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Fixity and free group actions on products of spheres

Alejandro Adem*, James F. Davis* and Ozgiin Unlii

Abstract. A representation G C U(n) of degree n has fizity equal to the smallest integer f such
that the induced action of G on U(n)/U(n — f — 1) is free. Using bundle theory we show that if
G admits a representation of fixity one, then it acts freely and smoothly on §27~1 x §**—5, We
use this to prove that a finite p-group (for p > 3) acts freely and smoothly on a product of two
spheres if and only if it does not contain (Z/p)3 as a subgroup.

We use propagation methods from surgery theory to show that a representation of fixity
f < n —1 gives rise to a free action of G on a product of f + 1 spheres provided the order
of G is relatively prime to (n — 1)!. We give an infinite collection of new examples of finite
p-groups of rank r which act freely on a product of r spheres, hence verifying a strong form of a
well-known conjecture for these groups. In addition we show that groups of fixity two act freely
on a finite complex with the homotopy type of a product of three spheres. A number of examples
are explicitly described.
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1. Introduction

A well known result in topology is the characterization of those finite groups
that can act freely on a sphere, namely groups with either cyclic or general-
ized quaternion Sylow subgroups and such that every involution is central (see
[23]). Free linear actions on spheres are the most basic examples. These can be
constructed as follows: a subgroup G of U(n) acts on the homogeneous space
S?=1 =~ U(n)/U(n — 1); if no conjugate of G intersects U(n — 1) non-trivially,
then this gives rise to a free linear action on the sphere.

In this paper we consider the situation for products of spheres. Here the prob-
lem is much more complex, and in particular we still do not have a characterization
of those finite groups that can act freely on a product of two spheres. A key new
ingredient in our approach is the use of the G actions on the homogeneous spaces
U(n)/U(k); our view is that these are also important building blocks for actions

*The first two authors were partially supported by the NSF.
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of groups of larger rank. On the algebraic side, group theorists have studied rep-
resentations such that the action of G on U(n)/U(n — f — 1) is free; the smallest
such f is called the fizity of the representation. In particular there is an explicit
classification of those finite p-groups having a representation of fixity f < p.

Our main results are in the direction of propagating the natural free actions on
U(n)/U (k) to free actions on an actual product of spheres. For low fixity we can
use explicit arguments involving equivariant vector bundles; in the case of fixity
equal to one we have

Theorem 1.1. A subgroup G C U(n) of fizity one acts freely and smoothly on
X = §?=1 x §4=5 In particular if G is any finite subgroup of SU(3), then it
will act freely and smoothly on S® x S7.

From this we conclude that A5, SL3(F2) and the triple cover 3A4¢ all act freely
and smoothly on S® x S7.

Using the explicit classification of rank two p-groups (see [3]) as well as the
description of p-groups of fixity equal to one in [24] we see that our result can be
used to construct free actions for the exceptional (i.e. non-metacyclic) p-groups
on the list. Combining this with the well-known fact that metacyclic groups act
freely on a product of two linear spheres, we obtain

Theorem 1.2. Let p > 3 be a prime. Then a p-group P acts freely and smoothly
on S™ x S"™ for some m,n > 0 if and only if P does not contain Z/p X Z/p X Z/p
as a subgroup.

This geometric result improves on the homotopy theoretic version recently es-
tablished in [2]. Indeed this paper arose out of efforts to promote the results there
to actions on manifolds. Moreover we obtain all of these actions explicitly, thus
providing rank 2 models for group actions which may play a special role analogous
to that of linear spheres. In contrast, the situation at the primes p = 2,3 remains
unresolved, reflecting the complications in the corresponding group theory at these
primes. Recently Unlii [31] has shown that among the 396 groups of order dividing
256 and which have rank equal to two, there is exactly one group which is not
known to act freely and smoothly on a product of two spheres!

Using the methods developed in [2] we also obtain interesting results for the
case of fixity equal to two, namely

Theorem 1.3. If G C U(n) is of fixity equal to two, then G acts freely on a finite
complexr X ~ §*"~1 x §4=5 x SM for some M > 0. In particular if G C SU(4),
then G acts freely on a finite compler X ~ ST x S™ x SM for some M > 0.

For example, this can be used to show that Sp4(Fs3) acts freely on a finite
complex X ~ S7 x S'! x SM for some M > 0.
For arbitrary fixity we must make use of methods from propagation theory,
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involving homotopy theory and surgery. Observe that the Stiefel manifolds
U(n)/U(n — f — 1) have the cohomology of a product of f + 1 spheres (see 4.1);
our goal is to propagate this natural model to an action on a product of spheres.
The main result in this paper is the following

Theorem 1.4. Let G denote either a finite subgroup of SU(n) and let k = 1,
or let G denote a finite subgroup of U(n) which acts freely on U(n)/U(k) with
k > 1. If the order of G is prime to (n — 1)!, then G acts freely, smoothly and
homologically trivially on S?™~1 x §2773 x ... x §2k+1,

If G C U(n) and (|G|, (n — 1)!) = 1, our methods yield a free G-action on
a finite complex X ~ S2"~1 x ... x §3 x SM for some M > 1; we conjecture
that an analogue of our main theorem should also hold in this case, but there are
surgery-theoretic difficulties to overcome which we hope to address in a subsequent
paper.

Applying the available characterization of low fixity p-groups, we obtain inter-
esting examples of group actions:

Theorem 1.5. Let P denote a finite non-abelian p-group with cyclic center and
having an abelian maximal subgroup. If the rank of P is r < p, then there exists a
free and homologically trivial action of P on M = S?P~1 x §2P=3 x ... x §2(p—7)+1
a product of v spheres.

We should point out that this produces an infinite number of new examples
of free actions by rank r groups on a product of r spheres. More generally it
is conjectured that a rank r finite group will act freely on a finite complex X
having the homotopy type of a product of r spheres. A related conjecture is that
every finite group acts freely and homologically trivially on a product of spheres.
Although the condition (|G|, (n — 1)!) = 1 is somewhat restrictive, our approach
does yield a new method for approaching the conjectures mentioned above; most
importantly we have constructed many interesting geometric actions.

