain. If x ∈ X is an irreducible surface singularity,
there is a neighbourhood of x in X where all the local rings have dimension 2. If,
furthermore, the local ring OX,x is normal, i.e. an integral domain and integrally
closed in its field of fractions, there is a neighbourhood U of x in X where, for
all the points y in U − {x}, the local ring OX,y is regular of dimension 2, i.e.
isomorphic to C{u, v}. In this case, we shall say that (X,x) is a normal surface
singularity.

Now, let (X,x) be a normal surface singularity. We call desingularization
of (X,x) a proper analytic map π : X̃ → U of a non-singular analytic space of
dimension 2, i.e. a non-singular surface, onto a neighbourhood U of x in X, such
that U − {x} is non singular and:

i) the map π induces an analytic isomorphism of X̃ − π−1(x) onto U − {x};
ii) the inverse image π−1(U − {x}) is dense in X̃.
For more details, see [8].
Zariski’s Main Theorem says that, when π is not an isomorphism, the excep-

tional divisor π−1(x) := E is connected and has dimension 1 (see [6], Theorem
V.5.2). A desingularization is called good if the divisor E has normal crossings and
each of its irreducible components is smooth and, it is called very good if, in ad-
dition, two distinct components of E intersect transversally at most in one point.
A desingularization might not be good, since the irreducible components of E can
be singular and intersect each other not transversally. However, by blowing up
points, one can obtain from any desingularization a very good desingularization.

A positive cycle with support on E is a formal sum of the irreducible components
Ei of E with non-negative integral coefficients and with at least one positive
coefficient. The set of positive cycles is naturally ordered by the product order.
So, the positive cycle

∑
i aiEi is bigger than

∑
i biEi if and only if ai ≥ bi for

all i. The support of a positive cycle
∑

i aiEi is the union of the components Ei

for which ai �= 0. The intersection number (Ei · Ej) of components Ei and Ej

on X̃ is defined as the sum of the intersection numbers at the intersection points
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of Ei and Ej , if i �= j, which is a non-negative number, and the self-intersection
number of Ei, if i = j, which is a negative number.

We associate a graph with the exceptional divisor E of a desingularization as
follows: To each component Ei of E we associate a vertex. If i �= j we link the
vertices associated to Ei and Ej by (Ei · Ej) edges. We endow each vertex with
the weight −(Ei · Ei). This graph is called the dual intersection graph of the
desingularization π of (X,x).

A normal surface singularity (X,x) is called a rational singularity if there is a
desingularization π : X̃ → U of (X,x) such that H1(X̃,OX̃) = 0. We also say that
the local ring OX,x is rational. This definition is known to be independent of the
desingularization π (see e.g. [2], Theorem 2.3). From the proof of Proposition 1 in
[1], we deduce the following:

Theorem 1.1. Let (X,x) be a rational surface singularity. Let ρ : X ′ −→ U be
a proper map of a normal space X ′ onto a neighbourhood U of x in X, where
U − {x} is non-singular, and which induces an isomorphism between open dense
subsets of X ′ and U , and is not an isomorphism. Let D be a positive cycle with
support in the exceptional divisor ρ−1(x). Then we have H1(|D|,OD) = 0 where
|D| is the reduced curve associated with D.

Note that, in place of considering a desingularization of (X,x) as in Proposi-
tion 1 of [1], we have a modification ρ : X ′ → U , where X ′ might be singular. As
an important consequence, we have:

Corollary 1.2. The irreducible components of the fibre ρ−1(x) are rational non-
singular curves.

Another important result of [1] is (consequence of Theorem 1.1):

Theorem 1.3. If (X,x) is a rational singularity, any desingularization of (X,x)
is very good.

Notice that the dual intersection graph of the exceptional divisor of a desingu-
larization of a surface with a rational singularity is a tree.

2. Rational trees

Let Γ be a graph without loops, with vertices E1, · · · , En, weighted by pairs (wi, gi)
at each vertex Ei, (1 ≤ i ≤ n), where wi is a positive integer called the weight of
Ei, and gi is a non-negative integer, called the genus of Ei.

With Γ we associate a symmetric matrix M(Γ) = (αij)1≤i,j≤n in the following
way: αii = −wi and αij is the number of edges linking the vertices Ei and Ej

whenever i �= j. We call M(Γ) the incidence matrix of Γ.
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In the free abelian group G generated by the vertices Ei of Γ, the incidence
matrix M(Γ) defines a symmetric bilinear form. We shall denote (Y ·Z) the value
of this bilinear form on a pair (Y,Z) of elements in G. The elements of G will be
called cycles of the graph Γ. A positive cycle is a cycle in which all the coefficients
are non-negative and at least one is positive. The support of a positive cycle
Y =

∑
i miEi is the set of vertices such that mi �= 0.

A weighted graph is called a singular graph if the associated incidence matrix
is negative definite.

Theorem 2.1 (see [3], [12]). The dual intersection graph of a desingularization
of a normal surface singularity is a singular graph.

By a proof analogous to the one of Zariski (see [20], Theorem 7.1) in the case
of curve configurations, we obtain that, for any singular graph Γ with vertices Ei,
there are non-zero cycles Y =

∑n
i=1 miEi of Γ such that (Y · Ei) ≤ 0 for any i,

(1 ≤ i ≤ n); by using the connectivity of the graph, these elements satisfy mi ≥ 1.
As in [11] (see §18), let E+(Γ) denote the set of these elements. It is an additive
monöıd.

Let A be a set of positive cycles supported on the set of all the vertices of the
singular graph Γ. We define inf A as inf A = Z0 =

∑n
i=1 aiEi where

ai = infY ∈A{multY Ei}
and multY Ei is the coefficient mi of Ei in the positive cycle Y . The cycle Z0 is a
positive cycle since mi ∈ N∗ for any i.

Using ([1], [11]), we have:

Theorem 2.2. Let Γ be a singular graph. For any subset A of E+(Γ), we have
inf A ∈ E+(Γ).

Therefore, following [1]:

Definition 2.3. We define ZΓ := inf E+(Γ) the fundamental cycle of the singular
graph Γ.

By Proposition 4.1 of [9], we find the fundamental cycle of a given graph Γ by
constructing a sequence of positive cycles in the following way: Put Z1 =

∑n
i=1 Ei.

If (Z1 ·Ei) ≤ 0 for all i, then Z1 = ZΓ; otherwise, there exists an Ei, say Ei1 , such
that (Z1 · Ei1) > 0, in this case, put Z2 = Z1 + Ei1 . The term Zj , (j ≥ 1), of the
sequence satisfies, either (Zj ·Ei) ≤ 0 for all i, then we put ZΓ = Zj , or there is an
irreducible component Eij

such that (Zj ·Eij
) > 0, then we put Zj+1 = Zj + Eij

.
Then, the fundamental cycle of Γ is the first cycle Zk of this sequence such that
(Zk · Ei) ≤ 0 for all i. This construction is called the Laufer algorithm.

