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Topological finite-determinacy of functions with non-isolated
singularities
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Abstract. We introduce the concept of topological finite-determinacy for germs of analytic
functions within a fixed ideal I, which provides a notion of topological finite-determinacy of
functions with non-isolated singularities. We prove the following statement which generalizes
classical results of Thom and Varchenko: let A be the complement in the ideal I of the space of
germs whose topological type remains unchanged under a deformation within the ideal that only
modifies sufficiently large order terms of the Taylor expansion. Then A has infinite codimension
in I in a suitable sense. We also prove the existence of generic topological types of families of
germs of I parametrized by an irreducible analytic set.
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1. Introduction

R. Thom announced in [17] his Stabilisation Theorem stating the following: let
Jr(n,m) denote the space of r-jets of germs at the origin of differentiable mappings
from R

n to R
m, and πs

r : Js(n,m) → Jr(n,m) the natural projection mapping.
Consider f ∈ Jr(n,m). There exists a positive integer s, depending only on n, m
and r, and a proper algebraic subset Σ ⊂ (πs

r)
−1(f) such that any two germs g1

and g2 with the same s-jet belonging to (πs
r)

−1(f) \ Σ have the same topological
type.

Although R. Thom gave in [17] rather detailed ideas for the proof of his theo-
rem, the first complete proof was given in [18], [19] by A. Varchenko, and followed
a completely different approach. More in the line of R. Thom’s ideas, E. Looi-
jenga’s thesis contains the result in the function case (that is, when m = 1). Later,
A. du Plessis (see [11]) gave another proof for arbitrary m based on Thom’s sugges-
tions, using also his own ideas and ideas from Mather (actually both A. Varchenko
and A. du Plessis gave slightly stronger statements than R. Thom’s). In this paper
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we are interested in a generalization of these results valid in the realm of (com-
plex or real) analytic non-isolated hypersurface singularities. In order to see what
kind of properties are desirable let us state A. Varchenko’s results in the setting
of complex analytic functions: let Jr(Cn, C)O be the space of r-jets of germs of
holomorphic functions at the origin O of C

n. Denote by D the group of germs
of biholomorphisms fixing the origin of C

n. There is a natural action of D in
Jr(Cn, C)O by composition on the right.

Theorem 1 (Varchenko [18]). Let T ⊂ Jr(Cn, C)O be an irreducible algebraic
subset. There exists s ≥ r, and a proper algebraic subset A ⊂ (πs

r)
−1(T ) such that

any two germs f1 and f2 whose s-jet is in (πs
r)

−1(T ) \A have the same topological
type.

Moreover, for each r ≥ 1 there exists a partition of Jr(Cn, C)O into disjoint
constructible subsets Ur

0 , . . . , Ur
k(r), invariant by the action of D, such that:

(1) If i > 0, any two germs f1 and f2 whose r-jet is in Ur
i has the same

topological type.
(2) The codimension of Ur

0 tends to infinity as r increases.

The subsets Ur
i can be constructed so that, if s > r and i > 0, then (πs

r)
−1(Ur

i )
coincides with one of the subsets Us

j with j > 0. This enables to decompose
OCn,O as a union of subsets {Vi}i∈Z≥0 such that for i > 0, the Vi’s are formed by
germs of fixed topological type determined by their r(i)-jet (for a number r(i) only
depending on i), and V0 is infinite codimensional in a suitable sense (and therefore
easily avoidable by deformation).

Observe that the topological type of a function f ∈ OCn,O with non-isolated
singularities is not determined by any r-jet of it, no matter how big is r: summation
of a generic homogeneous polynomial of arbitrarily high degree transforms it into a
function with an isolated singularity at the origin, whose sheaf of vanishing cycles
is concentrated at the origin, unlike the sheaf of vanishing cycles of f . Therefore
the functions defining non-isolated singularities belong to the residual set V0 of
the decomposition given above and, consequently, Theorem 1 is only meaningful
for the study of isolated singularities.

The object of this paper is to prove a replacement of Theorem 1 which is
meaningful for the study of non-isolated singularities of (complex or real) analytic
functions. Our strategy is to work with functions belonging to a fixed ideal I
instead of the whole space of analytic germs at the origin (for example, if we want
to study functions which are singular at a line, we can take I to be the square of
the ideal defining it). In this paper we prove a generalization of Theorem 1 valid
for any ideal of germs of complex or real analytic functions.

Working within a fixed ideal has been already successful in the study of non-
isolated singularities: generalized versality and analytic finite-determinacy, study
of the Milnor fibration. . . (see for example [5], [8], [9], [10], [13], [14], [15], [20]).
Many of these papers use a generalized morsification method that consists in de-
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forming non-isolated singularities within a fixed ideal I to get simpler ones, and
then study their properties. Up to now this worked only when I has simple geomet-
ric properties: it is the square of a complete intersection ideal defining an isolated
singularity, or the analytic space defined by it is low dimensional. In order to es-
tablish the morsification method in general the generalization Theorem 1 provided
in this paper is needed. The generalized Morsification Method appears in [6].

Furthermore, the study of functions within an ideal is also relevant for the study
of isolated singularities satisfying a fixed amount of conditions (having some fixed
tangencies or multiplicities at infinitely near points. . . ).

Unlike in the case of isolated singularities, the interesting phenomena in the
study of functions with non-isolated singularities are not concentrated at the origin,
but at a neighbourhood at the origin of the singular locus. This makes insufficient
in practice the straightforward generalization of Theorem 1, in which the ring
OCn,O is replaced by the ideal I. We will need a stronger formulation in which we
consider, instead of jets at the origin, jets at points ranging in a fixed neighbour-
hood at the origin: view the ideal I as the stalk at the origin of a coherent ideal
sheaf Ĩ defined in a neighbourhood W of the origin. Define

Jr(W, Ĩ) :=
∐

x∈W

Ĩx/mr+1
x ∩ Ĩx, (1)

where Ĩx is the stalk of Ĩ at x, and mx the ideal of analytic functions vanishing at
x. For any non-negative integer r we will stratify the set Jr(W, Ĩ) in such a way
that each stratum is an analytic variety. The generalization of the subsets T , A
and Ur

i in Theorem 1 will be analytic subsets of the strata of Jr(W, Ĩ) satisfying
analogous properties.

As we are working on a neighbourhood W of the origin, the right generalization
of the invariance of the Ur

i ’s by the action of D consists in the following property:
the subsets generalizing the Ur

i ’s are invariant by the action of diffeomorphisms
between open subsets of W which preserve the ideal sheaf Ĩ. Actually, what we
will prove is the invariance of such subsets by flows within W preserving Ĩ. This
can be viewed as an infinitesimal version of the invariance by diffeomorphisms,
and turns out to be enough for applications.

The structure of the paper is the following: first we stratify the spaces Jr(W, Ĩ)
for any r ≤ ∞ and show that the strata are analytic varieties in a natural way when
r < ∞, and a limit of analytic varieties when r = ∞. Later we define the class
of closed analytic subsets of the strata of J∞(W, Ĩ), their irreducible components
and codimension. We also introduce the concept of residual subsets of J∞(W, Ĩ),
which, roughly speaking, is a subset of infinite codimension. Then we state a
proposition that generalizes the main proposition of [18] to our setting. In essence
it states that given any irreducible analytic subset of a stratum of J∞(W, Ĩ) there
is a proper closed analytic subset (discriminant) of it such that two germs in the
same connected component of its complement are topologically finite-determined
and topologically equivalent. Then, letting residual subsets enter in the picture,
we show that such a discriminant is unique, provided that it satisfies a certain
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minimality condition. After we define the concept of flow-invariant subsets of
J∞(W, Ĩ) as a replacement of the concept of diffeomorphism-invariant subsets of
OCn,O. Then we can formulate the main result of the paper, which generalizes
Theorem 1 to our setting, and also shows that the predicted subsets are minimal
and unique in a certain sense. In the proof of our main result the invariance
of the relevant subsets by flows preserving the ideal sheaf Ĩ gets involved, in
contrast with the proof of the invariance by the action of D of Theorem 1, which
is straightforward. We leave for the last section the proof of the proposition stating
the existence of discriminants. For this we have found A. Varchenko’s ideas rather
suitable for our setting. Nevertheless, a naive generalization of Varchenko’s proof
collapses in a fundamental way in several places: summation of generic functions
of high order is needed, and this takes us out of our ideal sheaf.

The author would like to thank the referee and Isabel Hernandez Navarro for
suggestions concerning the exposition.

2. The analytic structure of Jr(W, Ĩ)

Let the field K be either R or C. Denote by EW the sheaf of analytic functions on
an open subset W of K

n (when K = C the sheaf EW is the sheaf of holomorphic
functions OW ). For any x ∈ W denote by mx the maximal ideal of the stalk of
EW,x.

When K = R we will work with an special type of real analytic subsets. Con-
sider R

n as the subset of C
n consisting of the points with real coordinates. Let

W ⊂ R
n be an open subset. A C-analytic subset of W is a closed real analytic

subset T ⊂ W such that there exists an open neighbourhood W ∗ of W in C
n

satisfying W ∗∩R
n = W and a closed complex analytic subset T ∗ ⊂ W ∗ such that

T ∗ ∩ R
n = T . A Zarisky locally closed C-analytic subset of W is the difference

between two C-analytic subsets of W . We use Ch. 5 of [12] as a general survey
reference for C-analytic subsets. Proofs are due to H. Cartan, F. Bruhat and
H. Whitney, and can be found in [4], and, mostly, in [3]. For the convenience of
the reader we recall the properties that are convenient for us:

A real analytic subset T ⊂ W is C-analytic if and only if there exist a coherent
ideal sheaf in EW whose zero-set is T . Any real analytic subset is locally C-
analytic. Any (possibly infinite) intersection of C-analytic subsets is a C-analytic
subset. Any locally finite union of C-analytic subsets is C-analytic. The inverse
image of a C-analytic subset by an analytic mapping is a C-analytic subset. A
C-analytic subset is C-irreducible if it is not the union of two C-analytic subsets
different from itself (a C-irreducible C-analytic subset needs not be irreducible
as a real analytic set). Given a C-analytic subset T ⊂ W there exists a unique
irredundant, locally finite family of C-irreducible C-analytic subsets whose union
is T . There is a notion of dimension of C-analytic subsets which satisfies the
following properties: let T ′ ⊂ T be C-analytic subsets of W , where T is C-
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irreducible, then dim(T ′) < dim(T ). If T is a C-analytic subset of dimension p,
there is a C-analytic subset T ′ ⊂ T such that dim(T ′) < p, and T \ T ′ is an
analytic manifold of dimension p; also, any point of T can be approximated by
points where T is an analytic manifold of dimension p. A complexification of a real
(C)-analytic subset T is a complex analytic variety T ∗ such that T is embedded
in T ∗ as a real analytic variety, and for each point t ∈ T there is:

• a neighbourhood U∗ of t in T ∗,
• a closed analytic subset Y ∗ of an open subset of C

n,
• and a complex analytic isomorphism ϕ : U∗ → Y ∗

such that Y ∗ ∩ R
n = ϕ(T ∩ U∗). Let T be a C-analytic subset of W and T ∗ a

complexification of T . Then C ⊂ T is a (C)-analytic subset of W if and only
if there is an open neighbourhood U∗ of T in T ∗ and a closed complex analytic
subset of C∗ of U such that C∗ ∩ T = C.

