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Rohlin’s invariant and gauge theory, I. Homology 3-tori
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Abstract. This is the first in a series of papers exploring the relationship between the Rohlin
invariant and gauge theory. We discuss a Casson-type invariant of a 3-manifold Y with the
integral homology of the 3-torus, given by counting projectively flat U(2)-connections. We show
that its mod 2 evaluation is given by the triple cup product in cohomology, and so it coincides
with a certain sum of Rohlin invariants of Y . Our counting argument makes use of a natural
action of H1(Y ; Z2) on the moduli space of projectively flat connections; along the way we
construct perturbations that are equivariant with respect to this action. Combined with the
Floer exact triangle, this gives a purely gauge-theoretic proof that Casson’s homology sphere
invariant reduces mod 2 to the Rohlin invariant.
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1. Introduction

Casson’s introduction of his invariant for homology 3-spheres [1, 19] has had many
profound consequences in low-dimensional topology. One of the most important
is the vanishing of the Rohlin invariant of a homotopy sphere, which follows from
Casson’s identification of his invariant, modulo 2, with the Rohlin invariant of an
arbitrary homology sphere. The proof of this identification proceeds via a surgery
argument, in which a series of invariants is defined for knots and links of several
components. Ultimately, these invariants are related to classical knot invariants,
such as the Alexander polynomial, and the theorem follows. This surgery point of
view, further developed in [22, 14], finds its ultimate expression in the theory of
finite-type invariants of 3-manifolds [13, 16].

In this paper we give a proof of the equality of Rohlin’s and Casson’s invariants
(modulo 2) in terms of the gauge theoretic framework introduced by Taubes [20].
Many of the ingredients for this proof are already in place, namely Taubes’ original
work, and the surgery sequence of Floer [9, 3] relating Casson-type invariants of
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manifolds obtained by surgery on a knot. Our main contribution is to identify a
Casson-type invariant of a homology 3-torus, Y , with a Rohlin-type invariant. This
is accomplished by relating the action of the group H1(Y ; Z2) on the moduli space
of (projectively) flat connections to the cup product in cohomology. The techniques
we develop to deal with equivariant aspects of non-smooth moduli spaces should
be of independent interest in the study of instanton Floer homology (compare [7,
§5.6]). We have made use of the perturbation theory and other techniques from
this paper in subsequent work [17, 18].

Let us briefly describe the invariants in question; more details will be given in
the next section. By homology 3-torus we mean a closed oriented 3-manifold Y
having the integral homology of the 3-torus T 3 = S1 × S1 × S1. For any non-
trivial w ∈ H2(Y ; Z2), we consider projectively flat connections on a principal
U(2)-bundle P → Y whose associated SO(3) = PU(2)-bundle has second Stiefel–
Whitney class equal to w. We define a Casson-type invariant λ′′′(Y,w) to be
one-half of the signed count of such connections, modulo an appropriate gauge
group. This invariant is one-half of the Euler characteristic of the Floer homology
studied in [7] and [3] and is not, a priori, an integer.

A pair consisting of a closed oriented 3-manifold X and a spin structure σ has
a Rohlin invariant ρ(X,σ) ∈ Q/2Z. By definition,

ρ(X,σ) =
1
8

sign(V )

for any spin 4-manifold V with (spin) boundary (X,σ). By the Rohlin invariant
ρ′′′(Y ) smooth compact of a homology 3-torus Y we mean the sum, over the eight
spin structures on Y , of their Rohlin invariants. It is easy to see that, as for a
homology sphere, this invariant actually takes values in Z/2Z.

Theorem 1.1. For any choice of non-trivial w ∈ H2(Y ; Z2), the Casson invariant
λ′′′(Y,w) is an integer. If {a1, a2, a3} is a basis in H1(Y ; Z) then

λ′′′(Y,w) = (a1 ∪ a2 ∪ a3) [Y ] (mod 2).

Note that this implies that λ′′′(Y,w) (mod 2) is independent of w, so long as
w is non-trivial. It is a theorem of V. Turaev [21], based on S. Kaplan [12, Lemma
6.3] that the above triple cup product also evaluates the Rohlin invariant. Hence
we obtain the following result.

Corollary 1.2. If Y is a homology 3-torus, then λ′′′(Y,w) ≡ ρ′′′(Y ) (mod 2).

At the end of the paper, we will explain how this implies Casson’s original
result about the Rohlin invariant of homology spheres.

We conjecture that the congruence in Theorem 1.1 lifts to the integers as
λ′′′(Y,w) = ±((a1 ∪ a2 ∪ a3) [Y ])2. This is suggested by Casson’s original work [1,
19], and a closely related formula is given by Lescop [14]. To prove this conjecture,
one would have to show that the count of flat connections on a homology 3-torus
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equals either Lescop’s invariant or Casson’s invariant for 3-component links (of
trivial linking numbers). This equality is closely related to Casson’s formula for
his knot invariant in terms of the Alexander polynomial; a purely gauge-theoretic
proof of the latter has been given by Donaldson [6]. The techniques in the present
paper are rather different, and moreover have the advantage of extending to the
4-dimensional situation [18] where the integral version does not hold.

The idea of the proof of Theorem 1.1 is to take advantage of a natural H1(Y ; Z2)
= (Z2)3 action on the moduli space of projectively flat connections. We identify
this moduli space with the space of projective representations of π1Y in SU(2), and
use this identification to show that the orbits with two elements are always non-
degenerate and that the number of such orbits equals (a1 ∪ a2 ∪ a3) [Y ] (mod 2).
In the non-degenerate situation, this completes the proof because there are no
orbits with just one element, and the orbits with four and eight elements do not
contribute to λ′′′(Y,w) (mod 2). The general case reduces to the non-degenerate
one after one finds a generic perturbation which is H1(Y ; Z2)-equivariant. As
mentioned above, this equivariance is rather delicate.

The authors thank Christopher Herald for sharing his expertise.

2. The invariant λ′′′

In this section we introduce the invariant λ′′′ of a homology 3-torus Y by counting
projectively flat connections in a U(2)-bundle over Y . The ‘derivative’ notation
comes from Casson’s original approach, in which λ′′′ appears as the third difference
quotient of his homology sphere invariant.

2.1. The bundles

Let Y be a homology 3-torus, P a principal U(2)-bundle over Y , and P̄ its associ-
ated SO(3) = PU(2)-bundle. Topologically, the bundles P and P̄ are determined
by their characteristic classes c1(P ) and w2(P̄ ), which are related by the formula
w2(P̄ ) = c1(P ) (mod 2). Since H3(Y ; Z) is torsion free, every SO(3)-bundle over
Y arises as P̄ for some U(2)-bundle P , and SO(3)-bundles with non-trivial w2

correspond to U(2)-bundles whose c1 is an odd element in H2(Y ; Z).
Every connection A on P induces connections on P̄ and on the line bundle

det P , via the splitting u(2) = su(2) ⊕ u(1). In a local trivialization, this corre-
sponds to the decomposition

A =
(

A − 1
2

trA · Id
)

+
1
2

tr A · Id . (1)

The induced connection on P̄ is the image of the first summand under the isomor-
phism ad : su(2) → so(3) given by ad(ξ)(η) = [ξ, η], and the induced connection
on det P is tr A. Conversely, any two connections on P̄ and detP determine a
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unique connection on P .
Fix a connection C on det P , and let A(P ) be the space of connections on

P compatible with C. The connection C plays no real geometric role – different
choices will give equivalent theories. The gauge group G(P ) consisting of unitary
automorphisms of P of determinant one preserves C and hence acts on A(P )
with the quotient space B(P ) = A(P )/G(P ). Let A(P̄ ) be the affine space of
connections on P̄ and G(P̄ ) the SO(3)-gauge group. Denote B(P̄ ) = A(P̄ )/G(P̄ ).
The projection π : A(P ) → A(P̄ ) induced by the splitting (1) commutes with the
above gauge group actions and hence defines a projection

π : B(P ) → B(P̄ ). (2)

The group H1(Y ; Z2) acts on B(P ) as follows, compare with [7, pages 146–149].
Let us view χ ∈ H1(Y ; Z2) as a homomorphism from π1Y to Z2 = {±1 }. As such,
it defines a flat complex line bundle Lχ. Since χ lifts to an integral homology class,
the bundle Lχ is trivial and hence the bundles P and P ⊗Lχ are isomorphic. For
any A ∈ A(P ), let A ⊗ χ be the connection on P ⊗ Lχ induced by A and χ. It
can be written as A + ia · Id, where a is a closed real-valued 1-form. Since the
connections A and A⊗χ define the same connection C on det(P ) = det(P ⊗Lχ),
we have a well defined action on gauge equivalence classes given by the formula
χ(A) = A ⊗ χ.

Proposition 2.1. The map π defined in (2) is the quotient map of the H1(Y ; Z2)-
action described above.

Proof. The connections on P̄ induced by A and A⊗χ are SO(3)-gauge equivalent
because they have the same holonomy. Every connection on P̄ arises from a
connection on P which is unique up to the action in question. �

2.2. Projectively flat connections

Let A be a connection on P compatible with the connection C on det P and let
Ā = π(A). The projection π : A(P ) → A(P̄ ) identifies the tangent spaces of
A(P ) and A(P̄ ) at A and Ā, respectively. The latter tangent space is known
to be isomorphic to Ω1(Y ; ad P̄ ) where ad P̄ = P̄ ×ad so(3). A straightforward
calculation shows that the curvatures of A and Ā are related by

FA = π−1
∗ (FĀ) +

1
2

FC · Id .

