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Abstract. Let π : X → T be a small deformation of a normal Gorenstein surface singularity
X0 = π−1(0) over the complex number field C. Suppose that T is a neighborhood of the origin
of C and that X0 is not log-canonical. We show that if a topological invariant −Pt · Pt of
Xt = π−1(t) is constant, then, after a suitable finite base change, π admits a simultaneous
resolution f : M → X which induces a locally trivial deformation of each maximal string of
rational curves at an end of the exceptional set of M0 → X0; in particular, if X0 has a star-
shaped resolution graph, then π admits a weak simultaneous resolution (in other words, π is an
equisingular deformation).
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1. Introduction

We continue the study of a family of Gorenstein surface singularities preserving a
certain topological invariant ([15]). Let (X0, x0) be a normal complex Gorenstein
surface singularity and π : X → T a flat deformation of (X0, x0), where T is
a reduced complex space. Let f : M → X be a proper modification with the
exceptional set E. Then f : M → X is called a very weak simultaneous resolution
if π ◦ f is flat and ft : Mt → Xt is a resolution of Xt for all t ∈ T . Laufer proved
[11, Theorem 4.3] that the constancy of a topological invariant −K · K in the
deformation π implies the existence of a simultaneous canonical model (which is
also called a simultaneous RDP resolution); then he obtained the following

Theorem 1.1 (Laufer [11, Theorem 5.7]). π admits a very weak simultaneous
resolution after a finite base change if and only if −Kt ·Kt is constant, where Kt

is the canonical divisor on the minimal resolution space of Xt = π−1(t).

However, the structure of the exceptional divisor in a very weak simultaneous
resolution can vary greatly. Let us recall a strong kind of simultaneous resolution;
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f : M → X is called a weak simultaneous resolution if it is a very weak simulta-
neous resolution and the morphism E → T induced by π ◦ f is a locally trivial
deformation. If a weak simultaneous resolution of π exists, then π is called an
equisingular deformation [20]. It is shown [11, Theorem 6.4] that π admits a weak
simultaneous resolution if and only if each singularity (Xt, xt) is homeomorphic
to (X0, x0). But, at present, there is no statement about the existence of weak
simultaneous resolutions similar to Theorem 1.1.

In this paper, we deal with deformations of Gorenstein surface singularities
preserving the topological invariant −P · P , where P denotes the nef-part of the
Zariski decomposition of the log-canonical divisor on a good resolution [21]. We
shall show that such a family has a simultaneous resolution with some nice prop-
erties; it is a weak simultaneous resolution in a special case. Assume that T is a
sufficiently small neighborhood of the origin of the complex number field C and
the (X0, x0) is not a log-canonical singularity. In [14], we obtained that if the topo-
logical invariant −Pt · Pt is constant, then π admits a simultaneous log-canonical
model; it is a log-version of Laufer’s result mentioned before Theorem 1.1. In
[15], we proved that the constancy of −Pt · Pt implies not only the log-version
above, but also the existence of a simultaneous resolution f : M → X, after a fi-
nite base change, such that each ft : Mt → Xt is a resolution with the exceptional
divisor having only normal crossings, and ft is minimal among resolutions with
such properties. Our new result in this paper gives a geometric characterization
of (−P · P )-constant deformations that clarifies what structure of the exceptional
set is preserved. We prove the following

Theorem 1.2. Assume that −Pt ·Pt is constant. Then, after a finite base change,
there exists a section γ : T → X of π such that each γ(t) is a non-log-canonical
singularity and a simultaneous resolution f : M → X which satisfy the following
conditions:

(1) for each t ∈ T , ft : Mt → Xt is a resolution with the exceptional divisor
having only normal crossings, and ft is minimal among resolutions with
such properties;

(2) if E denotes the reduced divisor such that f(E) = γ(T ), then the restriction
Et of E is the reduced divisor supported on f−1(γ(t));

(3) there exists a reduced divisor S ≤ E such that St is the sum of all maximal
strings of rational curves at the ends of Et for each t ∈ T and that π ◦
f |S : S → T is a locally trivial deformation.

Any singular point on Xt \ {γ(t)} is a rational double point of type An.

Corollary 1.3. Assume that −Pt ·Pt is constant and that the resolution graph of
(X0, x0) is star-shaped. Then each Xt has only one singular point xt and π is an
equisingular deformation.