Based on Artin’s [1] characterization, Spivakovsky ([15], chap. II, def. 1.9),
defines:
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Definition 2.4 (Rationality Conditions). A graph Γ is called rational if:
(i) it is a tree,
(ii) the set F of non-zero cycles D =

∑n
i=1 kiEi, where the ki’s are positive

integers, such that (D · Ei) ≤ 0 for all i = 1, · · · , n, is not empty and
there is D0 ∈ F such that D2

0 < 0,
(iii) The genera gi of all the vertices of Γ are trivial,
(iv) Let inf F = ZΓ =

∑
aiEi. Then

1
2

(
ZΓ · ZΓ +

n∑
i=1

ai(wi − 2)
)

+ 1 = 0.

For a positive cycle Y =
∑

miEi, it will be convenient to denote p(Y ) :=
1
2 (Y.Y +

∑
i mi(wi − 2)) + 1 and call it the arithmetic genus of the cycle Y . So,

by the condition (iv) above, we mean that the arithmetic genus of ZΓ is zero.
Moreover, the condition (ii) is equivalent to saying that Γ is a singular graph and a
graph satisfying the conditions (ii) and (iv) is a tree. To prove these facts, we need
to relate these graphs to the geometry of singular surfaces (see [1], Proposition 2,
or [18]).

By plumbing (see [10]), a weighted graph Γ defines a (non-unique) complex
curve configuration, with smooth components and transverse intersections, em-
bedded in a non-singular complex analytic surface. By a result of Grauert (see
[5], p. 367), if a weighted graph Γ is singular, there is a normal complex analytic
surface singularity and a desingularization of this singularity such that the dual
intersection graph of its exceptional divisor is Γ.

As in [15] (chap. II, Proposition 1.11), we have:

Theorem 2.5. If R is a rational tree, there is a surface with a rational singularity
and a desingularization of this singularity such that the dual intersection graph of
its exceptional divisor is R.

Conversely (see also [15]):

Theorem 2.6. If (X,x) is a rational singularity, the dual intersection graph of
the exceptional divisor of any desingularization of (X,x) is a rational tree.

3. Properties of rational trees

The following proposition is an important consequence of the relation between
rational singularities and rational trees:

Proposition 3.1 (see [1]). A weighted tree R on which the genus of all vertices are
0, is rational if and only if the arithmetic genus of any positive cycle Y supported
on R is negative, i.e. we have p(Y ) ≤ 0.
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Then we have:

Proposition 3.2. Any subtree of a rational tree is rational.

Proof. Let R′ be a subtree of R. The tree R′ is singular ([8], Lemma 5.11). Since
any positive cycle Y of R′ is also a positive cycle of R, by Proposition 3.1, we
have p(Y ) ≤ 0. Therefore R′ is a rational tree. �

We define the valency of the vertex Ei in R to be the number of vertices
adjacent to Ei in R. We denote it by υR(Ei). We prove the following property of
a rational tree, given by M. Spivakovsky ([15], remark 2.3):

Proposition 3.3. If R is a rational tree, for any vertex Ei of R, we have

wi + 1 ≥ υR(Ei).

Proof. First, assume that R corresponds to the minimal desingularization π :
X −→ S of a rational singularity of S i.e. wi ≥ 2 for any Ei. Suppose that in R
there is a vertex E with valency υR(E) ≥ wE+2. Consider a subtree R′ of R which
contains E and vertices E1, . . . EυR′ (E) adjacent to E. Assume υR′(E) = wE + 2.
Since R is rational, the subtree R′ must be rational. We consider the positive
cycle defined by:

ZR′ = 2E +
υR′ (E)∑

i=1

Ei.

This gives Z2
R′ = 8 − ∑wE+2

i=1 wi. So, we obtain p(ZR′) = 1. This contradicts the
fact that R′ is rational. Then wE + 1 ≥ υR(E).

Now, if R corresponds to a desingularization of a rational singularity which is
not a minimal desingularization, the result is proved by induction on the number
of point blow-ups from the minimal desingularization to our desingularization. �

Definition 3.4. We call a bad (resp. good) vertex a vertex Ei of R such that
wi + 1 = υR(Ei) (resp. wi ≥ υR(Ei)). In particular, we call a very good vertex a
vertex Ei of R such that wi > υR(Ei).

Theorem 3.5. Let R be a rational tree where the weights are ≥ 2 and containing
two bad vertices and let C be the smallest path (i.e. the geodesic) in the tree R
linking these two bad vertices without containing them. Then, at least one of the
vertices of the subtree C is very good.

Proof. Let E and F be the two bad vertices of R. Assume that C is not empty.
Let A1, · · · , An be the vertices of C such that (Ai.Aj) = 1 for j = i+1, (A1 ·E) =
(An · F ) = 1, (Aj · E) = 0 for j �= 1 and (Aj · F ) = 0 for j �= n. Consider the
subtree R′ of R which contains E,F,C and the vertices adjacent to the vertices
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E, F and adjacent to C. Assume that the vertices of C are all good vertices, but
not very good. Since R is rational, the subtree R′ has to be rational. We consider
the positive cycle ZR′ defined by:

ZR′ =
wE∑
j=1

Ej + 2E +
n∑

i=1

2Ai + 2F +
wF∑

m=1

Fm +
k∑

i=1

wni
−2∑

l=1

Bni

l

where Ej , Fm et Bni

l are the vertices in R′ adjacent to E, F and to Ani
respectively.

We obtain p(ZR′) = 1. This contradicts the hypothesis. Therefore the subtree C
contains at least one very good vertex.

When C is empty, we have a similar proof. In this case, the positive cycle
ZR′ =

∑wE

j=1 Ej +2E +2F +
∑wF

m=1 Fm of R′ gives also p(ZR′) = 1, which is again
a contradiction. �

Definition 3.6. The vertex Ei is called a rupture vertex of R if υR(Ei) ≥ 3.

Remark 3.7. Theorem 3.5 implies that a rational tree in which all the weights
are equal to 2 has at most one rupture vertex. Of course, this fact is already
known, since in this case, the possible trees are An, Dn, E6, E7 and E8.

The following result which has been conjectured by M. Spivakovsky gives many
rational trees once one of them is known.

Theorem 3.8. Let R be a rational tree. Let R′ be a tree obtained from R by
increasing the weights. Then R′ is a rational tree.

Proof. Let R and R′ be trees defined as in the theorem. First we will show that
R′ is a singular tree: Let us denote by (.) and (.)′ the bilinear forms defined
on the free abelian group generated by the vertices of R and R′ respectively.
Let Y =

∑n
i=1 biEi be a positive cycle such that (Y · Ei) ≤ 0 for any i. Since

(Ei · Ei)′ ≤ (Ei · Ei) for any i, we have (Y · Ei)′ ≤ (Y · Ei) ≤ 0 for any i. By the
same method, we obtain (Y · Y )′2 ≤ (Y · Y )2 < 0. By (ii) of Definition 2.4, R′ is
a singular tree.