We are grateful to R. L. Griess for providing information concerning the clas-
sification of finite linear groups.

2. Basic definitions and properties

In this section we will recall the notion of fixity for a complex representation of a
finite group G (see [24]) and relate it to properties of associated actions on complex
Stiefel manifolds U(n)/U (k).

First we introduce some notation. Let V' denote a finite dimensional CG-
module. For a subgroup H C G, we denote by VH the subspace of vectors in V
fixed by all h € H. We denote by (g) the subgroup generated by an element g
of G.
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Definition 2.1. The fizity of a finite dimensional CG-module V is
Fixg(V) = dime V&1,
ixg (V) 1I£gaéXG{ img }

Given a faithful complex representation V' of G, we can always obtain an equiv-
alent unitary representation. Hence in what follows we will restrict our attention to
faithful unitary representations and the associated embeddings G < U (n), where
U(n) denotes the group of n x n unitary matrices and n = dim V. Given such an
embedding and a closed subgroup H C U(n), we have a natural G-action on the
homogeneous space U(n)/H. In particular we will be interested in the subgroups

U(k) C U(n), defined by
A 0
ey

where I,,_j is the (n — k) x (n — k) identity matrix.
Note that Fixg(V) can be expressed as the maximum (for ¢ € G) of the
dimensions of the eigenspaces ker(g — I) for g # 1.

Lemma 2.2. Fixg(V) < f if and only if the induced action of G on
Un)/Un— f—1) is a free action.

Proof. If Fixg(V) < f, then given any 1 # g € G, ker(g — I) can be at most
f-dimensional, hence g cannot be conjugated into the subgroup U(n — f — 1) and
so the action of G on the homogeneous space U(n)/U(n — f — 1) must be free.

Conversely if the action is free, no element can be conjugated into U(n — f — 1),
hence Fixg(V) < f. O

Corollary 2.3. A faithful CG-module V' has fixity f if and only if f is the smallest
integer such that the induced G-action on U(n)/U(n — f — 1) is free.

We can now reformulate the notion of fixity.

Definition 2.4. A faithful unitary representation G C U(n) has fizity f if f is
the smallest integer so that the induced action of G on U(n)/U(n — f —1) is free.

From this we derive an invariant associated to G.

Definition 2.5. For a finite group G, we define its fizity, Fix(G), as the mini-
mum value of Fixg(V), as V ranges over all faithful, finite dimensional complex
representations of G.

The case of fixity zero coincides with that of linear space forms. Indeed if
an n-dimensional representation V' has fixity zero then the induced action on
U(n)/U(n — 1) is free; this can be identified with the action on the sphere S(V)
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of unit vectors in V. Examples of higher fixity are less well-known from the point
of view of transformation groups, and they will provide building blocks for new
examples of group actions.

Proposition 2.6. Let G C SU(n). Then G acts freely on U(n)/U(1). Hence the
fixity of G is at most n — 2.

Proof. Note det : U(1) = S'. If g € G has a fixed point hUU(1) € U(n)/U(1), then
h=tgh € U(1). Since h~'gh has determinant one, h~'gh =150 g = 1. a

We now relate fixity to another group-theoretic invariant.

Definition 2.7. For a finite group G and a prime p, we define its p-rank as
rp(G) = max {r | (Z/p)" C G} and its rank as r(G) = max {r,(G) | p divides |G|}.

The following is a basic result relating rank to fixity ([28], Lemma 3.1):
Proposition 2.8. For any finite group G, r(G) < Fix(G) + 1.

Note that this inequality may be strict. For example, if G is a non-abelian split
extension of Z/p by Z/q where p and ¢ are prime, then this is a rank one group
which does not have a fixed point free representation (i.e. G is not a Frobenius
complement, as it does not satisfy the pg condition); hence its fixity is greater
than zero. For us the most interesting case occurs when r(G) = Fix(G) + 1.

Assume that G C U (n) has fixity equal to f. Then the G action on U(n)/U(n— f)
is not free. In fact we have

Proposition 2.9. If G C U(n) has fizity f, then all of the isotropy subgroups for
the G-action on U(n)/U(n — f) have rank equal to one.

Proof. Let H denote an isotropy subgroup for the G-action on U(n)/U(n— f); this
means that there exists a g € U(n) such that g~*Hg C U(n — f). This subgroup
then acts freely on the quotient U(n — f)/U(n — f — 1) = S2(»=/)=1 a5 otherwise
a conjugate of G would intersect U(n — f — 1) non-trivially. Hence H must be a
group of rank equal to one. O

Remark 2.10. More generally if we let My, = U(n)/U(k), this defines a sequence
of G-manifolds {My, My,...,M,} and equivariant maps My — My, for k =
0,...,n where My is a free G-space, M, 1 = S**~! and M,, = {z0}. As we go
up this tower, the isotropy must increase from rank zero to rank r(G). Using an
argument similar to the one above, we see that the rank can only increase by one
at each stage. There are n steps and a total increase by (G) must happen. Hence
we have a partition of [0,n] N Z, given by integers 0 < 5o < 81 < -+ < 8,(q) <1
such that the isotropy of M) has rank ¢ if s; < k < s¢y1. The patterns which arise
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in this process seem to be an interesting invariant of the representation; we shall
make use of this in our applications. Note that when n = r(G), the rank must
increase exactly by one at every step; this is the case of maximal fixity n — 1.

We now describe a characterization of p-groups of fixity f < p, which appears
in [24].

Theorem 2.11. Let f be a non-negative integer and let p be a prime number
greater than f. A non-abelian p-group P has fixity f if and only if the following
hold:

e P has p-rank equal to f+ 1;

e P has cyclic center and an abelian mazximal subgroup.