We say that A is a projectively flat connection compatible with C if FĀ = 0. The
property of a connection being projectively flat is preserved by the actions of both
G(P ) and H1(Y ; Z2). The moduli space of projectively flat connections will be
denoted by M(P ).
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Fix a projectively flat connection A0 compatible with C. Define the Chern–
Simons function csA0 : B(P ) → R/Z by the formula

csA0(A) =
1

8π2

∫
Y

tr
(

B ∧ dB +
2
3

B ∧ B ∧ B

)
,

where B = A−A0. This function is invariant with respect to the H1(Y ; Z2)-action
and defines the Chern–Simons function csĀ0

: B(P̄ ) → R/4Z on the quotient, so
that we have the following commutative diagram

B(P )
csA0−−−−→ R/Z

π

⏐⏐� ×4

⏐⏐�
B(P̄ )

csĀ0−−−−→ R/4Z

The critical point set of csA0 : B(P ) → R/Z can be identified with the moduli
space M(P ) of projectively flat connections on P , which is independent of the
choice of A0. For this reason, we will generally omit the A0 subscript in what
follows. The group H1(Y ; Z2) acts on M(P ). The quotient of this action is the
flat moduli space M(P̄ ), which is the critical point set of cs : B(P̄ ) → R/4Z.

2.3. Definition of λ′′′

Give Y a Riemannian metric, and let A be a projectively flat connection on P .
The point [A] ∈ M(P ) is said to be non-degenerate if H1(Y ; ad A) = 0. Here,
H1(Y ; ad A) stands for the cohomology with coefficients in the flat bundle ad P̄
endowed with the flat connection Ā. The moduli space M(P ) is called non-
degenerate if all of its points are non-degenerate.

Let w be a non-zero class in H2(Y ; Z2), and P a U(2)-bundle over Y with
c1(P ) = w (mod 2). If M(P ) is non-degenerate then it is finite and we define the
Casson invariant λ′′′(Y,w) as

λ′′′(Y,w) =
1
2

∑
A∈M(P )

(−1)µ(A),

where µ(A) is the mod 2 Floer index of A defined as in [7, page 150]. Note that
the usual Floer index defined modulo 8 is relative; for any pair of projectively
flat connections A1 and A2, the modulo 2 reduction of this relative index equals
µ(A1) − µ(A2) (mod 2).

If M(P ) happens to be degenerate then it will need to be perturbed as de-
scribed in Section 5, and then λ′′′(Y,w) will be defined essentially as above. That
λ′′′(Y,w) is independent of metric and perturbation and is therefore well defined
follows from [7, pages 148–149].



Vol. 79 (2004) Rohlin’s invariant and gauge theory, I 623

Proposition 2.2. The action of H1(Y ; Z2) preserves the mod 2 Floer index.

Proof. This follows from [3, pages 239–240]. �

Remark 2.3. According to Proposition 2.2, the points in the H1(Y ; Z2)-orbit of a
projectively flat connection A are counted in λ′′′(Y,w) with the same sign. Hence
we could as well define λ′′′(Y,w) by counting points in M(P̄ ), where w2(P̄ ) = w,
with weights given by the order of the orbits of their respective lifts to M(P ).

3. Projective representations

The holonomy map gives a homeomorphism between the moduli space M(P̄ ) of
flat connections on P̄ and the SO(3)-character variety of π1Y . Similarly, there is
an algebraic interpretation (again using holonomy) of projectively flat connections
in terms of projective representations. This section describes this concept in some
detail; good general references for these ideas are the classic paper of Atiyah–
Bott [2] and the book of Brown [5].

3.1. Algebraic background

Let G be a finitely presented group and view Z2 = {±1} as the center of SU(2). A
map ρ : G → SU(2) is called a projective representation if ρ(gh)ρ(h)−1ρ(g)−1 ∈ Z2

for all g, h ∈ G. Given a projective representation ρ, the function c : G × G → Z2

defined as c(g, h) = ρ(gh)ρ(h)−1ρ(g)−1 is a 2-cocycle, that is, c(gh, k)c(g, h) =
c(g, hk)c(h, k). We will refer to c as the cocycle associated with ρ.

Let us fix a cocycle c : G × G → Z2 and denote by PRc(G;SU(2)) the set of
all projective representations ρ : G → SU(2) whose associated 2-cocycle is c.

Lemma 3.1. If c and c′ : G×G → Z2 are cocycles such that [c] = [c′] ∈ H2(G; Z2)
then there is a bijection between PRc(G;SU(2)) and PRc′(G;SU(2)).

Proof. The fact that [c] = [c′] means that there exists a function µ : G → Z2

such that µ(gh)c(g, h) = µ(g)µ(h)c′(g, h) for all g, h ∈ G. Define a map ϕ :
PRc(G;SU(2)) → PRc′(G;SU(2)) by the formula ϕ(ρ)(g) = µ(g)ρ(g). One can
easily check that ϕ(ρ) ∈ PRc′(G;SU(2)) and that ϕ is a bijection : its inverse ψ :
PRc′(G;SU(2)) → PRc(G;SU(2)) is given by the formula ψ(ρ′)(g) = µ(g)ρ′(g).

�

Let c : G × G → Z2 be a 2-cocycle and ρ1, ρ2 ∈ PRc(G;SU(2)). We say that
ρ1 � ρ2 if there exists a function µ : G → Z2 and an element σ ∈ SU(2) such that
ρ2(g) = µ(g)σρ1(g)σ−1 for all g ∈ G.



624 D. Ruberman and N. Saveliev CMH

Lemma 3.2. The map µ : G → Z2 is a homomorphism.

Proof. For any elements g, h ∈ G we have ρ2(gh) = c(g, h)ρ2(g)ρ2(h). This implies
that µ(gh)σρ1(gh)σ−1 = c(g, h)µ(g)σρ1(g)σ−1µ(h)σρ1(h)σ−1, and, after simplifi-
cation, µ(gh)ρ1(gh)=µ(g)µ(h)c(g, h)ρ1(g)ρ1(h). Since ρ1(gh) = c(g, h)ρ1(g)ρ1(h),
we conclude that µ(gh) = µ(g)µ(h). �

Let PRc(G;SU(2)) be the set of conjugacy classes of projective representations
of G viewed as SU(2) valued functions. One can easily see that � descends to
equivalence relation on PRc(G;SU(2)), and hence there is a natural projection
map

PRc(G;SU(2)) −→ PRc(G;SU(2))/ � = PRc(G;SU(2))/ � . (3)

For any choice of cocycle c : G × G → Z2, the set PRc(G;SU(2)) is acted
upon by the group H1(G; Z2) = Hom(G; Z2). Every χ ∈ Hom(G; Z2) acts by the
formula ρ 	→ ρχ where ρχ(g) = χ(g)ρ(g), g ∈ G (one can easily see that the cocycle
associated with ρχ is again c). This action preserves conjugacy, and hence defines
an action on PRc(G;SU(2)).

Proposition 3.3. The quotient of PRc(G;SU(2)) by the H1(G; Z2)-action equals
PRc(G;SU(2))/ �.

Proof. If ρ1 � ρ2 then there exists a map µ : G → Z2 and an element σ ∈ SU(2)
such that ρ2(g) = µ(g)σρ1(g)σ−1. Since µ is necessarily a homomorphism by
Lemma 3.2, the above equality means that ρ2 is conjugate to ρµ

1 . The same
formula shows that if ρ2 is conjugate to ρχ

1 for χ ∈ H1(Y ; Z2), then ρ1 � ρ2. �

We now want to relate the projective SU(2)-representations studied above to
the ordinary SO(3)-representations of G. Let α : G → SO(3) be a representation.
It yields a map of classifying spaces BG → BSO(3). Since G is a discrete group, we
can identify H2(BG; Z2) with the group cohomology H2(G; Z2). Thus we obtain
a homomorphism

H2(BSO(3); Z2) → H2(G; Z2).

Let w2(α) be the image in H2(G; Z2) of the universal Stiefel–Whitney class w2 ∈
H2(BSO(3); Z2).

Proposition 3.4. Let ad ρ : G → SO(3) be the composition of ρ ∈ PRc(G;SU(2))
and ad : SU(2) → SO(3). Then ad ρ is a representation, and w2(ad ρ) = [c] ∈
H2(G; Z2).

Proof. This follows from the description of w2(ad ρ) as the obstruction to lifting
ad ρ to an SU(2) representation. �
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Corollary 3.5. Let ρ : G → SU(2) be a projective representation with associated
2-cocycle c. Suppose that there is a non-central element u ∈ SU(2) such that
uρ(g) = ρ(g)u for all g ∈ G. Then [c] = 0 in H2(G; Z2).

Proof. The image of ρ is contained in a circle in SU(2) hence ad ρ is conjugate
to an SO(2) representation and hence admits an SU(2) lift. This implies that
[c] = w2(ad ρ) = 0. �

A projective representation ρ : G → SU(2) is called irreducible if the central-
izer of its image equals the center of SU(2). According to the above corollary,
any projective representation whose 2-cocycle is not cohomologous to zero is irre-
ducible.

Let w ∈ H2(G; Z2) and denote by Rw(G;SO(3)) the set of the conjugacy
classes of SO(3) representations of G whose second Stiefel–Whitney class equals
w. This is a compact real algebraic variety. The correspondence ρ 	→ ad ρ defines
a map

PRc(G;SU(2))/ � −→ R[c](G;SO(3)). (4)

Proposition 3.6. The map (4) is a bijection.

Proof. Suppose that ρ1, ρ2 ∈ PRc(G;SU(2)) are such that ad ρ1 and ad ρ2 are
conjugate as SO(3) representations. Then there exists a function µ : G → Z2 and
an element σ ∈ SU(2) such that ρ2(g) = µ(g)σρ1(g)σ−1 for all g ∈ G. This means
that ρ1 � ρ2 and the map (4) is injective.

Given a representation ad ρ : G → SO(3), we can always lift it to a projective
representation ρ′ ∈ PRc′(G;SU(2)) for some c′ such that [c′] = [c]. But then we
can also find a lift ρ ∈ PRc(G;SU(2)) because PRc′(G;SU(2)) = PRc(G;SU(2))
by Lemma 3.1. �

In the future, we will simplify the notation Rw(π1Y ;SO(3)) to Rw(Y ;SO(3))
etc.

