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The study of the moduli space of embedded complete minimal surfaces in R
3

(up to homotheties) with finite total curvature and fixed topology is one of the
fundamental open problems in the classical theory of minimal surfaces.

Let M(G,N) be the space of complete, properly embedded minimal surfaces
in R

3 with finite total curvature, genus G and N horizontal ends, modulo homo-
theties. Concerning the genus zero case, it is known that M(0, 1) is the plane,
M(0, 2) is the catenoid, and M(0, N) is empty if N ≥ 3 (see [4]). In higher genus,
it is known that M(G, 2) is empty if G ≥ 1 (see [10]), and M(1, 3) is the Costa
Hoffman Meeks family of genus one (see [1]). These are the only cases where
M(G,N) is completely understood.

The following two conjectures have been proposed in [2], Section 5.2:

Conjecture 1 (the Hoffman Meeks conjecture). If N ≥ G + 3, M(G,N) is
empty.

Conjecture 2. If G ≥ 1, M(G, 3) is the set of Costa Hoffman Meeks surfaces of
genus G.

In view of the recent proof of the uniqueness of the Riemann minimal exam-
ples by Meeks, Perez and Ros [5], a possible strategy to prove these conjectures
would be to prove that if a counterexample exists, then one can deform it until it
degenerates. One would obtain a contradiction by proving that the set of coun-
terexamples is compact – actually compactness is also useful to prove that one can
deform.
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The subject of this paper is to prove compactness theorems for families of
minimal surfaces, under some geometric assumptions.

Using ideas of H. Choi, R. Shoen and B. White, Antonio Ros [8] has proven
that the moduli space M(G,N) is weakly compact in the following sense: if (Mn)n

is a sequence of embedded minimal surfaces with fixed genus G and number of ends
N , then up to passing to a subsequence, (Mn)n converges to a finite set of embed-
ded minimal surfaces {M1,∞, · · · ,Mm,∞}. Roughly speaking, this convergence
means that when n → ∞, the curvature concentrates in m disjoint small balls
B1,n, · · · , Bm,n, and after suitable blow-up, each sequence Mn ∩Bi,n converges to
Mi,∞.

In this paper, we prove that the weak limit {M1,∞, · · · ,Mm,∞} satisfies a set
of algebraic equations which we call the balancing condition: Theorem 4. These
equations relate the logarithmic growths of the ends and the “positions” of the
limit surfaces M1,∞, · · · ,Mm,∞. By the position of Mi,∞, we mean the limit
(up to some scaling) of the center of Bi,n. From the balancing condition, we
deduce a single quadratic equation satisfied by the logarithic growths of the ends:
Theorem 7.

We then use these tools to prove compactness theorems. What we need to
prove is that the sequence (Mn)n converges to a single limit M1,∞. Typically, we
prove that if m ≥ 2, then the quadratic equation has a sign, so it cannot be zero.

Concerning the first conjecture, we obtain the following result:

Theorem 1. Consider some G ≥ 1 and assume that M(G′, N ′) is empty for all
G′ < G and all N ′ ≥ G′ + 3. Then for all N ≥ G + 3, M(G,N) is compact.

In other words, if the conjecture is known to be true for all G′ < G, then the
set of counterexamples in the genus G case is compact. This might be useful in
an inductive proof of the conjecture.

Since the conjecture is known to be true for G = 0, we obtain

Corollary 1. If N ≥ 4, then M(1, N) is compact.

This was obtained by A. Ros in [8] when N ≥ 5 using a quite different argument.
Regarding the second conjecture, we prove the following result. Let M be an

embedded minimal surface with N ends. It is well known that the logarithmic
growths of the ends satisfy c1 ≤ c2 ≤ · · · ≤ cN .

Definition 1. We say an embedded minimal surface with N ends has separated
ends if c1 < c2 < · · · < cN .

Given ε > 0, we say that the surface has ε-separated ends if ck+1 − ck ≥
ε(cN − c1) for all 1 ≤ k ≤ N − 1. Note that this condition if invariant by scaling.

We say that a sequence (Mn)n has uniformly separated ends if there exists ε > 0
such that all Mn have ε-separated ends.
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Let C(G) be the set of Costa Hoffman Meeks surfaces of genus G.

Theorem 2. Assume that G �= 2. Let (Mn)n be a sequence of surfaces in M(G, 3)\
C(G) with uniformly separated ends. Then there exists a subsequence which con-
verges to a single surface in M(G, 3).

We cannot guarantee that the limit is in M(G, 3) \ C(G) because we do not
know that C(G) is open.