Moreover, for any such group there exists a faithful irreducible P-module of
fixity f and dimension p.

The p-groups of fixity f < p have been explicitly described by Conlon in [9],
and enumerated in [24]. Using this one can verify for example that for p > 5 and
n > 4, there are exactly four non-abelian p-groups of order p™ and fixity one.
They can be listed as follows in terms of generators and relations (see [24], page
228 and [18], page 343):

1 n—2

e <ab|a” =b=1a"=a"t"" " >

o <azy|a =[xy, =la2]=lay =P =yP=1>

e <a,z | a2 = [ac,a,ar;],a?”%2 = 2P = [z,a]’ = [x,a,a] =1 >, where ) is

equal to 1 or to a non-quadratic residue modulo p.
Later we will construct actions of these p-groups on a product of two spheres. Note
that the first group on this list is a metacyclic group; the other three are said to
be of exceptional type and they appear in the classification of rank two p-groups
which we will make use of in a subsequent section. The situation for p = 2 is
rather different: there are 3n — 8 nonabelian groups of order 2" having fixity equal
to one.

In [28] a detailed analysis of group theoretic properties of groups of low fixity
is carried out. The main result is that there exists a function 6 : N — N such that
if V' is a CG-module of fixity f, then there exists a normal subgroup N <1 G such
that [G : N] < 0(f) and N is solvable of derived length at most 3. Another result
is that there exists a function ® : N — N such that if V' is a CG-module of fixity f
and dim V' > ®(f), then either G is solvable or G/O(G) has a subgroup of index
at most 2 which is isomorphic to SL(2,5). Here O(G) denotes the largest normal
subgroup of G whose order is odd, hence it is solvable.

There are substantial restrictions for groups of low fixity. For example, if G is
a finite group acting on V' with fixity equal to one, then we have

e dimV < |G|. This is in contrast to the situation for fixity zero, where we

can take modules of arbitrarily large dimension. In fact this is the only fixity
where the modules do not have bounded dimension.
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e The p-rank of GG is one for all primes p < dim V' — 1. For example this means
that as soon as dim V' > 3, the 2-Sylow subgroup of G must be either cyclic
or generalized quaternion. This excludes all non-abelian simple groups.

e If p = 2,3 do not divide |G|, then there exists at most one prime p with the
property that G has a non-abelian Sylow p-subgroup.

As we shall see later, groups of fixity one constitute a class of non-periodic
groups that act freely and smoothly on a product of two spheres, and their struc-
ture may shed some light on the general conjecture that any finite group of rank
equal to two acts freely on a product of two spheres. In this paper we prove this
conjecture for p-groups with p > 3.

3. Actions of groups of fixity one and two

In this section we begin by discussing the special case of groups having fixity equal
to one. As we have seen they will act freely on some U(n)/U(n—2), which happens
to be a rather nice manifold which we can approach using very direct methods.

Theorem 3.1. A subgroup G C U(n) of fizity one acts freely and smoothly on
X = S2n71 % S4n75‘

Proof. We have a fiber bundle
S 3 =U(n—1)/U(n —2) — U(n)/Un—2) = U(n)/U(m —1) =S

with structure group U(n — 1). It can be identified with the sphere bundle of
an associated (n — 1)-dimensional complex vector bundle £. In the next section
we will see that the vector bundle £ is always non-trivial, but here we will note
that € @ ¢ is trivial since it is classified by an element of mo,_1(BU(2n — 2)) =
Ton—2(U(2n — 2)) = w9, _o(U), which is zero by Bott periodicity.

Note that £ is a G-vector bundle, and G acts freely away from the zero section.
By considering the pullback diagram

E(®f) —— E() x E(¢)

l !

g2n—1 A §2n—1 5 21

we see that £ @ £ is also a G-vector bundle with action free away from the zero
section. We can take X = S(£®¢) (the associated sphere bundle) to complete the
proof. O

Corollary 3.2. Any finite subgroup of SU(3) acts freely and smoothly on S® x S7.

Example 3.3. The finite linear groups (to be precise we are referring to primitive
unimodular irreducible groups) in low dimensions have been completely classified
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and listed by Blichtfeldt and others (see [4], [15]). For a fixed prime p let H,
denote the semidirect product of the form E, x¢ SLy(F},), where

E,=(a,bc|a? =b =c’ =1,[a,b] =¢)

is the extraspecial p-group of order p* and exponent p. Note that |H,| =
p*(p — 1)(p +1). We find four interesting subgroups of SU(3): the alternating
group As, the simple linear group SL3(F9) = PSLo(F7), the triple cover 3A4¢, and
Hs. We obtain

Corollary 3.4. The groups As, SLs(F2), 3Aq, and Hs all act freely and smoothly
on S x S7.

Example 3.5. In [28] page 290, a group G, C U(p) of fixity equal to one and
having order 2p3(p — 1) is explicitly described as follows. Let vg,v1,...,vp—1
denote a basis for the underlying complex vector space and let w denote a primitive
p-th root of unity. Take the two linear transformations A, B € U(p) defined by
Av; = wv; and By; = w'v; where 0 < i < p—1. Now identify the set {0,1,...,p—1}
with F,, and let x be a generator of F;. Let u € C be a primitive 2(p — 1)-th
root of unity. We define C, D € U(p) via Cv; = v;y1, Dv; = pvy;, where i € Fp,.
Let G, denote the subgroup of U(p) generated by A, B,C,D. The subgroup
H = (A,B) 2Z/p x Z/p is normal in G, and G,/H is isomorphic to a double
cover of the semi-direct product Z/p x1 Z/(p — 1). The group G, acts freely and
smoothly on S2P~1 x §%—5,

These techniques are particularly effective for constructing actions of small
p-groups.

Proposition 3.6. Let P denote a p-group of rank equal to two and with order
|P| < p*. Then P acts freely and smoothly on S™ x S™ for some m,n > 0.

