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Abstract. In this paper we study the Schwarz genus for the covering of the space of polynomials
with distinct roots by its roots.

We show that, for the first unknown case (degree 6), the genus is strictly less than the

one predicted by dimension arguments, contrary to what happens in all other reflection groups.
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Introduction

If one wants to find the roots of an equation xm + a1x
m−1 + · · · = 0 of degree m

over C there are two immediate reductions. The first is to change variables and
set a1 = 0, the second is to reduce to the case of distinct roots or to a lower degree
equation.

This leads one to consider the roots as unramified covering of the open set Pm

of C
m−1, the complement of the discriminant hypersurface.

At the end the problem is, to give a minimum number of monodromous func-
tions of the coefficients (which necessarily are defined only in some open subsets
of Pm) with values the roots. It is a simple topological fact which we will recall
presently, that one can always exhibit m such functions (covering the entire Pm).
It was known that, if m = pk is a prime power this is always the minimum possible
([Va]).

In general some weak lower bounds are known.
In this paper we will study the first non prime power case m = 6 and prove that

for an equation of degree 6 one can express the distinct roots through 5 functions
of the coefficients (and 5 is the minimum).

This is formalized through the notion of The Schwarz genus of a fibration (De-
finition 1.1).

∗Partially supported by M.U.R.S.T. 40%.
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Let Pn+1 be the space of monic polynomials of degree n+1 over C with distinct
roots, the complement of the discriminant hypersurface and let

∆ := {(z1, z2, . . . , zn+1} ∈ C
n+1 | zi �= zj , ∀i �= j}, Pn+1 = (Cn+1 − ∆)/Sn+1

(∆ is the big diagonal).

Problem. Compute the Schwarz genus g(n + 1) := g(γn+1) for the covering

γn+1 : C
n+1 − ∆ → Pn+1 = C

n+1 − ∆/Sn+1.

One has:

Theorem 7.4. The genus g(6) = 5 so 5 holomorphic functions suffice to compute
the roots of a polynomial of degree 6.

The methods in principle could be extended but at the moment we could over-
come the computational difficulties only with the help of a computer program
which seems too complex to perform in the next unknown case m = 10.

1. The Schwarz genus

Definition 1.1 [Sc]. For a Galois covering γ : A → B the Schwarz genus g(γ) is
the minimum number for which one can cover the base with open sets Ui so that
the covering, restricted to Ui is trivial.

Remark. The notion of genus is a generalization, to fibrations, of the Luisternik–
Schnirlemann category of a space.

This number is interpreted by Smale in the case of γn+1, as a measure of topo-
logical complexity for any algorithm that should compute the roots of a polynomial
(cf. [Sm]).

As already remarked we can normalize to the case in which the sum of the roots
is 0, this is then the simplest example of reflection arrangement, and the question
may be asked for all such arrangements. In [DS1] it has been shown that, for
all reflection arrangements except type An the genus of the associated covering is
n+1 where n is the complex dimension of the arrangement and the cohomological
dimension of the corresponding Artin braid group.

For type An the same statement is true when n + 1 = pk is a prime power (cf.
[Va]).

In this paper we show that the previous statement is not always true. In fact
we will verify that, for the first case n + 1 = 6 of non prime powers, g(6) = 5,
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(see Theorem 7.4), while the estimate given by the cohomological dimension is
g(6) ≤ 6.

Let us recall briefly the main ideas of Schwarz for the computation of this
genus. We will restrict our discussion to finite Galois coverings, although Schwarz
treats a much more general case. The proposition that follows is extracted from
([Sc]) and it is included for convenience of the reader.

Let then γ : A → B = A/W be a finite covering associated to the free action
of a finite group W on a space A. To this covering and any positive integer k one
can apply the join construction, set:

Ak∗
γ := A ∗B A ∗ · · · ∗B A :=

{ k∑
i=1

tiai | 0 ≤ ti,
∑

i

ti = 1, γ(ai) = γ(aj), ∀i, j

}
.