In case where Xt has only a singularity xt, an outline of the proof of Theo-
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rem 1.2 is as follows. Let f : M → X be a resolution which satisfies the condition
(1) of Theorem 1.2 and g : Y → X the simultaneous log-canonical model (the
existence of them follows from [14] and [15], respectively). Denote by E and F
the exceptional divisor of f and g, respectively. First, we shall show that there
exists a morphism h : M → Y such that f = g ◦ h. Let P = h∗(KY + F ) and
N = KM +E−P . Next, we verify that the restriction Pt+Nt is the Zariski decom-
position of the log-canonical divisor on Mt. Then it follows that S := Supp(N)
satisfies the condition (3) of Theorem 1.2.

In [3], Ishii proved that for a small deformation of any normal surface singular-
ity, the constancy of the invariant −K ·K implies the existence of the simultaneous
canonical model of the deformation. We hope that Theorem 1.2 may be generalized
to the non-Gorenstein case.

Thanks are due to Professor Jonathan Wahl for his helpful advice. Thanks are
also due to the referee for valuable comments.

Notation and terminology

We denote by Z, N and Q, the set of integers, the set of positive integers and
the set of rational numbers, respectively. Let X be a normal variety. For a
Q-divisor D =

∑
diDi on X, where Di are distinct prime divisors, we write

Dred =
∑

di �=0 Di. We say that a resolution f : M → X of X is semigood (resp.
good) if the exceptional set of f is a divisor having only normal crossings (resp.
simple normal crossings). Let g : Y → X be a partial resolution and E the reduced
exceptional divisor of g. Then g is called a canonical model of X if Y has only
canonical singularities and KY is g-ample; it is called a log-canonical model of X
if the pair (Y,E) has only log-canonical singularities and KY + E is g-ample.

2. Preliminaries

In this section, we review some results on surface singularities needed later. A
minimal semigood (resp. minimal good) resolution of a normal surface singularity is
the smallest resolution among all semigood (resp. good) resolutions. The minimal
semigood resolution is obtained from the minimal good resolution by contracting
each (−1)-curve intersecting one component twice. The weighted dual graph of a
normal surface singularity is that of the exceptional divisor on the minimal good
resolution of the singularity.

Let (X,x) be a normal surface singularity and f : (M,A) → (X,x) the minimal
semigood resolution with the exceptional divisor A. Let K be a canonical divisor
on M and A =

⋃t
i=1 Ai the decomposition into irreducible components. We call

a divisor (resp. Q-divisor) on M supported in A a cycle (resp. Q-cycle). For any
divisors D and E on M , the intersection number D · E is defined as ν(D) · ν(E),
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where ν(D) denotes a Q-cycle determined by (ν(D) − D) · Ai = 0 for 1 ≤ i ≤ t.
Let P + N be the Zariski decomposition of K + A: N is an effective Q-cycle such
that P = K + A − N is f -nef and P · Ai = 0 for all Ai ≤ Nred (see [17, Theorem
A.1]). The intersection number −P ·P is a topological invariant of the singularity
(X,x), and its fundamental properties are stated in [21].

Definition 2.1. Let S =
∑n

i=1 Ai be a chain of nonsingular rational curves. We
call S a string at an end of A if Ai ·Ai+1 = 1 for 1 ≤ i ≤ n−1, and these account for
all intersections in A among the Ai’s, except that An intersects exactly one other
curve. Let S∗ =

∑n
i=1 aiAi be a Q-cycle such that S∗ · A1 = −1 and S∗ · Ai = 0

(i > 1). Note that ai > 0 for i = 1, . . . , n.

Lemma 2.2. In the situation above, we have the inequalities

an−j+1 ≤ jan−j/(j + 1), j = 1, . . . , n − 1.

Hence a1 > a2 > · · · > an.

Proof. Let −bi = Ai · Ai. Then bi ≥ 2. By the definition of S∗, we have ak−1 −
bkak + ak+1 = 0 for 1 ≤ k ≤ n, where a0 = 1 and an+1 = 0. It is clear that
an ≤ an−1/2. Now use induction on j. �

Proposition 2.3 (Wahl [21, Proposition 2.3, (2.7)]). Suppose (X,x) is not a
quotient, simple elliptic, or cusp singularity. Let {S1, . . . , Sp} be the set of all
maximal strings at the ends of A. Then N =

∑p
i=1 S∗

i .