Some nasty things happen in the genus 2 case, which suggests that surprisingly
enough, the conjecture might be harder in this case.

The paper is organised as follows. We state our main result, the balancing
condition, in Section 1. We prove it in Section 2. We give applications and prove
Theorems 1 and 2 in Section 3.

1. Main result

1.1. Weak compactness

We first recall the weak compactness theorem of A. Ros:

Theorem 3. [8] Let (Mn)n be a sequence of non-flat embedded complete minimal
surfaces in R

3 with finite total curvature, horizontal ends and fixed topology: genus
G and N ends. Then there exists a subsequence, denoted again by (Mn)n, an inte-
ger m > 0 and non-flat embedded complete minimal surfaces M1,∞, · · · ,Mm,∞
with finite total curvature and horizontal ends, such that (Mn)n converges to
{M1,∞, · · · ,Mm,∞}. This convergence means the following:

1) C(Mn) = C(M1,∞)+· · ·+C(Mm,∞), where C(M) means the total curvature
of M .

2) There exists homotheties ϕi,n such that ϕi,n(Mn) converges smoothly to
Mi,∞ uniformly on compact subsets of R

3.
3) Given R,n large enough, let Bi,n be the Euclidean ball ϕ−1

i,n(B(0, R)). Then
B1,n, · · · , Bm,n are disjoint, and Mn decomposes as

Mn = M1,n ∪ · · · ∪ Mm,n ∪ Ω1,n ∪ · · · ∪ ΩN,n

where Mi,n = Mn ∩ Bi,n and Ωk,n is a graph over the exterior of some
convex disks in the horizontal plane x3 = 0, containing exactly one end
of Mn.

We introduce some more terminology. We call Ωk,n the unbounded domain
at level k, and we say that the point at infinity in Ωk,n is the end at level k of
Mn. Here the word “level” has a combinatorial meaning. To each end of Mi,∞
corresponds one curve in ∂Mi,n which lies in one domain Ωk,n. We say that the
end under consideration is the end at level k of Mi,∞.
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Fig. 1. A family of minimal surfaces Mn whose weak limit is a Costa surface and two
catenoids, one with ends at levels 1 and 2, the other with ends at levels 2 and 3.

1.2. Uniform speed

Definition 2. Let µi,n be the ratio of the homothety ϕi,n. We say the sequence
(Mn)n has uniform speed if the µi,n are comparable, namely there exists a constant
C such that µi,n ≤ Cµj,n for all n, i, j.

In Section 3.2 we will see a nice criterion for uniform speed, namely, if a se-
quence (Mn)n has uniformly separated ends, then it has uniform speed.

Fig. 2. A family of minimal surfaces Mn with non-uniform speed. The two catenoids collapse
faster than the 3-ended surface.

If the sequence has uniform speed, we may, by suitable scaling of Mn and
M1,∞, · · · ,Mm,∞, assume that all µi,n are equal to 1. (Indeed, by scaling of Mn

we may assume that µ1,n = 1. Then passing to a subsequence, each µi,n has a
limit �i ∈ (0,∞). We replace ϕi,n by ϕi,n/µi,n and Mi,∞ by Mi,∞/�i.)

In case the sequence (Mn)n does not have uniform speed, we may still, by
suitable scaling, assume that all µi,n are equal to 1. However, some of the surfaces
Mi,∞ need to be scaled by zero, so they must be seen as multi-sheeted horizontal
planes with a singular point. (Details: passing to a subsequence, we may assume
that min{µ1,n, · · · , µm,n} = µi0,n with i0 independent of n. By scaling of Mn we
may assume that µi0 = 1. Then passing to a subsequence, each µi,n has a limit
�i ∈ [1,∞]. We replace as above ϕi,n by ϕi,n/µi,n and Mi,∞ by Mi,∞/�i. In case
�i = ∞, Mi,∞ must be seen as a multi-sheeted horizontal plane.)

Let me summarise: Mn and M1,∞, · · · ,Mm,∞ have been scaled so that all ϕi,n

have ratio 1 so are in fact translations. Each limit Mi,∞ is either a non-flat finite
total curvature minimal surface, or a flat multi-sheeted horizontal plane. One
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basic problem is that our balancing condition will not “see” flat limits. Note that
at least one limit surface is non-flat.

1.3. The balancing condition

Let Qi,k be the logarithmic growth of the end at level k of Mi,∞. Note that
Qi,k = 0 if Mi,∞ is flat. We also write Qi,k = 0 if Mi,∞ has no end at level k. We
shall interpret Qi,k as electrostatic charges. We define

Qk =
m∑

i=1

Qi,k, 1 ≤ k ≤ N.