In particular Ak∗
γ is a subset of the k-fold join. We have a fibration γk : Ak∗

γ → B,
with fibers the join F k∗ of the fibers of γ. Then we have (assume B paracompact):

Proposition 1.2. The genus g(γ) ≤ k if and only if the fibration γk : Ak∗
γ → B

has a section.

Proof. Let Vi be the open subset of Ak∗
γ where the ith coordinate ti �= 0, in Vi we

have a copy of A as the points where the ith coordinate ti = 1. By the standard
properties of the join the space A is a deformation retract of Vi. If s : B → Ak∗

γ is
a section of γk define Ui := s−1(Vi), the Ui cover B and by the previous remarks
the fibration restricted to Ui has a section, since it is a Galois fibration it is then
trivial.

Conversely if γ restricted to Ui has a section si for some covering U1, . . . , Uk

let fi be a partition of unity relative to this covering, we have that the map∑k
i=1 fi(b)si(b) is a well defined section of Ak∗

γ . �

It is useful to think of the join construction as a base change. Given k, consider
the k-fold join W ∗k of the group W .

We act on the right with W on W ∗k by (
∑

i tiwi, w) → ∑
i tiwiw and have

Ak∗
γ = W ∗k ×W A, ρk : Ak∗

γ → W ∗k/W.

The fibration W → W ∗k → W ∗k/W gives W ∗k/W as the kth step of Milnor’s
construction of a classifying space of W (cf. [Mi]). W ∗k/W is itself a classifying
space for W fibrations over CW-complexes of dimension < k (if one wishes one
can take W ∗k/W as the k − 1 skeleton of a classifying space).

It may be useful to think of the right action of W on W ∗k as a left action
by w(

∑
i tiwi) :=

∑
i tiwiw

−1, then W ∗k ×W A is the space of W orbits of the
diagonal action.
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Given a space X over which W acts on the left consider the quotient (X×A)/W .
(X × A)/W fibers over B, by γX(x, a) = γ(a) and over X/W by ρ(x, a) = [x],
where [x] := γ(x) denotes the orbit of x in X/W . We claim that:

Proposition 1.3. i) There is a 1–1 correspondence between sections of γX :
(X × A)/W → B and W equivariant maps φ : A → X.

ii) If s : B → (X ×A)/W is a section of γX and φ : A → X the corresponding
equivariant map we have a commutative diagram:

A
φ−−−−→ X

γ

⏐⏐� γ

⏐⏐�
B

ρ◦s−−−−→ X/W

and the covering γ : A →B is the pullback, under ρ◦s of the covering γ : X→X/W.

Proof. i) Given a pair (x, a) ∈ X × A let us denote by [x, a] its class in the
W -orbit space. Given an equivariant map φ : A → X, consider the map σ :
A → X × A → (X × A)/W given by σ(a) = [φ(a), a]. We have that for w ∈
W , σ(w(a)) = [φ(wa), wa] = [wφ(a), wa] = [φ(a), a] = σ(a) therefore σ factors
through B = A/W to a section of γX . Conversely given a section s and a ∈ A we
can choose for s(γ(a)) ∈ (X ×A)/W as representative in X ×A a unique element
(φ(a), a) and this defines the equivariant map.

ii) By definition s(γ(a)) = σ(a) = [φ(a), a] which composed with ρ gives
[φ(a)] = γ(φ(a)), or ρ ◦ s ◦ γ = γ ◦ φ as desired. �

In the case of Ak∗
γ = (W ∗k × A)/W the previous proposition gives

Corollary 1.4. ρk ◦ sk is a classifying map for the covering γ : A → B.

The homology Hk−1(W ∗k, Z) can be computed using the chain complex asso-
ciated to the canonical cell decomposition of W ∗k (given by the join construction),
as the group of k − 1-cycles. Notice that this chain complex is a free resolution of
the trivial W -module Z up to degree k − 1.