Proof. If the group P has center Z(P) of rank equal to two, then every element
of order p in P is central. In this case the group acts freely on a product of two
representations (see [2], page 422). Hence we can assume that Z(P) is cyclic. For
any p-group of order p?, there exists an abelian subgroup of order p* (see [30],
page 85), and so we can assume that P has an abelian maximal subgroup. By
Theorem 2.11 we infer that P has fixity equal to one, whence by Theorem 3.1 it
will act freely and smoothly on a product of two spheres, completing the proof. [

As we have seen, if G C U(n) has fixity one, then it will act on U(n)/U(n—1) =
S?"~! with rank one isotropy subgroups. In [2], it was shown that given a linear
G-sphere S(V) satisfying this condition, there exists a finite G-CW complex X
with a free G-action, and such that X ~ S(V) x SM for some integer M (see
[31] for a more direct proof). From the above we see that for a group G of fixity
one, this construction can be realized explicitly via a free and smooth G-action
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on S**7° x §2"~1. However there are groups which act on a linear sphere with
periodic isotropy which do not have fixity equal to one. Indeed in [2] it was shown
that every rank two p-group admits a representation in U(|P : Z(P)|) such that
the action on U(|P : Z(P)|)/U(|P : Z(P)| — 1) has periodic isotropy; on the
other hand we have seen that p-groups of fixity equal to one are rather restricted.
However in the case of rank two p-groups we have complete information:

Proposition 3.7. If p > 3 and P is a finite p-group of rank equal to two, then
P is either a metacyclic group or a group of exceptional type, with fixity equal to
one.

This proposition is proved in [24], page 228 by using the classification of rank
two p-groups appearing in [3], as well as the characterization of p-groups of fixity
equal to one described in Lemma 2.11. Next we recall the proof of an elementary

Lemma 3.8. If P is a metacyclic p-group then it acts freely on a product of two
linear spheres.

Proof. The group P is an extension of the form 1 — Z/pt — P — Z/p* — 1. Let
X denote a one dimensional character of the subgroup B = Z/p' which maps a
generator of B to a primitive p'-th root of unity. Let V = Indg(x); this is a p°-
dimensional complex representation of P. The action of P on the associated sphere
S(V) restricts to a free B-action; this can be checked using Mackey’s formula (it
suffices to show that the unique and central subgroup of order p in B acts freely).
Now let the quotient group A = P/B act freely on S! through multiplication by
a primitive p°-th root of unity. From this we can define a diagonal P action on
S%°~1 % S! which is evidently free. O

Obviously the action described above is a product action. An interesting fact
is that for p > 3, any exceptional rank two p-group does not admit a free product
action; indeed we have

Proposition 3.9. If p > 3 and P is a rank two p-group which is not metacyclic,
then it cannot act freely on X = S™ x S™ via a product action.

Proof. By the results in [14], every action of a finite p-group on a sphere can be
modeled using a linear action; in particular given such a product action there exist
representations V, W such that for any g € P we have X9 #£ ) if and only if
V49 £ {0} and W9 #£ {0}. In particular this implies that if P acts freely on X,
then it acts freely on S(V) x S(W). However it is shown in [26], page 486 that
this is impossible for a non-metacyclic p-group if p > 3. a

We can now state and prove a geometric characterization of rank two p-groups
(for p > 3) which naturally extends the classical rank one situation, and which
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rather surprisingly has been a conjecture until now:

Theorem 3.10. Let p > 3 be a prime number. Then a p-group P acts freely and
smoothly on M = S™ x S™ for some m,n > 0 if and only if P does not contain
Z)p X Z/p x Z/p as a subgroup.

Proof. We have known for decades that (Z/p)? does not act freely on a product
of two spheres (see [16]). All we need to do is construct the actions. By Proposi-
tion 3.7, we know that P is either metacyclic, or of exceptional type and having
fixity equal to one. By Lemma 3.8, the metacyclic case is taken care of; by The-
orems 2.11 and 3.1, the rank two p-groups of exceptional type will all act freely
and smoothly on S?P~! x S5, O

The situation at the ‘small primes’ p = 2 and p = 3 is still unresolved. It can
be shown that for n > 4, there exist exactly two 3-groups of order 3" which are
neither of fixity one, nor act freely on a product of two linear spheres. At the
prime 2 the group theory is considerably more complicated. We briefly summarize
recent work by O. Unlii in this direction (see [31]). The smallest example of a
rank two 2-group of fixity greater than one that does not act freely on a product
of two linear spheres is the extraspecial 2-group Qg * Dg = Qg x Dg/A, where
A is the diagonal central subgroup of order 2. Note that Qg * Dg is of order 32
and does not contain a maximal subgroup which is abelian. In fact one can show
that a rank two 2-group P does not contain Qg * Dg if and only if it either has
fixity equal to one or acts freely on a product of two linear spheres. Hence all
such groups act freely and smoothly on a product of two spheres. In order to
handle this particular group, we need the notion of quaternionic fixity, expressed
in terms of representations G C Sp(n). In the case of Qs * Dg, it embeds in
Sp(2), and twice the associated bundle is seen to split, hence producing a free and
smooth action of this group on S7 x S7. Using these techniques, Unlii has shown
that among the 396 groups of rank equal to two, and having order which divides
256, there is exactly one group which is not known to act freely and smoothly
on a product of two spheres. Verifying this requires using the computer algebra
program MAGMA.

Remark 3.11. It seems worthwhile to compare our results with those obtained in
[20] and [35] for free p-group actions on a product of two equidimensional spheres.
From their work we know for example that the extraspecial p-group of order p3
and exponent p (p an odd prime) cannot act freely on any S™ x S™. An interesting
related problem is determining general restrictions on n and m imposed by the
existence of a free P-action on S™ x S™. Our construction produces a homogeneous
system of parameters {c, 8} for H*(P,F,) such that |o| =n+1and |f| =m+1
(see [2], page 419). This is a significant cohomological restriction, which deserves
further consideration.
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For fixity equal to two we can apply the results in [2] to obtain a free action on
a finite complex, although not necessarily a manifold. As a consequence we will
obtain new examples of free actions for rank three groups.