Lemma 2.4 (see [13, Lemma 1.8]). If (X,x) is not a rational double point, then
[N ] = 0, where [N ] denotes the integral part of N .

The m-th L2-plurigenus of (X,x) is expressed as

δm(X,x) = dimC OX(mKX)/f∗OM (mK + (m − 1)A)

(see [22, pp. 67–68]). δ1(X,x) is equal to the geometric genus pg(X,x).

Theorem 2.5 (see [13]). There exists a bounded function v(m) such that

δm+1(X,x) = −(P · P )m2/2 − (K · P )m/2 + pg(X,x) + v(m)

for m ≥ 0. If (X,x) is a Gorenstein singularity with pg(X,x) ≥ 1, then the
function v(m) is determined by the weighted dual graph of the maximal strings at
the ends of A.

Assume that (X,x) is not a log-canonical singularity, or equivalently that
ν(P ) �= 0 (see [21, Remark 2.4], [6, §9]). Let g : Y → X be the log-canonical model
and F the exceptional divisor of g. Then we obtain a morphism h : M → Y , which
is the minimal resolution of the singularities of Y , and P ∼Q h∗(KY + F ) (see
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[15, §3]). Let C be a reduced cycle which is the sum of the components Ai such
that P · Ai = 0. Then C is exactly the exceptional divisor for h, and contains no
(−1)-curves. Let C0 be the sum of the components Ai ≤ C such that Ai ·Ai = −2.

Definition 2.6. Let X̄ be a normal surface obtained by contracting the cycle C0

on M . Then X̄ has only rational double points. We call the natural morphism
X̄ → X an RDP good resolution of the singularity (X,x).

Lemma 2.7. The natural morphism h′ : X̄ → Y is the canonical model of Y .

Proof. Since a rational double point is a canonical singularity, it suffices to show
that KX̄ is h′-ample. Let ϕ : M → X̄ be the contraction. Then for any irreducible
curve � ⊂ ϕ(C), we have KX̄ · � = K · ϕ−1

∗ � > 0, where ϕ−1
∗ � denotes the strict

transform of �. Hence KX̄ is h′-ample. �

The following theorem gives another construction of the RDP good resolution.

Theorem 2.8 (see [15, Theorem 3.2]). Let r be a positive integer such that rN
is a cycle, and let f ′ : (M ′, A′) → (X,x) be any semigood resolution. Then there
exists a positive integer β(X,x) determined by the weighted dual graph of (X,x)
such that for any m ≥ β(X,x), the blowing-up of X with respect to the sheaf
f ′
∗OM ′(KM ′ + mr(KM ′ + A′)) is the RDP good resolution of (X,x).

3. Simultaneous resolution

Let (X0, x0) be a normal Gorenstein surface singularity and π : X → T a deforma-
tion of X0 = π−1(0), where T is an open neighborhood of the origin of C. Then
each Xt is normal and Gorenstein. We assume that (X0, x0) is not log-canonical.
The aim of this section is to show that a simultaneous RDP good resolution of π
is obtained as the canonical model of a simultaneous log-canonical model of π.

For any morphism h : W → X, we denote by Wt the fiber (π ◦ h)−1(t) and by
ht the restriction h|Wt

: Wt → Xt.

Definition 3.1 (cf. Laufer [11, V]). Let f : M → X be a resolution of the singular-
ities of X and E the exceptional set of f . We call f : M → X a weak simultaneous
resolution if each ft is a resolution of Xt and π ◦ f |E : E → T is a locally trivial
deformation of the exceptional divisor of M0.

We assume that T is sufficiently small so that π|X\X0 : X \ X0 → T \ {0}
admits a weak simultaneous resolution. We note that if π admits a weak simulta-
neous resolution along a section γ : T → X of π, then the weighted dual graph of
(Xt, γ(t)) is the same as that of (X0, x0) (see [11, VI]).

Let us review some results on simultaneous partial resolutions studied in [14]
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and [15]. Let g : Y → X be the log-canonical model of X and F the reduced
exceptional divisor of g.

Definition 3.2 (cf. [14, Definition 4.1 and Lemma 4.2]). We call the morphism g a
simultaneous log-canonical model of π if for any t ∈ T the restriction gt : Yt → Xt

is the log-canonical model of Xt and Ft is a reduced divisor supported on the
exceptional set of gt.