Then Qk is the limit of the logarithmic growth of the end at level k of Mn when
n → ∞.

Let pi,n be the projection of the center of the ball Bi,n on the horizontal plane
x3 = 0. We see pi,n as a point in the complex plane. In general pi,n → ∞, so
scaling is needed to see interesting limits. We may find homotheties ψn such that
up to a subsequence, each sequence ψn(pi,n) has a finite limit, which we call pi,
and moreover at least two points pi are distinct. We call {p1, · · · , pm} the limit
configuration. We think of pi as the position of Mi,∞, although we cannot see
both pi and Mi,∞ at the same scale.

Definition 3. We say the configuration is non-singular if the points p1, · · · , pm

are distinct.

In this case we define forces by

Fi =
N∑

k=1

∑
j �=i

Qi,kQj,k

pi − pj
.

Theorem 4 (non-singular case). In the above setup, if the limit configuration
{p1, · · · , pm} is non-singular, then

1) the configuration is balanced: ∀i, Fi = 0.
2) There exists numbers H1, · · · ,HN−1 such that the following holds: for any

i, if Mi,∞ has ends at levels k and k + 1, then

Qi,k+1 − Qi,k = Hk.

The meaning of condition 2 is of course that if i and j are two such indices,
then

Qi,k+1 − Qi,k = Qj,k+1 − Qj,k.

We call 1 the balancing condition, or the force equation. We call 2 the charge
equation. These are purely algebraic equations. They are invariant by scaling of
the charges Qi,k and scaling/rotation/translation of the points p1, · · · , pm.
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1.4. The singular case

Assume now that the configuration {p1, · · · , pm} is singular. Define an equivalence
relation on {1, · · · ,m} by i ∼ j if pi = pj . Given an equivalence class α, write pα

for the common value of all pi, i ∈ α. Define charges and forces by

Qα,k =
∑
i∈α

Qi,k

Fα =
N∑

k=1

∑
β �=α

Qα,kQβ,k

pα − pβ

where the last sum is taken on all equivalence classes β (possibly with only one
point) different from α. As we shall see, the configuration is balanced in the sense
that Fα = 0 for all classes α.

p 1

p5

pα
zoom

p
2
α

p
3
α p

4
α

 

Fig. 3. A singular configuration, with α = {2, 3, 4}. The configuration {p1, pα, p5} is balanced.
The sub-configuration {pα

2 , pα
3 , pα

4 } is balanced.

We may say more by zooming in. Let α be a class with at least two elements.
We may find homotheties, denoted ψα

n , such that the sequence ψα
n(pi,n) has a finite

limit for each i ∈ α, denoted pα
i , and at least two of these points are different.

(Clearly, ψα
n(pj,n) → ∞ when j �∈ α.) We call {pα

i , i ∈ α} a sub-configuration. If
the sub-configuration pα

i is non-singular (which means, of course, that all points
pα

i , i ∈ α, are distinct), we may define forces by

Fα
i =

N∑
k=1

∑
j∈α

j �=i

Qi,kQj,k

pα
i − pα

j

.

Theorem 5 (singular case, depth 2). In the above setup, assume that all sub-
configurations are non-singular, then:

1a) each sub-configuration if balanced, in the sense that Fα
i = 0 for all α and

all i ∈ α.
1b) The configuration is balanced, in the sense that Fα = 0 for all classes α.
2a) For each α, there exists numbers Hα

k such that the following holds: for
each i ∈ α, if Mi,∞ has ends at levels k and k + 1, then

Qi,k+1 − Qi,k = Hα
k .
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2b) For each α and each i ∈ α such that Mi,∞ has ends at levels k and k +1,
there exists ρ ∈ [0, 1] such that

ρ(Qi,k+1 − Qi,k) + (1 − ρ)(Qα,k+1 − Qα,k) = Hk.

where Hk is as in Theorem 4.

The statements 1a) and 2a) say that each sub-configuration satisfies the con-
clusion of Theorem 4. The statement 1b) says that as far as forces are concerned,
we may see all surfaces Mi,∞, i ∈ α as one single surface with ends of logarithmic
growths Qα,k.

To get some grasp on point 2b), observe that if ρ = 1 then we get Hk =
Qi,k+1 − Qi,k as if the configuration were non-singular, while if ρ = 0, we get
Hk = Qα,k+1 − Qα,k as if all surfaces Mi,∞, i ∈ α, were one single surface with
logarithmic growths Qα,k. It is very reasonable that both cases might happen, so
one cannot hope for a better result.