Theorem 3.12. If G C U(n) is of fizity equal to two, then G acts freely on a
finite complex X ~ S?"~1 x §47=5 x SM for some M > 0.

Proof. Consider the G-action on Y = U(n)/U(n—2); by our hypothesis it has rank
one isotropy. Using the same approach as in Theorem 3.1 we obtain a G-action on
Y’ = 8§?7~1 x $%7~5 with the same isotropy, hence of rank equal to one. Applying
1.4 in [2] we obtain that G acts freely on a finite complex X ~ Y’ x SM for some
M > 0, which completes the proof. O

Corollary 3.13. If G C SU(4) then G acts freely on a finite complex X ~ S7 x
S x SM for some M > 0.

Proof. It suffices to observe that if G C SU(4), then it will act on SU(4)/SU(2)
with isotropy of rank at most one. O

Example 3.14. We are of course interested in groups of rank equal to three and of
fixity equal to two. The list of finite linear subgroups in [15] yields two interesting
examples in SU(4). Let T = SLy(F3) % SLo(F3) = SLa(F3) x SLa(F3)/A, where
A = 7,/2 is the diagonal subgroup of order two. Note that |T'| = 2°5-32 and that its
2-Sylow subgroup is the central product Qg * Qg, which is an extra-special 2-group
of order 32 and has rank equal to three. The second example is G = Sp,(F3), in
this case |G| = 26 -3%.5. It has 2-rank and 3-rank both equal to three. Hence we
obtain

Corollary 3.15. The groups SLo(F3) * SLo(F3) and Spy(F3) act freely on a finite
complex of the form X ~ S” x S x SM for some M > 0.

Example 3.16. From the Atlas [10] we see that there is an embedding of G =
PSLy(Fs) in SU(7). Note that |G| = 23 -3? - 7 and that the 3-Sylow subgroup is
cyclic while the 2-Sylow subgroup S is elementary abelian. From the character
table in the Atlas we can infer that this 7-dimensional representation V restricts
to the reduced regular representation on the subgroup S. Hence on any rank two
subgroup £ C S, V|, 2 1@ I & C, where [ is the 3-dimensional reduced regular
representation. This representation clearly cannot be conjugated into the subgroup
SU(5) C SU(7) defined as before by extending matrices in SU(5) by the 2 x 2
identity matrix. Hence E acts with cyclic isotropy on SU(7)/SU(5). Applying
the techniques outlined above, we infer that G = PSLs(Fg) acts freely on a finite
complex X ~ S!3 x §2% x SMfor some M > 0. Note that in this example G acts
freely on SU(7)/SU(3) but not on SU(7)/SU(4), hence G C SU(7) has fixity
equal to three; nevertheless our methods can be applied to this representation.
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More generally if G acts on U(n)/U(n — f) with periodic isotropy, the results
in [2] establish the existence of a free action on a finite complex X ~U(n)/U (n—f)
xSM for some large M.

In the next section we use surgery theory (propagation of group actions) to
construct a free action of a subgroup G C U(n) of fixity f on a product of f + 1
spheres provided the order of G is prime to (n — 1)!. If G is such a group and
has fixity one, these techniques provide a stronger result than Theorem 3.1 in the
sense that the action is on a lower-dimensional product of spheres.

4. Propagating group actions

In this section we will show that a free action of a group of order prime to (n—1)! on
a Stiefel manifold U(n)/U (k) propagates to a free action on a product of spheres.
To begin we recall the integral cohomology of Stiefel manifolds.

Proposition 4.1. The Stiefel manifold U(n)/U(k) has the same integral coho-
mology as a product S>*~1 x §2"73 x ... x S?**1 of n — k spheres.

Proof. We will prove this by downward induction on k; clearly it is true for k
equal to n — 1. Consider the fibration S?*** — U(n)/U(k) — U(n)/U(k + 1);
the Euler class must be zero since, using the inductive hypothesis, it sits in a zero
group. Hence the associated Gysin sequence breaks into a sequence of short exact
sequences. We infer that the cohomology of U(n)/U(k) is an exterior algebra on
generators in the desired dimensions. ([l

One would not expect the Stiefel manifold to have the same homotopy type as
a product of spheres, since Bott periodicity forces a regularity on the homotopy
groups of Stiefel manifolds which is absent from the homotopy groups of a product
of spheres. However, the differences only involve primes less than n. The next
several results illustrate these phenomena.

Proposition 4.2. 73, (U(n)) = Z/n! and the generator is given by the character-
istic element of the fibration U(n) — U(n + 1) — S2n+1,

Proof. This result is due to Bott [5], however we will sketch a proof which uses only
stable Bott periodicity. Note that s, (U(n+1))=m,(U)=0 and w211 (U(n+1))
= mon+1(U) = Z (these groups are in the stable range), hence we have an exact
sequence

Toni 1 (U(n 4+ 1)) 25 7211 (S7H1) 25 10, (U(n)) — 0.

Recall (see [34], page 206) that the characteristic element of the fibration above
is given by A,(tan+1) € man(U(n)), where to,41 is the canonical generator for
Tont1(S?"T1). Hence o, (U(n)) is cyclic with generator the characteristic element.
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The homomorphism p, can be identified with taking the Euler class of the
corresponding (n+ 1)-dimensional complex bundle over S"*2, and hence with the
top Chern class ¢, ;1. But the Chern classes which arise from bundles over S27+2
are precisely the multiples of n! (see [19], page 280). The result follows. O

The following technical proposition will be a key ingredient in our construction
of group actions.

Proposition 4.3. Given integers n > k, there is a map

=l §2=3 i x SR L U(n) /U (K)

which induces an isomorphism in homology with coefficients in Z[ﬁ]

Proof. Consider the fiber bundle
U(n—1)/U(k) = U(n)/U(k) — $*"
with structure group U(n — 1). By Proposition 4.1 (or a Wang sequence)
H*(U(n)/U(k);2) = H* ("4 2) @ H*(U(n — 1)/U (k); Z).