3.2. The holonomy correspondence

In this section we establish a correspondence between projectively flat connections
over a manifold Y (which is not necessarily a homology 3-torus) and projective
representations of its fundamental group. The correspondence is, in rough terms,
given by taking the holonomy of a projectively flat connection. In principle, this
is well-known, but we could not find a reference. Moreover, some subtle points
arise in establishing the continuity of the correspondence.

In what follows, we will use the principle that connections pull back under
smooth maps. More precisely, let j : M → W be a smooth map and suppose
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that Q → W is a principal G-bundle with connection, determined by a 1-form
ω ∈ Ω1(Q; g), where g is the Lie algebra of G. There is a bundle map j̄ : j∗Q → Q
which commutes with the G-actions and which is an isomorphism on the fibers.
Then j̄∗ω gives a connection on the bundle j∗Q, whose holonomy has the following
property: If γ : I → M is a loop, then

holj∗ω(γ) = holω(j∗γ).

Having said that, consider the natural map Y → B(π1Y ). It induces a
monomorphism ι : H2(π1Y ; Z2) → H2(Y ; Z2), see [5]. We first deal with the
discrepancy arising from the fact that ι need not be surjective.

Lemma 3.7. Let P be a U(2)-bundle over a manifold Y such that w2(P̄ ) is not
in the image of ι : H2(π1Y ; Z2) → H2(Y ; Z2). Then the moduli space M(P ) is
empty.

Proof. The Hopf exact sequence π2Y → H2(Y ; Z) → H2(π1Y ; Z) → 0, see [5],
implies that, if w2(P̄ ) does not belong to the image of ι, it evaluates non-trivially
on a 2-sphere in Y . Such a bundle P̄ cannot support any flat connections, for a
flat connection on P̄ would pull back to a flat connection on the 2-sphere, whose
holonomy would trivialize the bundle. �

For the rest of this subsection, we will concentrate on bundles P such that
w2(P̄ ) is in the image of H2(π1Y ; Z2), and will identify H2(π1Y ; Z2) with its
(monomorphic) image in H2(Y ; Z2).

It is a well known fact that the holonomy defines a bijection ϕ̄ : M(P̄ ) →
Rw(Y ;SO(3)) where w2(P̄ ) = w (mod 2). Given a U(2)-bundle P with c1(P ) =
w (mod 2), our immediate goal will be to define an H1(Y ; Z2)-equivariant map
ϕ : M(P ) → PRc(Y ;SU(2)), where [c] = w, which makes the following diagram
commute

M(P )
ϕ−−−−→ PRc(Y ;SU(2))⏐⏐�π

⏐⏐�π

M(P̄ )
ϕ̄−−−−→ Rw(Y ;SO(3))

Here, π : PRc(Y ;SU(2)) → Rw(Y ;SO(3)) is the map (3) followed by the bijection
(4), see Section 3. It is straightforward to define a map A → ϕ(A) by lifting
ϕ̄(Ā) to a projective representation. However, such an assignment might not be
continuous, because the choice of lifting is not canonical.

Let A be a projectively flat connection on P whose central part is a fixed
connection C on the line bundle detP . For any based loop γ in Y , we let

ϕ(A)(γ) = holA(γ) · holC(γ)−1/2 ∈ SU(2), (5)

where the square root of holC(γ) ∈ U(1) in the second factor is defined as follows.
Let Ω(Y ) be the monoid of based loops in Y , and fix a representative γ in each
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connected component Ω[γ] so that

Ω(Y ) =
⊔

[γ]∈π1Y

Ω[γ].

Choose a square root holC(γ)1/2 ∈ U(1) for each of the γ and define a (based)
map

h : (Ω[γ], γ) → (U(1), 1)

by the formula h(α) = holC(α) · holC(γ)−1. If π : U(1) → U(1) is the squaring
map then we want to lift h to h̃ such that h = π ◦ h̃ (given such a lift, we get a
square root of holC(α) by the formula h̃(α) · holC(γ)1/2). The obstruction to the
above lifting problem is given by

O ∈ H1(Ω[γ], γ; Z2)
= Hom(H1(Ω[γ], γ; Z); Z2)
= Hom(π1(Ω[γ], γ); Z2)
= Hom(π1(Ω∗, ∗); Z2), where ∗ is the trivial loop,
= Hom(π2(Y, ∗); Z2).

In particular, we immediately see that this obstruction vanishes as long as
π2(Y ) = 0.

Lemma 3.8. For any U(2)-bundle P such that c1(P ) = w �= 0 (mod 2), the
obstruction O is zero.

Proof. Without loss of generality we may assume that γ = ∗, the trivial loop. The
obstruction O can be described as follows. Given a homotopy αt, 0 ≤ t ≤ 1, such
that α0 = α1 = ∗ define h̃(α0) = 1, and h̃(αt) by path lifting. Then O(σ) =
h̃(α1) ∈ Z2. The image of O in Hom(π2(Y, ∗); Z2) is gotten by viewing a 2-sphere
σ in Y as such a path.

Now, given a class σ ∈ π2(Y ), the obstruction to extracting a root of the bundle
det P is given by evaluation of σ∗(w2(det P )) on S2. Since w2(det P ) = w2(P̄ ) and
P̄ admits a flat connection, the latter evaluation has to be zero. Thus the bundle
det P admits a square root over every 2-sphere, and the holonomy of this square
root along the loops αt gives a lift h̃ which necessarily satisfies h̃(α0) = h̃(α1). In
particular, O vanishes. �

With the above definition of holC(γ)1/2 in place, the map ϕ is defined by the
formula (5). For any projectively flat connection A in P , composition of ϕ(A)
with the natural projection SU(2) → SO(3) gives a representation ϕ̄(Ā) : π1Y →
SO(3). In particular, if [γ1] = [γ2] then ϕ(A)(γ1) = ±ϕ(A)(γ2). Together with
continuity of ϕ(A) this implies that ϕ(A)(γ1) = ϕ(A)(γ2) and hence ϕ(A) : π1Y →
SU(2) is a well defined projective representation.
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Proposition 3.9. Let P be a U(2)-bundle over Y such that c1(P ) = w �= 0
(mod 2). Then ϕ is well defined as a map ϕ : M(P ) → PRc(Y ;SU(2)) with
[c] = w, and it is an H1(Y ; Z2)-equivariant bijection.

Proof. The connection C on det P does not change when A is replaced by a gauge
equivalent connection. Therefore, the second factor in (5) remains unchanged
and the first one changes by conjugation. Since holC(γ)−1/2 is central, the entire
ϕ(A) changes by conjugation. Therefore, the map ϕ : M(P ) → PRc(Y ;SU(2))
is well defined. The cocycle c is determined by the choice of holC(γ)1/2 for the
representative loops γ, different choices leading to cohomologous cocycles. That
[c] = w can be read off the definition of ϕ.

Let χ ∈ H1(Y ; Z2) and replace A by A ⊗ χ then A and A ⊗ χ induce the
same connection C on det P so that the second factor in (5) stays the same. The
first factor becomes holA⊗χ(γ) = χ(γ) · holA(γ) with χ(γ) = ±1. Hence ϕ is
H1(Y ; Z2)-equivariant. Since its quotient map ϕ̄ is a bijection, so is ϕ. �

An argument similar to that for representation varieties shows that Zariski
tangent space to PRc(Y ;SU(2)) at a projective representation ρ : π1Y → SU(2)
equals H1(Y ; ad ρ) where ad ρ : π1Y → SU(2) → SO(3) is a representation.
It is identified as usual with the tangent space to M(P ) at the corresponding
projectively flat connection.

3.3. Application to homology 3-tori

A homology torus Y is called odd if there exist vectors a1, a2, and a3 in H1(Y ; Z2)
such that (a1∪a2∪a3) [Y ] = 1 (mod 2). Note that such a1, a2, and a3 form a basis
of H1(Y ; Z2) because they are distinguished by cup-products with a1∪a2, a2∪a3,
and a1∪a3 and hence are linearly independent. Also note that if (a1∪a2∪a3) [Y ] =
1 (mod 2) for some basis a1, a2, a3 ∈ H1(Y ; Z2) then the same is true for any
other basis. A homology torus Y is called even if (a1 ∪ a2 ∪ a3) [Y ] = 0 (mod 2)
for any three vectors a1, a2, a3 ∈ H1(Y ; Z2).

Let Λ2H1(Y ; Z2) be the second exterior power of H1(Y ; Z2) and consider the
cup-product map

∪ : Λ2H1(Y ; Z2) → H2(Y ; Z2). (6)

Lemma 3.10. The map (6) is an isomorphism if Y is odd, and is zero if Y is
even.

Proof. Let Y be an odd homology torus and choose a basis a1, a2, a3 ∈ H1(Y ; Z2).
The vectors a1 ∪ a2, a2 ∪ a3, and a1 ∪ a3 ∈ H2(Y ; Z2) are linearly independent
because they are distinguished by the homomorphisms H2(Y ; Z2) → H3(Y ; Z2)
given by cup-products with a1, a2, and a3. Hence (6) is an isomorphism.



Vol. 79 (2004) Rohlin’s invariant and gauge theory, I 629

Suppose now that Y is even and that there are vectors a, b ∈ H1(Y ; Z2) such
that a ∪ b �= 0 (mod 2). By Poincaré duality, there exists c ∈ H1(Y ; Z2) such
that a ∪ b ∪ c = 1 (mod 2), a contradiction. �

Corollary 3.11. If Y is odd then the map ι : H2(π1Y ; Z2) → H2(Y ; Z2) is an
isomorphism.