We will use 2b) as follows: if pj is a non-singular point of the configuration
and Mj,∞ has ends at levels k and k + 1, then Qj,k+1 − Qj,k is in the interval
bounded by Qi,k+1−Qi,k and Qα,k+1−Qα,k. In other words, in the singular case,
the charge equation must be replaced by some inequalities (see Section 3.3.2. for
an example).

There are no known examples of families of minimal surfaces which give in
the limit a singular configuration (figure 4 is for illustration only). However, in
[11], examples are constructed for which the configuration is arbitrary close to be
singular. This strongly suggests that singular configurations are possible.

Of course, there might be singular sub-configurations. In this case, by zooming
in again, we see balanced sub-sub-configurations, and so on. By successive zoom-
ings like this we obtain what we call a nested configuration. We have a similar
theorem in this case. This will be explained in Section 2.5.

Fig. 4. A family of minimal surfaces which gives a singular configuration. The three catenoids
on the left converge to the same point.

1.5. Related work

This paper stems from a failed attempt by the author [11] to construct counterex-
amples to the conjectures 1 and 2. In [11], I proved the converse to Theorem 4 in
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the case where all surfaces Mi,∞ are catenoids under an additional non-degeneracy
hypothesis. Namely if we start from a balanced, non-degenerate, non-singular con-
figuration of catenoids, we can construct a family of minimal surfaces.

I was then able to classify all configurations in the 3-ended case, and unfortu-
nately found only the ones which yield the Costa Hoffman Meeks family (except in
the genus 2 case). Still, it is quite interesting to see how the balancing condition
forces the configuration to be very symmetric. To me this was good support to
the conjecture.

Fortunately, [11] was more successful in answering other questions, in particular
I proved the existence of embedded minimal surfaces with no symmetries.

To prove compactness theorems, it is necessary to allow limit surfaces other
than catenoids, and one has to consider the case where the configuration is singular,
which makes things much more complicated.

2. Proof

Our plan is to identify the domain Ωk,n with a domain in the complex plane, and
compute the limit of its Weierstrass data when n → ∞. We obtain the force
equation Fi = 0 by computing the limit of the horizontal flux along certain cycles.
We obtain the charge equation by estimating the height between the domains Ωk,n

and Ωk+1,n.

2.1. Preliminaries

We introduce some notations: gn and dhn are the Gauss map and height differential
of Mn, λn is the ratio of ψn, Ik is the set of indices i such that Mi,∞ has an end at
level k. For i ∈ Ik, γi,k,n is the curve at level k in the boundary of Mi,n, oriented
as a boundary, so −γi,k,n is oriented as a boundary of Ωk,n.

We now fix some level k, 1 ≤ k ≤ N and consider the domain Ωk,n. As Ωk,n

is a graph, we may (changing orientation if necessary) assume that the normal
points up, so that |gn| > 1 in Ωk,n. Let ζn : Ωk,n → C be the composition of
the projection on the horizontal plane followed with the homothety ψn. Clearly
ζn(Ωk,n) converges to C \ {pi, i ∈ Ik}.

We need to introduce a global conformal coordinate zn on Ωk,n. We shall do
this so that zn is as close as possible to ζn (which preserves orientation but is
not conformal). By Koebe’s Theorem on the uniformisation of multiply connected
domains, (see [9] and the reference therein), Ωk,n is conformally equivalent to a
canonical circle domain, namely, there exists a conformal representation zn of Ωk,n

onto a domain of the form C minus round disks D(ai,n, ri,n), i ∈ Ik. Moreover,
zn is unique up to a Moebius transform. We normalise zn by asking that zn = ζn

at three points, which we choose to be ∞ and two other fixed points far from the
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points pi. We need the following estimates:

Proposition 1. When n → ∞, we have (up to subsequences) zn ∼ ζn in the
sense that zn(ζ−1

n (z)) → z uniformly on compact subsets of C \ {pi, i ∈ Ik}. In
particular, we have lim ai,n = pi and lim ri,n = 0. Moreover, we have

lim
R→∞

lim
n→∞

log ri,n

log λn
= 1

where R is the radius of Bi,n in Theorem 3.

Proof. Note that Ωk,n, γi,k,n and zn all depend on R. We will most often fix the
value of R, but we sometime need to let R → ∞. When this happens, we will
always let first n → ∞ and then R → ∞.