By Proposition 4.2 the fiber bundle is classified by the homotopy class S?*~! —
BU(n — 1) representing the generator of ma,_1(BU(n — 1)) = Z/(n — 1)!. Hence
if we take a map g : S?"~! — §27~! of degree (n — 1)! then the induced bundle
with fiber U(n — 1)/U(k) will be trivial, with total space E homeomorphic to
S?n=1t x U(n —1)/U(k); note that it comes equipped with a map E — U(n)/U (k)

1

which induces a Z[m} homology equivalence. Using downward induction on n

we can easily obtain the desired map. O

Hence the Stiefel manifold U(n)/U (k) has the same integral cohomology as a
product of spheres, and after inverting (n—1)!, we can realize this isomorphism by
a map from the product of spheres to the Stiefel manifold. Under these conditions,
if we have a free action of a group on U(n)/U(k) and if the order of the group is
prime to (n — 1)!, then the action will “propagate” to a free action on an actual
product of spheres.

Theorem 4.4. Let G denote a finite subgroup of U(n) which acts freely on
U(n)/U(k) with k > 1. If the order of G is prime to (n — 1)!, then G acts freely
and smoothly on S?"1 x §2773 x ... x §2kFL,

Remark 4.5. In the proof of the theorem we use the fact that U(n)/U(k) is
simply-connected when k& > 1. It seems likely that Theorem 4.4 is true in the non-
simply-connected case G C U(n) (k = 0), but the surgery theoretic complications
are considerable, and we will not consider them here. However our methods will
still allow us to construct a free G-action on a finite complex with the homotopy
type of a product of n spheres (see Corollary 4.13).
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The proof of Theorem 4.4 uses the method of propagation of group actions.
We refer to [8] for the basic technique, to [1] for a short survey, to [12] for a nice
application, to [11] for a key lemma, and to [13] for definitive statements of results.
The philosophy is that if two manifolds (e.g. the Stiefel manifold and the product
of spheres) resemble each other homologically at the order of a finite group G,
then their behavior with respect to G-actions should be similar. To get actions
on manifolds, the methods are surgery theoretic and the technical details can be
formidable.

Definition 4.6. A G-action on Y propagates across a map f : X — Y if there is
a G-action on X and an equivariant map homotopic to f.

Definition 4.7. A G-action on a space X is homologically trivial if the induced
action on H,(X;Z[1/q]) is trivial, where ¢ is the order of G.

The main theorem involving propagation is stated below. We will spend the rest
of the section defining terms in its statement, outlining the proof, and applying
it to the case of interest (Theorem 4.4). Most of the theorem below is due to
Cappell-Weinberger [8], however the general case is due to Davis-Loffler [11]. We
outline the proof since that will make application of the theorem easier, and also
because the full statement is not easy to find in the literature.

Theorem 4.8. Let f: X — Y be a map between simply-connected spaces having
the homotopy type of CW-complexes. Let G be a group of order q acting freely and
homologically trivially on Y. Consider the following conditions:

(1) f is a Zq)-equivalence:

fot H(X;Zg)) = Ho(Y3Zy)
(2) The Swan obstruction vanishes:
o(x""(f)) = 0 € Ko(ZG).
(3) X and Y are closed smooth manifolds of dimension greater than four and
the action of G on'Y is smooth.

(4) The normal invariant of the Zg-local homotopy equivalence f is in the
image of the transfer map:

l/(q)(f) € im (p* : [Y/G,F/O](q) — [K F/O}(q))

Then

(a) If (1) holds, there is a CW-complex X' and a homotopy equivalence h :
X' — X so that the G-action on Y propagates across f o h, with a cellular G-
action on X'. Furthermore, the homotopy type of X' /G is uniquely determined.

(b) If (1) holds and Y/G and X have the homotopy type of finite-dimensional
CW-complexes, there is a finite-dimensional CW-complex X' satisfying the con-
clusion of (a).
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(¢) If (1) and (2) hold and Y/G and X have the homotopy type of finite CW-
complexes, there is a finite CW-complex X' satisfying the conclusion of (a).

(d) If q is odd and (1), (2) and (3) hold, then X' can be taken to be a closed
smooth manifold.

(e) If ¢ is odd and (1), (2), (3) and (4) hold, then the G-action on'Y propagates
across f, with a smooth action on X.

Before sketching a proof of Theorem 4.8 we recall some basic background ma-
terial. The homotopy aspects of propagation of group actions depend on localizing
topological spaces (see [17], [6], and [7] for details). Let R C Q be a subring of
the rationals. For an abelian group A, let Ag = A® R. A homomorphism A — B
is an R-equivalence if the induced map Ar — Bp is an isomorphism. An abelian
group A is R-local if the map A — Apg is an isomorphism.

We assume any space discussed below has the homotopy type of a connected
CW-complex. A map X — Y is an R-equivalence if the induced map on the
fundamental group is an isomorphism and the induced maps on higher homotopy
groups m,,n > 1 are R-local equivalences. Equivalently, the map is an isomor-
phism on the fundamental group and the induced map on the homology of the
universal covers H,.(X) — H,(Y) is an R-equivalence. A space X is R-local if
7n(X) is R-local for all n > 1, equivalently H,(X) is R-local. An R-localization
of X is a R-equivalence X — Y where Y is R-local. There are existence and
uniqueness theorems for R-localizations of X. Their existence follows by apply-
ing the fiberwise localization theorem of Bousfield-Kan [7, p. 40] to X — Bm X.
Their R-localization is functorial on the geometric realizations of simplicial sets
and maps. If f: X — Y and g: X — Z are two R-localizations of X, then there
is a homotopy equivalence h : Y — Z so that ho f ~ g. We will write X — Xpg
to denote an R-localization of X.