Proof. This follows from the commutative diagram

Λ2H1(π1Y ; Z2)
∼=−−−−→ Λ2H1(Y ; Z2)

∪
⏐⏐� ∪

⏐⏐�
H2(π1Y ; Z2)

ι−−−−→ H2(Y ; Z2)

whose upper arrow is an isomorphism because H1(π1Y ; Z2) = H1(Y ; Z2), and
whose right arrow is an isomorphism by Lemma 3.10. Since ι is injective, the
remaining two arrows in the diagram are also isomorphisms. �

Note that if Y is an even homology torus, the conclusion of Corollary 3.11 need
no longer hold : take for example Y = (S1 × S2)#(S1 × S2)#(S1 × S2).

Corollary 3.12. Theorem 1.1 holds for all λ′′′(Y,w) such that w is not in the
image of ι : H2(π1Y ; Z2) → H2(Y ; Z2).

Proof. Let P be a bundle with w2(P̄ ) = w not in the image of ι. Then, according
to Lemma 3.7, the moduli space M(P ) is empty so that λ′′′(Y,w) = 0. On the
other hand, this situation is only possible if Y is an even homology torus, see
Corollary 3.11. �

We will assume from now on that w = w2(P̄ ) is in the image of ι and will not
make distinction between H2(π1Y ; Z2) and its (monomorphic) image in H2(Y ; Z2).
Because of the identification of Proposition 3.9, the Casson invariant λ′′′(Y,w) can
be defined by counting points in the space PRc(Y ;SU(2)) with [c] = w, perhaps
after perturbation.

4. The two-orbits

According to the action of H1(Y ; Z2) = (Z2)3 the space PRc(Y ;SU(2)) splits
into orbits of possible orders one, two, four, and eight. In this section we study
the two-orbits (orbits with two elements, or those with stabilizer Z2 ⊕ Z2).
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4.1. The two-orbits and invariant λ′′′

Consider a subgroup of SO(3) that is isomorphic to Z2 ⊕ Z2. Such a subgroup is
generated by 180◦ rotations about two perpendicular axes in R3, and any two such
subgroups are conjugate to each other in SO(3). Hence the following definition
makes sense. Define Rw(Y ; Z2⊕Z2) to be the subspace of Rw(Y ;SO(3)) consisting
of the SO(3) conjugacy classes of representations α : π1Y → SO(3) which factor
through Z2 ⊕ Z2 ⊂ SO(3).

Proposition 4.1. Let [c] = w be a non-trivial class in H2(Y ; Z2). Then the
map π : PRc(Y ;SU(2)) → Rw(Y ;SO(3)) establishes a bijective correspondence
between the set of two-orbits in PRc(Y ;SU(2)) and the set Rw(Y ; Z2 ⊕ Z2).

Proof. Suppose that the conjugacy class of a projective representation ρ : π1Y →
SU(2) is fixed by a subgroup Z2 ⊕Z2 of H1(Y ; Z2) generated by homomorphisms
α, β : π1Y → Z2. Then there exists a u ∈ SU(2) such that α(x)ρ(x) = uρ(x)u−1

for all x ∈ π1Y . Observe that ρ(x) = u2ρ(x)u−2 and, since ρ is irreducible,
u2 = ±1. The case u2 = 1 should be excluded because u2 = 1 would imply that
u = ±1 so that −ρ(x) = ρ(x) at least for some x, which is impossible in SU(2).
Therefore u2 = −1 and, after conjugation if necessary, we may assume that u = i.
Then, for every x ∈ π1Y , we have ±ρ(x) = iρ(x)i−1 so that im(ρ) ⊂ Si ∪ j · Si.
Here, Si is the complex circle in SU(2) (and SU(2) is viewed as the group of unit
quaternions).

Similarly, there exists a v ∈ SU(2) such that β(x)ρ(x) = vρ(x)v−1 and v2 =
−1. After conjugation by a complex number, we may assume that v = ia+bj where
a, b ∈ R and b ≥ 0. Next, α(x)β(x)ρ(x) = (iv) ρ(x) (iv)−1 so that (iv)2 = −1. An
easy calculation with quaternions shows that v = j (and then iv = k). Thus ρ
has the property that ±ρ(x) = i ρ(x) i−1 and ±ρ(x) = j ρ(x) j−1 for all x ∈ π1Y .
Therefore,

im(ρ) ⊂ (Si ∪ j · Si) ∩ (Sj ∪ i · Sj)

where Sj is the circle of quaternions of the form exp(jϕ). One can easily see that
the latter intersection is the group Q = {±1,±i,±j,±k }.

The above argument shows that any projective representation ρ : π1Y → SU(2)
stabilized by Z2⊕Z2 factors through Q and therefore its associated SO(3)-represen-
tation ad ρ factors through a copy of Z2 ⊕ Z2 ⊂ SO(3).

To complete the proof, we only need to show that the orbit of ρ consists of
exactly two points. Let γ be a vector in H1(Y ; Z2) completing α, β to a basis. Then
ρ and ργ lie in the same H1(Y ; Z2)-orbit but are not conjugate. The latter can
be seen as follows: if there exists a w ∈ SU(2) such that γ(x)ρ(x) = w ρ(x)w−1

then w = ±k and α(x)β(x)γ(x)ρ(x) = (ijk) ρ(x) (ijk)−1 = ρ(x) for all x, a
contradiction. �

Remark 4.2. The above proof shows in particular that no point of PRc(Y ;SU(2))
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with [c] �= 0 is fixed by the entire group H1(Y ; Z2) so that PRc(Y ;SU(2)) has no
orbits of order one.

4.2. The number of two-orbits

Our next goal is to find a formula for the number of points in Rw(Y ; Z2 ⊕ Z2)
modulo 2.

Proposition 4.3. Let 0 �= w ∈ H2(Y ; Z2) then #Rw(Y ; Z2 ⊕ Z2) = (a1 ∪ a2 ∪
a3) [Y ] (mod 2). Moreover, if Y is even then Rw(Y ; Z2 ⊕ Z2) is empty.

Proof. We begin by observing that any two subgroups of SO(3) that are isomorphic
to Z2⊕Z2 are conjugate, and that moreover any automorphism of such a subgroup
is realized by conjugation by an element of SO(3). Let us fix a subgroup Z2 ⊕ Z2

and a basis in it.
Since Z2 ⊕ Z2 is abelian, every α ∈ Rw(Y ; Z2 ⊕ Z2) factors through a ho-

momorphism H1(Y ; Z) → Z2 ⊕ Z2. The two components of this homomorphism
determine elements β, γ ∈ Hom(H1(Y ; Z); Z2) ∼= H1(Y ; Z2). It is straightforward
to see that the SO(3)-representation α may be recovered from β and γ via the for-
mula α ∼= β⊕γ⊕det(β⊕γ). Since any element of Λ2H1(Y ; Z2) can be represented
in the form β ∧ γ, this establishes a one-to-one correspondence

R(Y ; Z2 ⊕ Z2) → Λ2H1(Y ; Z2), (7)

where R(Y ; Z2⊕Z2) is union of Rw(Y ; Z2⊕Z2) over all possible w. Since H1(Y ; Z)
is torsion free, any element in H1(Y ; Z2) is the mod 2 reduction of a class in
H1(Y ; Z). It follows that the cup product of any element a ∈ H1(Y ; Z2) with
itself is 0. We compute

w2(α) = w1(β) ∪ w1(γ) + w1(β) ∪ w1(det(β ⊕ γ)) + w1(γ) ∪ w1(det(β ⊕ γ))
= w1(β) ∪ w1(γ) + w1(β) ∪ (w1(β) + w1(γ)) + w1(γ) ∪ (w1(β) + w1(γ))
= w1(β) ∪ w1(γ).

(8)
Since w1(β) = β and w1(γ) = γ, this shows that w2(α) is the image of β∧γ under
the map (6).

The result now follows by composing (6) and (7): if the triple cup product on
H1(Y ; Z2) vanishes mod 2 then the map (6) is identically zero, hence Rw(Y ; Z2 ⊕
Z2) is empty for w �= 0. If the triple cup product is nontrivial mod 2 then the
map (6) is an isomorphism and Rw(Y ; Z2 ⊕ Z2) consists of exactly one element
for every choice of 0 �= w ∈ H2(Y ; Z2). �
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4.3. Non-degeneracy of the two-orbits

We wish to use Proposition 4.3 to calculate the contribution of the two-orbits
to λ′′′(Y,w) (mod 2). In order to do that, we need to check the non-degeneracy
condition for such orbits in the case when the triple cup product on Y is non-trivial.

Proposition 4.4. Let Y be an odd homology torus then H1(Y ; ad ρ) = 0 for any
projective representation ρ : π1Y → SU(2) such that ad ρ ∈ Rw(Y ; Z2 ⊕ Z2) with
w �= 0.

Notice that any ad ρ ∈ Rw(Y ; Z2 ⊕ Z2) splits as ad ρ = α1 ⊕ α2 ⊕ α3 where
each αi : π1Y → Z2 is a non-trivial representation, and

H1(Y ; ad ρ) = H1(Y ;α1) ⊕ H1(Y ;α2) ⊕ H1(Y ;α3),

compare with the proof of Proposition 4.3. Therefore, to prove Proposition 4.4,
it is sufficient to show that H1(Y ;α) vanishes for all non-trivial representations
α : π1Y → Z2. Given such a non-trivial representation, let π : Yα → Y be the
regular double covering of Y with π1(Yα) = ker(α).

Lemma 4.5. The group H1(Y ;α) is isomorphic to the (−1)-eigenspace of Z2

acting on H1(Yα; R).

Proof. This is immediate from the definition of H1(Y ;α) = H1(Y ; R α) after we
identify Z2 with O(1). �

Lemma 4.6. The cup product map ∪ a : H1(Y ; Z2) → H2(Y ; Z2) is non-trivial
for some a ∈ H1(Y ; Z2) if and only if Y is an odd homology torus.