Now let us denote p(Y ) and p′(Y ) the arithmetic genus of a positive cycle Y
defined by taking the bilinear forms in R and R′ respectively. Let D =

∑n
i=1 a′

iEi

be a positive cycle of R′. Since D can be considered as a positive cycle with
support on R, Proposition 3.1 implies that p(D) ≤ 0. Hence it will be sufficient
to show that p′(D) ≤ p(D).

We prove this last assertion by induction on the number of vertices where the
two weighted trees R and R′ differ. Therefore, it is sufficient to prove the assertion
when they differ only at one vertex, say E1. The condition (iv) of Definition 2.4
gives:

p′(D) − p(D) =
a

′2
1 (E1 · E1)′ + a′

1w
′
1

2
− a

′2
1 (E1 · E1) + a′

1w1

2
.
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Since (E1 · E1)′ = −w′
1 and, by hypothesis, w′

1 = w1 + k, k ∈ N∗, we obtain

p′(D) − p(D) =
ka′

1(−a′
1 + 1)

2
.

Since a′
1 ≥ 1, we have p′(D) − p(D) ≤ 0. �

The preceding proof also shows that:

Proposition 3.9. With the notation of the theorem above, if the weight of a vertex
in R′ is strictly greater than its weight in R, the multiplicity of that vertex in the
fundamental cycle of R′ equals 1.

We do not have a complete classification of rational trees. However, there are
strong restrictions for a tree to be rational, as stated in the following theorem:

Theorem 3.10. Let R be a rational tree. The vertices of a subtree R′ of R
whose valency in R is different from its valency in R′, have multiplicity 1 in the
fundamental cycle of R′.

Proof. To prove the theorem, we make use of the geometrical meaning of a rational
tree.

Let (X,x) be a surface with a rational singularity for which R is the dual in-
tersection tree associated to the exceptional divisor of a desingularization π : X̃ →
(X,x).

Let F be a vertex of R′ whose valency in R′ is not the same as in R, and let
E be a vertex in R−R′ which is adjacent to F .

Theorem 2.5 says that, by contracting all the components of the exceptional
divisor of π which correspond to the vertices of R′, we obtain a normal surface
S′ having a rational singularity and bimeromorphic morphisms κ : X̃ → S′ and
ρ : S′ → (X,x) such that π = ρ ◦ κ. Denote the singularity of S′ by ξ1. Since
the morphism ρ is bimeromorphic and (X,x) is a rational singularity, Corollary
1.2 shows that the components of ρ−1(x) are non-singular rational curves. In
particular κ(E), which is a component of ρ−1(x), is a non-singular rational curve.

A result of Gonzalez-Sprinberg and Lejeune-Jalabert in [4] implies that, since
the curve κ(E) is non-singular, the strict transform of κ(E) by κ intersects the
exceptional divisor of κ transversally at a component which has coefficient 1 in
the fundamental cycle in κ−1(ξ1) of the singularity ξ1. Since R′ is a rational
tree, (S′, ξ1) is a rational singularity and the maximal divisor in κ−1(ξ1) of the
singularity ξ1 coincides with the fundamental cycle of κ. This cycle corresponds to
the fundamental cycle of R′. Therefore, the coefficient of F in this fundamental
cycle is 1. �

Corollary 3.11. The rational tree E8 cannot be a subtree strictly contained in a
rational tree.
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This comes from the fact that the coefficients of all the vertices of E8 in its
fundamental cycle are ≥ 2. �

4. Glueing rational trees

Let Γ1 and Γ2 be two weighted trees. The weighted tree Γ obtained by attaching
a vertex of Γ1 and a vertex of Γ2 by an edge is called the glueing tree of Γ1 and
Γ2 at these vertices.

Through this section, we will denote by R1 and R2 the rational trees with
vertices E1, · · · , En and F1, · · · , Fm respectively.

Another corollary of Theorem 3.10 is:

Corollary 4.1. If the glueing tree of R1 and R2 at E1 and F1 is rational, the
coefficient of E1 (resp. F1) in the fundamental cycle of R1 (resp. R2) is 1.

Proof. In the glueing tree, the weights of the vertices don’t change, but the valencies
of E1 and F1 change. Theorem 3.10 gives the result. �

Remark 4.2. We may always consider a rational tree to be made of vertices of
weight ≥ 3 and rational subtrees of type An, Dn, E6, E7 or E8 (see prop. 3.2).
The vertices of these subtrees which are linked to a vertex of weight ≥ 3 have
coefficient 1 in the fundamental cycle of the corresponding subtree. We saw that
E8 cannot be the strict subtree of a rational tree. In the case of E6, we cannot
glue any tree to any vertex of E6, except at the ends of the long tails, since the
coefficients of other vertices are ≥ 2 in the fundamental cycle of E6. Similarly, to
obtain rational trees by glueing E7, only one end vertex is available and, for Dn,
only the ends are available. However, there are rational trees obtained by glueing
An at any of its points.

The following theorem shows that the glueing of rational trees gives a rational
tree only under some important necessary conditions:

Theorem 4.3. Let Z1 and Z2 be the fundamental cycles of R1 and R2 respec-
tively. Assume that the glueing tree R of R1 and R2 at the vertices E1 and F1 is
rational. Then either (Z1 · E1) < 0 or (Z2 · F1) < 0.

Before giving a proof of this theorem, it will be useful to introduce the following
definitions (compare with Definition III.3.1 in [15]):

Definition 4.4. Let Γ be a singular graph. A vertex E of Γ is called non-Tjurina
for an element Y of E+(Γ) if it satisfies (Y.E) < 0.

A connected component of the difference Γ − {non-Tjurina vertices for Y } is
called a Tjurina component for the element Y in E+(Γ).
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Let R be a rational tree. A vertex E is non-Tjurina for the fundamental cycle
ZR if and only if it corresponds to the strict transform of a component of the
tangent cone of a rational singularity whose dual intersection tree of a desingular-
ization is R. Moreover, a result of Tjurina ([17]) implies that a Tjurina component
of the fundamental cycle ZR is the dual intersection tree of a desingularization of
one of the rational singularities which appear after the point blowing-up of the
rational singularity of the surface whose dual intersection graph of a desingular-
ization is R.