Let q be a nonzero integer. Let

Z(q) =7 |:i,i,i,:| C Q,
b1 p2 Pp3
where {p1,pa,ps3,...} is the set of primes which do not divide ¢q. For a space X,
let X — X4 and X — X[1/q] denote the R-localizations of X where R equals
Zq) and Z[1/q] respectively. Then X is the homotopy pullback of

X[1/4]

l

X(Q) Xq,

(i.e. X is homotopy equivalent to what results after converting the vertical map
to a fibration and taking the pullback).
S. Weinberger [33] made the following key observation.

Lemma 4.9. A free cellular G-action on a simply-connected CW-complexr X is
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homologically trivial if and only if (X/G)[1/q] ~ X[1/q] x BG.

Proof. Suppose a finite group G of order ¢ acts freely on a simply-connected
space X. Then X/G CY = (X/G)Ued U---Ue? with Y simply-connected (add
2-cells to kill the fundamental group). Since H;(X/G) = G/|G,G] is g-torsion,
the map «a below is an epimorphism:

Y 2 HY — Hy(Y;Z[1/q)) = Ho(Y, X/G; Z[1/q)) = Z[1/q)".

Let Z =Y UelU---U ei where the attaching maps of the 3-cells represent
a Z[1/q]-basis of Ha(Y,X/G;Z[1/q]). By means of this “plus” construction we
have constructed a map i : X/G — Z to a simply-connected space inducing an
isomorphism on H.( ;Z[1/q]).

Now suppose, in addition, that G acts homologically trivially on X. Then
a transfer argument shows that the covering map = : X — X/G induces an
isomorphism on H,( ;Z[1/q]), hence so does i om : X — Z. Thus Z[1/q] ~
X|[1/q], so we have Z[1/q]-equivalence X/G — X[1/q] x BG to a Z[1/q]-space.
By uniqueness of localization, there is a homotopy equivalence (X/G)[1/q] —
X|[1/q] x BG as desired.

Conversely if (X/G)[1/q] ~ X[1/q] x BG, then the G-action on X is homolog-
ically trivial since the G-action on X[1/q] x EG clearly is. O

One could also prove the above lemma by using obstruction theory to show
that the fibration
X[1l/q] —» X[1/q] x¢ EG — BG

is fiber homotopically trivial and noting X[1/¢] x¢ EG ~ X/G[1/q].

Proof of Theorem 4.8 (a). Let X'/G be a CW-complex having the homotopy type
of the homotopy pullback of

X[1/q] x BG

l

(Y/G)(q) I YQ x BG

where the vertical map is given by applying f[1/¢] and then Q-localization, and
the horizontal map is provided by applying Q-localization and then Weinberger’s
Lemma. ]

Proof of Theorem 4.8 (b). We will use the criterion of Wall [32, Thm. E|] which
says that a CW-complex Z has the homotopy type of an complex of dimension
N if and only if H(Z;Z) = 0 for all i > N and HN*1(Z; M) = 0 for all local
coefficient systems M.

Recall that both Y/G and X are assumed to have the homotopy type of finite
dimensional CW-complexes; let N be greater than or equal to both dimensions.
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Let X’/G be a CW-complex produced by Theorem 4.8 (a). Then for i > N,

HY(X'/G;Z) = H(X;Z) = 0. Let M be a local coefficient system for X’/G. For
a prime p dividing the order of G, HN*1(X'/G; M) py is isomorphic to

HY (X' [G) () M) = HYNH((Y/G) ) M) = HN (Y /G5 M) ) = 0.
Likewise for a prime p not dividing the order of G, a transfer argument shows

HYHU X' [Gy M) ) = HY (X' /G) (s M)
=] HN+1(X£p);M(p)) =~ HN+1(X5M)(p) =0.

Hence HN*1(X'/G; M) = 0. Thus X’ /G has the homotopy type of an N-complex.
(]

This leads to a nontrivial result.

Corollary 4.10. Let G denote a finite subgroup of U(n) which acts freely on
U(n)/U(k) with k > 1. Suppose the order of G is prime to (n — 1)!. Then
G acts freely on a finite dimensional CW-complex having the homotopy type of
§2n—1 y §2n—=3 « ... x S2k+1.

It is traditional in the study of actions on products of spheres to be satisfied
with an action on a finite-dimensional complex which has the homotopy type of a
product of spheres. But that is not good enough for us; we won’t stop until we
have constructed an action on the product of spheres themselves! Next we will try
and improve from a finite-dimensional complex to a finite complex.

Wall [32] showed that a connected CW-complex W has the homotopy type
of a finite CW-complex if and only if 71 (W) is finitely presented and C, (W)
is chain homotopy equivalent to finite free Z[m W]-chain complex. If C, (W) is
finitely dominated this is equivalent to the vanishing of the finiteness obstruction

(C.(W)] € Ro(Zlms (W),

We recall the definition of the Swan homomorphism appearing in Theorem 4.8.
For an integer r relatively prime to ¢ = |G|, define the projective ZG-module P, =
kere : ZG — Z/r. One can show that P. ® Py = P, ® ZG and that P11, = ZG.
Hence there is a well-defined Swan homomorphism o : (Z/q)* — Ko(ZG), defined
by o([r]) = [P.]. Now given a rational homology equivalence f : X — Y, define
X" (f) to be the rational number [], |H;(C})|"Y", where C} is the mapping cone
of f. If f is a Zg)-equivalence, then x*'(f) € Z(Xq) and hence determines an

element [x***(f)] € (Z/q)*.

Proof of Theorem 4.8 (¢). By Theorem 4.8 (a) there is a CW-complex Z, a homo-
topy equivalence hyz : Z — X, a free, cellular G-action on Z, and an equivariant
map fz : Z — Y so that fz >~ f o hy. There is a short exact sequence of chain
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complexes
0— C(Y) = Ci(Cy,) = XC(Z) — 0.