All the properties above are standard in the complex analytic setting whenever
they make sense.

We will adopt the following notational convention: when we work simultane-
ously with K = R, C and we write (C)-analytic, we mean C-analytic when K = R,
and complex-analytic when K = C. When we write just analytic, we mean just
real-analytic or complex-analytic depending on whether K equals R or C. When we
say that a (C)-analytic subset is irreducible we mean C-irreducible when K = R,
and just irreducible when K = C.

Let O denote the origin of K
n. Consider an ideal I ⊂ EO; let {f1, . . . , fm} be a

set generators of it. Consider an open neighbourhood W of the origin where each
of the generators is defined. Then {f1, . . . , fm} generate a coherent ideal sheaf Ĩ
whose stalk ĨO is equal to I.

For any V ⊂ W we define

Jr(V, Ĩ) :=
∐
x∈V

Ĩx/mr+1
x ∩ Ĩx J∞(V, Ĩ) :=

∐
x∈V

Ĩx. (2)

If 0 ≤ r ≤ s ≤ ∞ there are obvious projection mappings

πs
r : Js(V, Ĩ) → Jr(V, Ĩ). (3)

For any r ≤ ∞ there is another natural projection mapping

prr : Jr(V, Ĩ) → V (4)

whose fibre Jr(V, Ĩ)x over a point x ∈ V is, if r < ∞, the vector space Ĩx/mr+1
x ∩Ĩx,

and, if r = ∞, the space Ĩx.
For any x ∈ W define the function µx : Z≥0 → Z by the formula

µx(r) := dimK(Ĩx/mr+1
x ∩ Ĩx). (5)

Consider the Hilbert–Samuel function Hx of the EW,x-module Mx := EW,x/Ĩx. As

Hx(r) = dimK(Mx/mr+1
x Mx) = dimK

( EW,x/mr+1
x

Ĩx + mr+1
x /mr+1

x

)



664 J. Fernández de Bobadilla CMH

we deduce that µx(r) = dimK(EW,x/mr+1
x ) − Hx(r). In [2] the Zarisky analytic

upper-semicontinuity of the function Hx is proved. Therefore the function µ is
Zarisky analytic lower-semicontinous. As any real-analytic subset is locally C-
analytic, by shrinking W we can assume that the subset of W where the function
µ is smaller or equal than a given function is a closed (C)-analytic subset.

Definition 2. We define the Hilbert–Samuel stratification of W with respect to Ĩ
to be the minimal partition of W such that µx = µy for any two points x and y
in the same stratum. The strata are Zarisky locally closed (C)-analytic subsets,
and we will call them the Ĩ-strata of W .

We will use the following notations: consider an analytic function f on an open
subset U ⊂ K

m. For any x ∈ U we denote the germ of f at x by fx. For any
positive integer r we denote the r-jet of f at x by jrfx. Denote by Jr(M, Km)
the manifold of r-jets of mappings from an analytic manifold M to K

m. It has a
natural structure of vector bundle over M . Given any subset X of M , we denote
by Jr(M, Km)|X the restriction of the bundle to X.

For any positive integer r and any Ĩ-stratum X of W we endow

prr : Jr(X, Ĩ) → X (6)

with a natural structure of analytic vector bundle as follows: define the EW -
homomorphism ϕ : Em

W → EW by the formula ϕ(g1, . . . , gm) :=
∑m

k=1 gkfk. Taking
r-jets for any positive integer r, we obtain a mapping

ϕr : Jr(W, Km) → Jr(W, K), (7)

given by the formula ϕr(jrg1,x, . . . , jrgm,x) :=
∑m

k=1 jr(gkfk)x. We observe that
ϕr is a homomorphism between trivial analytic vector bundles over W , whose
image is canonically identified with Jr(W, Ĩ). Then the restriction

ϕr
|X : Jr(W, Kk)|X → Jr(W, K)|X (8)

is a homomorphism of constant rank between trivial analytic vector bundles.
Therefore, its image Jr(X, Ĩ) has a structure of locally trivial analytic vector
bundle over X whose rank is r(X) = µx(r) (for x ∈ X arbitrary) and with pro-
jection mapping prr. Furthermore, the inclusion Jr(X, Ĩ) ↪→ Jr(W, K)|X is a
monomorphism of analytic vector bundles.

We denote by ∂X the closed (C)-analytic subset of W given by X\X. It is clear
that Jr(X, Ĩ) is closed analytic in Jr(W \∂X, K). Suppose that K = R. We claim
that Jr(X, Ĩ) is actually closed C-analytic in Jr(W \ ∂X, R). View R

n as the set
of points of C

n with real coordinates. Locally around any x ∈ W , each generator
fi is given by a convergent power series. Therefore, there exists an open subset
W ∗ ⊂ C

n such that W ∗ ∩ R
n = W , and complex analytic functions f∗

1 , . . . , f∗
m

defined on W ∗ extending f1, . . . , fm. Let Ĩ∗ be the coherent sheaf generated by
them. Given any point x ∈ X, we have

Ĩ∗x/mr+1
x ∩ Ĩ∗x ∼= (Ĩx/mr+1

x ∩ Ĩx) ⊗R C,
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where mx denotes respectively in each side the maximal ideal of OW∗,x and of
EW,x. It follows easily that there is an Ĩ∗-stratum X∗ of W ∗ satisfying X∗ ∩W =
X. Moreover ∂X∗ ∩ W = ∂X. The real analytic manifold Jr(W \ ∂X, R) is
naturally embedded as the real part of Jr(W ∗ \ ∂X∗, C). As Jr(X, Ĩ) is equal to
Jr(X∗, Ĩ∗)∩Jr(W \∂X, R) and Jr(X∗, Ĩ∗) is closed analytic in Jr(W ∗ \∂X∗, C),
our claim is proved.

A subset C of J∞(X, Ĩ) is r-determined if it is of the form C = (π∞
r )−1(C ′) for

a certain subset C ′ of Jr(X, Ĩ). The determinacy degree of a subset C of J∞(X, Ĩ)
is the minimal integer r such that C is r-determined.

Definition 3. A finitely-determined closed (C)-analytic subset of J∞(X, Ĩ) is a
r-determined subset for a certain integer r, such that π∞

r (C) is a closed (C)-
analytic subset in Jr(X, Ĩ). A finitely-determined locally closed (C)-analytic subset
is the difference between two finitely-determined closed (C)-analytic subsets. The
irreducible (connected) components of a r-determined (locally) closed (C)-analytic
subset C are defined to be the inverse images by π∞

r of the irreducible (connected)
components of π∞

r (C).

We endow J∞(X, Ĩ) with the final topology for the family of projections
{π∞

r }r∈N. Then, a family {Cj}j∈J of finitely-determined subsets of J∞(X, Ĩ)
is locally finite if for any f ∈ J∞(X, Ĩ) there exists a positive integer r and a
neighbourhood U of π∞

r (f) ∈ Jr(X, Ĩ) such that (π∞
r )−1(U) meets only finitely

many Cj ’s. Choosing r high enough we can assume that each of the subsets that
(π∞

r )−1(U) meets are r-determined. Therefore the union ∪j∈JCj looks locally like
a finite-determined subset. This motivates

Definition 4. A closed (C)-analytic subset of J∞(X, Ĩ) is the union of a locally
finite family of finitely-determined closed (C)-analytic subsets of J∞(X, Ĩ). A
locally closed (C)-analytic subset is the difference between two closed (C)-analytic
subsets. The set of irreducible components of a (locally) closed (C)-analytic subset
of J∞(X, Ĩ) is defined to be the union of the sets of irreducible components of the
members of the locally finite family that gives rise to it.

Definition 5. Let C be an r-determined irreducible (locally) closed (C)-analytic
subset of J∞(X, Ĩ). Its codimension codim(C, J∞(X, Ĩ)) is defined to be the
codimension of π∞

r (C) in Jr(X, Ĩ).

The above definition does not depend on r because for any two positive integers
s > r, the mapping πs

r : Js(X, Ĩ) → Jr(X, Ĩ) is an affine bundle and, therefore,
preserves codimension and irreducibility by inverse image.

Consider a possibly infinite filtration

C1 ⊃ · · · ⊃ Ci ⊃ . . . (9)

of closed (C)-analytic subsets of J∞(X, Ĩ). We say that an irreducible component
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Ci,j of Ci is stable if it is an irreducible component of Ck for any k ≥ i. The
component Ci,j is called strongly unstable if it does not contain any stable compo-
nent of Ck for any k ≥ i. Let {Ci,j}j∈N be the set of strongly unstable irreducible
components of Ci (if there is a finite amount we allow repetition in the indexing).

The intersection of all the closed subsets of the filtration decomposes naturally
as ⋂

i∈N

Ci = Z1 ∪ Z2, (10)

where Z1 is the union of all the stable irreducible components of the Ci’s and

Z2 :=
⋃

{ji}i∈N∈NN

(
∞⋂

i∈N

Ci,ji
).

Take any positive integer c. Let {C ′
j}j∈Jc

be the set of all the strongly unstable
components of any of the Ci’s whose codimension is bigger or equal than c. Let
J ′

c be the indexes corresponding to the components which are maximal by the
inclusion relation among the elements of {C ′

j}j∈Jc
. The following inclusion follows

easily from the definition of strongly unstable components and from the fact that
each Ci is a locally finite union of irreducible closed (C)-analytic subsets:

Z2 ⊂
⋃

j∈J ′
c

C ′
j .

It is easy to check that the family {C ′
j}j∈J ′

c
is locally finite. Hence the set Z2 is

contained in a closed (C)-analytic subset with all of its irreducible components of
codimension bigger or equal than c. This motivates

Definition 6. A closed subset of J∞(X, Ĩ) is residual if for any positive integer c it
is contained in a closed (C)-analytic subset of U with all its irreducible components
of codimension at least c.

Remark 7. Suppose that Z ⊂ J∞(X, Ĩ) admits a decomposition as a union of
a closed (C)-analytic subset Z(a) and a residual subset Z(r). The subset Z(a) is
uniquely determined by Z, and is called the analytic part of Z. The subset Z(r) is
uniquely determined if it is minimal among the subsets such that Z = Z(a) ∪Z(r).
Then it is called the residual part of Z.