Now, let us introduce the desingularization depth of a vertex in a rational tree:
Let E be a vertex in R. Then, E is either non-Tjurina for ZR, or is contained in a
Tjurina component ∆1 for ZR. In the first case, we say that the desingularization
depth of the vertex E is zero; in the second case, E is either non-Tjurina for the
fundamental cycle Z∆1 of ∆1, or is contained in a Tjurina component ∆2 for Z∆1 .
By induction, we define the desingularization sequence of the vertex E in R as the
sequence ∆0 = R,∆1, . . . ,∆p of subtrees of R such that, for all i, (1 ≤ i ≤ p), E
is a vertex of ∆i, ∆i is the Tjurina component of ∆i−1 for the fundamental cycle
Z∆i−1 and E is a non-Tjurina in ∆p for the fundamental cycle Z∆p

. In this case,
p is called the desingularization depth of E. We will also call the degree of the
vertex E the number −(ZR.E).

Proof of Theorem 4.3. The theorem states that, if the glueing tree R is rational
then, either E1 is non-Tjurina for Z1, or F1 is non-Tjurina for Z2.

Now assume that the glueing tree R is rational. Let ∆0,∆1, . . . ,∆p be the
desingularization sequence of the vertex E1 in R1 and D0,D1, . . . ,Dq be the desin-
gularization sequence of the vertex F1 in R2. Then

U :=
p∑

i=0

Z∆i
+

q∑
j=0

ZDj

is a positive cycle of R. The Proposition 3.1 shows that the arithmetic genus p(U)
of U is ≤ 0.

Furthermore, by Theorem 3.10, the coefficient of E1 (resp. F1) in Z1 (resp. Z2)
is one. The following lemma shows that the coefficients of E1 (resp. F1) in Z∆i

(resp. ZDj
) are also 1, for any i, 0 ≤ i ≤ p (resp. for any j, 0 ≤ j ≤ q).

Lemma 4.5. Let ZR =
∑n

i=1 aiEi and ZR′ =
∑

i∈A′ a′
iEi, A′ ⊂ {1, · · · , n}, be

the fundamental cycles of R and of a subtree R′ of R respectively. Then we have
a′

i ≤ ai for i ∈ A′.

We shall give below a proof of this lemma. Let us continue the proof of Theo-
rem 4.3. We have

p(U) =
p∑

i=0

p(Z∆i
) +

q∑
j=0

p(ZDj
) − (p + 1 + q + 1) + 1 +

∑
0≤i≤p,0≤j≤q

(Z∆i
· ZDj

).
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Since, for k < �, ∆� (resp. D�) is contained in a Tjurina component of ∆k (resp.
Dk), we have (Z∆k

· Z∆�
) = 0 (resp. (ZDk

· ZD�
) = 0) for all k �= �. On the other

hand, since the coefficients of E1 (resp. F1) in the fundamental cycles Z∆i
(resp.

ZDj
) are 1, we have

(Z∆i
.ZDj

) = 1

for any i, j, (0 ≤ i ≤ p), (0 ≤ j ≤ q).
Now, any subtree of a rational tree being rational, we have p(Z∆i

) = 0 for any
i, (0 ≤ i ≤ p), and p(ZDj

) = 0 for any j, (0 ≤ j ≤ q). Therefore

p(U) = (p + 1)(q + 1) − (p + 1 + q + 1) + 1.

Since p(U) ≤ 0, we have pq ≤ 0, which implies either p = 0 or q = 0. This proves
Theorem 4.3. �

It remains to prove Lemma 4.5.

Proof of Lemma 4.5. Let Zr be the positive cycle defined as the restriction of Z
to A′, denoted by Z |A′= Zr =

∑
i∈A′ aiEi. For i ∈ A′, we have

(Zr · Ei) = ai(Ei · Ei) +
∑

j �=i,j∈A′
aj(Ej · Ei).

Furthermore, the fact that (Z · Ei) ≤ 0 for all i gives

−ai(Ei · Ei) ≥
∑
j �=i

aj(Ej · Ei).

Since aj ≥ 0 and (Ej · Ei) ≥ 0 for i �= j, we have∑
j �=i

aj(Ej · Ei) ≥
∑

j �=i,j∈A′
aj(Ej · Ei).

Then we obtain
−ai(Ei · Ei) ≥

∑
j �=i,j∈A′

aj(Ej · Ei).

So we have (Zr · Ei) ≤ 0 for all i ∈ A′. Let Z ′ be the fundamental cycle of R′.
The fact Z ′ ≤ Zr gives a′

i ≤ ai for any i ∈ A′. �

Theorem 4.3 gives the following result:

Theorem 4.6. Let R1 and R2 be rational trees and Z1 and Z2 be their funda-
mental cycles respectively. Assume that the weights of R2 are ≥ 2, (Z1 · E1) < 0
and the degree of E1, d1 = −(Z1 · E1), in R1 is strictly greater than the desingu-
larization depth of F1 in R2, then the glueing tree R of R1 and R2 at E1 and F1

is rational.

Proof. Using the same notation to that of the proof of Theorem 4.3, we shall prove
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that the positive cycle

U := Z1 +
q∑

j=0

ZDj

of the glueing tree R is in fact the fundamental cycle of R, so p(U) = 0. First, let
us check that (U · E) ≤ 0 for any vertex E of R. For this purpose, we need the
following lemma that we shall prove later:

Lemma 4.7. Let E be a vertex of R with coefficient 1 in the fundamental cycle
ZR. Let p be the desingularization depth of E and ∆0 = R,∆1, . . . ,∆p be its
desingularization sequence. For any i, 1 ≤ i ≤ p, the cycle

∑i
0 Z∆k

belongs to
E+(R) and it is the smallest cycle in E+(R) greater than

∑i−1
0 Z∆k

+ E.

We have
( ∑q

j=0 ZDj
· Fi

) ≤ 0 for all vertices Fi of R2. Since (Z1 · Fi) = 0 for
i �= 1, we have (U · Fi) ≤ 0 for all Fi with i = 2, · · ·m. Similarly, (U · Ei) ≤ 0 for
all vertices Ei of R1 with i = 2, · · ·n. Hence it remains to estimate (U · E1) and
(U · F1). We have

(U · E1) = (Z1 · E1) +
( q∑

j=0

ZDj
· E1

)
.

However −(Z1 ·E1) is the degree d1 of E1 in R1 and, by Corollary 4.1 and Lemma
4.5, (ZDj

· E1) = 1 for any j, (0 ≤ j ≤ q), so that
( ∑q

0 ZDj
· E1

)
= q + 1. Since

d1 > q, (U · E1) ≤ 0. Now, consider

(U · F1) = (Z1 · F1) +
( q∑

0

ZDj
· F1

)
.

Since (Z1 · F1) = 1 and
( ∑q

0 ZDj
· F1

)
= (ZDq

· F1) ≤ −1, we obtain (U · F1) ≤ 0.
Then U is an element of E+(R). Moreover, we obtain (U ·U) < 0 because we have
either (ZDq

·F1) < −1 or (ZDq
·F1) = −1. The first case gives (U ·F1) < 0. In the

second case, since by assumption the weights of all the vertices of Dq are ≥ 2, there
is necessarily another non-Tjurina vertex F �= F1 of Dq such that (ZDq

· F ) < 0,
so (U · U) < 0. Therefore R is a singular tree.