Our goal is to show that C.(Z) is finitely dominated and that the finiteness ob-
struction [C,(Z)] € Ko(Z@G) vanishes. Since ®H;(Cy,) is finitely generated and
each H;(Cy,) has a finite resolution over ZG, C.(Cy,) is finitely dominated, as is
C.(Y). Hence £C,(Z) is finitely dominated and

[Cu(2)] = =[2C.(2)] = [C.(Y)] = [Cu(Cy,)] = —a (X" (£)]).

Thus C.(Z) is chain homotopy equivalent to a finite free ZG chain complex
(equivalently Z/G has the homotopy type of a finite CW-complex) if and only
if o([x*r(f)]) = 0. O

Corollary 4.11. Let G be a subgroup of U(n) which acts freely on U(n)/U(k)
with k > 1 and whose order is prime to (n — 1)!. Then G acts freely on a finite
CW-complex having the homotopy type of S7*~1 x §2773 x ... x §ZF+L,

Proof. Here are two properties of ¥, whose verification is left to the reader.

o X""(fog)=x""(f)x""(9)-
o If A, B,, and C, are graded abelian groups with C, free, and if f, : A, — B,
is a graded map, then x'*'(f, ® Idg,) = x'* (f.)X(C-).

In the proof of Proposition 4.3 we constructed a Z,)-equivalence
Fa : "1 Un = 1)U (k) — U(n) /U (K)
so that on homology
fak, =9 ®1ds : H(S*" ) @ Ho(U(n —1)/U(k))
— H.(S*" ") @ Ho (U(n—1)/U(k)),

where g : $?"71 — S§?~! is a map of degree (n — 1)!. Thus x**(fur) =
(n—1)N° =1.
The Z4)-equivalence produced by Proposition 4.3
foST o x S L U(n) /U (K)

is the composite

f = (dgen-1oxgovss X frpz) 0 0 (Idgan-s X fu16) © fk

and hence x*'(f) = 1, and so the result follows from Theorem 4.8(c). O

Corollary 4.12. Let G be a subgroup of U(n) which acts on U(n)/U(k) with
k > 0, having rank one isotropy and whose order is prime to (n — 1)!. Then G
acts freely on a finite CW-complex having the homotopy type of S?*~1 x §27=3 x
s x SPRHL  SM for some M > 1.
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Proof. By [2], G acts freely on a finite complex X having the homotopy type of
U(n)/U(k) x SM for some M > 1. One then propagates across the map

FxId:§P 7 x§2 3 o x S SM L U)/UK) xSM ~X. O

The main application is the following intermediate result in the non-simply
connected case:

Corollary 4.13. If G C U(n) and |G| is prime to (n — 1)!, then G acts freely on
a finite complex X ~ S?" 1 x ... x $3 x SM for some M > 1.

Proof. Tt suffices to observe that G will act on U(n)/U(1) with periodic isotropy,
whence we can apply the previous corollary. O

We do not give the outline of the surgery theoretic proof of Theorem 4.8(d)
and (e), but instead refer to the original source [8] which proves the theorem for
p-groups and to [11] which proves the key fact needed to prove the theorem for
general groups G.

We are now ready to prove our main theorem by checking the propagation
hypotheses.

Proof of Theorem 4.4. Let X =S?" 71 x §2"=3 x ... x §?**L and Y = U(n)/U (k)
and let f : X — Y be the map produced by Proposition 4.3. We have seen
that conditions (1), (2), and (3) of Theorem 4.4 hold; we only need to verify
condition (4).

The definition of the local normal invariant v, (f) € [Y, F/O],) is quite subtle
(see [13, p. 12] for a definition), but we will sidestep the subtleties by noting
that [V, F//O]q — [Y, F/O]o) is injective, since H.(Y;Z) is torsion-free. Since
F/O — BO is a rational equivalence [22], it suffices to show that the image of
the local normal invariant in [Y, BO](q) is trivial. Its image in [Y, BO]) is given
by the difference of ((deg f) (f(B)l)*Tx) — Ty. But the tangent bundle 7x is stably
trivial, and, according to [29], 7y is trivial. a

Given a group of rank equal to r, a challenging open problem is to construct
a free action of G on a finite complex with the homotopy type of a product of
r spheres (see [2]). Constructing free actions on actual products of spheres is of
course the final goal, and progress on this beyond spherical space forms has been
very scant. Indeed, we still cannot verify if every finite group acts freely and
homologically trivially on some product of spheres. The following application of
Theorem 4.4 provides an infinite number of new examples.

Corollary 4.14. Let P denote a finite non-abelian p-group with cyclic center and
an abelian mazimal subgroup. If the rank of P is r and r < p, then there exists a
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free, smooth and homologically trivial action of P on M = S?P~1 x ... x S2(p—r)+1
a product of v spheres.

Proof. Given a group of this type, we know from the results in §2 that there is a
faithful irreducible representation P C U(p) of fixity equal to r — 1. Hence P acts
freely on U(p)/U(p — r). Using the propagation theorem, we infer that in fact P
must act freely and smoothly on the stated product of spheres. O

Example 4.15. Let P denote any p-group of fixity equal to one, where p is an odd
prime. Then P has a faithful p-dimensional representation such that P acts freely
on U(p)/U(p—2); hence it will act freely and smoothly on M = S?P~1x§?P=3. Note
that this provides an action on a lower dimensional manifold than that provided
by Theorem 3.1.

Example 4.16. Let P = Z/p1Z/p (the wreath product); this is a group of order
pPTL with cyclic center and having a maximal subgroup which is abelian, (Z/p)P.
Indeed, there is a natural embedding P C U(p), where the elementary abelian
subgroup is mapped to the diagonal matrices and the Z/p action is represented
by a permutation matrix. Applying Corollary 4.13, we obtain that P = Z/plZ/p
acts freely on a finite complex with the homotopy type of a product of p spheres,
namely X ~ S?2P71 x ... x §3 x SM for some M > 1.
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