It will be convenient to replace the ball B(0, R) in the statement of Theorem 3
by a vertical cylindrical box of radius R and height 2R (in other words, we use
the norm ||x|| = max(

√
x2

1 + x2
2, |x3|) to define balls in R

3). This clearly does not
change anything to the statement of the theorem. Thus the projection of γi,k,n

on the horizontal plane is the circle C(pi,n, R), and ζn(γi,k,n) is a circle of radius
λnR.

As 1/gn is holomorphic in Ωk,n, its maximum is on the boundary. From the
convergence of Mi,n to Mi,∞, we obtain

lim
R→∞

lim
n→∞ inf

Ωk,n

|gn| = ∞

Hence ζn is κ-quasiconformal on Ωk,n, with κ → 1 when n → ∞ and R → ∞.
Now fix some R and let K be a compact subset of C \ {pi, i ∈ Ik}. Then

lim
n→∞ inf

ζ−1
n (K)

|gn| = ∞

so ζn restricted to K is κ-quasiconformal with κ → 1 when n → ∞. Since zn◦ζ−1
n :

K → C is κ-quasiconformal and fixes three points, we may extract a converging
subsequence by some standard normal family argument ([3], Proposition 5.1 page
73). Using an exhausting sequence of compact sets, zn ◦ζ−1

n converges on compact
subsets of C \ {pi, i ∈ Ik} to a holomorphic function f : C \ {pi, i ∈ Ik} → C . f
clearly extends to a holomorphic bijection of C ∪ {∞}. Since f fixes three points,
it has to be the identity, which proves the first statements.

To prove the last statement, consider the annular domain in Ωk,n defined by
ri,n < |zn − ai,n| < ε for some fixed small ε > 0. The image of this domain by
ζn is bounded by a circle of radius λnR and a curve which converges to the circle
C(pi, ε) when n → ∞. Since ζn is κ-quasiconformal, the moduli of these domains
differ by a factor at most κ. The moduli are by definition log ε − log ri,n and
log ε − log(λnR). Since κ → 1 when R → ∞, the last statement follows. �
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2.2. Limit of the Weierstrass data

We identify Ωk,n with a domain in the complex plane by mean of the conformal
coordinate zn, that is, we write zn = z.

Proposition 2. Up to a subsequence, we have on Ωk,n

lim
n→∞ dhn =

∑
i∈Ik

Qi,k

z − pi
dz

lim
n→∞λngndhn = −2 dz

The convergence is uniform on compact subsets of C \ {pi, i ∈ Ik} and is also
uniform with respect to R.

Proof. Let dhi,∞ be the height differential of Mi,∞. Since Mi,∞ has horizontal
catenoid (or planar) type ends, dhi,∞ has at most a simple pole at each end, so
there exists a constant C such that

∀R,

∫
∂(Mi,∞∩B(0,R))

|dhi,∞| ≤ C.

Up to the translation ϕi,n, Mn converges to Mi,∞ so we have for n large enough∫
γi,k,n

|dhn| ≤ C.

By definition of Qi,k, we have

lim
n→∞

∫
γi,k,n

dhn = 2πi Qi,k.

By elementary complex analysis, Lemma 1 below with J = ∅, dhn converges to a
meromorphic differential with at most simple poles at pi, i ∈ Ik. The residue at
pi is Qi,k (provided the pi are distinct). This determines the limit, and proves the
first statement of the proposition. When several pi are equal, the residues add up,
and the statement still holds.

To prove the second statement, recall that ζn ∼ zn = z which gives

dz ∼ dζn = λn
1
2

(
g−1

n dhn − gndhn

)
Since gn → ∞ on compact subsets of C \ {pi}, this gives the second statement of
the proposition. �

For future reference, we state a lemma in a setting more general than needed
here.

Lemma 1. Consider a sequence of domains Ωn = C \⋃
i∈I∪J D(ai,n, ri,n), where

I and J are finite sets, lim ai,n = pi �= ∞ when i ∈ I, lim ai,n = ∞ when i ∈ J ,
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and lim ri,n = 0. Let fn : Ωn → C be a sequence of holomorphic functions such
that ∫

∂Ωn

|fn| ≤ C

and fn(z)dz has at most a simple pole at ∞. Then there exists a subsequence, still
noted fn, which converges on compact subsets of C \ {pi, i ∈ I} to a meromorphic
function f . Moreover f has at most simple poles at each pi, i ∈ I, and f(z)dz has
at most a simple pole at ∞.