Given a filtration like (9), the intersection of all its terms can be decomposed
as the union of a closed (C)-analytic subset and a residual subset.

3. The topological and finite-determinacy discriminants

In order to fix ideas we state now what we mean by topological finite-determinacy
of functions.
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Definition 8. Two germs of functions f : (Kn, x) → (K, t) and f ′ : (Kn, x′) →
(K, t′) are said to be topologically right-left equivalent (we will say topologically
equivalent to abbreviate) if there are germs of homeomorphisms φ : (Kn, x′) →
(Kn, x) and ψ : (K, t) → (K, t′) such that ψ◦f◦φ = g. A function f ∈ Ĩx is called
topologically k-determined with respect to Ĩ if any other g ∈ Ĩx with the same
k-jet is topologically equivalent to f .

Proposition 9. Let X be any Ĩ-stratum of W . Let T ⊂ J∞(Ĩ , X) be a r-
determined locally closed irreducible (C)-analytic subset. There exists an s ≥ r and
a proper s-determined closed (C)-analytic subset A of T such that if two germs
f, g ∈ T have their s-jets π∞

s (f) and π∞
s (g) in the same connected component of

π∞
s (T ) \ π∞

s (A)′

then they are topologically equivalent.

The proof of this proposition will be given in the last section of the paper.

Notation. Let T be a subset of Jr(X, Ĩ) for a certain r ≤ ∞. Given any x ∈ W ,
we denote by Tx the fibre (prr)−1(x) ∩ T of the restriction of the mapping prr to
T . If V is a subset of X we denote by T|V the intersection (prr)−1(V ) ∩ T .

Let T ⊂ J∞(Ĩ , X) be a locally closed (C)-analytic subset with irreducible
components {Tj}j∈J . For each j ∈ J , let Aj ⊂ Tj be the (C)-analytic subset
predicted by Proposition 9. By the locally finiteness of the family {Tj}j∈J , the
union A := ∪j∈JAj is closed (C)-analytic in T . It is easy to check that any
germ in T \ A is topologically finite-determined and any two germs in the same
path-connected component of it are topologically equivalent.

Proposition 10. Let T be a locally closed (C)-analytic subset of J∞(Ĩ , X). There
exist unique subsets Γ ⊂ ∆ of T not containing any irreducible component of it
with the following properties:

(i) We have decompositions ∆ = ∆(a) ∪ ∆(r) and Γ = Γ(a) ∪ Γ(r) where ∆(a)

and Γ(a) are closed (C)-analytic subsets, and ∆(r) and Γ(r) are residual
closed subsets.

(ii) Any f, g ∈ T in the same path-connected component of T \ Γ are topologi-
cally equivalent. Moreover, any f ∈ T \∆ is topologically finite-determined
with respect to Ĩ.

(iii) The subsets ∆ and Γ are minimal among the subsets of T satisfying Prop-
erties (i) and (ii).

For any positive integer k, we let T≤k be the union of the irreducible components
of T which are k-determined, and T>k be the union of all the other irreducible
components. There is a unique subset ∆k of T≤k such that:

• It is the union of a closed (C)-analytic subset and a residual subset.
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• Any two germs in the same path-connected component of T≥k \∆k are topo-
logically k-determined and have the same topological type.

• It is minimal among the subsets of T≤k having the three properties above.
Moreover, the subset ∆k is actually a k-determined closed (C)-analytic.

We have Γ ⊂ ∆ ⊂ ∩k≥0(∆k ∪ T>k). Moreover

Γ(a) = ∆(a) = (∩k≥0(∆k ∪ T>k))(a). (11)

In other words, the subsets Γ, ∆ and the intersection ∩k≥0(∆k ∪ T>k), only may
differ in a residual set.

Proof. Let C be the set whose elements are subsets of T not containing any of
its irreducible components and satisfying the first two properties of Γ. The set C
is not empty because the subset A, constructed in the last paragraph before the
proposition, belongs to it. We consider in C the partial order given by inclusion.
Consider a chain

K1 ⊃ · · · ⊃ Ki ⊃ . . . (12)

of subsets of S. We claim that the intersection K := ∩i∈NKi belongs to C.
By Property (i) each Ki decomposes as Ki := K

(a)
i ∪ K

(r)
i , with K

(a)
i a closed

(C)-analytic subset and K
(r)
i residual. The closed (C)-analytic parts form a chain

K
(a)
1 ⊃ · · · ⊃ K

(a)
i ⊃ . . . (13)

We construct a chain
L1 ⊃ · · · ⊃ Li ⊃ . . . (14)

of subsets that admit a decomposition in a closed (C)-analytic subset L
(a)
i and

a residual subset L
(r)
i such that ∩i∈NLi = K and all the irreducible components

of L
(a)
i are either stable or of codimension at least i. We proceed inductively:

suppose that for a certain positive integer m we have defined a chain

L1 ⊃ · · · ⊃ Lm ⊃ Lm,m+1 ⊃ · · · ⊃ Lm,m+i ⊃ . . . (15)

such that, for any i ≤ m, all the irreducible components of L
(a)
i are either stable

or of codimension at least i and

(
⋂

i≤m

Li)
⋂

(
⋂

i>m

Lm,i) = K. (16)

Clearly, for any j ∈ N there are no non-stable components of codimension strictly
smaller than m in L

(a)
m,m+j . Let {Ch}h∈H be the collection of irreducible compo-

nents of L
(a)
m,m+1 of codimension m which are non-stable in the filtration given by

the closed (C)-analytic parts of the elements of filtration (15). For any h ∈ H we
denote by ih the smallest positive integer such that Ch is not an irreducible com-
ponent of L

(a)
m,m+ih

. For any positive integer j let {Zl}l∈L be the set of irreducible
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components of Lm,m+j not belonging to {Ch}h∈H . Define

Lm+1,m+j := (
⋃
l∈L

Zl)
⋃

L
(r)
m,m+j

⋃
(

⋃
j<ih

(Ch ∩ Lm,m+ih
)). (17)

Define Lm+1 = Lm+1,m+1. By construction, the Equality (16) holds replacing
m by m + 1. We will prove that each subset Lm+1,m+j for j ≥ 0 admits a
decomposition in a closed (C)-analytic subset L

(a)
i and a residual subset L

(r)
i . By

construction, all the non-stable irreducible components of L
(a)
m+1 are of codimension

at least m+1. Iterating inductively the procedure we obtain the desired chain (14).
For any non-negative integer j we consider the decomposition Lm+1,m+j =

L
(a)
m+1,m+j ∪ L

(r)
m+1,m+j , where

• the set L
(a)
m+1,m+j is the union of all the irreducible components of L

(a)
m,m+j

not belonging to {Ch}h∈H , together with ∪j<ih
(Ch ∩ L

(a)
m,m+ih

).
• the set L

(r)
m+1,m+j is the union of the sets L

(r)
m,m+j and ∪j<ih

(Ch ∩L
(r)
m,m+ih

).
As the irreducible components {Ch}h∈H form a locally finite family, the set

L
(a)
m+1,m+j is a locally finite union of closed (C)-analytic subsets and, hence, it

is closed (C)-analytic. On the other hand, for any positive integer c and any h
such that j < ih, there exists a closed (C)-analytic subset C ′

h contained in Ch

and containing Ch ∩ L
(r)
m,m+ih

, with all its irreducible components of codimension
at least c. By the local finiteness of {Ch}h∈H , the subset ∪j<ih

C ′
h is closed (C)-

analytic. Therefore, ∪j<ih
(Ch ∩ Lm,m+ih

)(r) is residual and, hence, L
(r)
m+1,m+j is

also residual.
Now we prove that K belongs to C. Let K(a) be the union of the stable

irreducible components of the filtration given by the L
(a)
i ’s. Define D to be the

union of all the intersections of the form ∩i∈N(L(u)
i ∪ L(r)), where L

(u)
i is the

union of all the non-stable components of Li. As K = ∩i∈NLi, we obtain easily
the decomposition K = K(a) ∪ D. We show that D is residual: let c be any
positive integer. Consider a closed (C)-analytic subset C containing L

(r)
c with all

its irreducible components of codimension at least c. The set L
(u)
c ∪ C, whose

irreducible components are all of them of codimension at least c, contains D.
Let γ : [0, 1] → T \K be a continuous path. In order to show that K belongs to

C, we only have to check that the topological type of the germ γ(t) is independent of
t. The set T \K is the union of the increasing sequence of open subsets {T \Ki}i∈N.
By the compactness of [0, 1], there is an index so that γ([0, 1]) ⊂ T \Ki. As Ki ∈ C,
the topological type remains constant along [0, 1].

We have shown that any decreasing sequence in C has a lower bound. By Zorn’s
Lemma we deduce the existence of Γ. The uniqueness holds, as the intersection of
two subsets in C is easily shown to belong to C. The existence and uniqueness of
∆ and ∆k for any k ∈ N is analogous.

Now we show that ∆k is k-determined (C)-analytic. Consider an irreducible
component Z of ∆(a)

k . Let r be the determinacy degree of Z. If r ≤ k then
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Z is k-determined. We study the case r ≥ k. Consider the affine bundle πr
k :

Jr(X, Ĩ) → Jk(X, Ĩ). Let B := π∞
k (T≤k), E := π∞

r (T≤k), and π := πr
k|E : E → B.

The irreducible closed (C)-analytic subset Zr := π∞
r (Z) is contained in E. We

claim that the set
Y := {y ∈ B : Ey ⊂ Zr}

is a (possibly empty) closed (C)-analytic subset of B. When K = R, it is easy to
choose complexifications E∗ and B∗ of E and B, and a mapping π∗ : E∗ → B∗,
which is a complex affine bundle, such that π∗

|E = π. As Zr is C-analytic, there
exists an open neighbourhood U∗ of E in E∗, and an irreducible complex closed
analytic subset Z∗

r of U∗ such that Z∗
r ∩ E = Zr. The open subset U∗ can be

chosen so that for any x ∈ B the fibre U∗
x is connected (we prove this at the end).

Let N be the rank of the affine bundle π∗ : E∗ → B∗. The subset

A∗ := {z ∈ Z∗ : dimz(Z∗
π∗(z)) = N}

is a complex closed analytic subset of Z∗. Given any z ∈ A∗, we have dimz Z∗
π∗(z) =

dimz(E∗
π∗(z)). Therefore, Z∗

π∗(z) contains an open neighborhood Vz of z in E∗
π∗(z).