Proof. Suppose that a ∪ b �= 0. By Poincaré duality, there is c ∈ H1(Y ; Z2) with
a ∪ b ∪ c �= 0. Conversely, note that the cup product of any three basis elements
is the same as the cup product of any other three basis elements. So if there is
a non-zero cup product, extend { a } to a basis { a, b, c } with a ∪ b ∪ c �= 0. In
particular a ∪ b �= 0 (and also a ∪ c �= 0.) �

Remark 4.7. Note that we in fact proved that, if Y is an odd homology torus, the
rank of ∪ a : H1(Y ; Z2) → H2(Y ; Z2) equals two for any nonzero a ∈ H1(Y ; Z2).

Lemma 4.8. If Y is an odd homology torus then H1(Yα; Z) = Z3.

Proof. Let us consider the Gysin exact sequence for the double covering π : Yα → Y
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(with coefficients in Z2)

H0(Y ) α−→ H1(Y ) π∗
−→ H1(Yα)

−→ H1(Y ) α−→ H2(Y ) π∗
−→ H2(Yα) → H2(Y ) α−→ H3(Y )

where the arrows marked α stand for the homomorphisms given by the cup product
with w1(α) ∈ H1(Y ; Z2). This sequence works out to

0 → Z2
α−→ (Z2)3

π∗
−→ H1(Yα)

−→ (Z2)3
α−→ (Z2)3

π∗
−→ H2(Yα) → (Z2)3

α−→ Z2 → 0

The first and the last zeroes are because w1(α) �= 0. According to Remark 4.7,
the image of ∪w1(α) : (Z2)3 → (Z2)3 has rank two. Counting ranks we get
that H1(Yα; Z2) = H2(Yα; Z2) = (Z2)3. The result now follows by the universal
coefficient theorem. �

Proof of Proposition 4.4. Let us fix an isomorphism between integral homology of
Y and that of the 3-torus T , and choose a map f : Y → T that induces this isomor-
phism. Let Tα be the double covering of T corresponding to the homomorphism
α : H1(T ; Z) → Z2 which makes the following diagram commute

π1Y
α−−−−→ Z2⏐⏐� ∥∥∥

H1(T ; Z) α−−−−→ Z2

The map π1Y → H1(T ; Z) in this diagram is obtained by composing the abelian-
ization π1Y → H1(Y ; Z) with the isomorphism f∗ : H1(Y ; Z) → H1(T ; Z).

Let fα : Yα → Tα be a lift of f . Comparing Gysin exact sequences of
π : Yα → Y and π : Tα → T using the five-lemma, we conclude that the map
f∗

α : H1(Tα; Z) → H1(Yα; Z) is an isomorphism when tensored with Z2. Since
H1(Yα; Z) = Z3 by Lemma 4.8, we also conclude that f∗

α : H1(Tα; R) → H1(Yα; R)
is an isomorphism.

This implies that π∗ : H1(Y ; R) → H1(Yα; R) is an isomorphism, for this is
true for Y = T , and we just observed the isomorphism in the upper line of the
following commutative diagram

H1(Tα; R) =−−−−→ H1(Yα; R)

π∗
	⏐⏐= π∗

	⏐⏐
H1(T ; R) =−−−−→ H1(Y ; R)

On the other hand, the image of π∗ : H1(Y ; R) → H1(Yα; R) equals the (+1)-
eigenspace of Z2 acting on H1(Yα; R). Together with Lemma 4.5, this implies
that H1(Y ;α) = H1(Y ; Rα) = 0. �
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5. Perturbations

In this section we deal with the situation when the critical point set M(P ) of
cs : B(P ) → R/Z is degenerate. We describe a class of equivariant admissible
perturbations h : B(P ) → R and prove that, for a small generic h, the critical
point set of cs + h is non-degenerate. This set is acted upon by H1(Y ; Z2) in
such a manner that an argument similar to that used in the non-degenerate case
completes the proof of Theorem 1.1, see Section 6.

We define our perturbations using holonomy around loops, following the ap-
proach originated by Taubes, Floer and Donaldson [20, 8, 7]. While realizing this
approach in the equivariant setting, we have to address certain new issues. First,
we need to make the perturbations H1(Y ; Z2)-equivariant; this is done by impos-
ing a simple homological restriction on the loops. Next, we need to show that these
equivariant perturbations are generic; in addition to the usual perturbation theory,
this requires more refined ‘second order’ perturbation arguments. The latter are
described in Herald [10] and in [11], compare with Section 5.6.

5.1. Equivariant admissible perturbations

Let γk : S1 → Y , k = 1, . . . , n, be a collection of closed embedded loops in Y
which are disjoint except for a common basepoint y0 and whose tangent directions
agree at y0. We call Γ = { γk } a link. A link Γ is called mod-2 trivial if 0 =
[γk] ∈ H1(Y ; Z2) for all k. We use the same notation for the “thickened” loops
γk : S1 × D2 → Y ; the latter should be chosen so as to have a common normal
disk at y0. Let η(z) be a smooth rotationally symmetric bump function on the
unit disk D2 with support away from the boundary of D2 and with integral one.
Finally, let f : SU(2)n → R be a smooth function which is invariant with respect
to conjugation, that is, f(ug1u

−1, . . . , ugnu−1) = f(g1, . . . , gn) for all u ∈ SU(2).
Following the construction in Section 3.2, choose a lifting of the holonomy to

SU(2). It is uniquely determined by a choice of square roots of holC on a set
of representative loops, different choices leading to equivalent theories. For each
based loop γ, we obtain a well defined map A(P ) → SU(2). Define

h(A) =
∫

D2
f(holA(γ1(S1 × { z })), . . . ,holA(γn(S1 × { z }))) η(z) d2z, (9)

where holA(γk(S1×{ z })) stands for holonomy of A around the loop γk(S1×{ z }),
z ∈ D2, starting at the normal disk at y0. The action of G(P ) only changes
holonomies around γk(S1 × { z }) within their SU(2) conjugacy class, therefore,
we have a well defined function

h : B(P ) → R (10)

which is called an admissible perturbation relative to Γ. For any link Γ, denote by
HΓ the space of admissible perturbations relative to Γ.
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Lemma 5.1. If Γ is mod-2 trivial then the function h defined in (10) is H1(Y ; Z2)-
invariant.

Proof. We need to prove that h(A⊗χ) = h(A) for all A ∈ A(P ) and χ ∈ H1(Y ; Z2).
This follows easily from the formula

holA⊗χ(γk(S1 × { z })) = holA(γk(S1 × { z })) · χ(γk)

after we notice that χ(γk) = 1 because χ : π1Y → Z2 factors through H1(Y ; Z2).
�

Any admissible perturbation h ∈ HΓ where Γ is a mod-2 trivial link will be
called an equivariant admissible perturbation.

5.2. Perturbed projectively flat connections

Let h : A(P ) → R be an admissible perturbation relative to a link Γ. The
projection map π : A(P ) → A(P̄ ) identifies the tangent space of A(P ) with that
of A(P̄ ). Identify the latter with Ω1(Y ; ad P̄ ) and define ζh : A(P ) → Ω1(Y ; ad P̄ )
by the formula

ζh(A) = ∗FĀ − 4π2 · ∇h(A),

where ∇h is the L2-gradient of h. A straightforward calculation shows that, up
to the identification of the tangent spaces, ζh is just −4π2 times the L2-gradient
of the function cs + h.

A connection A ∈ A(P ) is called h-perturbed projectively flat if ζh(A) = 0. The
moduli space of h-perturbed projectively flat connections is denoted by Mh(P )
so that Mh(P ) = ζ−1

h (0)/G(P ). If h = 0 then Mh(P ) coincides with the moduli
space M(P ) of projectively flat connections, see Section 2.2.

Next we wish to describe the local structure of Mh(P ) near a point [A] ∈
Mh(P ). The slice through A to the G(P )-action on A(P ) is the affine subspace

XA = {A + π−1
∗ (a) | a ∈ ker d∗̄A } ⊂ A(P )

where d∗̄
A

: Ω1(Y ; ad P̄ ) → Ω0(Y ; ad P̄ ). Since c1(P ) is an odd element in H2(Y ; Z),
the stabilizer of A in G(P ) coincides with the center of SU(2), and a small neigh-
borhood of A in XA gives a local model for B(P ) near [A]. Therefore, the moduli
space Mh(P ) near [A] ∈ Mh(P ) is the zero set of ζh restricted to the slice XA.
The linearization of ζh : A(P ) → Ω1(Y ; ad P̄ ) at A ∈ A(P ) is the operator

∗dA,h = ∗dĀ − 4π2 · Hess h(A) : Ω1(Y ; ad P̄ ) → Ω1(Y ; ad P̄ ),

hence the tangent space to Mh(P ) at [A] ∈ Mh(P ) can be identified with

H1
h(Y ; ad A) = ker ∗dA,h/ im{ dĀ : Ω0(Y ; ad P̄ ) → Ω1(Y ; ad P̄ )}.

We call Mh(P ) non-degenerate at [A] ∈ Mh(P ) if H1
h(Y ; ad A) = 0; we

call it non-degenerate if it is non-degenerate at all [A] ∈ Mh(P ). If Mh(P )
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is non-degenerate, it consists of finitely many points, and their signed count gives
λ′′′(Y,w) where c1(P ) = w (mod 2).

If h is an equivariant admissible perturbation then according to Lemma 5.1,
Mh(P ) is acted upon by H1(Y ; Z2).

5.3. Abundance of equivariant admissible perturbations

Our main goal in the next few sections will be to show that one can always find
an equivariant admissible perturbation h such that Mh(P ) is non-degenerate. We
begin by choosing a mod-2 trivial link Γ satisfying certain necessary conditions.
Such links are called abundant; the definition of abundance at A depends on the
size of the stabilizer of A in H1(Y ; Z2).