Let f(t) : X̃t → Xt be the minimal semigood resolution, At the exceptional
divisor and Kt the canonical divisor on X̃t. Let At,p be the connected component
of At which blows down to a singular point p ∈ Xt. Let Pt,p + Nt,p be the Zariski
decomposition of Kt + At,p, where Nt,p is a Q-divisor supported in At,p. We put
Nt :=

∑
p Nt,p and Pt · Pt :=

∑
p Pt,p · Pt,p.

Theorem 3.3 (see [14, Theorem 4.11]). The following conditions are equivalent:
(1) g is the simultaneous log-canonical model of π;
(2) −Pt · Pt is constant.

The next lemma follows from Theorem 3.3, [14, Remark 4.3], [15, Lemma 4.2]
and [5, Proposition 2.2].

Lemma 3.4. Suppose that −Pt·Pt is constant. Then there exists a section γ : T →
X of π such that (Xt, γ(t)) is a non-log-canonical singularity and any singularity
on Xt \ {γ(t)} is a rational double point for each t ∈ T (note that g(F ) = γ(T )).

The idea for the proof of the next lemma is due to Tomari [19].

Lemma 3.5. Suppose that −Pt · Pt is constant. Let α : W → Y be a morphism
such that g ◦ α is a semigood resolution of X, and let B be the exceptional set of
g ◦ α. Then α∗OW (m(KW + B) − B) = OY (m(KY + F ) − F ) for any m ∈ N.

Proof. Let LW = KW + B and LY = KY + F . Since X is Gorenstein and LY

is g-ample, there exists a Q-Cartier effective divisor F ′ supported on F such that
−F ′ ∼Q LY . It is clear that α∗OW (mLW − B) ⊂ OY (mLY − F ). To prove the
converse, we may assume that Y is Stein. So it suffices to show the following

H0(W,OW (mLW − B)) ⊃ α∗H0(Y,OY (mLY − F )).

Let ω ∈ H0(Y,OY (mLY −F )). Then div(ω) + mLY −F ≥ 0. Let n be a positive
integer such that nF ≥ F ′. Then

div(ω) + mLY − (1/n)F ′ ≥ div(ω) + mLY − F ≥ 0.

Note that the left hand side is a Q-Cartier divisor. Since LY is log-canonical,
there exists an exceptional effective divisor ∆ such that LW = α∗LY + ∆. By
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Lemma 3.4, we see that Y \ F has only canonical singularities (see [16, Theorem
2.6]). Thus Supp(∆ + α∗F ) = B. It follows from the inequality above that

div(α∗ω) + mLW ≥ m∆ + (1/n)α∗F ′.

Since Supp(m∆ + (1/n)α∗F ′) = B and the left hand side is an integral divisor,
we obtain that div(α∗ω) + mLW ≥ B, i.e., α∗ω ∈ H0(W,OW (mLW − B)). �

Let f : M → X be a semigood resolution and E the exceptional divisor of f .
Since π|X\X0 admits a weak simultaneous resolution, there exists a positive integer
r such that rNt is a cycle for any t ∈ T . Assume that r(KY + F ) is a Cartier
divisor. Let ψm : Xm → X be the blowing-up of X with respect to the sheaf
f∗OM (KM + mr(KM + E)) for m ≥ 0. Note that these sheaves are independent
of the choice of the semigood resolution.

In the following, an RDP good resolution of Xt means a partial resolution
which is the RDP good resolution of a non-log-canonical singularity (Xt, xt) and
an isomorphism over Xt \ {xt}.

Theorem 3.6 (see the proof of [15, Theorem 4.2]). Suppose that −Pt · Pt is
constant. Let γ be as in Lemma 3.4 and β(X) the maximum of {β(Xt, γ(t)) | t ∈
T} (see Theorem 2.8). Then for any m ≥ β(X), there exists a neighborhood Tm of
0 ∈ T such that each (ψm)t : (Xm)t → Xt is the RDP good resolution for t ∈ Tm.

To simplify the notation, we write T (resp. π) instead of Tm (resp. π|π−1(Tm)).

Proposition 3.7. Suppose that −Pt · Pt is constant. Then the natural rational
map ϕm : Xm → Y is a morphism for m >> 0. If m ≥ β(X) and ϕm is a
morphism, then ϕm is the canonical model of Y .