Let us prove that U is the fundamental cycle ZR of R. In the case the desin-
gularization depth of F1 is 0, U = Z1 + Z2. We just proved that U ∈ E+(R), so
U ≥ ZR. However Lemma 4.5 tells us that the restriction of ZR to R1 and R2

are in E+(R1) and E+(R2), ZR ≤ Z1 + Z2 which gives

ZR = Z1 + Z2.

When the desingularization depth of F1 is ≥ 1, since

U ≥ ZR.

Lemma 4.5 and the Laufer algorithm say that the restriction of the fundamental
cycle ZR to R2 belongs to E+(R2) and is greater than Z2 + F1 = ZD0 + F1. By
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Lemma 4.7, it is also greater than ZD0 + ZD1 . By induction, we show that the
restriction of ZR to R2 is greater than

∑q
0 ZDj

. Therefore we have ZR ≥ U =∑q
j=0 ZDj

+ Z1, and so ZR = U as expected.
Finally, we show that p(U) = 0. We have

p(U) = p(Z1) +
q∑
0

p(ZDj
) +

q∑
0

(Z1 · ZDj
) − q − 1.

Since p(Z1) = 0 and p(ZDj
) = 0 for any j, (0 ≤ j ≤ q), we have

p(U) =
q∑
0

(Z1 · ZDj
) − q − 1.

By Corollary 4.1 and Lemma 4.5, the coefficients of E1 in Z1 and F1 in ZDj
for

any j, (0 ≤ j ≤ q), are equal to 1. Then (Z1 · ZDj
) = 1 and p(U) = 0. This

completes the proof of the Theorem 4.6. �

We have also a similar result:

Theorem 4.8. Let R1 and R2 be rational trees and Z1 and Z2 be their funda-
mental cycles respectively. Assume that (Z1 · E1) < 0 and the degree of E1,
d1 = −(Z1 · E1), in R1 is strictly greater than the desingularization depth of F1

in R2 plus one, then the glueing tree R of R1 and R2 at E1 and F1 is rational.

The proof of this Theorem is similar to the one of Theorem 4.6. In this case
we have (U · E1) < 0, because d1 > q + 1. This is enough to get (U · U) < 0 and
obtain that R is a singular tree.

Now let us prove Lemma 4.7.

Proof of Lemma 4.7. We shall give a proof by induction on i. For i = 0, it is the
definition of the fundamental cycle of ∆0 := R. For i = 1, it is the result of the
proposition of §14 in [14] (see p. 165 or [19]). Now, let i ≥ 2. We assume that the
Lemma is true for �, (0 ≤ � ≤ i − 1).

Denote Ui =
∑i

k=0 Z∆k
. Let F be a vertex of R. Assume that (Ui · F ) > 0.

Consider ( i∑
k=0

Z∆k
· F

)
=

( i−1∑
k=0

Z∆k
· F

)
+ (Z∆i

· F ).

Since, by induction, we have
( ∑i−1

k=0 Z∆k
· F

) ≤ 0, necessarily (Z∆i
· F ) > 0.

Hence F /∈ ∆i, but it is linked to ∆i at a vertex F ′ of ∆i. Since ∆i is a Tjurina
component of ∆i−1, the point F ′ is also in ∆i−1.

If F belongs to ∆i−1, then ((Z∆i−1 +Z∆i
) ·F ) ≤ 0 by applying the result of the

Proposition of §14 in [14]. Since
( ∑i−2

k=0 Z∆k
·F ) ≤ 0 by the induction hypothesis,

we obtain
( ∑i

k=0 Z∆k
· F

) ≤ 0, which contradicts the assumption (Ui · F ) > 0
above. So, the vertex F cannot belong to ∆i−1.
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The restriction Zi−1 := ZR | ∆i−1 of the fundamental cycle ZR to ∆i−1 belongs
to E+(∆i−1) (see the proof of 4.5). So Zi−1 ≥ Z∆i−1 . However, these cycles are
different, since (Zi−1 ·F ′) < 0, because F ′ is linked to F in R, and (Z∆i−1 ·F ′) = 0,
since F ′ is in a Tjurina component of ∆i−1. Let Zi−1 = Z∆i−1 + Y . We prove
that Y ≥ F ′. We have (Zi−1 · F ′) < 0, which yields (Y · F ′) < 0. Therefore F ′ is
in the support of Y . This shows Zi−1 ≥ Z∆i−1 + F ′. The Proposition of §14 in
[14] then implies that

Zi−1 ≥ Z∆i−1 + Z∆i

which implies that the coefficient of E in the fundamental cycle ZR is ≥ 2. This,
again, contradicts the hypothesis on the coefficient of E in ZR. Therefore, for any
vertex F of R, we must have (Ui.F ) ≤ 0.

It remains to prove that, for any i, (1 ≤ i ≤ p), the cycle
∑i

0 Z∆k
is the smallest

cycle in E+(R) amongst the cycles greater than
∑i−1

0 Z∆k
+ E. Let

Y =
i−1∑
0

Z∆k
+ E + T

be a positive cycle in E+(R). For any F in ∆i we have (Y.F ) ≤ 0. By Lem-
ma 4.5 the restriction T ′ of the cycle E +T to the subtree ∆i is in E+(∆i), so that
T ′ ≥ Z∆i

, which implies Y ≥ ∑i
0 Z∆k

. Since we proved that
∑i

0 Z∆k
is in E+(R),

it is the smallest cycle in E+(R) which is greater than
∑i−1

0 Z∆k
+ E. This ends

the proof of Lemma 4.7. �

5. Complexity of rational trees

We say that a rational tree R has multiplicity m if its fundamental cycle satisfies
(ZR · ZR) = −m. According to [1] (see Theorem 4), the number −(ZR · ZR) is
the multiplicity of a rational singularity having R as dual intersection graph of a
desingularization.

In this paragraph, we want to prove that the complexity of a rational tree of
given multiplicity is bounded. In the cases of multiplicity 2, 3 and 4, it has been
observed (see [3], [1] and [16]) that there are a finite number of types of rational
trees with weights ≥ 2. It is therefore of interest to have a better understanding
of this result. The first problem is to give a proper definition of the complexity.
Since rupture vertices of the dual intersection graph of the minimal good desingu-
larization measure the local topological complexity of the link of a complex normal
surface singularity (see [13]), it seems natural to define the complexity of a rational
tree whose vertices have weights ≥ 2 to be the number of rupture vertices. This
idea is enhanced by the following result:
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Theorem 5.1. Let R be a rational tree of multiplicity m in which all vertices
have weight ≥ 2. Then the number of rupture vertices of R is bounded by m− 2 if
m ≥ 3.