This implies that, given any projective resolution (C∗, ∂) of the trivial W -
module Z, there are two projective W -modules P1, P2, such that:

Hk−1(W ∗k, Z) ⊕ P1 = ∂Ck ⊕ P2.

In particular H∗(W,Hk−1(W ∗k)) = H∗(W,∂Ck).
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2. The universal obstruction

Proposition 1.2 allows us to use obstruction theory to help to compute g(γ) when
B is a finite CW-complex (cf. [St]). One uses the fact that πi(W ∗k) = 0, ∀i < k−1,
to deduce that g(γ) ≤ dim B + 1. Let dimB = n. In order to decide whether
g(γ) ≤ n one has to compute the following obstruction class.

Consider H∗(W,Hn−1(W ∗k)) = H∗(W,∂Cn). Recall that this can be com-
puted as the cohomology of the cochain complex Hom(C∗, ∂Cn).

In particular, the map ∂n : Cn → ∂Cn is clearly a cocycle [∂n] ∈
Hn(W,Hn−1(W ∗k)) (we remark that this class does not depend on the choice
of the resolution (C∗, ∂)). We can then consider the local system Hn−1(W ∗n) on
B, and we get the cocycle c = ρ∗[∂n], where ρ : B → BW is a classifying map for
our covering and a cohomology class [c] ∈ Hn(B,Hn−1(W ∗n)). One has (see [St]
Theorem 34.2, Lemma 32.7):

Theorem 2.1. ∂n and c are obstruction cocycles for the respective problems of
extending a section to the n-dimensional skeleton.

If B is n-dimensional then g(γ) ≤ n if and only if [c] = 0.

When B = BG is the classifying space of a group G (as in our case in which
Pn+1 is the classifying space of the Braid group Bn+1), we have that the Ga-
lois covering is given by a homomorphism ρ∗ : G → W (induced by the ho-
motopy exact sequence of the fibration γ) and one can think of the cohomology
Hn(BG,Hn−1(W ∗n)) = Hn(G,Hn−1(W ∗n)) as the cohomology of the group G
with coefficients in the module Hn−1(W ∗n) where the action is induced, via the
homomorphism, by the W action.

If we now denote by (E∗, d) a projective resolution of the trivial G-module Z,
then the homomorphism ρ∗ induces a map of chain complexes ρ∗ : E∗ → C∗, which
induces the map of complexes

ρ∗ : HomW (C∗,Hn−1(W ∗n)) → HomW (E∗,Hn−1(W ∗n))
and the map ρ∗ : H∗(W,M) −→ H∗(G,M), in cohomology.

We may summarize the various ingredients introduced:

Theorem 2.2. Let G and W be two groups, with W finite. Let A → B be
a Galois covering with fiber W and denote by ρ∗ : G → W the corresponding
homomorphism. Assume dim B ≤ n. The following statements are equivalent:

1) The genus of the covering A → B is less than or equal to n.
2) The fibration W ∗k ×W A −→ B has a section.
3) The classifying map of the covering γ : A → B factors through the n − 1

dimensional space W ∗n/W .
4) For every W module M the map in cohomology ρ∗ : Hn(W,M) → Hn(G,M)

is 0.
5) The cohomology class of ρ∗[∂n] is 0.
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Proof. By Proposition 1.2, 1) and 2) are equivalent. 2) implies 3) by Corollary 1.4.
3) clearly implies 4) and also 4) clearly implies 5). Finally 5) implies 2) by

Theorem 2.1. �

3. Braid and symmetric groups

We apply now the previous theory to G = Bn+1, W = Sn+1 and to the canonical
quotient homomorphism Bn+1 → Sn+1, so that the fibration we get is, up to
homotopy, the fibration γn+1 : C

n+1−∆ → Pn+1, considered in the introduction.
In this case Pn+1 can be replaced by a finite CW-complex of dimension n and

we will use the very explicit constructions given in ([Sa], [DS1]). To say that [c] = 0
where c = ρ∗[∂n] means that the cocycle ∂n restricted to En is a coboundary, or
in other words that there exists a map g : En−1 → ∂Cn such that the diagram:

En
∂−−−−→ En−1

ρn

⏐⏐� g

⏐⏐�
Cn

∂n−−−−→ ∂Cn

commutes.
All the maps are linear with respect to the group algebra S of the braid group,

so it is convenient to reformulate this statement as follows. Let R be the integral
group algebra of the symmetric group and define D∗ := E∗ ⊗S R, then D∗ is a
subcomplex of C∗ and denoting by i its inclusion the diagram becomes by abuse
of notations:

Dn
∂−−−−→ Dn−1

i

⏐⏐� g

⏐⏐�
Cn

∂n−−−−→ ∂Cn

where now all the modules are free R modules and the maps R-linear.
Recall from [DS1] that Dn = Re, Dn−1 = ⊕n

k=1Rek, ∂e =
∑

k Akek with the
Ak’s defined as follows. For each 1 ≤ k ≤ n set

Ak := {σ := (σ(1), σ(2), . . . , σ(n + 1)) ∈ Sn+1 |

σ(1) < σ(2) · · · < σ(k − 1) < σ(k); σ(k + 1) < σ(k + 2) · · · < σ(n) < σ(n + 1)}.
Then

Ak =
∑

σ∈Ak

ε(σ)σ,

ε(σ) is the sign.
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Therefore:

Lemma 3.1. The map g exists if and only if there exist elements xk ∈ ∂Cn with∑
k Akxk =

∑
k Akek.

Proof. A map g : Dn−1 → ∂Cn is completely determined by the values xk = g(ek)
and, since Dn is generated by e the equality g ◦∂ = a◦ i is equivalent to g ◦∂(e) =
∂n ◦ i(e) or

∑
k Akxk =

∑
k Akek. �

We can further reformulate the last statement as follows.
By definition, given xk ∈ ∂Cn there exists yk ∈ Cn such that xk = ∂yk so that

the map g exists if and only if there exist elements yk ∈ Cn with
∑

k Ak∂yk =∑
k Akek = ∂e, or ∂(e−∑

k Akyk) = 0. Again by exactness of C∗ this means that
there exists an element b ∈ Cn+1 with ∂(b) = e − ∑

k Akyk.
Finally this can be reinterpreted as follows. Let I =

∑
k AkR be the right ideal

in R generated by the elements Ak. On the category of R modules define the
functor

N → T (N) := N/
∑

k

AkN = R/I ⊗R N.

Take the complex T (C∗) = R/I ⊗R C∗ whose homology is H∗(Sn+1, R/I).
By construction, the element e ∈ T (Dn) ⊂ T (Cn), class of e, is a cycle and so it

gives a homology class [e] ∈ Hn(T (D∗)). Denoting by j the inclusion of T (Dn) into
T (Cn), take j[e] ∈ Hn(Sn+1, R/I). We can thus interpret the previous discussion
as:

Theorem 3.2. ρ∗[∂n] is a coboundary if and only if j[e] = 0.

Notice now that the exact sequence 0 → D∗ → C∗ → C∗/D∗ → 0 of com-
plexes of free R modules induces an exact sequence 0 → T (D∗) → T (C∗) →
T (C∗/D∗) → 0. From the long exact sequence of homology Hn+1(T (C∗/D∗))

∂−→
Hn(T (D∗))

j−→ Hn(T (C∗)) . . . it follows that j[e] = 0 if and only if [e] = ∂(u),
u ∈ Hn+1(T (C∗/D∗)).

Since Dn+1 = 0 we have that Hn(T (D∗)) are the cycles of the map
T (Dn) d−→ T (Dn−1) and most of the computational difficulty lies in computing
Hn+1(T (C∗/D∗)). In the next sections we will start to describe in more detail
the module R/I and make a few simplifications which will allow us at the end to
reduce the computational complexity, in case n = 5 to a manageable size.