Clearly, Vz is contained in A∗
π∗(z) and, hence, this subset is both closed and open

in the connected set U∗ ∩E∗
π∗(z). Thus A∗

π∗(z) = U∗ ∩E∗
π∗(z) for any z ∈ A∗. This

implies
U∗ ∩ (π∗)−1(π∗(A∗)) = A∗,

and from here it is easy to deduce that π∗(A∗) is a closed complex analytic subset
of the open subset π∗(U∗) ⊂ B∗. For any x ∈ B we have that U∗ ∩ E∗

x ⊃ Ex.
Therefore π∗(A∗) ∩ B ⊂ Y . On the other hand, if x ∈ Y , we have Ex ⊂ U∗ ∩ Z∗

x.
Consequently, Z∗

x is a closed complex analytic subset containing the real part Ex

of U∗ ∩ E∗
x. This implies that Z∗

x contains a neighbourhood of Ex in U∗ ∩ E∗
x

and, hence, by connectedness of U∗ ∩E∗
x, it is equal to it. Thus, π∗(A∗)∩B = Y ,

which proves our claim when K = R. The proof in the complex case is analogous,
but easier.

If (π∞
k )−1(Y ) = Z, then Z is actually k-determined. Otherwise we let ∆′

k

be the subset given by the union of ∆(r), (π∞
k )−1(Y ), and all the irreducible

components of ∆(a)
k different from Z. Clearly, the set ∆′

k is strictly contained in
∆k. Consider two germs f, g in the same path-connected component of T≤k \∆′

k.
We claim that both of them are topologically k-determined and have the same
topological type. This clearly gives a contradiction with the minimality of ∆k,
which shows that Z is k-determined. In the special case that neither f nor g
belong to ∆k, the claim holds by definition of ∆k. Suppose that f belongs to
∆k. As f does not belong to ∆′

k, there exists an open neighbourhood Vf of f in
J∞(X, Ĩ) such that Vf ∩ ∆′

k = ∅. Then f must be an element of Z \ (π∞
k )−1(Y ).

Let x := pr∞(f). As f does not belong to (π∞
k )−1(Y ), there exists a continuous

path γ : [0, 1] → Vf ∩ T≤k ∩ J∞(X, Ĩ)x such that γ(0) = f , the k-jet of γ(t) does
not depend on t, and γ(t) does not belong to Z for t �= 0. Obviously, γ(t) �∈ ∆k
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for t �= 0, and therefore the claim is reduced to the already verified case in which
neither f nor g belong to ∆k.

In order to show the k-determinacy of ∆k, it remains to show ∆(r)
k = ∅, but

this can be proved using arguments analogous to the last paragraph.
The inclusions Γ ⊂ ∆ ⊂ ∩k≥0(∆k ∩ T>k) are trivial. Now we show Equal-

ity (11). Let C be an irreducible component of (∩k≥0(∆k ∪ T>k))(a). We suppose
that C is not contained in Γ, and we look for a contradiction. There exists a cer-
tain integer r such that C is an irreducible component of ∆k for any k ≥ r. This is
so because, once we have chosen r large enough, we can assume that T>r does not
contain C. In particular C is r-determined. By Proposition 9 we find an integer
s ≥ r and a s-determined proper closed (C)-analytic subset A1 ⊂ C such that
any germ in C \ A1 is s-determined. Define ∆′

s as the union of all the irreducible
components of ∆s different from C. Let A2 be the union of all the irreducible
components of Γ(a) not contained in ∆′

s ∪ T>s. As Γ is contained in ∆s ∪ T>s we
have the inclusion A2 ⊂ C; moreover the last inclusion is strict because C is not
contained in Γ. Consider a proper closed (C)-analytic subset A3 of C such that
Γ(r) is contained in A3 ∪∆′

s ∪T>s (the existence of A3 is clear as Γ(r) is residual).
Define

A := A1 ∪ A2 ∪ A3 ∪ (C ∩ T>s).

Any germ in T≤s \ (A∪∆′
s) belongs either to T≤s \∆s or to C \A1. Therefore, it is

topologically s-determined. The set T≤s \ (A∪∆′
s) is clearly included in T \Γ and,

hence, any two germs in the same path-connected component of T≤s \ (A ∪ ∆′
s)

have the same topological type. Then A∪∆′
s have the same properties of ∆s and

is strictly smaller than it. This is a contradiction.
Finally, let’s check that U∗ can be chosen so that U∗ ∩ E∗

x is connected for
any x ∈ B. As π : E → B has contractible fibres there is a continuous section
s : B → E. Therefore, we can give a continuous R-vector bundle structure to
π : E → B and to π∗ : E∗ → B∗ in such a way that E is a subbundle of the
restriction of E∗ to B. Shrinking enough B∗ around B we can suppose that B
is a strong deformation retract of B∗. Indeed, by the Triangulation Theorem for
real analytic subsets we can think of (B∗, B) as a polyhedral pair; then we apply
Corollary 11 of [16], page 124. By well known arguments it follows that there is
a vector subbundle q : F → B∗ of π : E∗ → B∗ extending π : E → B. Using
partitions of unity we can construct a continuous tensor on E∗

|B that restricts to
an euclidean inner product on each fibre Ex. Let dx be the distance induced by it
in Ex. It is easy to find positive continuous functions

α : B∗ → R ∪ {+∞} β : B∗ → R,

(where a basis of neighbourhoods for +∞ in R∪{+∞} is given by {(a,+∞)}a∈R),
such that α(B) = {+∞} and

{z ∈ E∗
x : dx(z, 0) < α(x), d(z, Fx) < β(x)} ⊂ U∗ ∩ E∗

x.
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Redefining U∗ as the open subset

{z ∈ E∗ : dπ∗(z)(z, 0) < α(π∗(z)), d(z, Fπ∗(z)) < β(π∗(z))}
we obtain the desired properties. �

Definition 11. Let T be a locally closed (C)-analytic subset of J∞(Ĩ , X). We
call the sets Γ and ∆ that were constructed in the last proposition topological and
finite-determinacy discriminants of T respectively. For any positive integer k the
set ∆k is called the k-determinacy discriminant of T .

Next we study the behaviour of discriminants when restricting to open subsets
of U :

Lemma 12. Let T , Γ and ∆ be as in Proposition 10. Let U be an open subset of
W . When K = C, the subsets Γ|U and T ∩∆|U are respectively the topological and
finite-determinacy discriminants of T|U .

Proof. Clearly, Γ|U contains the topological discriminant of T|U . Consider the
decomposition Γ|U = Γ(a)

|U ∪ Γ(r)
|U , where the first component is (C)-analytic and

the second is residual. Any irreducible component C ′ of Γ(a)
|U is a subset of a

unique irreducible component C of Γ(a), which is r-determined for a certain r. By
Proposition 9 there exists s ≥ r and a s-determined closed (C)-analytic subset A
of C such that any two germs in the same path-connected component of C\A have
the same topological type. Let Z be any irreducible component of T . As K = C

we have that both Z \ Γ ∩ Z and C \ A are path-connected. Hence, two germs
which are both contained in one of these two subsets have the same topological
type. We claim that there exists a component Z of T containing C such that the
topological type of the germs of Z \Γ∩Z is different to the topological type of the
germs of C \A. Otherwise we let Γ′

1 be the union of all the irreducible components
of Γ(a) different from C. Let Γ′

2 be the union of the intersections C ∩X where X
is any irreducible component of T not containing C, and define

Γ′ := Γ′
1 ∪ Γ′

2 ∪ Γ(r) ∪ A.

It is easy to check that Γ′ has the first two properties of Γ and is strictly smaller
than it. This is a contradiction.

Let Z ′ be an irreducible component of Z|U containing C ′. As

dim(Z ′) = dim(Z) > dim(C) = dim(C ′),

the inclusion C ′ ⊂ Z ′ is strict. As Z ′ \Γ|U ∩Z ′ and C ′ \ (A∩C ′) are contained in
Z \Γ∩Z and C \A respectively, the topological type of the germs of Z ′ \Γ|U ∩Z ′

is different from the topological type of the germs of C ′ \ (A∩C ′). It follows that
C ′ is contained in the topological discriminant of T|U .

The proof for ∆ is analogous. �
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4. The main result

For any x ∈ W we denote by Dx the group of germs of analytic diffeomorphisms
of K

n that fix x, and by Dx,e the set of germs of analytic diffeomorphisms at x
that not necessarily fix it. Following [9], we define DĨx,e to be the subset of Dx,e

preserving the ideal; i.e. the subset formed by the germs that have a representative
φ : U → W such that φ∗Ĩφ(y) = Ĩy for any y ∈ U .

Let φt be a 1-parameter family of diffeomorphisms of DĨx,e smoothly depending
on t, such that φ0 = Id(Kn,x). Let φ1,t, . . . , φn,t be its components. The germ (at x)
of analytic vector field defined by X :=

∑t
i=1 dφi,t/dt|t=0∂/∂xi preserves the ideal

sheaf Ĩ; i.e., satisfies X(Ĩx) ⊂ Ĩx. Let Θ be the sheaf of analytic vector fields in W .
Define ΘĨ,e as the subsheaf whose sections preserve the ideal sheaf Ĩ. Denote the
stalk of ΘĨ,e at x by ΘĨx,e. Integration associates to any X ∈ Θx, a 1-parameter
flow φt of germs of analytic diffeomorphisms of Dx,e for which φ0 = Id(Kn,x); if
X ∈ ΘĨx,e, then φt ∈ DĨx,e for any value of t.

Any representative φ : U → W of a germ φ ∈ DIx,e induces by pushforward a
mapping

φ∗ : J∞(U, Ĩ) → J∞(φ(U), Ĩ), (18)

defined by φ∗(fy) := (fy◦φ−1)φ(y) for any y ∈ U and fy ∈ Ĩy. As the my-adic
filtration is transformed by pushforward into the mφ(y)-adic filtration, the mapping
φ∗ descends to a mapping

jrφ∗ : Jr(U, Ĩ) → Jr(φ(U), Ĩ). (19)

Clearly, any representative φ : U → W of a germ φ ∈ DIx,e preserves the Hilbert–
Samuel stratification; i.e., φ(U ∩ X) = φ(U) ∩ X for any Ĩ-stratum X. It is easy
to check that the restriction

jrφ∗ : Jr(U ∩ X, Ĩ) → Jr(φ(U) ∩ X, Ĩ) (20)

is an analytic diffeomorphism when r < ∞.

Definition 13. Let X be a Ĩ-stratum of W , and T ⊂ J∞(X, Ĩ) be a (locally)
closed (C)-analytic subset. We say that T is flow-invariant if for any open subset
V ⊂ W , any vector field θ ∈ Γ(V,ΘĨ,e) and any flow φ : U ×(a, b) → V integrating
θ, we have φt∗(Tx) = Tφt(x) for any t ∈ (a, b) and x ∈ U .