Let Γ = { γk } be a mod-2 trivial link and A a projectively flat connection
whose stabilizer in H1(Y ; Z2) is trivial. Then Γ is called abundant at A if there
exist admissible perturbations hi ∈ HΓ, i = 1, . . . ,m, such that the map from Rm

to Hom(H1(Y ; ad A), R) given by

(x1, . . . , xm) 	→
m∑

i=1

xi Dhi(A) (11)

is surjective. We will refer to this as ‘first order’ abundance.
Now, let A be a projectively flat connection whose stabilizer in H1(Y ; Z2)

equals Z2. Let τ be a generator in Z2 and denote by V ±(A) respectively the
(±1)-eigenspaces of τ∗ : H1(Y ; ad A) → H1(Y ; ad A). Denote by Sym(V ) the
set of symmetric bilinear forms on a vector space V . A mod-2 trivial link Γ is
called abundant at A if there exist admissible perturbations h1, . . . , hm ∈ HΓ such
that Dhk+1(A) = . . . = Dhm(A) = 0 for some k, and the map from Rm to
Hom(V +(A), R) ⊕ Sym(V −(A)) given by

(x1, . . . , xm) 	→
(

k∑
i=1

xi Dhi(A),
m∑

i=k+1

xi Hess hi(A)

)
(12)

is surjective. This will be referred to as ‘second order’ abundance.
Due to the fact (cf. Section 4.3) that H1(Y ; ad A) = 0 for any projectively flat

connection A whose stabilizer is bigger than Z2, we do not need to perturb A and
hence do not need the concept of abundance at such a connection.

Note that the property of abundance is preserved by the gauge group action.
Another useful remark is that if Γ is abundant at A, and Γ0 is another link whose
components are sufficiently close to those of Γ, then Γ0 is also abundant at A.
Moreover, the perturbation functions hi can be taken to be the same as for Γ.
These facts come from the homotopy invariance of parallel transport. Note also
that if Γ is abundant at A and Γ ⊂ Γ′ then Γ′ is also abundant at A. The following
result will be proved in Section 5.5 below.
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Proposition 5.2. There exists a mod-2 trivial link Γ which is abundant at all
[A] ∈ M(P ) whose stabilizer is at most Z2.

5.4. Non-degeneracy results

In this section, we will make use of Proposition 5.2 to prove existence of equivariant
admissible perturbation functions making Mh(P ) non-degenerate.

Let Γ be an abundant mod-2 trivial link as in Proposition 5.2 and consider the
universal zero set

Z = { ([A], h) ∈ B(P ) ×HΓ | ζh(A) = 0 }.
The moduli space M∗ which consists of projectively flat connections with trivial
stabilizer in H1(Y ; Z2) will be viewed as a subset of Z by assigning ([A], 0) to
[A] ∈ M∗. The following proposition roughly asserts that M∗ can be “thickened”
inside Z to become a smooth manifold.

Proposition 5.3. The moduli space M∗ has an open neighborhood U∗ ⊂ Z which
is a submanifold of B(P ) ×HΓ.

Proof. Fix a point [A0] ∈ M∗ and consider the map

P : XA0 ×HΓ → ker d∗̄A0

given by P (A, h) = ΠA0ζh(A) where ΠA0 : Ω1(Y ; ad P̄ ) → ker d∗̄
A0

is the L2-
orthogonal projection. The first partial derivative of this map is Fredholm with
cokernel H1(Y ; ad A0). Since Γ is abundant at A0, the image of the partial deriva-
tive ∂P/∂h is a subspace which orthogonally projects onto this cokernel. There-
fore, P is a submersion at [A0]. The implicit function theorem now implies that
P−1(0) ⊂ XA0 ×HΓ is smooth near (A0, 0). Moreover, ΠA0ζh(A) = 0 if and only if
ζh(A) = 0, at least in a small neighborhood of A0 in XA0 , see [15, Lemma 12.1.2].
The union of such neighborhoods over all [A0] ∈ M∗ is the open submanifold U∗.

�

Let us now turn to connections in B(P ) with stabilizer Z2. Fix a generator τ in
a copy of Z2 and consider the subset Bτ of B(P ) consisting of gauge equivalence
classes of connections stabilized by τ . The argument of Proposition 5.3, after a
slight modification, can be used to prove that Mτ has an open manifold neighbor-
hood inside Bτ . Since we are interested in non-degeneracy inside B(P ), we need
to study the normal bundle of Mτ

h in Mh(P ).
To describe this normal bundle, we will review the Kuranishi model of M(P )

near [A] ∈ Mτ , see [10]. Since the derivative of ΠAζ(A) : XA → ker d∗̄
A

is
already a Fredholm isomorphism from the orthogonal complement of its kernel
to the orthogonal complement of its cokernel, the effect on the normal bundle of
adding a small perturbation h is determined by Hess h(A) : V −(A) → V −(A).
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In particular, the normal bundle is zero dimensional whenever Hessh(A) is an
isomorphism.

Let us consider the universal zero set

Zτ = { ([A], h) ∈ Bτ ×HΓ | ζh(A) = 0 }
and view Mτ = M(P ) ∩ Bτ as a subset of Zτ by assigning ([A], 0) to [A] ∈ Mτ .

Proposition 5.4. The moduli space Mτ has an open neighborhood Uτ ⊂ Zτ such
that

(a) Uτ is a submanifold in Bτ ×HΓ, and
(b) for every A, a generic h such that ([A], h) ∈ Uτ , has non-degenerate Hes-

sian.

Proof. Let us fix [A0] ∈ Mτ . The slice at A0 of the gauge group action on Bτ is
given by

Xτ
A0

= {A0 + π−1
∗ (a) | a ∈ ker d∗̄A0

∩ Ω1(Y ; ad P̄ )+ },
where Ω1(Y ; ad P̄ )+ is the (+1)-eigenspace of τ : Ω1(Y ; ad P̄ ) → Ω1(Y ; ad P̄ ).
Denote by Sym(V −) the bundle over an open neighborhood W of (A0, 0) in Xτ

A0
×

HΓ whose fiber over (A, h) is Sym(V −
h (A)), the set of symmetric bilinear forms on

the (−1)-eigenspace V −
h (A) of τ : H1

h(Y ; ad A) → H1
h(Y ; ad A), compare with [4,

page 173]. Let

P : W → (ker d∗̄A0
∩ Ω1(Y ; ad P̄ )+) ⊕ Sym(V −)

be the section P (A, h) = (Π∗
A0

ζh(A),Hess h(A)) where Π∗
A0

is ΠA0 followed by the
L2-orthogonal projection onto ker d∗̄

A0
∩Ω1(Y ; ad P̄ )+. The first partial derivative

of P at (A0, 0) has cokernel V +(A0) ⊕ Sym(V −(A0)). Since Γ is abundant at A0,
the image of the partial derivative ∂P/∂h is a subspace which orthogonally projects
onto this cokernel. The implicit function theorem now implies that P−1({ 0 } ×
Sym(V −(A0))) is smooth near (A0, 0), which proves part (a). Since non-degenerate
symmetric forms are generic in Sym(V −(A0)), the part (b) also follows. �

Corollary 5.5. For a small generic admissible perturbation h ∈ HΓ the moduli
space Mh(P ) is non-degenerate.

Proof. Since the universal zero set Z is a smooth manifold near the the moduli
space M∗ ∪ Mτ the result follows by applying the Sard–Smale theorem to the
projection to HΓ. �

5.5. Proof of Proposition 5.2

The proof of Proposition 5.2 naturally divides into three parts, which can be
viewed as pointwise, local, and global abundance. The passage from pointwise to
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local and global abundance is proved in essentially the same manner as in [10].
These rely on basic analytical properties of the Chern–Simons function, especially
the compactness of the perturbed moduli space, and the restriction to equivariant
admissible perturbations does not change these arguments. Thus we will concen-
trate on establishing pointwise abundance. For connections with trivial stabilizer,
this is done in Lemma 5.7, while for connections with stabilizer Z2 in Lemma 5.10.

Denote by p : Ỹ → Y the regular covering space corresponding to the surjection
ϕ2 : π1Y → H1(Y ; Z2) ∼= (Z2)3. This cover might be called the 2-universal abelian
cover, because of the following observation. Let G be an abelian group which is a
Z2-vector space, and suppose that f : π1Y → G is a homomorphism. Then there
is a unique homomorphism f̂ : H1(Y ; Z2) → G such that f̂ ◦ ϕ2 = f . This can be
readily seen from the universal property of the abelianization ϕ : π1Y → H1(Y ; Z)
and the universal property of the map H1(Y ; Z) → H1(Y ; Z) ⊗ Z2

∼= H1(Y ; Z2).
For a connection A on the bundle P → Y , we will denote by Ã its pull-back

to Ỹ . We need to understand the behavior of a projectively flat connection on Y ,
when lifted in this manner to Ỹ .

Lemma 5.6. Let ρ : π1Y → SU(2) be a projective representation and ρ̃ : π1Ỹ →
SU(2) the induced projective representation. Let Stab(ρ) denote the stabilizer of
ρ in H1(Y ; Z2) then

(a) Stab(ρ) = 1 if and only if ρ̃ is irreducible,
(b) Stab(ρ) = Z2 if and only if ρ̃ is reducible non-central, and
(c) Stab(ρ) = Z2 ⊕ Z2 if and only if ρ̃ is central.

No other stabilizers Stab(ρ) may occur.

Proof. According to Remark 4.2, the only Stab(ρ) that occur are 1, Z2, and Z2⊕Z2.
Suppose that Stab(ρ) = Z2⊕Z2 then, as we saw in the proof of Proposition 4.1,

the image of ρ is contained in a copy of the group Q = {±1,±i,±j,±k }. Since
π1Ỹ is in the kernel of the map ϕ2, we conclude that the image of ρ̃ is contained in
the kernel of the corresponding map Q → H1(Q; Z2) ∼= Z2 ⊕Z2. This kernel is the
same as the commutator subgroup [Q,Q] = {±1 } hence ρ̃ is central. Conversely,
if ρ̃ is central, its adjoint representation ad ρ̃ is trivial so that im(ad ρ) is contained
in a subgroup of SO(3) of order at most eight. Therefore, im(ad ρ) is contained
in a copy of Z2 ⊕ Z2, and then im(ρ) ⊂ Q. In particular, Stab(ρ) = Z2 ⊕ Z2.