4. The module R/I

In order to continue we must deduce some properties of R/I and to describe
algorithmically the complex T (C∗/D∗).
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Theorem 4.1. We have a direct sum decomposition, as Sn modules, R = Z[Sn+1]
= I ⊕ Z[Sn].

Proof. First of all let us make the following remarks. By our description of the
complex D∗, we can identify Hn(D∗) = {r ∈ R|rAk = 0, ∀k}. Also from its
very definition, the complex D∗ computes the homology of the total space A :=
C

n+1 − ∆, of our fibration and we get [O-S] that Hn(D∗) is a free Z module of
rank n!.

Let us now use the (integral) trace form t(a) := 1
n!Tr(aL) associated to the reg-

ular representation, aL : Z[Sn+1] → Z[Sn+1], aL(u) := au. This is non degenerate
over Z.

Under this form given r ∈ R:

r ∈ Hn(D∗) ⇐⇒ 0 = t(xrAk) = t(rAkx) ∀k, ∀x ∈ Sn+1

thus Hn(D∗) is the orthogonal complement with respect to the form t(ab), to the
right ideal I =

∑n
k=1 AkZ[Sn+1].

Since rkHn(D∗) = n!, rkR/I = n!. Therefore in order to prove our claim, it
suffices to show that Z[Sn+1] = I+Z[Sn]. Given a permutation σ ∈ Sn+1, consider
k := n + 1− σ(n + 1). If k = 0, we have nothing to show since σ ∈ Sn. Otherwise
we proceed by induction on k.

Given a permutation τ = (i1, i2, . . . , in+1) ∈ Ak we clearly have that in+1 ≥
n + 1 − k. Furthermore, if in+1 = n + 1 − k, we must necessarily have that

τ = τk := (n + 1 − (k − 1), . . . , n + 1, 1, 2, 3, . . . , n − k, n + 1 − k).

Thus, we can write τ = (−1)k(n+1−k)Ak + b, with b a linear combination of
permutations γ for which n + 1 − γ(n + 1) < k. Our inductive hypothesis then
implies that τ ∈ I + Z[Sn].

Take now an arbitrary permutation σ with σ(n + 1) = n + 1− k. We can write
σ = τkγ, γ ∈ Sn. Since I + Z[Sn], is clearly stable under right multiplication by
elements in Sn, everything follows. �

Remark. We have that, R/I as a Z[Sn]-module is free of rank 1.
Thus Hi(Sn, R/I) = 0, ∀i > 0. Since n + 1 = [Sn+1 : Sn], multiplication by

n + 1 on Hi(Sn+1, R/I) can be written as the composition of the restriction and
corestriction

n + 1 : Hi(Sn+1, R/I) res−−→ Hi(Sn, R/I) cores−−−→ Hi(Sn+1, R/I),

we deduce that (n + 1)Hi(Sn+1, R/I) = 0,∀i > 0 (cf. [B], Prop. 9.5).

The previous discussion gives an explicit algorithm to perform the projection:

Z[Sn+1] = Z[Sn] ⊕ I
γ−→ Z[Sn]. (Pr)

With this explicit map the computation of the complex R/I ⊗R C∗ can be devel-
oped.
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5. The complex

We now recall the free resolution C∗ of Z by R modules described in [DS1]. Denote
by N the set of n nodes of An which we identify with the set of simple transposi-
tions (h, h + 1) and we order linearly. Let Bk denote the set of flags of k subsets
of N with a total of k elements, i.e. sequences b := N ⊇ Γ1 ⊇ Γ2 ⊇ · · · ⊇ Γk, such
that