Now we are ready to state the main result of the paper:

Main Theorem. Shrink W so that ΘĨ,e is generated by sections defined on the
whole W . Consider X, a Ĩ-statum of W . Let T be any locally closed (C)-analytic
subset of J∞(X, Ĩ). There exists

• a unique filtration (which we call the filtration by successive discriminants)

T = A0 ⊃ A1 ⊃ · · · ⊃ Ai ⊃ . . .
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by closed (C)-analytic subsets,
• two residual subsets Γ(r) and ∆(r) (called respectively the topological and

finite-determinacy cumulative residual discriminants of T ),
with the following properties:

(1) We have ∩i≥0Ai ⊂ Γ(r) ⊂ ∆(r).
(2) For any i ≥ 0, the sets Ai+1 ∪ (Γ(r) ∩ Ai) and Ai+1 ∪ (∆(r) ∩ Ai) are

respectively the topological and finite-determinacy discriminants of Ai.
(3) Any irreducible component of Ai has codimension at least i.
(4) If T is flow-invariant, then Ai is flow-invariant for any i ≥ 0. Moreover

the k-determinacy discriminant of Ai is flow invariant. Therefore the sets
Γ(r) ∩ Ai and Γ(r) ∩ Ai are contained in a residual subset which is an
intersection of flow-invariant closed (C)-analytic subsets of C.

As a consequence, any germ f of T \ ∆(r) is topologically finite-determined with
respect to Ĩ. Furthermore, if K = C, given any open subset of W ′ ⊂ W , the
filtration by successive discriminants and the topological and finite-determinacy
cumulative residual discriminants for T|W ′ are the restrictions over W ′ of the
corresponding objects for T .

This theorem shows, in particular, that given any ideal sheaf of analytic func-
tions, the subset of functions that are not topologically finite-determined with
respect to it is very small (we can think of it as an infinite-codimension subset).
In contrast with Theorem 1, we can not provide uniform finite-determinacy bounds
for prescribed codimension, that is, we can not ensure that for a prescribed in-
teger i, there is another positive integer r for which the subset Ai is necessarily
r-determined. The reason is that in the jet-spaces Jr(X, Ĩ), instead of the alge-
braic structure present in ordinary jet-spaces, we have just an analytic structure.
Furthermore, the subsets in which OCn,O decomposes according to Varchenko’s
Theorem, are invariant by the whole DO. As we want to work in a neighbour-
hood of the origin, rather that just at the origin itself, we need to replace the
DO-invariance by the flow-invariance. Nevertheless we have the following:

Remark 14. If we restrict ourselves to work at the origin, that is, to use the space
I = ĨO instead of J∞(X, Ĩ), the corresponding jet spaces I/mr+1

O ∩ I are affine
spaces. Then, if we assume I to be generated by Nash functions, the arguments of
this paper can be modified so that, if the starting subset T of the Main Theorem
is finitely determined and algebraic, then, the subsets Ai are finitely-determined
and algebraic. Finally, let DĨ,O be the subgroup of DO formed by diffeomorphisms
which preserve the ideal ĨO. If T is assumed to be DĨO

-invariant, then the subsets
{Ai}i≥0, Γ(r) and ∆(r) can be constructed to be DĨO

-invariant.

Proof of the Main Theorem. We show first the existence and uniqueness of the
required objects satisfying all the requirements except Property 4. For any non-
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negative integer j there is a unique filtration

T = A0 ⊃ · · · ⊃ Aj

by closed (C)-analytic subsets, and two unique filtrations

Γ0 ⊃ · · · ⊃ Γj

∆0 ⊃ · · · ⊃ ∆j

by closed subsets with the following properties:
• For any i < j the sets Ai+1 ∪ (Γj ∩Ai) and Ai+1 ∪ (∆j ∩Ai) are respectively

the topological and finite-determinacy discriminants of Ai, being the set Ai

the analytic part in both cases.
• The sets Γj ∩ Aj and ∆j ∩ Aj are respectively the topological and finite-

determinacy discriminants of Aj .
The construction is obvious for j = 0. Supposing that the filtrations have been
constructed for a certain j, it is clear that Aj+1 must be defined to be equal to
the non-residual part of the topological discriminant of Aj , that is

Aj+1 := (Γj ∩ Aj)(a).

The set Γj+1 can only be defined to be the union of the residual parts of the topo-
logical discriminants of Ai, for any i ≤ j, with the whole topological discriminant
of Aj+1. The definition of ∆j+1 is analogous. We have shown by induction that
the required filtrations can be constructed for any non-negative integer j and are
unique. It is easy to show that the infinite filtration

A0 ⊃ · · · ⊃ Ai ⊃ . . .

and the closed sets Γ(r) := ∩j∈NΓj and ∆(r) := ∩j∈N∆j satisfy Properties 1 − 3
from the statement of the Theorem. If K = C, using Lemma 12 it is easy to
check that the filtration by successive discriminants and the topological and finite-
determinacy cumulative residual discriminants satisfy the compatibility condition
concerning restrictions to open subsets of W .

It only remains to prove Property 4 when T is flow-invariant. We only prove the
statement concerning Ai, being the one concerning the k-determinacy discriminant
analogous. We work by induction on i. Suppose that Aj is flow-invariant for any
j ≤ i. We show that Ai+1 is flow-invariant. For this we show that each irreducible
component C of Ai+1 is flow invariant.

Consider an increasing sequence {Vk}k∈N of open subsets of W such that the
closure V k is compact and contained in Vk+1 and the union ∪k∈NVk equals W .
Denote by ∂Vk the boundary V k \Vk. Define dk := d(V k, ∂Vk+1), that is, the min-
imal euclidean distance between points of V k and ∂Vk+1. Consider a decreasing
sequence {εk}k∈N of positive real numbers such that εk < dk for any k ∈ N.

Let Ak be the set of analytic diffeomorphisms φ such that there exists
• a vector field θ ∈ Γ(W,ΘĨ,e),
• an open subset U which is a neighbourhood of V k,
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• a flow ψ : U × (a, b) → W integrating θ, such that φ = ψt for a certain
t ∈ (a, b).

For any φ ∈ Ak, we define δ(φ) := max{||φ(x)− x|| : x ∈ V k}. Given any positive
η, we define

Aη
k := {φ ∈ Ak : δ(φ) < η}.

If η ≤ εk, then it is easy to show that φ(Vk+1) ⊃ V k for any φ ∈ Aη
k+1.

Let r be the determinacy degree of the irreducible component C. The set

Dk(η) :=
⋂

φ∈Aη
k+1

φ∗(C|Vk+1)|Vk
,

is a r-determined closed (C)-analytic subset of J∞(X ∩ Vk, Ĩ) because it is in-
tersection of such type of subsets. Let {Cj}j∈J be the irreducible components of
Ai+1 different from C. Define

A′
i+1,k(η) := Dk(η)

⋃
(
⋃
j∈J

Cj|Vk
).

Consider two germs f and g in the same path-connected component of

Ai|Vk
\ (A′

i+1,k(η) ∪ Γ(r)
|Vk

).

We claim that f and g are topologically equivalent. Define

X := ∩φ∈Aη
k+1

φ∗(Ai+1 ∪ Γ(r))|Vk
.

As X ⊂ A′
i+1,k(η) ∪ Γ(r)

|Vk
, the germs f and g are in the same path-connected

component of Ai|Vk
\ X. Let γ : [0, 1] → Ai|Vk

\ X be a continuous path joining
them. For each t ∈ [0, 1], there exists φ ∈ Aη

k+1 such that γ(t) is not in the
closed subset φ∗(Ai+1 ∪ Γ(r))|Vk

. Therefore, there exists a positive ξ such that
γ(t − ξ, t + ξ) does not meet φ∗(Ai+1 ∪ Γ(r))|Vk

. Hence, φ∗(γ(t − ξ, t + ξ)) is
included in Ai \ (Ai+1 ∪Γ(r)) and, consequently, all the germs of γ(t− ξ, t+ ξ) are
topologically equivalent. Covering [0, 1] by intervals like (t− ξ, t + ξ), we conclude
the proof of our claim.

Now we show that Dk(η) is flow invariant. We do it in two steps:
Step 1: we prove that Dk(η) is flow-invariant with respect to vector fields

defined on the whole W . Consider such a vector field θ ∈ Γ(W,ΘI,e). Choose a
point x ∈ Vk; consider a neighbourhood U of x in W and a flow ψ : U×(a, b) → Vk

(with 0 ∈ (a, b)) obtained by integration of θ. We have to show that ψt∗Dk(η)x =
Dk(η)ψt(x) for any t ∈ (a, b).

In order to get lighter notation, denote by D′(η) the projection π∞
r (Dk(η)).

As Dk(η) is r-determined, it is enough to show that jrψt∗D′(η)x ⊂ D′(η)ψt(x)

for any t ∈ (a, b) or, which is the same, that jrψt∗(f) belongs to D′(η) for any
f ∈ D′(η)x. Choose f ∈ D′(η)x. Define Lf to be the set whose elements are the
numbers t ∈ (a, b) such that jrψt∗(f) belongs to D′(η). As D′(η) is closed, the set
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Lf is non-empty (as 0 belongs to it) closed subset of (a, b). If we prove that Lf is
also open, then we conclude by connectedness of (a, b).

Consider t ∈ Lf , we need to find a neighbourhood of t included in Lf . As
ψt1◦ψt2 = ψt1+t2 , we can assume without loosing generality that t = 0. By
noetherianity of germs of analytic subsets, there exists a neighbourhood Nf of f

in Jr(X, Ĩ) and a finite subset A(f) of Aη
k+1 such that

D′(η) ∩ Nf = [
⋂

φ∈A(f)

jrφ∗(π∞
r (C|Vk+1))|Vk

]
⋂

Nf ;

By the finiteness of A(f), the number ν := max{φ ∈ A(f) : δ(φ)} is strictly
smaller than η. Consider the compact subset K := ∪φ∈A(f)φ(V k+1) ⊂ W . There
exists a positive ξ such that if |t| < ξ, the domain of definition of ψt contains an
open neighbourhood of K and

max{||(ψt)(x) − x|| : x ∈ K} < η − ν.