Now suppose that Stab(ρ) = Z2. As in the proof of Proposition 4.1 we see that
the image of ρ is contained in a copy of Si∪j ·Si where Si is the unit complex circle.
By the argument about the abelianization mod 2, it follows that im(ρ̃) ⊂ Si, so
that ρ̃ is abelian. Conversely, if ρ̃ is abelian then im(ad ρ̃) is contained in a copy of
SO(2), and im(ad ρ) in its finite 2-prime extension. Therefore, im(ρ) is contained
in a copy of Si ∪ j · Si.

The remaining case follows by elimination. �
The same result holds for projectively flat connections in place of projective

representations.
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Now we are able to deduce the existence of abundant links in the simplest case,
when the stabilizer of A in H1(Y ; Z2) is trivial.

Lemma 5.7. Let A be a projectively flat connection whose stabilizer in H1(Y ; Z2)
is trivial. Then there exists a mod-2 trivial link Γ that is abundant at A.

Proof. By Lemma 5.6, the connection Ã is irreducible. According to [10, Lemma
60], see also [8, Lemma 2c.1] and [20, Lemma 8.1], there is a link Γ̃ in Ỹ that
is abundant at Ã. If we perturb Γ̃ by a small amount, its projection Γ = p(Γ̃)
will be a link in Y . It is clear that Γ is mod-2 trivial; we claim that in fact it is
abundant. In the discussion that follows, the perturbing functions hi on Y will
be the push-down of the perturbing functions h̃i on Ỹ . This makes sense because
the holonomy of Ã around a component γ̃ of Γ̃ is the same as the holonomy of A
around p(γ̃).

Consider the commutative diagram

Rm −−−−→ Hom(H1(Ỹ ; ad Ã); R)∥∥∥ ⏐⏐�(p∗)∗

Rm −−−−→ Hom(H1(Y ; ad A); R)

where the horizontal arrows are the holonomy maps as in (11). The arrow along
the top is surjective, because Γ̃ is abundant at Ã. Now it is a standard consequence
of the transfer sequence [5] that the map

p∗ : H1(Y ; ad A) → H1(Ỹ ; ad Ã) (13)

is injective. Hence the bottom arrow is surjective as well. �

We next turn our attention to the abundance at projectively flat connections
with stabilizer Z2 in H1(Y ; Z2). Let ρ : π1Y → SU(2) be a projective representa-
tion with Stab(ρ) = Z2 and fix a generator τ ∈ Z2 ⊂ H1(Y ; Z2). Then τ acts on
PRc(Y ;SU(2)) fixing ρ and hence inducing a Z2-action τ∗ on the tangent space
TρPRc(Y ;SU(2)) = H1(Y ; ad ρ). Denote as before by V ±(ρ) the (±1)-eigenspaces
of τ∗ so that H1(Y ; ad ρ) = V +(ρ) ⊕ V −(ρ).

According to Lemma 5.6 the lift ρ̃ : π1Ỹ → SU(2) of ρ is a reducible (non-
central) projective representation. Assuming (after conjugation if necessary) that
im(ρ̃) is contained in the complex circle Si, we obtain a splitting ad ρ̃ = R ⊕ adC ρ̃
where R stands for a trivial one-dimensional representation and adC ρ̃ : π1Ỹ →
SO(2). Accordingly, H1(Ỹ ; ad ρ̃) splits as

H1(Ỹ ; ad ρ̃) = H1(Ỹ ; R) ⊕ H1(Ỹ ; adC ρ̃).

Lemma 5.8. The projection p : Ỹ → Y induces a monomorphism p∗ : H1(Y ; ad ρ)
→ H1(Ỹ ; ad ρ̃) such that

p∗(V +(ρ)) ⊂ H1(Ỹ ; R) and p∗(V −(ρ)) ⊂ H1(Ỹ ; adC ρ̃).
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Proof. That p∗ is a monomorphism follows from the standard transfer argument,
see [5]. Since the conjugacy class of ρ is fixed by τ , there exists an element
u ∈ SU(2) such that u2 = −1 and τ(x)ρ(x) = uρ(x)u−1 for all x ∈ π1Y . If
x ∈ π1Ỹ then ρ̃(x) = ρ(x) and τ(x) = 1 so that ρ̃(x) = uρ̃(x)u−1. Since ρ̃(x) ∈ Si

we conclude that u = ±i.
To describe the induced action τ∗ on TρPRc(Y ;SU(2)) = H1(Y ; ad ρ) we first

identify the tangent spaces at ρ and ρτ by adu, and then linearize the map ρ 	→ ρτ

as follows :

(1 + ε · ξ(x))ρ(x) τ−→
τ(x)(1 + ε · ξ(x))ρ(x) = (1 + ε · ξ(x))τ(x)ρ(x) ad u−−→

u(1 + ε · ξ(x))τ(x)ρ(x)u−1 = (1 + ε · u ξ(x)u−1)ρ(x).

Here, ξ : π1Y → su(2) is a 1-cocycle representing an element of H1(Y ; ad ρ), and
ε is a small positive real number. Thus the action τ∗ : H1(Y ; ad ρ) → H1(Y ; ad ρ)
at the level of 1-cocycles is given by the formula τ∗(ξ) = uξu−1. Since u = ±i,
the subspace V +(ρ) is generated by 1-cocycles ξ with im(ξ) ⊂ i R, and V −(ρ) by
1-cocycles ξ with im(ξ) in the subspace C ⊂ su(2) spanned by j and k.

The embedding p∗ : H1(Y ; ad ρ) → H1(Ỹ ; ad ρ̃) is given by pulling back the
1-cocycles ξ : π1Y → su(2) via the homomorphism p∗ : π1Ỹ → π1Y . In particular,
if im(ξ) ⊂ i R then im(p∗ξ) ⊂ i R so that [p∗ξ] ∈ H1(Ỹ ; R). Similarly, if im(ξ)
belongs to C spanned by j and k then [im(p∗ξ)] ∈ H1(Ỹ ; adC ρ̃). �

Denote by τ̃ : Ỹ → Ỹ the covering transformation corresponding to the (dual
of) τ ∈ Z2 ⊂ H1(Y ; Z2), and by τ̃∗ : H1(Ỹ ; ad ρ̃) → H1(Ỹ ; ad ρ̃) the induced
action.

Lemma 5.9. The subset p∗(V +(ρ)) ⊂ H1(Ỹ ; R) is the (+1)-eigenspace of τ̃∗ :
H1(Ỹ ; R) → H1(Ỹ ; R), and p∗(V −(ρ)) ⊂ H1(Ỹ ; adC ρ̃) the (+1)-eigenspace of
τ̃∗ : H1(Ỹ ; adC ρ̃) → H1(Ỹ ; adC ρ̃). Moreover, p∗(V −(ρ)) is a totally real subspace
of the complex vector space H1(Ỹ ; adC ρ̃).

Proof. The first two statements follow from the standard transfer argument, see
[5]. For the last statement, note that the pullback of adC ρ̃ via τ̃ is exactly the
complex conjugate representation adC ρ̃. It follows that the action of τ̃∗ on the
cochains used to compute H1(Ỹ ; adC ρ̃) is complex anti-linear, and so the action
on this cohomology group is also complex anti-linear. Thus the (+1)-eigenspace
p∗(V −(ρ)) is totally real. �

Lemma 5.10. Let A be a projectively flat connection whose stabilizer in H1(Y ; Z2)
is Z2. Then there exists a mod-2 trivial link Γ that is abundant at A.

Proof. By Lemma 5.6, the pull back connection Ã and the associated projective
representation ρ̃ are reducible and non-central. By [10, Corollary 64 and Corollary
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66], see also [4, Proposition 3.4] and [11, Proposition 57], there is a link Γ̃ in Ỹ
and admissible perturbations h̃i : B(P̃ ) → R, i = 1, . . . ,m, such that Dh̃k+1(A) =
. . . = Dh̃m(A) = 0 for some k and the map

Rm → Hom(H1(Ỹ ; R), R) ⊕ Herm(H1(Ỹ ; adC ρ̃))

given by

(x1, . . . , xm) 	→
(

k∑
i=1

xi Dh̃i(Ã),
m∑

i=k+1

xi Hess h̃i(Ã)

)

is surjective. Here, Herm(V ) stands for the Hermitian forms on a complex vector
space V . If we perturb Γ̃ by a small amount, its projection Γ = p(Γ̃) will be a link
in Y . It is clear that Γ is mod-2 trivial; we claim that in fact it is abundant. In the
discussion that follows, the perturbing functions hi on Y will be the push-down of
the perturbing functions h̃i on Ỹ . This makes sense because the holonomy of Ã
around a component γ̃ of Γ̃ is the same as the holonomy of A around p(γ̃).

According to Lemma 5.8, we have the following commutative diagram

Rm −−−−→ Hom(H1(Ỹ ; R); R) ⊕ Herm(H1(Ỹ ; adC ρ̃))∥∥∥ ⏐⏐�(p∗)∗

Rm −−−−→ Hom(V +(ρ); R) ⊕ Sym(V −(ρ))

where the horizontal arrows are the holonomy maps as in (12). The arrow along
the top is surjective. According to Lemma 5.8, both the map V +(ρ) → H1(Ỹ ; R)
and the map V −(ρ) → H1(Ỹ ; adC ρ̃) are injective. By Lemma 5.9, the map

V −(ρ) → H1(Ỹ ; adC ρ̃)

is obtained by complexification. Therefore, the right arrow in the diagram is
surjective, and hence so is the arrow on the bottom. �

5.6. Concluding remarks

It should be pointed out that there are two slightly differing approaches to the use
of holonomy perturbations. While Floer [8] uses perturbations defined in terms of
loops with a common basepoint, Taubes and Donaldson [20, 7] use disjoint loops.
Note that both perturbation classes are admissible in that they have the right
Fredholm properties, and that each of them contains enough perturbations to be
‘first order’ abundant. Moreover, the larger class of perturbations built from both
types of loops is also admissible and ‘first order’ abundant. Therefore, all of the
above perturbation classes lead to equivalent theories, as long as these theories do
not involve ‘second order’ abundance.