Proof. Assume that m ≥ β(X). Let A′ be the exceptional set of (ψm)0 : (Xm)0 →
X0. Then ϕm is a morphism on Xm\A′, since π|X\X0 admits a weak simultaneous
resolution. There exists an effective divisor Z on Y such that KY ∼ −Z and
Supp(Z) = F . Let g′ : Y ′ → Y be the normalization of the blowing-up of Y with
respect to the sheaf of ideals OY (−Z). We take a semigood resolution fm : Mm →
X of X such that the following diagram of morphisms is commutative:

Mm
� Xm

ψ̃m

� �
hm ψm

Y ′ �
g′

Y �
g

X

where fm = ψm ◦ ψ̃m. Let G′ be a Cartier divisor on Y ′ such that OY ′(G′) =
g′∗OY (−Z)/torsion and Gm = h∗

mG′. Let Em be the exceptional divisor of fm.
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We put LM
m = mr(KMm

+ Em), LY
m = mr(KY + F ) and Pm = (g′ ◦ hm)∗LY

m. Let
Dm be a Cartier divisor on Mm such that

OMm
(Dm) = fm

∗fm∗OMm
(KMm

+ LM
m )/torsion.

Then Dm and Pm are fm-nef.
Now let us show the claim: Dm ∼ Gm +Pm for m >> 0. Since LY

1 is a g-ample
Cartier divisor, the natural homomorphism

g∗g∗OY (KY + LY
m) → OY (KY + LY

m)

is surjective for m >> 0. Then we have the surjection

(g′ ◦ hm)∗g∗g∗OY (KY + LY
m) → OMm

(Gm + Pm).

By Lemma 3.5, the left hand side is equal to fm
∗fm∗OMm

(KMm
+ LM

m ). Hence
we have OMm

(Dm) ∼= OMm
(Gm + Pm).

To show that ϕm is a morphism, it suffices to prove that if Dm · � = 0 for an
irreducible curve � ⊂ ψ̃−1

m (A′), then Pm·� = 0. Let Λ be the set of irreducible curves
on Y ′

0 which are g ◦ g′-exceptional but not g′-exceptional. Since g′ is isomorphic
over the non-singular locus of Y , each curve in Λ is the strict transform of an
irreducible component of F0. We take m such that Dm ∼ Gm + Pm and −m <
min{G′ ·�′ | �′ ∈ Λ}. Suppose that Dm ·� = 0 and Pm ·� > 0 for a curve � ⊂ ψ̃−1

m (A′).
Then hm(�) ∈ Λ. Let d be the degree of the finite morphism � → hm(�). Since LY

1

is Cartier, Pm · � ≥ dm. Then we have dG′ · hm(�) = Gm · � ≤ −dm: however it
contradicts the choice of m.

Assume that ϕm is a morphism on Xm. By Lemma 2.7, the divisor KXm
|(Xm)t

is (ϕm)t-ample for any t ∈ T . Hence KXm
is ϕm-ample. By Theorem 3.6 and

[16, Theorem 2.6], Xm has only canonical singularities. Hence ϕm is the canonical
model of Y . �

4. The main result

Let (X0, x0) be a normal Gorenstein surface singularity and π : X → T a de-
formation of X0 = π−1(0). We always assume that T is sufficiently small; so
π|X\X0 admits a weak simultaneous resolution. We shall prove that the constancy
of −Pt · Pt implies the existence of a simultaneous resolution f : M → X and a
section γ : T → X which satisfy the following

Condition 4.1. Let E denote the reduced exceptional divisor on M such that
f(E) = γ(T ).

(1) For each t ∈ T , ft : Mt → Xt is the minimal semigood resolution and Et is
the reduced divisor supported on f−1

t (γ(t)).
(2) There exists a divisor S ≤ E such that St is the sum of all maximal strings

at the ends of Et for each t ∈ T and that π ◦ f |S : S → T is a locally trivial
deformation.
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Example 4.2. Let (X0, x0) be a minimally elliptic singularity which has the fol-
lowing weighted dual graph (we denote it by An(w1, w2, w3, w4)):

� � . . . � �

�� −w3

−w4

−w2

−w1 −2 −2
(n + 4 vertices)

By using [4, Corollary 3.9], for any positive integer k < n, we can construct a
deformation π : X → T of X0, a section γ : T → X and a simultaneous resolution
f : M → X which satisfy Condition 4.1 such that the weighted dual graph of
(Xt, γ(t)) is Ak(w1, w2, w3, w4) for t �= 0.