Given any φ ∈ A(f), and t with |t| < ξ, the domain of definition of the composite
ψt◦φ is clearly a neighbourhood of V k+1. Moreover,

||ψt◦φ(x) − x|| ≤ ||ψt(φ(x)) − φ(x)|| + ||φ(x) − x|| < η − ν + η = η

and, hence, ψt◦φ belongs to Aη
k+1. Then, we have

jrψt∗(D′(η) ∩ Nf ) = jrψt∗
(
[

⋂
φ∈A(f)

jrφ∗(π∞
r (C|Vk+1))|Vk

]
⋂

Nf

) ⊂

⊂
⋂

φ∈A(f)

jr(ψt◦φ)∗(π∞
r (CV|k+1))|Vk

⊂
⋂

φ∈Aη
k+1

jr(φ)∗(π∞
r (CVk+1))|Vk

= D′(η)

for any t ∈ (−ξ, ξ); Therefore (−ξ, ξ) is included in Lf .
Step 2: Let θ1,. . . ,θl be vector fields generating the sheaf ΘĨ,e over W . Con-

sider an open subset U ⊂ W and a section θ ∈ Γ(U,ΘĨ,e). For any x ∈ U there
exists a neighbourhood Ux of x in U and analytic functions g1, . . . , gh such that
θ =

∑h
i=1 giθi. Choose local coordinates (z1, . . . , zn) around x with the property

that each zi is defined on the whole K
n. Having perhaps to shrink Ux, we can

assume that the power series expansions of g1, . . . , gh with respect to these co-
ordinates are convergent on the whole Ux. Denote by g

(l)
i the truncation of the

power series expansion of gi at the l-th term. The functions g
(l)
i are polynomials in

the local coordinates and, hence, their domain of definition is also K
n. Therefore,

for each positive integer l we can define the vector field θ(l) ∈ Γ(W,ΘĨ,e) by the

formula θ(l) =
∑h

i=1 g
(l)
i θi. The sequence of vector fields {θ(l)}l∈N converges to θ

on Ux.
The following statement can be easily deduced from the continuous depen-

dence of the solutions of differential equations with respect to a parameter (see
[1] Ch. 1, § 2.8): there exists a positive integer N , an open neighbourhood U ′

x ⊂ Ux

of x containing the origin, and a positive real number ξ such that
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(1) for any l ≥ N there exists a flow ψ(l) : U ′
x × (−ξ, ξ) → Ux integrating the

vector field θ(l),
(2) there exists a flow ψ : U ′

x × (−ξ, ξ) → Ux integrating the vector field θ, and
the sequence of mappings {ψ(l)}l≥N converges to ψ.

Suppose that we are given any flow ψ : U ′ × (a, b) → U (with 0 ∈ (a, b))
integrating θ. Define Lf as in Step 1. Again, it is enough to show that Lf is
open. Using that ψt1+t2 = ψt1◦ψt2 , the proof can be reduced to the existence
of ξ > 0 such that (−ξ, ξ) is contained in Lf . Choose a positive ξ and an open
neighbourhood U ′

x ⊂ Ux of x such that the flow ψ : U ′
x × (−ξ, ξ) → U is a limit

of flows ψ(l) : U ′
x × (−ξ, ξ) → U integrating vector fields {θ(l)}l∈N defined on the

whole W . Then jrψt∗(f) is the limit of the sequence {jrψ
(l)
t∗ (f)}l∈N. For being

θ(l) defined on the whole W , due to Step 1, we have jrψ
(l)
t∗ (f) ∈ D′(η) for any

l ∈ N and any t ∈ (−ξ, ξ). Then, as D′(η) is closed, we have jrψt∗(f) ∈ D′(η) for
any t ∈ (−ξ, ξ) . This concludes the proof of the flow-invariance of Dk(η).

We claim that the restriction Dk+1(εk+1)|Vk
is equal to Dk(εk). As Vk+1 ⊂ Vk+2

and εk+1 < εk, we have Aεk+1
k+2 ⊂ Aεk

k+1. Consequently, Dk+1(εk+1)|Vk
⊃ Dk(εk).

Obviously ⋂
φ∈Aεk

k+1

φ∗(Dk+1(εk+1))|Vk
⊂

⋂
φ∈Aεk

k+1

φ∗(C|Vk+1)|Vk
= Dk(εk).

On the other hand, by the flow-invariance of Dk+1(εk+1)|Vk
, the first term of the

last expression is equal to D
εk+1

k+1|Vk
. This shows our claim. It follows that the union

D :=
⋃
k∈N

Dk(εk)

is a r-determined closed (C)-analytic subset of C which is flow-invariant. We
define A′

i+1 as the union of D with all the irreducible components of Ai+1 different
from C. Any two germs in the same connected component of Ai \ (A′

i+1 ∪ Γ(r))
are topologically equivalent; indeed, it is enough to check this statement at the
restriction over each Vk, and this has been already proved. Therefore, the set
A′

i+1 ∪ (Γ(r) ∩ Ai) contains the topological discriminant of Ai. Taking analytic
parts we get A′

i+1 ⊃ Ai+1, which implies that D = C. Consequently C is flow-
invariant. �

5. Generalization of Varchenko’s method

The overall structure of the proof of Proposition 9 follows [18]. It is based on
an algorithm that shows the existence of a generic R-L-topological type for any
family of functions, and on a definition of the so-called optimal germs in each finite-
determined locally closed analytic subset of J∞(X, Ĩ). Nevertheless, a straight-
forward generalization of Varchenko’s proof to our case does not work, mostly
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because in his definition of optimal germs it is needed to perform certain modi-
fications of functions that would take us outside the ideal sheaf we are working
with. Also because he works with germs at the origin and we want to deal with
a neighbourhood of it. This forces us to perform non-trivial modifications both in
the algorithm and in the selection of optimal germs.

For notational convenience we recall §1.1 of [18]: let Cn[z] be the space of monic
polynomials zn + an−1z

n−1 + · · ·+ a0. It is an affine space whose coordinates are
a0, . . . , an. For each sequence of positive integers i1, . . . , ik such that i1 + · · · +
ik = n, we consider the subset of Cn[x] consisting of polynomials with k roots
of multiplicities i1, . . . , ik. This defines a stratification of Cn[z], whose strata
will be called multiplicity strata. For each m, we define Sm to be the union of
multiplicity strata containing polynomials with less than m different roots. The
set Sm is determined by a finite set of polynomial equations (with real coefficients)
in a0, . . . , an.

Let U ⊂ K
l be an open subset. An U -family of functions is, by definition, a

K-valued analytic function F defined on an open neighbourhood V of {O} ×U ⊂
K

n × K
l. Let T ⊂ U be a closed (C)-analytic analytic subset. A T -family of

functions is the restriction to V ∩ (Kn × T ) of a U -family of functions. With
any T -family of functions, we associate its graph Γ ⊂ [V ∩ (Kn × T )]×K, i.e. the
subvariety defined by the function PF := u−F , where u is the coordinate function
of the target K.

Suppose K = R. View R
n as the subset of points in C

n with real coordinates.
Let F be a T -family of functions. As T is C-analytic, there exists an open subset
U∗ ⊂ C

l and a closed analytic subset T ∗ ⊂ U∗ such that U∗ ∩ R
n = U and

T ∗ ∩ U = T . According with Proposition 16 of [12], page 105, the subsets T ∗ and
U∗ can be chosen minimal in the following sense: if T ′ is any other complex analytic
subset of a neighbourhood of T in C

n for which T ′ ⊃ T , then T ′∩W ⊃ T ∗∩W for a
certain neighbourhood W of T in C

n. As F can be expressed locally as convergent
power series, we can shrink U∗ so that there is a neighbourhood V ∗ of V in C

n×C
l,

containing {O} × U∗, and a complex analytic function F ∗ defined on V ∗ whose
restriction to V is F . If T ∗ is chosen minimal, we say that the T ∗-family defined
by F ∗ is a minimal complex extension of the T -family defined by F . We denote
by Γ∗ the graph of the T ∗-family defined by F ∗. Clearly Γ∗ ∩ (Rn × R

l × R) = Γ.
Our aim is to show that generic functions of any T -family of functions are R-L-

topologically equivalent. We work first for K = C, and then explain the necessary
modifications needed for the real case.

Algorithm. Fix a coordinate system (x1, . . . , xn) of C
n. Consider a T -family of

functions (for a certain T ⊂ C
l). We describe an algorithm that constructs:

(i) a new coordinate system (z1, . . . , zn) of C
n (which will be called a suitable

coordinate system),
(ii) a proper analytic subset A ⊂ T ,
(iii) positive continuous functions r1, . . . , rn+1 defined over T \ A,
(iv) non negative integers k1, k2, . . . , kn+1 (with k1 = 0),
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(v) a sequence of pseudopolynomials P1, . . . , Pn+1 of the form Pn+1 := udn+1 ,
and

Pi(zi, . . . , zn, u, y) = zdi
i +

di−1∑
j=0

αj
i (zi+1, . . . , zn, u, y)zj

i ,

for i ≤ n, with di ≥ 0 for any i, and αj
i analytic in Ui+1, where

Ui := {(zi, . . . , zn, u, y) : y ∈ T \A, |zi| < ri(y), . . . , |zn| < rn(y), |u| < rn+1(y)},
with the following properties: let Γi := V (Pi) ∪ V (Ri), where Ri := uki , then

(1) Γ1 ∩ U1 = Γ ∩ U1.
(2) For each i ≤ n the polynomials Pi(zi, ai+1, . . . , an, b, c) are in the same

multiplicity stratum as polynomials in zi if (ai+1, . . . , an, b, c) ∈ Ui+1\Γi+1.
(3) The roots of the polynomial Pi(zi, ai+1, . . . , an, b, c) are in the disc of radius

ri(c) for any (ai+1, . . . , an, b, c) ∈ Ui+1.
(4) αj

i (0, . . . , 0, y) = 0 for any i, j.

Notation 15. Let f ∈ C{z1, . . . , zn, u}, we define

mult′(f) := mult(f(z1, . . . , zn, 0)), and widegz1
(f) := mult(f(z1, 0, . . . , 0)).

Now we describe the algorithm under the assumption that PF (0, . . . , 0, y) = 0
for any y ∈ T (otherwise the existence of the claimed objects is easy):

Step 1: As PF (0, . . . , 0, y) = 0 for any y ∈ T , and u � |PF , we deduce that
0 < mult′(PF (·, . . . , ·, y)) < ∞ for any y ∈ T . Define

d1 := min{mult′(PF (·, . . . , ·, y)) : y ∈ T}.
Considering new coordinates (z1, z

1
2 . . . , z1

n) of C
n related to (x1, . . . , xn) by the

formulas x1 := z1, xi := zi
1 + λ1

i z1 for i > 1, where the λ1
i ’s are generic, we deduce

that widegz1
(PF (�, . . . , �, y)) = d1 for certain y ∈ T .

Define
A1 := {y ∈ T : widegz1

(PF (·, . . . , ·, y) > d1}.
Clearly A1 is a proper analytic subset of T .