Proof. Consider some ε > 0 and let Uε be the set of z such that ∀i ∈ I, |z−pi| ≥ ε.
Then for n large enough, any z ∈ Uε is at distance at least ε/2 from ∂Ωn. By the
residue theorem (note that the integrand has no pole at ∞)

|fn(z)| =
∣∣∣∣ 1
2πi

∫
∂Ωn

fn(w)
w − z

dw

∣∣∣∣ ≤ C

πε

Hence we may extract a subsequence fn which converges on Uε. By a diagonal
process, we may extract a subsequence which converges on Uε for all ε. Let
f = lim fn. The above estimate implies that for any ε > 0,∫

|z−pi|=ε

|f(z)dz| ≤ 2C

It easily follows, using a Laurent series, that f has at most a simple pole at pi. �

2.3. The balancing condition

Let γ be a closed curve on a minimal surface. The flux of γ is the vector flux(γ) =∫
γ

ν ds where ν is the conormal to γ. Physically, the flux is the force exerted by
the surface on γ, so may be observed in soap film experiments, see figure 5.

Let F (γ) be the horizontal part of flux(γ), seen as a complex number. In term
of Weierstrass Representation,

F (γ) =
i

2

(∫
γ

g−1dh +
∫

γ

gdh

)

Since γ is a closed curve, we have∫
γ

g−1dh =
∫

γ

gdh

so

F (γ) = i

∫
γ

g−1dh = i

∫
γ

gdh.
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2.3.1. The non-singular case

Proposition 3 (non-singular case). Assume that all points pi, i ∈ Ik, are dis-
tinct. Then for i ∈ Ik,

lim
n→∞

1
λn

F (γi,k,n) = −2π
∑
j �=i

Qi,kQj,k

pi − pj

Since the curves γi,k,n bound the minimal surface Mi,n, we have∑
k

F (γi,k,n) = 0

where the sum is taken on all k such that Mi,∞ has an end at level k. This gives
the balancing condition

∀i, −2π
∑

k

∑
j �=i

Qi,kQj,k

pi − pj

= 0.

Remark 1. The proposition predicts that when Qi,k and Qj,k have the same sign,
the force between them is attractive. This is in agreement with an interesting soap
film experiment, see figure 5. We start with a soap film bounded by three wire
circles in the same horizontal plane. The two small circles are hanging on threads.
When we carefully lift up the small circles, they are attracted to each other.
When we move one up and one down, they are repelled from each other. The first
experiment was explained to me by A. Ros and is described in [6], Section 2.1.
The second one was suggested by Proposition 3.

Note that if we interpret Qi,k and Qj,k as electrostatic charges, the force be-
tween them should be repulsive when they have the same sign. This is the reason
why we defined the force Fi with the opposite sign.

Fig. 5. A soap film experiment.
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Proof. Observe that if we change the orientation of Mn, then γi,k,n, gn and dhn

are changed into −γi,k,n, −1/gn and dhn, so F (γi,k,n) is not changed. This was
to be expected, of course, given the physical interpretation of the flux as a force.
Hence, we may assume that the Gauss map points up in Ωk,n and use the results
of the preceding sections.

lim
n→∞

1
λn

F (γi,k,n) = lim
n→∞− i

λn

∫
g−1

n dhn = lim
n→∞−i

∫
(dhn)2 (λngndhn)−1

=
i
2

∫ ⎛
⎝∑

j

Qj,k

z − pj

⎞
⎠2

= −π Res pi

⎛
⎝∑

j

Qj,k

z − pj

⎞
⎠2

= −π Res pi

⎛
⎝ Q2

i,k

(z − pi)2
+ 2

∑
j �=i

Qi,kQj,k

(z − pi)(z − pj)
+

∑
j,� �=i

Qj,kQ�,k

(z − pj)(z − p�)

⎞
⎠

= −2π
∑
j �=i

Qi,kQj,k

pi − pj
.

In the above computation, we computed the integral on the circle C(pi, ε) which is
homologous to γi,k,n and where Proposition 2 applies (ε is a fixed small number).

�

2.3.2. The singular case

We now explain how to adapt the above argument in the case where the con-
figuration is singular but each sub-configuration is non-singular, as in Theorem 5.
In this case, we have, with the notations of Section 1.4,

lim
n→∞ dhn =

∑
α

Qα,k

z − pα
.

Let γα,k,n be the circle C(pα, ε) in Ωk,n. The above computation gives

lim
n→∞

1
λn

F (γα,k,n) = −2π
∑
β �=α

Qα,kQβ,k

pα − pβ

.

Summing on k, we obtain that the configuration is balanced. This proves point
1b) of Theorem 5. Note that we do not need that the sub-configurations are
non-singular here.