∑ |Γi| = k.
Then Ck is a direct sum ⊕b∈Bk

Z[Sn+1]eb and the differential ∂eb is explicitly
described as follows. Let SΓi

the parabolic subgroup generated by Γi and S
Γi\{τ}
Γi

the coset representatives of shortest length of Γi \ {τ} in Γi. Define a Z[Sn+1]-
linear differential ∂k : Ck → Ck−1 by

∂k eb =
∑

1≤i≤k
|Γi|>|Γi+1|

∑
τ∈Γi

∑
β∈S

Γi\{τ}
Γi

β−1Γi+1β ⊂ Γi\{τ}

(−1)α(Γ,i,τ,β) βeb′

where b′ = (Γ1, . . . ,Γi−1,Γi \ {τ}, β−1Γi+1β, . . . , β−1Γkβ) and

α(Γ, i, τ, β) = i�(β) +
i−1∑
j=1

|Γj | + µ(Γi, τ) +
d∑

j=i+1

σ(β,Γj).

Here � is the standard length function, σ(β,Γj) is the number of inversions in the
map Γj → β−1Γjβ ⊂ Γi \ τ and µ(Γi, τ) is the number of reflections in Γi which
are less than or equal to τ in the linear ordering.

Using the decomposition and projection (Pr) we identify R/I ⊗R Ck with
⊕b∈Bk

Z[Sn]eb. As for the boundary, Z[Sn+1] = Z[Sn]⊕I
γ−→ Z[Sn] induces termwise

a map
⊕b∈Bk

Z[Sn+1]eb = ⊕b∈Bk
(Z[Sn] ⊕ I)eb

γ−→ ⊕b∈Bk
Z[Sn]eb.

So the boundary in R/I ⊗R C∗ is the composition:

∆k : ⊕b∈Bk
Z[Sn]eb

∂−→ ⊕c∈Bk−1(Z[Sn] ⊕ I)ec
γ−→ ⊕c∈Bk−1Z[Sn]ec. (Co)

Further simplification comes from the following remark.

Proposition 5.1. Let Bh
k ⊂ Bk denote the set of flags of subsets of {1, ..., ĥ, ..., n}

with cardinality k. Then the two subcomplexes C∗(1), C∗(n) of R/I ⊗R C∗ which
are generated respectively by

⊕b∈B1
k

R/I eb, ⊕b∈Bn
k

R/I eb

are acyclic.
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The same statement is true in degree ≥ 2 for the subcomplex given by their
sum.

Proof. From formulas of [DS1] the subcomplex C∗(n) which is generated by

⊕b∈Bn
k

Z[Sn]eb

equals the acyclic complex Cn−1
∗ of Sn. Clearly the theory is symmetric, so the

same is true for the other subcomplex.
Now we see that the intersection C∗(1) ∩ C∗(n) is a subcomplex of free Z[Sn]-

modules with bases corresponding to flags with no nodes 1, n. Again from formulas
in [DS1] it is clear that this subcomplex splits (in degree > 0) as a sum of n copies
of the acyclic complex Cn−2

∗ of the group Sn−1. Therefore by looking at the
Mayer–Vietoris sequence one concludes. �

So we reduce to make computations on the quotient

C̃∗ := R/I ⊗R C∗/(C∗(1) + C∗(n))

which is a complex of free Z[Sn]-modules with bases eb, where the flag b contains
both 1 and n. Let ∂̃ be the boundary induced by ∂.

Theorem 3.2 translates here to

Theorem 5.2. Let b0 ∈ Bn be the flag

b0 := ({1, . . . , n} ⊃ ∅ ⊃ . . . ).

The class [∂n] is 0 iff eb0 belongs to the image of ∂̃n+1.

6. Computations

Recall from Section 3 that the vanishing of the obstruction class [∂n] is equivalent
to that of a certain homology class j(e) ∈ Hn(Sn+1, R/I).

We want to compute Hi(S6, R/I) and show that H5(S6, R/I) = 0.
As above, identify R/I with Z[Sn] as Z[Sn]-modules.
The projection γ : Z[Sn+1] → Z[Sn] is given by a matrix

P ∈ M(n! × (n + 1)!; Z)

which, can be determined following the algorithm described in the proof of Theo-
rem 4.1.