By Weierstrass Preparation Theorem applied in a neighbourhood of the set

{(0, . . . , 0, y) : y ∈ T \ A1},
there exists a neighbourhood V1 of T \ A1 in C

l, and positive continous functions
r1, r

1
2, . . . , r

1
n+1 defined on V1 such that PF decomposes on the set

{(z1, z
1
2 , . . . , z1

n, u, y) : y ∈ V1, |z1| < r1(y), . . . , |z1
n| < r1

n(y), |u| < r1
n+1(y)}

as PF = φP1, where
• the function φ is analytic and does not vanish at any point of the set and
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• P1 is a pseudopolynomial of the form

P1(z1, z
1
2 . . . , z1

n, u, y) = zd1
1 +

d1−1∑
j=0

αj
1(z

1
2 , . . . , z1

n, u, y)zj
1,

such that its coefficients αj
1 are analytic on the set

{(z1
2 , . . . , z1

n, u, y) : y ∈ V1, |z1
2 | < r1

2(y), . . . , |z1
n| < r1

n(y), |u| < r1
n+1(y)}.

Set k1 = 0. Choosing r1
2, . . . , r

1
n+1 small enough we ensure that Property 3 is

satisfied for P1.
Step i (for 1 < i ≤ n): in the previous step we have constructed a system

of coordinates z1, . . . zi−1, z
i−1
i , . . . , zi−1

n of C
n, a proper analytic subset Ai−1 ⊂

T , positive continuous functions r1, . . . ri−1, r
i−1
i , ri−1

n+1, a neighbourhood Vi−1 of
T \Ai−1 in C

l and a pseudopolynomial Pi−1 = z
di−1
i−1 +

∑di−1−1
j=0 αj

i−1z
j
i−1 such that

the functions αj
i−1 are analytic on the set U ′′

i defined by{
(zi−1

i , . . . , zi−1
n , u, y) : y ∈ Vi−1, |zi−1

i | < ri−1
i (y), . . . , |zi−1

n |
< ri−1

n (y), |u| < ri−1
n+1(y)

}
.

Consider Pi−1 as a family of polynomials of Cdi−1 [zi−1] parametrized by the
set U ′

i defined by{
(zi−1

i , . . . , y) : y ∈ T \Ai−1, |zi−1
i | < ri−1

i (y), . . . , |zi−1
n | < ri−1

n (y), |u| < ri−1
n+1(y)

}
.

Since T is irreducible there exists a multiplicity stratum of Cdi−1 [zi−1] whose clo-
sure contains all the polynomials of this family, and such that there is a polynomial
of the family belonging precisely to this stratum. Let this stratum contain polyno-
mials with mi different roots. Let G1, . . . , Gki

be the polynomials in the variables
a0, . . . adi−1 determining the set Smi

in Cdi−1 [zi−1]. We order them so that the
first si of them (for a certain positive si) are the polynomials that does not vanish
identically in U ′

i when we substitute the variables aj ’s by the functions αj
i−1’s.

Define an analytic function on the set U ′′
i by the formula

P ′
i :=

si∏
j=1

Gj(α0
i−1, . . . , α

di−1−1
i−1 ).

Having perhaps to substitute ri−1
n+1 by another smaller positive continuous function,

we can assume that P ′
i admits a unique expression in U ′′

i as

P ′
i =

∞∑
k=0

ψkuk,

where ψk is an analytic function on U ′′
i not depending on u. Let k′

i be minimal such
that the restriction of ψk′

i|U ′
i

is not identically zero. Define P ′′
i :=

∑∞
k=k′

i
ψkuk.

Clearly P ′′
i|U ′

i
= P ′

i|U ′
i
. Define ki := ki−1 + k′

i, and P ′′′
i := P ′′

i /uk′
i . Clearly we have

di := min{mult′(P ′′′
i (0, . . . , 0, y)) : y ∈ T \ Ai−1} < ∞.



682 J. Fernández de Bobadilla CMH

We consider several cases:
Case 1 (di = 0): We choose the definitive coordinate system (z1, . . . , zn) equal

to (z1, . . . , zi−1, z
i−1
i , . . . , zi−1

n ). Define the closed analytic proper subset A as

A := Ai−1 ∪ {y ∈ T \ Ai−1 : mult′(P ′′′
i (·, . . . , ·, y) > 0}.

Define Pi = · · · = Pn+1 = 1, take kn+1 = · · · = ki+1 = 0 and choose, for any j ≥ i,
the positive continuous function rj upper-bounded by ri−1

j and small enough so
that the intersection {P ′′

i = 0} ∩ Ui is empty. The algorithm concludes here.
Case 2 (di > 0): We consider new coordinates (z1, . . . , zi, z

i
i+1, . . . , z

i
n) related

to the previous ones by the formulas zi−1
i = zi and zi−1

j = zi
j + λi

jzi for j > i.
Choosing the λi

j ’s generic, we obtain that the set

Ai := Ai−1 ∪ {y ∈ T \ Ai−1 : widegzi
(P ′′′

i ) > di}
is a proper analytic subset of T .

By Weierstrass Preparation Theorem applied in a neighbourhood of the set

{(0, . . . , 0, y) : y ∈ T \ Ai},
there exists a neighbourhood Vi of T \Ai in C

l and positive continuous functions
ri, r

i
i+1 . . . , ri

n+1 such that P ′′
i decomposes on the set

{(zi, z
i
i+1, . . . , z

i
n, u, y) : y ∈ Vi, |zi| < ri(y), . . . , |zi

n| < ri
n(y), |u| < ri

n+1(y)}
as P ′′

i = φPi, where

• the function φ is analytic and does not vanish at any point of the set,
• Pi is a pseudopolynomial of the form

Pi(zi, z
i
i+1 . . . , zi

n, u, y) = zdi
i +

di−1∑
j=0

αj
i (z

i
i+1, . . . , z

i
n, u, y)zj

i ,

such that its coefficients αj
i are analytic on

{(zi
i+1, . . . , z

i
n, u, y) : y ∈ Vi, |zi

i+1| < ri
i+1(y), . . . , |zi

n| < ri
n(y), |u| < ri

n+1(y)}.
Choosing ri

i+1, . . . , r
i
n+1 small enough we ensure that Property 3 is satisfied for Pi.

Step n + 1: this step runs parallel to the induction step (Step i). As u is the
only variable of P ′

i+1 we must be in Case 1. This concludes the algorithm.

The real case: Suppose now that K = R. Consider T ⊂ U , a closed C-analytic
subset contained in an open subset of R

n. Let V be an open neighbourhood of
{O} × U in R

n × R
l. Let F : V → R define a T -family of functions. Consider

T ∗ ⊂ U∗ ⊂ C
n and a complex analytic function F ∗ : V ∗ → C (where V ∗ is a

neighbourhood of {O} × U∗ in C
n × C

l) such that the T ∗-family given by F is a
minimal complex extension of the T -family defined by F . It is easy to check that
the preceding algorithm can be applied to the T ∗-family F ∗ so that:
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(1) The initial coordinate system (x1, . . . , xn) is a real coordinate system when
restricted to R

n. In each step we choose a change of coordinates with real
matrix, so that the new coordinate functions (z1, . . . , zn) of C

n form a real
coordinate system when restricted to R

n.
(2) The subset A ∩ R

n is a proper C-analytic subset of T .
(3) For any i ≤ n and j ≤ di − 1, the function αj

i assumes real values when
zi, . . . , zn, u, y are real.

Given a T -family of functions F , for any t ∈ T we will denote by F|t the germ
at the origin given by the restriction of F to K

n × {t}.

Proposition 16. Let K be either R or C. Let F be a T -family of functions. Let
A ⊂ T be the subset constructed in the preceding algorithm. For any t, t′ in the
same connected component of T \ A, the functions F|t and F|t′ are topologically
R-L-equivalent.

Proof. Suppose K = C. Let Γ be the graph of F . View Γ as a family of analytic
hypersurfaces parametrized by T . Proposition 3.1 of [18] can be adapted to apply
(with minor changes in its proof) to this setting. If K = R, we consider a T ∗-
family F ∗ which is a minimal complex extension of the T -family F . Let Γ∗ be the
graph of F ∗. Then, Proposition 3.2 of [18] can be adapted to apply (with changes
in its proof) to the family of hypersurfaces Γ∗.

Notice that we have designed our algorithm so that the matrix (ci,j) relat-
ing the coordinate systems (x1, . . . , xn, u) and (z1, . . . , zn, u) of K

n × K has block
form cn+1,i = ci,n+1 for any i �= n + 1. Since we are able to adapt Proposi-
tions 3.1 and 3.2 of [18], the proofs of Propositions 4.1 and 4.2 of [18] apply word
by word in our case. Applying them respectively in the complex and real case, our
result follows. �

Let X be any Ĩ-stratum of W . Let T ⊂ J∞(X, Ĩ) be an irreducible (C)-
analytic subset. Before proving Proposition 9, we have to distinguish a special
class of germs in T , which will be called optimal germs. This class is, in a certain
sense, “finitely determined and open”. We select the germs that we will call
optimal in the following way:

Search for Optimal Germs. The differences between the algorithm described
above and Varchenko’s algorithm force us to also introduce some different features
in the selection of optimal germs. In particular, Varchenko’s search for optimal
germs can be performed with any coordinate system of K

n. This will not be the
case in our situation: as the search for optimal germs advances, we will need to
modify our original coordinate system, getting at the end a new one that will be
regarded as good coordinate system with respect to T . We will proceed in several
stages in which we will select smaller subsets of T each time.

We fix an initial coordinate system (x1, . . . , xn) for K
n. We view any f ∈
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J∞(X, Ĩ) as a convergent power series in C{x1, . . . , xn} by taking its Taylor ex-
pansion at pr∞(f).

Stage 1. Given any f ∈ T we consider P f = u − f ∈ C{x1, . . . , xn, u}.
Obviously, mult′(P f ) < ∞ and, therefore,

d1 := min{mult′(P f ) : f ∈ T} < ∞.

Considering z1, z
1
2 , . . . , z1

n, a new coordinate system of K
n related with the old one

by formulas of the form x1 = z1, xi = z1
i + λ1

i z1, with the λ1
i ’s real and generic

enough, we obtain that min{widegz1
(P f ) : f ∈ T} = d1. Define the non-empty

set
E1
1 := {f ∈ T/widegz1

(P f ) = d1}.
By Weierstrass Preparation Theorem, given any f ∈ E1

1 , it is possible to find
positive numbers r1(f), . . . , rn+1(f) such that P f can be decomposed over the
open subset

U1
1 (f) := {(z1, z

1
2 , . . . , z1

n, u) : |z1| ≤ r1(f), . . . , |u| ≤ rn+1(f)}
as P f = φ1P1[f ], where φ1 does not vanish anywhere in U1 and P1[f ] is a pseu-
dopolynomial of the form

P1[f ](z1, . . . , u) := zd1
1 +

d1−1∑
j=1

zj
1α

j
1[f ](z1

2 , . . . , u).