To prove that the sub-configuration obtained by zooming on pα is balanced,
namely Fα

i = 0, we do the exact same thing, replacing the homothety ψn by ψα
n

when we define ζn. The only difference is that some points go to ∞, so J �= ∅
when we use Lemma 1. �
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2.4. Height estimate

2.4.1. The non-singular case

We fix some point A ∈ C away from all points pi, and let Ak,n be the point
zn = A in Ωk,n. Recall that λn → 0.

Proposition 4. Let i ∈ Ik ∩ Ik+1. Assume the configuration is non-singular.
Then

lim
n→∞

−1
log λn

Re
∫ Ak+1,n

Ak,n

dhn = Qi,k+1 − Qi,k.

Up to the log factor, the left side is the height between Ak,n and Ak+1,n so
does not depend on the path of integration. This proves that Qi,k+1 − Qi,k is the
same for all i ∈ Ik ∩ Ik+1.

Proof. Let Pi,k,n be the point zn = ai,n + 2ri,n in Ωk,n. From the convergence of
Mi,n to Mi,∞ we have

Re
∫ Pi,k+1,n

Pi,k,n

dhn = O(log R)

where we compute the integral on a path which goes through Mi,n. Lemma 2
below gives

Re
∫ Pi,k,n

Ak,n

dhn = (Qi,k + ε(n)) log ri,n + O(1)

where as usual ε(n) means a function which goes to 0 when n → ∞, uniformly
with respect to R. Using Proposition 1, we obtain

Re
∫ Ak+1,n

Ak,n

dhn = (Qi,k − Qi,k+1 + ε(n))(1 + ε(R)) log λn + O(R).

This gives

lim
n→∞

−1
log λn

Re
∫ Ak+1,n

Ak,n

dhn = (Qi,k+1 − Qi,k)(1 + ε(R)).

The result follows by letting R → ∞. �

Lemma 2. With the hypotheses of Lemma 1, assume further that all pi, i ∈ I
are distinct. Fix some small ε > 0 and consider some z in the annular region
2ri,n ≤ |z − ai,n| ≤ ε. (Here the 2 might be replaced by any number > 1). Then
when n → ∞,∫ z

z0

fn(z)dz =

(
1

2πi

∫
∂Di,n

fn(z)dz

)
log |z − ai,n| + O(1)

where O(1) means a function which is uniformly bounded with respect to z and n.
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Proof. By Lemma 1, the integral of fn from z0 to ai,n + ε is a bounded function.
To estimate the integral from ai,n + ε to z, we write the Laurent series of fn in
the annular region ri,n < |z − ai,n| < 2ε:

fn(z) =
∑
m∈Z

cm(z − ai,n)m

where the coefficients cm depend on n and are given by

cm =
1

2πi

∫
|z−ai,n|=2ε

fn(z)
(z − ai,n)m+1

dz =
1

2πi

∫
|z−ai,n|=ri,n

fn(z)
(z − ai,n)m+1

dz.

From the proof of Lemma 1, we have∫
|z−ai,n|=2ε

|f | ≤ 2C =⇒ |cm| ≤ C ′

(2ε)m+1
,

∫
|z−ai,n|=ri,n

|f | ≤ C =⇒ |cm| ≤ C ′

(ri,n)m+1
.

Now we compute∫ z

ai,n+ε

fn(z)dz = c−1 log
z − ai,n

ε
+

∑
m �=−1

cm

m + 1
(
(z − ai,n)m+1 − εm+1

)
.

The first term is what we want. Using the first and second estimates of cm, it
is straightforward to see that the sum for m ≥ 0 and m ≤ −2, respectively, are
bounded. �

2.4.2. The singular case

We now consider the case where the configuration is singular and each sub-
configuration is non-singular, as in Theorem 5. We define a conformal coordinate
zα
n on Ωk,n using ψα

n instead of ψn in the definition of zn. Let Aα
k,n be the point

zα
n = A in Ωk,n. Then by Proposition 4, we have when n → ∞

Re
∫ Aα

k+1,n

Aα
k,n

dhn ∼ (Qi,k − Qi,k+1) log λα
n.

This proves point 2a) of Theorem 5.
To evaluate the integral from Ak,n to Aα

k,n, we go back to the coordinate zn.
When we identify Ωk,n with a domain in the complex plane via zn, we have on
compact subsets of C \ {pα},

lim dhn =
∑
α

Qα,k

z − pα
dz.

Also for the point zα
n = A, we have zn−ai,n ∼ Aλn/λα

n. The proof of Proposition 4
gives

Re
∫ Aα

k,n

Ak,n

dhn ∼ Qα,k log
λnA

λα
n

.
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This gives

1
log λn

Re
∫ Ak+1,n

Ak,n

dhn ∼ (Qi,k −Qi,k+1)
log λα

n

log λn
+ (Qα,k −Qα,k+1)

log λn − log λα
n

log λn
.