In general, some rational double points of type Aq arise on Xt. There is a
concrete example. According to Table 1 in [8, V], the weighted dual graph of
the singularity ({z2 − (y + x3)(y2 + xn+5) = 0}, o) ⊂ (C3, o) is An(w1, w2, w3, w4).
Assume that n−k ≥ 2. Let us consider a family Xt = {z2−(y+x3)(y2 +xk+5(x−
t)n−k) = 0}. If t �= 0, then the points (0, 0, 0) and (t, 0, 0) are singularities of Xt;
the singularity (0, 0, 0) is an equisingular deformation of ({z2−(y+x3)(y2+xk+5) =
0}, o), and (t, 0, 0) is a rational double point of type An−k−1.

Theorem 4.3. Assume that −Pt ·Pt is constant. Then, after a finite base change,
there exists a section γ : T → X such that each (Xt, γ(t)) is a non-log-canonical
singularity and a simultaneous resolution which satisfy the conditions in Condi-
tion 4.1; furthermore Xt \ {γ(t)} has only rational double points of type An.

Proof. By Theorem 3.6, there exists a simultaneous RDP good resolution of π. It
follows from [1] that there exists a finite base change T ′ → T and a resolution
f ′ : M ′ → X ′ = X×T T ′ such that each f ′

t : M ′
t → X ′

t, t ∈ T ′, is the minimal semi-
good resolution; M ′ is obtained by resolving the singularities of the simultaneous
RDP good resolution of X ′ → T ′ simultaneously. To simplify, we write f : M → X
(resp. T ) instead of f ′ : M ′ → X ′ (resp. T ′). By Theorem 3.3, there exists the
simultaneous log-canonical model g : Y → X. By Proposition 3.7, we may assume
that there exists a morphism h : M → Y such that f = g ◦ h. Let γ : T → X be
the section in Lemma 3.4. We will show that f : M → X and γ : X → T satisfy
the conditions in Condition 4.1.

Let F (resp. E) be the reduced exceptional divisor on Y (resp. on M over
γ(T )). We define the Q-divisors P and N ′ on M by P = h∗(KY + F ) and
N ′ = KM + E −P, respectively. Since KY + F is log-canonical, N ′ is an effective
exceptional divisor. Let N ′ =

∑
niE

i, where {Ei} is the set of the exceptional
prime divisors on M . Let N =

∑
Ei⊂E niE

i. For each t ∈ T , we put Kt = (KM )t;
in fact, (KM )t is a canonical divisor on Mt. Now suppose t ∈ T \{0}. Since π|X\X0

admits a weak simultaneous resolution, Et is the reduced exceptional divisor on
Mt and Pt + Nt is the Zariski decomposition of Kt + Et (by using the notation
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in the previous section, we can write Pt = Pt,γ(t) and Nt = Nt,γ(t)). Let A be
the exceptional set on M0 and P + N the Zariski decomposition of K0 + A. Then
P = h∗

0((KY +F )|Y0) = P0. Since K0 +E0 = P0 +N0, we have N0 −N = E0 −A.
These divisors are effective since [N0] = E0 − A by Lemma 2.4. Thus (N0)red ≥
Nred and (E0)red = A. If N = 0, then N = 0 and E0 = A; hence the conditions
in Condition 4.1 are satisfied. Assume that N �= 0 and let S = Nred.

Let C be the cycle supported in A defined in Preliminaries and C =
⋃n

j=1 Cj the
decomposition into connected components. Since P ·N0 = 0, we have (N0)red ≤ C.
Let H = A−C. Each Cj is one of the following three types (see [6, Theorem 9.6]):

(1) Type A: Cj is a maximal string at an end of A.
(2) Type Ã: Cj has the following dual graph

�� � . . . � �
where symbols • and � represent a component of Cj and H, respectively.

(3) Type D: Cj has the following dual graph

�� � . . . � � �

� −2

−2

We write S =
∑

Si, where {Si} is a set of reduced divisors such that {(Si)t}
is the set of all maximal strings at the ends of Et. Let Si

t denote (Si)t. Note
that Si

t · Sj
t = 0 if i �= j. By [10, Lemma 3.1, Theorem 3.17], Si

0 is connected and
reduced for any i. Hence each Si

0 is contained in an unique Cj . Let A = ∪Ai be
the decomposition into irreducible components.