More precisely, let us give an ordering σ1, σ2, . . . to the n + 1! permutations
so that the last n! of them fix n + 1. Then each element in Z[Sn+1] corresponds
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to an integral vector with n + 1! entries. Construct the (n + 1)! × (n · (n + 1)!)
integral matrix A whose columns are the Akσj , k = 1, . . . , n, j = 1, . . . , (n + 1)!.
Decompose A as

A =
[

B
C

]

where B is of order (n · n!)× (n · (n + 1)!) while C is of order (n!)× (n · (n + 1)!).
Then Theorem 4.1 is equivalent to

Theorem 6.1. B is right invertible over Z, i.e. there is an integral matrix H
with BH = In n!.

There exists a unique projection γ : Z[Sn+1] → Z[Sn] given by the matrix

P = [−CH In! ]

where we indicate by In! the identity matrix of order n!, with:

[−CH In! ]
[

B
C

]
= 0.

Computationally, one can find CH by (integral) Gauss reduction of AT .
We calculate (once for all) the matrix P. We also have algorithms which com-

pute the boundary ∂eb and, plugging into the formula (Co) we compute the integral
matrix ∆k.

7. The case nn =5

We now consider the case n = 5 and compute g(6) = g(γ6).
We know by the general dimension argument that g(6) ≤ 6, on the other hand

the covering γ6 contains a subcovering homeomorphic to γ5 (by considering the
polynomials with one given fixed root), therefore from the results of Vassiliev
g(6) ≥ 5. In order to determine whether g(6) = 6 or g(6) = 5 we have to compute
the obstruction class.

Lemma 7.1. For n = 5 the ranks of the free Z[S6]-modules C∗, resp. the free
Z[S5]-modules C̃∗, in dimensions i : 0, 1, 2, 3, 4, 5, 6 are:

rk(Ci) = 1, 5, 15, 35, 70, 126, 210,

rk(C̃i) = 0, 0, 1, 5, 15, 35, 70.

Proof. We just enumerate all flags with given cardinality, and those which contain
both 1 and 5. �
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Now what we do is the following:
1) By using the general algorithm which produces the boundaries in C∗, with

coefficients in Z[S6], we compute the (35 × 70)-submatrix (with values in Z[S6])
of the boundary ∂6 which corresponds to those flags containing both 1 and 5.

2) We multiply each column (on the left) by σ ∈ S5 and transform that 35-
vector over Z[S6] into a (35×120)-vector over Z by using the projection matrix P.

So we obtain a (35× 120 = 4200)× (70× 120 = 8400)-matrix which represents
the boundary ∂̃6 as Z-modules.

3) We find the (Smith) normal form of such a matrix.
By general results ([B]) all homology groups are finite in positive dimension,

in our case by the Remark of section 4, the number 6 kills homology. From the
normal form of ∂̃6 one soon has H5(C̃∗) which equals H5(S6, R/I) by Proposition
5.1. By repeating the previous steps in lower dimension we find:

Theorem 7.2. The homology Hi(S6; R/I) is for i = 0, . . . , 5

Hi(S6; R/I) : Z/3Z, 0, 0, 0, Z/3Z, 0.

Proof. The cases Hk(S6; R/I) with k ≤ 2 are computed directly. For the remaining
ones we make computations using C̃∗ as said above, the computations have been
made with a program written using the package AXIOM. �

Corollary 7.3. For n = 5 the induced map ρ∗ in cohomology vanishes.

We have thus the main theorem:

Theorem 7.4. The genus g(6) = 5 so 5 holomorphic functions suffice to compute
the roots of a polynomial of degree 6.
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Università di Pisa
Pisa
Italy
e-mail: salvetti@dm.unipi.it

(Received: February 4, 2003)