Remark 5.2. The multiplicity of a rational tree with weights ≥ 2 is equal to 2
if and only if all its vertices have weight 2 (see [3]). As pointed out above, these
rational trees are An, Dn, E6, E7 and E8, and the number of rupture vertices
in any of these trees is equal to 0 or 1 (see [1]). Of course, in the Theorem we
could replace the bound by m − 1 to include the cases of multiplicity 2, but in
the following example, we give an infinite class of rational trees with arbitrary
multiplicity m ≥ 3 for which the bound m − 2 is reached.

Example 5.3. Let us consider the following tree R with vertices E1, · · · , En:
� �··· � �··· � �··· � �··· � �x x

�···
�···� �

� �

where “ ◦ ” and “x” denote the vertices with weights 2 and 3 respectively. The
fundamental cycle of this tree is ZR =

∑n
i=1 Ei. If the number of rupture vertices

of weight 3 is k, then Z2
R = −(k +2). Since p(ZR) = 0, R is indeed a rational tree

with multiplicity (k + 2) and k rupture vertices. �

Lemma 5.4. Assume that R is a rational tree of multiplicity m in which all ver-
tices have weight ≥ 2. Assume that R contains a unique vertex with weight ≥ 3.
Then the number of rupture vertices of R is ≤ m − 2.

Proof. Denote by F the vertex which has weight ≥ 3 and by E1, · · · , En the vertices
of weight 2 in R. Let ZR = aF F +

∑n
i=1 aiEi be the fundamental cycle of R.

Since Z2
R = −m and p(ZR) = 0, we need to show that:

m − 2 = aF (wF − 2) ≥ s, (1)

where s is the number of rupture vertices of R. In what follows, the case s = 1,
for which the inequality is trivial, is excluded.

Let us denote R1, · · · ,Rp the maximal subtrees of R−{F}. Obviously, all the
vertices of Rj , (j = 1, · · · , p), are of weight 2, and each Rj is of type An, Dn, E6

or E7, since E8 has been excluded by Corollary 3.11. Denote by Ej the vertex of
Rj adjacent to F (j = 1, . . . , p) in R. This gives υR(F ) = p. Then the rupture
vertices of R are maybe F itself, the possible rupture vertices of the subtrees Rj ,
(1 ≤ j ≤ p), and the rupture vertices obtained by glueing F and all the Rj ’s.
We know, by remark 4.2, that the glueing of F and one Rj can give a rupture
vertex only in the case where F is attached to an interior vertex of Rj which is of
type An.
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Let us denote by α the number of subtrees among R1, · · · ,Rp which have a
rupture vertex or which gives a rupture vertex at Ej when attached to F , and by
β the number of subtrees among R1, · · · ,Rp which are of type An and which are
attached to F by an extremity vertex. Then the number of rupture vertices of R
is equal to α if p ≤ 2, and it is equal to α + 1 if p ≥ 3 (i.e. accordingly F becomes
a rupture vertex in R upon its glueing to the Rj ’s).

Let aF and a1, · · · , ap be the coefficients of F and E1, · · · , Ep in ZR respec-
tively. The fact that (ZR · F ) ≤ 0 gives:

wF aF ≥
p∑

j=1

aj . (2)

Lemma 5.5. If a subtree Rj has a rupture vertex or if it contributes to a rupture
vertex at Ej when it is glued to F , then aj ≥ 2.

Proof. It is obvious that the coefficient of a bad vertex in the fundamental cycle
of a rational tree is ≥ 2. Since the rupture vertex of Rj is a bad vertex and there
are only vertices with weight 2 on the geodesic from the rupture vertex of Rj to
F , we can easily see that the vertex of Rj adjacent to F has the coefficient ≥ 2
in the fundamental cycle of R. �

We deduce that aF wF ≥ 2α + β, so 1
2aF wF ≥ α. Lemma 5.4 will be proved

upon showing that:
aF (wF − 2) > 1

2aF wF

as this implies that aF (wF − 2) ≥ α + 1. In fact, the preceding inequality is
equivalent to (wF − 2) > 1

2wF or wF > 4. So Lemma 5.4 is true for wF ≥ 5.

Remark 5.6. If β > 0 then the Lemma 5.4 is true for wF ≥ 4.

Using essentially Theorem 3.5 and Lemma 5.5, we may now finish the proof of
Lemma 5.4:

For wF = 3: By Proposition 3.3, we have p ≤ 4. Theorem 3.5 gives that
s ≤ 2. The only case to be treated is when s = 2, which happens if p = 2 or
p = 3. When p = 2, R is constructed by two subtrees Rj (j = 1, 2) attached to
F and each of these subtrees has at most one rupture vertex in R, so s = α. If
s = α = 2, since aF wF = 3aF ≥ 2α + β ≥ 2α = 4, we have aF ≥ 2, so that
aF (wF − 2) = aF ≥ 2 = s.

When p = 3, R is constructed by three subtrees Rj attached to F , since F
becomes a good vertex without being very good, at most one of these subtrees has
a rupture vertex in R and s = α + 1. If s = 2, we have α = 1 and β = 2, so
aF wF = 3aF ≥ 2α + β = 4 and aF ≥ 2. This also implies

aF (wF − 2) = aF ≥ 2 = s.
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For wF = 4: We have p ≤ 5. The inequality (1) is obvious when p ≤ 2 and
4 ≤ p ≤ 5 for which we have s ≤ 2. When p = 3, we obtain s ≤ 4. So we have two
cases to prove: If s = 3 (resp. s = 4), F is a rupture vertex and there exist two
(resp. three) subtrees Rj which have a rupture vertex in R. Then

aF wF = 4aF ≥ 2α + β = 5 (resp. aF wF = 4aF ≥ 2α + β = 6).
In both cases, we have aF ≥ 2. Thus we obtain aF (wF − 2) = 2aF ≥ 4 ≥ s. �

Proof of Theorem 5.1. We shall make use of Lemma 5.4 and the fact that R is the
union of trees with only one vertex of weight ≥ 3.

Let us denote by F1, · · · , Fk the vertices with weights ≥ 3 and by E1, · · · , En

the vertices with weights 2 in R. Let ZR =
∑k

i=1 aiFi +
∑n

n=1 bjEj be the
fundamental cycle of R. Observe that m ≥ 3 implies k ≥ 1. So we must show:

m − 2 =
k∑

i=1

ai(wi − 2) ≥ s (3)

where s is the number of rupture vertices in R.
For each vertex Fi, (1 ≤ i ≤ k), we consider the maximal subtree Bi of R

which contains Fi and all subtrees Rj , j ∈ Ji, of R − {F1, · · · , Fk} which are
adjacent to Fi. We know that Bi is a rational tree. Moreover, Bi has the form of
the rational tree given in Lemma 5.4, so each Bi satisfies a′

i(wi − 2) ≥ si where
Zi = a′

iFi +
∑

El∈Rj
a′

lEl is the fundamental cycle of Bi and si is the number of
rupture vertices of Bi. By Lemma 4.5, we have

m − 2 =
k∑

i=1

ai(wi − 2) ≥
k∑

i=1

a′
i(wi − 2) ≥

k∑
i=1

si.