Suppose that C1 is a cycle of type Ã. Let σ = {i |Si
0 ≤ C1}. Assume that

σ �= ∅. Let Ak be a component at an end of (
∑

i∈σ Si
0)red. Assume that Ak ≤

Si
0−

∑
j �=i Sj

0. Then the coefficient of Ak in S0 is 1. Since Ak is not a component of
N and [N ] = 0 by Lemma 2.4, it follows from Proposition 2.3 that the coefficient
of Ak in N0 − N is a positive number less than 1; however it contradicts that
N0 − N = E0 − A. If Ak ⊂ Si

0 ∩ Sj
0, then Si

0 · Sj
0 < 0. Hence σ = ∅.

Next suppose that C1 is a cycle of type D and that A1 and A2 are the maximal
strings at ends of A in C1. Let C ′ = C1 − A1 − A2 and

τ = {i |Si
0 and C ′ have a common component}.

Suppose that τ �= ∅ and Ak is the component of
∑

i∈τ Si
0 nearest to H. Assume

that Ak ⊂ Si
0 ∩ Sj

0 with i �= j. Then the condition Si
t · Sj

t = 0 implies that
any component of Si

0 + Sj
0 is a (−2)-curve. Thus there exists an open set in M

containing Si ∪ Sj which is a simultaneous resolution space of a deformation of
a rational double point (see [11, p.12]); however Si

0 and Sj
0 can have no common

component by virtue of [10, Theorem 3.9] or [7, §4.3]. Hence τ = ∅.
Now we obtain that (N0)red = Nred. By arguments similar to above, we see

that S0 is a disjoint union of Sj
0’s. Since [N ] = 0, we have [N0] = 0. It follows

from N0 − N = E0 − A ≥ 0 that N0 = N and E0 = A. So (1) in Condition 4.1
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follows. Let S =
⋃a

i=1 Ei be the decomposition into irreducible components. By
Lemma 2.2, each (Ei)0 is irreducible. Hence (2) in Condition 4.1 holds.

Next we will show a rational double point p ∈ Xt \ {γ(t)} is of type An. Let D
be a reduced exceptional divisor on M such that Dt = f−1

t (p). Then D0 is reduced,
connected and contained in C. By the minimality of the semigood resolution, any
component of D0 is a (−2)-curve. Let D′

0 be the sum of the components Ai ≤ D0

such that (D0 −Ai) ·Ai = 2. Note that if Ai ≤ D0 and D0 ·Ai = 0 then Ai ≤ D′
0.

Since Ai ·D0 = 0 for any Ai ⊂ Sj
0, we have Sj

0 ≤ D′
0 or Supp(Sj

0)∩ Supp(D0) = ∅.
Since Sj

0 is a maximal string at an end of A, the first case does not occur. Hence
D0 is a chain and so is Dt. �

We use the notation of the proof of Theorem 4.3 in the following two remarks.

Remark 4.4. The converse of the theorem is true. In fact, the following condi-
tions are equivalent:

(1) π admits a section and a simultaneous resolution as in Theorem 4.3 after
a finite base change;

(2) δm(Xt) =
∑

p∈Sing(Xt)
δm(Xt, p) is constant for any m ∈ N;

(3) −Pt · Pt is constant.
We show a sketch of the proof. Suppose that (1) holds. Then we see that Pt · Pt

and Kt · Pt are constant. The existence of the simultaneous resolution implies
that pg(Xt, γ(t)) is constant too (see [11, Theorem 5.3]). Hence δm(Xt, γ(t)) is
constant by Theorem 2.5. Now (2) follows from the fact that δm = 0 for any
quotient singularity and m ∈ N ([22, Theorem 1.5]).

Remark 4.5. A component Ai is called a node unless it is a nonsingular rational
curve with at most two intersections with other curves. Suppose that −Pt · Pt is
constant. From the proof of the theorem, we see that Xt (t �= 0) has only one
singular point γ(t) if any chain in A connecting two nodes contains no (−2)-curves.

Corollary 4.6. Suppose that −Pt ·Pt is constant and that the weighted dual graph
of (X0, x0) is a star-shaped graph. Then π admits a weak simultaneous resolution.

Proof. If the weighted dual graph of (X0, x0) is a star-shaped graph, then Xt has
only one singular point by Remark 4.5 and a simultaneous resolution with the
conditions in Condition 4.1 is just a weak simultaneous resolution. Thus we need
no finite base changes. �
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