View P1[f ] as a family of polynomials of Cd1 [z1] (even when K = R) parametrized
by the open subset

U1
2 (f) := {(z1

2 , . . . , z1
n, u) : |z1

2 | ≤ r2(f), . . . , |u| ≤ rn+1(f)}.
There exists a stratum S1(f) of Cd1 [z1] whose closure contains the whole family,
and such that there is a member of the family belonging to it. Let m1(f) be the
number of roots of a generic element of S1(f). Define m0

1 := max{m1(f) : f ∈ E1
1},

and let S0
1 be a stratum of Cd1 [z1] such that there is f ∈ E1

1 with S1(f) = S0
1 and

m1(f) = m0
1. Define the non-empty set

E2
1 := {f ∈ E1

1/S1(f) := S0
1}.

Let zd1
1 +

∑d1−1
j=1 ajz

j
1 be a generic polynomial Cd1 [z1]. There are polynomials

Q1, . . . , Qs (with real coefficients) in the variables a0, . . . , ad1−1 whose set of com-
mon zeros determines the set of polynomials in Cd1 [z1] with less than m0

1 roots.
Let f ∈ E2

1 . Denote by Ti[f ] the analytic functions in z1
2 , . . . , z1

n, u obtained sub-
stituting in Q1 the aj ’s by the αj

1[f ]’s. Define s1(f) to be the number of Tj [f ]’s
that do not vanish identically in U2(f). Clearly, s1(f) > 0 for any f ∈ E2

1 . De-
fine s0

1 := max{s1(f) : f ∈ E2
1}. Choose f ∈ E2

1 such that s1(f) = s0
1. Up to a

re-ordering we can assume that

P ′
2[f ] :=

s0
1∏

i=1

Ti[f ]
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does not vanish identically in U2(f). Define the non-empty set

E3
1 := {f ∈ E1

2/P ′
2[f ]|U2(f) �≡ 0}.

For any f ∈ E3
1 we let k1(f) be the maximal power of u which divides P ′

2[f ].
We define k0

1 := min{k1(f) : f ∈ E3
1},

E1 := {f ∈ E1
3/k1(f) = k0

1},
and, for any f ∈ E1,

P ′′
2 [f ] := P ′

2[f ]/uk0
1 .

Stage i (for 1 < i ≤ n). In the previous stage we have chosen a coordinate
system z1, . . . , zi−1, z

i−1
i , . . . , zi−1

n of K
n and set of germs Ei−1. Moreover, for

each f ∈ Ei−1, we have given positive numbers r1(f), . . . , rn+1(f) and an analytic
function P ′′

i [f ] defined on

U i−1
i (f) = {(zi−1

i , . . . , zi−1
n , u) : |zi−1

i | < ri(f), . . . , |u| < rn+1(f)}
such that u � |P ′′

i [f ] (hence mult′(P ′′
i [f ]) < ∞). Consider

di := min{mult′(P ′′
i [f ]) : f ∈ Ei−1}.

Define {zi, z
i
i+1, . . . , z

i
n} by the formulas zi−1

i = zi and zi−1
j = zi

j + λi
jzi, with λi

j

real for j > i. For any f ∈ Ei−1, we express P ′′
i [f ] respect to the new variables

z1, . . . , zi, z
i
i+1, . . . , z

i
n, u. Then, if the λi

j ’s are chosen generic enough, there exists
f ∈ Ei−1 such that widegzi

(P ′′
i [f ]) = di. Define the non-empty set

E1
i := {f ∈ Ei−1 : widegzi

(P ′′
i [f ]) = di}.

For each f ∈ E1
i we can diminish the numbers ri(f), . . . , rn+1(f) so that the

function P ′′
i [f ] can be decomposed over the open subset

U i
1(f) := {(zi, z

i
i+1, . . . , z

i
n, u) : |zi| ≤ ri(f), . . . , |u| ≤ rn+1(f)}

as P ′′
i [f ] = φiPi[f ], where φi does not vanish anywhere in U i

i and Pi[f ] is a
pseudopolynomial of the form

Pi[f ](zi, . . . , u) := zdi
i +

di−1∑
j=1

zj
i α

j
i [f ](zi

i+1, . . . , u).

View Pi[f ] as a family of polynomials of Cdi
[zi] parametrized by the open subset

U i
2(f) := {(zi

i+1, . . . , z
i
i+1, u) : |z1

i+1| ≤ ri+1(f), . . . , |u| ≤ rn+1(f)}.
By analogy with Stage 1, we define numbers m0

i , s0
i , k0

i , a stratum S0
i ∈ Cdi

[zi],
and a decreasing sequence of subsets E1

i ⊃ E2
i ⊃ E3

i ⊃ Ei. Moreover, for each
function f ∈ Ei we construct functions P ′

i+1[f ] and P ′′
i [f ] analytic in zi

i+1, . . . , u,
such that P ′

i+1[f ] = uk0
i P ′′

i [f ] and u � |P ′′
i [f ].

Stage n +1. For any f ∈ En, the function P ′′
n [f ] is a unit in K{u}. Moreover,

in the previous stage we have constructed a coordinate system (z1, . . . , zn) of K
n
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which will be said to be a good coordinate system with respect to T . We will define
the subset

ET ⊂ π−1
n (T ) (21)

of optimal germs of π−1
n (T ) with respect to the coordinate system (z1, . . . , zn) as

ET := En. This finishes the Search for Optimal Germs.

Proof of Proposition 9. We will start by proving that being optimal respect to a
fixed good coordinate system (z1, . . . , zn) is a finitely determined property, i.e.,
that there exists s > r with the following property: given any x ∈ X and any
g ∈ Ĩx ∩ ms+1

x , a germ f ∈ Tx belongs to ET if and only if f + g belongs to ET .
By convenience of the reader we repeat the statement of Proposition 4.2 of [18]:

(†) For any two natural numbers k and p there exists a third one L(k, p) such
that for any f ∈ C{z1, . . . , zn} with widegz1

(f) = k and g ∈ mL(k,p) the following
property holds: consider analytic functions φ, φ′, P , P ′, such that φ(O) �= 0,
φ′(O) �= 0 and f = Pφ, f + g = P ′φ′ in some neighbourhood of O, where P and
P ′ are Weierstrass polynomials in z1 of degree k. Then φ − φ′ and P − P ′ are in
mp.

In order to choose s we define the following numbers recursively:

an := k0
n−1 + max{dn + 1, L(dn, dn + k0

n)},
ai := k0

i−1 + max{di + 1, L(di, ai+1 + di)} for 2 ≤ i ≤ n − 1,

a1 := max{d1 + 1, L(d1, a2 + d1)}.
Fix s := a1. With this choice, taking into account (†) along the procedure of
Search for Optimal Germs, it is easy to show that given f ∈ Tx and g ∈ Ĩx ∩ms+1

x

then f ∈ ET , if and only if f + g ∈ ET .
Now we suppose that f ∈ ET . We will show that f and f + g are topologically

equivalent. Consider a coordinate function y for the affine line A
1
K
, and define

the A
1
K
-family F := f + yg. The germ F|y is optimal respect to (z1, . . . , zn) for

any y ∈ A
1
K

for being yg ∈ Ĩx ∩ ms+1
x . It is easy to check that the algorithm can

be applied to the family F , taking as initial coordinate system (z1, . . . , zn) and
having in each step the trivial coordinate change. Denote by A the subset of A

1
K

constructed in the algorithm. The Search for Optimal Germs has been designed
in a compatible way with the algorithm so that F|y is optimal with respect to
(z1, . . . , zn) if and only if y ∈ A

1
K
\ A. Therefore, A = ∅. Applying Proposition 16

we obtain the topological equivalence of f = F|0 and f + g = F|1.
We are ready to prove the statement of the proposition. Recall that Ĩ is

generated over W by the functions f1, . . . , fm. Given any x ∈ W , we denote by
fi,x the Taylor expansion of fi at x. Consider the K-vector space E of polynomials
of degree bounded by S, let {g1, . . . , gN} be a basis of V . The product W × V m

is an open subset of K
n+mN , and a point of it is represented by a mN + 1-

uple (x, λ1
1, . . . , λ

1
N , . . . , λm

1 , . . . , λN
m), with x ∈ W and λi

j ∈ K. Consider the
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W × V m-family defined by the unique analytic function F in a neighbourhood of
{O} × W × V m in K

n × W × V m satisfying

F|(x,hi
j)

=
m∑

i=1

N∑
j=1

gjfi,x

for any (x, hi
j) ∈ W ×V m. Associated with F , we have a natural analytic mapping

ψ : W × V m → Js(W, K)

which assigns to (x, hi
j) the s-jet of the germ F|(x,hi

j)
viewed as a germ at x.

As T is a r-determined (C)-analytic subset of J∞(X, Ĩ) and s > r, the subset
T ′ := ψ−1

s (π∞
s (T )) is a closed (C)-analytic subset of (W \ ∂X) × V m. Therefore,

we can consider the T ′-family of functions obtained by restriction of F .
It is easy to check that ψ(T ′) = π∞

s (T ). Therefore, there exists t′ ∈ T ′ such
that ψ(t′) is the s-jet of an optimal germ of T with respect to the coordinate
system (z1, . . . , zn). Taking into account the way we have designed the algorithm
and the Search for Optimal Germs, and the fact that being optimal with respect
to the fixed coordinate system is an s-determined property, it follows easily that

(1) the algorithm can be applied to the T ′-family of functions F choosing at
each stage the trivial coordinate change;

(2) a point t′ ∈ T ′ belongs to the (C)-analytic proper subset A′ ⊂ T ′ con-
structed in the algorithm if and only if ψ(t′) is not the s-jet of an optimal
germ of T with respect to the fixed coordinate system.

Therefore, A′ is of the form ψ−1(A′′) with A′′ ⊂ Js(X, Ĩ). The fact that A′′ is
(C)-analytic is easily deduced from the facts that ψ|X×V m : X × V m → Js(X, Ĩ)
is an epimorphism of trivial analytic vector bundles, and that A′ is (C)-analytic.
Define A as the s determined (C)-analytic subset A := (π∞

s )−1(A′′).
Consider f, f ′ in the same connected component of T \ A. Then there exist

t, t′ in the same connected component of T ′ \ A′ such that ψ(t) = π∞
s (f) and

ψ(t′) = π∞
s (f ′). By Proposition 16 we have that F|t and F|t′ are topologically

equivalent. For being t, t′ �∈ A, the germs F|t and F|t′ are optimal with respect with
the coordinate system (z1, . . . , zn). As f and f ′ have respectively the same s-jet
that F|t and F|t′ , and optimal germs are topologically s-determined, we conclude
the topological equivalence of f and f ′. �
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