We cannot assert that
∑k

i=1 si ≥ s, since it is possible to create some rupture
vertices which are not rupture vertices in the Bi’s.

Lemma 5.7. A rupture vertex in R which is not a rupture vertex in any Bi is of
the following types:

(a) it is the vertex Fi of valency ≤ 2 in Bi.
(b) it is a vertex Ej which is the extremity of one of the subtrees Rj of Bi

which is of type An.

Proof. This follows from the construction of Bi and from Theorem 3.5. In fact,
if a rupture vertex in R, which is not a rupture vertex in any Bi, has weight 2,
it is necessarily a bad vertex in R. By Theorem 3.5, the subtree Rj of Bi which
contains that vertex must be of type An. Moreover, it is an extremity of this
subtree of type An because if it was not, it would already be a rupture vertex in
Bi’s which contain it. �

Thus, we shall consider vertices of a subtree Bi which are rupture vertices in
R without being rupture vertices in the subtree Bi in the following cases:
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(A) the vertex Fi of Bi,
(B) vertices of weight 2 which are extremities of subtrees Rj of type An,
(C) vertices of the preceding two types.

5.8. To find the rupture vertices of R which are not rupture vertices in Bi, it
is sufficient to consider the attachment to Bi of the vertices in R− Bi which are
adjacent to Bi. By construction of Bi, these vertices, which are adjacent to Bi in
R, have weights ≥ 3. Let us denote by B′

i a minimal subtree of R which contains
Bi and in which the vertices which become rupture vertices in R without being
rupture vertices in Bi are rupture vertices. Let s′i be the number of rupture vertices
in B′

i. If Bi does not contain rupture vertices of R which are not rupture vertices
in Bi, we set B′

i = Bi and s′i = si.
Let a′′

Fi
be the coefficient of Fi in the fundamental cycle of B′

i. By Lemma 4.5
we have aFi

≥ a′′
Fi

. Since
∑k

i=1 s′i ≥ s, Theorem 5.1 will be proved if we show, in
the three cases above, that:

a′′
Fi

(wFi
− 2) ≥ s′i. (4)

(A) Let us consider a subtree Bi of R which contains a rupture vertex of weight
≥ 3 of R which is not a rupture vertex in that Bi.

Denote by B such a subtree Bi and by F its unique vertex with weight ≥
3. Since F is not a rupture vertex in B, B − {F} has at most two connected
components. By hypothesis, we have s′ = s + 1 where s′ is the number of rupture
vertices of a minimal subtree B′ of R which contains B and in which F is a rupture
vertex. So there are three cases to be proved depending on the valency of F in B:

(1) If υB(F ) = 0, we have B = {F}. A minimal subtree B′ is obtained by
glueing three vertices with weight ≥ 3 of R to E. The inequality (4) is obvious
for wF ≥ 3.

(2) If υB(F ) = 1, the rational tree B consists of the vertex F attached to a
tree of type An, Dn, E6 or E7 attached to the vertex F . A minimal subtree B′

of R is obtained by glueing two vertices of R with weight ≥ 3 to the vertex F of
B. We have s′ ≤ 2. Since the inequality (4) is obvious for wF ≥ 4, the only case
to consider is when wF = 3 and s′ = 2. This gives, by Lemma 5.5 and inequality
(2), 3a′′

F ≥ 4. Thus a′′
F ≥ 2, and we have inequality (4).

(3) If υB(F ) = 2, B is obtained by glueing two subtrees of type An, Dn, E6

or E7 to the vertex F . A minimal subtree B′ contains B and a vertex with weight
≥ 3 of R attached to F . Since s′ ≤ 3, our inequality is obvious when wF ≥ 5.
Now, we have s′ ≤ 2 (resp. s′ ≤ 3) if wF = 3 (resp. wF = 4). When s′ = 2 (resp.
s′ = 3), by Lemma 5.5 and inequality (2), we obtain 3a′′

F ≥ 4 (resp. 4a′′
F ≥ 5).

This gives a′′
F ≥ 2, and so we also have inequality (4) for wF = 3 and 4.

(See lemme 7.1 and lemme 7.4 in [18] for all possible rational trees of the type
given in cases (2) and (3) respectively.)
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(B) Let us consider a subtree Bi of R which contains rupture vertices of
R which are not the rupture vertices in Bi and assume that these vertices have
weight 2:

Denote by B such a subtree Bi. As in the proof of Lemma 5.4, among the
maximal subtrees of vertices of weight 2 of B, we have:

(i) the α maximal subtrees with vertices of weight 2 which contain a rupture
vertex of B,

(ii) the γ maximal subtrees with vertices of weight 2 which contain a rupture
vertex of R which is not a rupture vertex in B. We saw that these subtrees are of
type An and they are attached to the vertex with weight ≥ 3 by one extremity.

(iii) the β maximal subtrees with vertices of weight 2 of B which contain no
rupture vertex of R.

By Lemma 5.5 and inequality (2), we have aF wF ≥ 2α+2γ +β where F is the
vertex with weight ≥ 3 in B. As in the case (A), let B′ be a minimal subtree of
R which contains B and in which the vertices of weight 2 of B which are rupture
vertices in R without being rupture vertices in B, are also rupture vertices. Since
s = α or α + 1, we have s′ = α + γ or s′ = α + γ + 1. If wF ≥ 5, Theorem 5.1 is
proved in the case (B), because we have aF (wF − 2) > 1

2aF wF ≥ α + γ.
It only remains to prove the result for the cases wF = 3 and wF = 4. First,

notice that we have γ ≥ 1.
wF = 3: Theorem 3.5 shows that the valency of F is necessarily ≤ 3 and, if

the valency is 3, the only possibility is s′ = 1. In this case,

aF (wF − 2) = aF ≥ 1 = s′.

If the valency of F is ≤ 2, s′ ≤ 2. The case s′ = 1 has just been considered.
When s′ = 2, we have α + γ = 2, and aF wF = 3aE ≥ 2α + 2γ + β ≥ 4, which
implies aF ≥ 2, so aF (wF − 2) ≥ 2 = s′.

wF = 4: By Theorem 3.5, the valency of F is ≤ 4 and, if it is 4, s′ = 1, in
which case, the inequality aF (wF − 2) ≥ s′ is true.