In our approach, the ‘second order’ abundance is only needed when we deal
with projectively flat connections with non-trivial stabilizers (in the equivariant
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setting) and reducible projectively flat connections (in the non-equivariant setting).
As C. Herald points out in [11] (thus correcting his earlier paper [10]), the use of
loops with a common basepoint in this situation is essential.

6. Proof of Theorem 1.1

Let 0 �= w ∈ H2(Y ; Z2) and consider a U(2)-bundle P with c1(P ) = w (mod 2).
If w is not in the image of ι : H2(π1Y ; Z2) → H2(Y ; Z2) then the theorem follows
from Corollary 3.12. Otherwise, choose a 2-cocycle c so that [c] = w and identify
M(P ) with PRc(Y ;SU(2)).

If M(P ) is non-degenerate then Theorem 1.1 follows because no orbit in
PRc(Y ;SU(2)) consists of one element, see Remark 4.2, the contribution of the
two-orbits equals (a1 ∪ a2 ∪ a3) [Y ] (mod 2) according to Proposition 4.3, and the
orbits consisting of four and eight elements do not contribute to λ′′′(Y,w) (mod 2)
at all.

In general, M(P ) needs to be perturbed to make it non-degenerate. The two-
orbits are already non-degenerate and hence if our perturbation h is sufficiently
small they will remain such. The perturbation h will not create orbits with one
element or new orbits with two elements. Moreover, one can always achieve the
non-degeneracy by using perturbations which are invariant with respect to the
action of H1(Y ; Z2), see Corollary 5.5. Therefore, the above argument, discarding
the orbits with more than two elements, can be applied again to complete the
proof of Theorem 1.1.

7. The Casson and Rohlin invariants for integral homology spheres

In this section we explain how our Theorem 1.1 implies Casson’s original result
that λ(Σ) = ρ(Σ) (mod 2) for integral homology spheres Σ.

7.1. Calculating the Casson invariant

Every integral homology sphere Σ can be obtained from S3 by surgery on an
algebraically split link, that is, a link k1 ∪ . . . ∪ kn such that lk(ki, kj) = 0 for
i �= j. Moreover, all the surgery coefficients can be chosen to be 1 or −1, so that

Σ = S3 + ε1 · k1 + . . . + εn · kn, εi = ±1. (14)

The Casson invariants of Σ and Σ ± k are related by Casson’s surgery formula

λ(Σ ± k) = λ(Σ) ± λ′(Σ + 0 · k),

where Σ+0·k is the result of 0-surgery of Σ along k. In Casson’s original approach,
the term λ′ was interpreted in terms of the Alexander polynomial of the knot k.
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For our purposes, we interpret it gauge-theoretically.
Namely, let P be a U(2)-bundle over Σ + 0 · k such that w2(P̄ ) is dual to

[k] ∈ H1(Σ+0 · k; Z2). Then λ′(Σ+0 · k) is half a signed count of projectively flat
connections in P with a fixed central part, modulo the gauge group consisting of
automorphisms of P with determinant one (perhaps after a perturbation). These
projectively flat connections are counted with signs determined by the Floer index.
Therefore, the invariant λ′(Σ + 0 · k) equals half the Euler characteristic of the
Floer homology I∗(Σ + 0 · k) so that the surgery formula (14) can be viewed as an
application of the Floer exact triangle

I∗(Σ + 0 · k)

Y∗ �
��

X∗

�
��

I∗(Σ) Z∗ � I∗(Σ − k)

(and similarly for λ(Σ + k)). The surgery formula evaluates λ(Σ ± k) in terms of
λ(Σ). Surgering out one knot at a time in the surgery presentation (14), we end
up with S3 whose Casson invariant is known to be trivial.

In order to calculate λ(Σ) using this approach we need to know the invariants
λ′(Σ + 0 · k) at each of the steps. To this end, we use another surgery formula

λ′(Σ + 0 · k ± �) = λ′(Σ + 0 · k) ± λ′′(Σ + 0 · k + 0 · �) (15)

where k ∪ � is an algebraically split link in Σ (it is sufficient to work with alge-
braically split links because such is the link in presentation (14)). The term λ′′

here is defined exactly as λ′ with only difference that now P is a U(2)-bundle such
that w2(P̄ ) is dual to [k] + [�] ∈ H1(Σ + 0 · k + 0 · �; Z2). Again, the above surgery
formula follows from the Floer exact triangle, see [3].

This reduces calculation of λ(Σ) to that of the λ′′-invariants. Applying the
surgery formula yet another time, we reduce the latter calculation to identifying
λ′′′(Y,w) for the homology torus Y obtained by 0-surgery on an algebraically split
link k ∪ � ∪ m in Σ with w dual to [k] + [�] + [m] ∈ H1(Y ; Z2). Theorem 1.1 tells
us that λ′′′(Y,w) equals (a1 ∪ a2 ∪ a3) [Y ] (mod 2) for any choice of basis a1, a2,
a3 ∈ H1(Y ; Z2).

Remark 7.1. A caveat in the above argument is that the simplification scheme
it is based upon fails for computing λ′(S3 + 0 · k). After we simplified Σ to S3,
a new scheme is needed to simplify the knot, not the manifold itself. Such a
simplification scheme, based on skein moves, can be found in [1] or [19]. Again, it
reduces calculation of λ′(S3 + 0 · k) to that of λ′′′(Y,w).
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7.2. Calculating the Rohlin invariant

To conclude that λ(Σ) = ρ(Σ) (mod 2) for all integral homology spheres Σ, we will
show that the Rohlin invariant satisfies the same surgery formulas as the Casson
invariant, only reduced modulo 2. Results similar to those in this section were
found earlier by Turaev [21].

Lemma 7.2. Let ρ′(Σ+0 ·k) be the sum, over the two spin structures on Σ+0 ·k,
of their Rohlin invariants. Then ρ(Σ + k) = ρ(Σ) + ρ′(Σ + 0 · k) (mod 2).

Proof. The manifold Σ + 0 · k can be obtained by 0-surgery on both Σ + k and
Σ. Let W1 and W2 be the traces of these surgeries, that is, smooth 4-manifolds
obtained from [0, 1] × (Σ + k), respectively, [0, 1] × Σ, by attaching a 2-handle
along { 1 } × k with zero framing. Then W1 is a spin cobordism between Σ + k
and Σ + 0 · k with one spin structure, and W2 is a spin cobordism between Σ and
Σ + 0 · k with the other spin structure. Since the intersection forms of both W1

and W2 are zero, we are finished. �

Before we continue, note that changing the surgery coefficient from plus to
minus does not affect the Rohlin invariant. Therefore, we will assume for the sake
of simplicity that all the surgery coefficients εi in (14) are equal to one.

Let k∪ � be an algebraically split link in Σ and define ρ′′(Σ+0 ·k +0 · �) as the
sum, over the four spin structures on Σ + 0 · k + 0 · �, of their Rohlin invariants.
An argument similar to that of Lemma 7.2 proves the surgery formula

ρ′(Σ + 0 · k + �) = ρ′(Σ + 0 · k) + ρ′′(Σ + 0 · k + 0 · �),

compare with (15), and yet another application of the same argument yields the
formula

ρ′′(Σ + 0 · k + 0 · �) = ρ(Σ + k + �) + ρ(Σ + k) + ρ(Σ + �) + ρ(Σ).

This reduces the calculation of ρ(Σ) to that of the ρ′′-invariants. Applying
the surgery formula one more time, we reduce the latter calculation to identifying
ρ′′′(Y ) for a homology torus Y = Σ + 0 · k + 0 · � + 0 · m. An argument similar to
that of Lemma 7.2 yields

ρ′′′(Y ) = ρ(Σ + k + � + m) + ρ(Σ + � + m) + ρ(Σ + k + m)
+ ρ(Σ + k + �) + ρ(Σ + k) + ρ(Σ + �) + ρ(Σ + m) + ρ(Σ),

which equals (a1 ∪ a2 ∪ a3) [Y ] (mod 2) for any choice of basis a1, a2, a3 ∈
H1(Y ; Z2), see [12, Lemma 6.3]. This proves that λ′′′(Y,w) = ρ′′′(Y ) (mod 2)
and therefore completes the proof of the formula λ(Σ) = ρ(Σ) (mod 2).
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[4] H. Boden and C. Herald, The SU(3) Casson invariant for integral homology 3-spheres, J.
Diff. Geom. 50 (1998), 147–206.

[5] K. Brown, Cohomology of groups. Springer-Verlag, New York, 1994.
[6] S. K. Donaldson, Topological field theories and formulae of Casson and Meng-Taubes, in:

Proceedings of the Kirbyfest (Berkeley, CA, 1998), 87–102 (electronic), Geom. Topol. Publ.,
Coventry, 1999. URL: http://www.maths.warwick.ac.uk/gt/GTMon2/paper4.abs.html

[7] S. K. Donaldson, Floer homology groups in Yang–Mills theory, Cambridge University Press,
Cambridge, 2002.

[8] A. Floer, An instanton-invariant for 3-manifolds, Comm. Math. Phys. 118 (1988), 215–240.
[9] A. Floer, Instanton homology and Dehn surgery, in: The Floer memorial volume,
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