We may assume that the valency of F is ≤ 3. Then s′ ≤ 4. The case s′ = 1
has already been treated. In the same way, for s′ = 2, our inequality holds. Thus,
we may suppose that the valency of E is 3. Then, for α + γ = 2 and β = 1 (resp.
α + γ = 3 and β = 0), we have s′ = 3 (resp. s′ = 4). We have

aF wF = 4aF ≥ 2(α + γ) + β ≥ 5

(resp. aF wF = 4aF ≥ 2(α + γ) + β ≥ 6),

which implies in both cases aF = 2 and, so aF (wF − 2) = 2aF ≥ 4 ≥ s′.
(C) Consider a subtree Bi of R containing rupture vertices with weights 2 and

≥ 3 of R which are not rupture vertices in that Bi.
Denote by B such a subtree Bi of R and by F the unique vertex in Bi of weight

≥ 3. Since F is not a rupture vertex in B but becomes a rupture vertex in R, we
have necessarily that υB(F ) ≤ 2 (see the case (A) above). This implies that B
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contains at most two rupture vertices with weights 2 of R which are not rupture
vertices in B. Then we consider a minimal subtree B′ of R which contains B and
in which F and the vertices of B, which are rupture vertices in R without being
the rupture vertices in B are rupture vertices. Then, we only have the cases s = 0
or s = 1, since s = 2 would imply γ = 0, contradicting our hypothesis (C). So
s′ = 2 or s′ = 3. Therefore we have a′′

F (wF −2) ≥ s′ for wF ≥ 5. Again, it remains
to prove this inequality for wF = 3 and wF = 4.

w = 3 Let s′ = 2, then γ = 1, α = 0 and β = 1. Then F being a rupture
point in B′, there are another vertex of weight ≥ 3 adjacent to F in B′, we have
a′′

F wF = 3a′′
F ≥ 2(α + γ) + β + 1. So a′′

F ≥ 2, which gives the desired inequality
a′′

F (wF − 2) ≥ s′.
If s′ = 3, then α + γ = 2. In B′ there is a subtree B1 containing F and B,

where F is not a rupture point, but where a vertex of weight 2 is a rupture point
in B1 and not in B. In B1, we have

a1
F wF ≥ 2(α + γ) + β = 4,

where a1
F is the coefficient of F in the fundamental cycle of B1. Therefore a1

F ≥ 2.
Since B′ is obtained from B1 by glueing points of weight ≥ 3, it cannot be rational,
because Corollary 4.1 implies that a1

F = 1.
w = 4 The inequality is obvious for s′ = 2. Suppose that s′ = 3. Then,

α+γ = 2 and a′′
F wF = 4aF ≥ 2(α+γ)+β +1, which gives a′′

F ≥ 2 and the desired
inequality.

This ends the proof of Theorem 5.1. �

6. Some classes of Rational Trees

There exist interesting classes of rational trees having some nice properties. In
this section we define these classes and we discuss a few of their properties.

(1) A rational tree is called minimal rational tree if all its weights are ≥ 2 and
the coefficients of all vertices in the fundamental cycle are 1 (see [15], p. 425).
Kollár in ([7], 4.4.10) has shown that a normal surface singularity is minimal if
and only if the dual intersection graph associated with the exceptional divisor of
the minimal desingularization of the singularity is rational and minimal. Another
simple characterization of rational minimal trees, due to Spivakovsky is:

Proposition 6.1. ([15], remark 2.3) A tree R with weights ≥ 2 is minimal rational
if and only if, for any vertex Ei, (1 ≤ i ≤ n), of R, we have wi ≥ υR(i).

Proof. The first implication follows from the fact that we have (Z ·Ei) ≤ 0 for any
i, (1 ≤ i ≤ n). If R is a tree such that we have wi ≥ υR(i) for any vertex Ei in
R, then by the Laufer algorithm, we have Z =

∑n
i=1 Ei, and Z2 < 0 because at

points of valency 1 we have (Z · Ei) < 0. Since we have n − 1 = 1
2

∑
υR(Ei), we
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obtain

p(Z) =
∑n

i=1(−wi + υR(Ei)) +
∑n

i=1(wi − 2)
2

+ 1 = 0. �

It is obvious that any subtree of a minimal rational tree is a minimal rational
tree. Notice that there are no bad vertices in a minimal rational tree. Moreover:

Proposition 6.2. Let R1 and R2 be two rational minimal trees and let E1 (resp.
F1) be a vertex of R1 (resp. R2) such that wE1 > υR1(E1) (resp. wF1 > υR2(F1)).
Then the glueing tree of R1 and R2 at E1 and F1 is a rational minimal tree.

Proof. Let Z1 =
∑s

i=1 Ei and Z2 =
∑t

j=1 Fj be the fundamental cycles of R1 and
R2 respectively. Let E1 and F1 be defined as in the Proposition. Let R denote
the glueing tree at E1 and F1. It is easy to show, by the Laufer algorithm, that
the fundamental cycle of R exists and that it is exactly Z = Z1 + Z2. So we have
Z2 < 0 and

p(Z) =

∑s
i=1 υR1(Ei) +

∑t
j=1 υR2(Fj) + 2 − 2s − 2t

2
+ 1.

This implies that p(Z) = 0 and the Proposition as well. �

(2) A non-singular tree is the dual intersection tree of an embedded desingu-
larization of a complex plane curve germ. An interesting characterization of a
non-singular tree is given by Artin:

Proposition 6.3 (see [1], Theorem 4). A weighted tree is non-singular if and only
if it is rational and the self-intersection of its fundamental cycle equals −1.

However, a subtree of a non-singular tree is not non-singular in general.
(3) Following Spivakovsky (see [15] Definition 1.9), a weighted tree is called

sandwich if it is the subtree of a non-singular tree. Since a non-singular tree is
rational, any sandwich tree is a rational tree. An interesting characterization of
sandwich trees, due to Spivakovsky is:

Proposition 6.4 (see [15], p. 420). A weighted tree is sandwich if and only if, by
attaching a finite number of vertices of weight 1, it becomes a non-singular tree.

This result leads us immediately to:

Proposition 6.5. Let R be a sandwich tree. Let R′ be a tree obtained from R by
increasing the weights. Then R′ is a sandwich tree.

Proof. Let A be a non-singular tree which contains R as subtree. Let E be a
vertex of A of weight w which belongs to R. Consider the tree ∆1 obtained from
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A by attaching a vertex E1 of weight 1 to E. It is easy to see that ∆1 is the
dual tree of the exceptional divisor of the embedded desingularization of a plane
complex curve. In fact, let E be the component of the exceptional divisor of
an embedded desingularization of a plane complex curve associated to A. Then,
by blowing-up a general point of E, we obtain another exceptional divisor of an
embedded desingularization of a plane complex curve whose dual graph is precisely
∆1. Proceeding by induction on the difference between the sums of weights of R′

and R, we prove our theorem. �
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