Passing to a subsequence we may assume that (recall that 0 < λn < λα
n < 1)

ρ = lim
n→∞

log λα
n

log λn
∈ [0, 1]

exists. This proves point 2b) of Theorem 5. �

2.5. The case of nested configurations

As was explained at the end of Section 1.4, in the case of singular configurations,
we may have to make several successive zooms before we see non-singular sub-
configurations. This is illustrated in figure 6. We construct by this process a tree,
whose leaves are labelled with the indices 1, · · · ,m, and whose nodes are labelled
by subsets of {1, · · · ,m}: each node is labelled by the set of leaves that are below
it. The root is labelled with {1, · · · ,m} and corresponds to the full configuration.

p
4
α

zoompα pγ
α

p
3
α

zoom

p 2p 1

pβ
zoom

p
9
β

p
10
β

p
11
β

α β

γ3 4

5 6 7 8

1 2

9 10 11

p
5
γ

p
8
γp

6
γ

p
7
γ

Fig. 6. A nested singular configuration of depth 3 and the corresponding tree, with
α = {3, 4, 5, 6, 7, 8}, β = {9, 10, 11} and γ = {5, 6, 7, 8}.

The depth of a leaf is its distance to the root. The depth of a configuration is
the maximum depth of its leaves. For example, a non-singular configuration has
depth 1.

To each node α is associated a sequence of homotheties ψα
n , such that for each

son β of α and each i ∈ β, lim ψα
n(pi,n) exists and only depend on β. We call it

pα
β . Moreover, for each α, at least two pα

β are distinct. (When α is the root, ψα
n

is ψn.)
We call this rather heavy structure a nested configuration. We define charges
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and forces by
Qα,k =

∑
i∈α

Qi,k 1 ≤ k ≤ N

Fα
β =

N∑
k=1

∑
γ �=β

Qβ,kQγ,k

pα
β − pα

γ

where β and γ are sons of α.
The following theorem generalises Theorem 5 to the nested case.

Theorem 6 (nested case). In the above setting,
1) each node α is balanced, in the sense that for all sons β of α, Fα

β = 0.
2) For each node α, there exists numbers Hα

k such that the following holds:
Consider a leaf i ∈ α such that Mi,∞ has ends at levels k and k + 1. Let
α = α0, α1, · · · , αr = i be the descending path from the node α to the leaf i.
Then there exists non-negative numbers ρ1, · · · , ρr such that

r∑
s=1

ρs = 1 and Hα
k =

r∑
s=1

ρs(Qαs,k+1 − Qαs,k).

In other words, point 2 means that Hα
k is in the smallest interval containing all

the number Qαs,k+1 − Qαs,k that we encounter while descending the tree from α
to i (α excluded). As was explained after Theorem 5, this gives useful inequalities.

Proof. The first point is clear from the proof of Proposition 3. For the second
point, we have by the proof of Proposition 4

Re
∫ Aαs

k,n

A
αs−1
k,n

dhn ∼ Qαs,k log
λ

αs−1
n

λαs
n

1 ≤ s ≤ r − 1.

Re
∫ A

αr−1
k+1,n

A
αr−1
k,n

dhn ∼ (Qαr,k − Qαr,k+1) log λαr−1
n .

Let us define λαr
n = 1. This gives

1
log λα0

n
Re

∫ A
α0
k+1,n

A
α0
k,n

dhn ∼
r∑

s=1

(Qαs,k − Qαs,k+1)
log λ

αs−1
n − log λαs

n

log λα0
n

.

Passing to a subsequence, we may assume that for each 1 ≤ s ≤ r,

ρs = lim
log λ

αs−1
n − log λαs

n

log λα0
n

exists. This gives the result. �
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3. Applications

We say a configuration is trivial if it consists of one single point, which means
that the sequence Mn converges to one single surface M1,∞. The idea to prove
compactness theorems is to classify all possible limit configurations, and use the
hypotheses to rule out all non-trivial ones.

3.1. The quadratic equation

The following equation is the key to all our classification results. The basic idea is
that it is quadratic and the charges are real, so in some cases it has no solutions.

Theorem 7. The charges satisfy

N∑
k=1

∑
i<j

Qi,kQj,k = 0.

Proof. First assume the configuration is non-singular. Then we write

0 =
∑

i

piFi =
∑

k

∑
i

∑
j �=i

pi
Qi,kQj,k

pi − pj
=

∑
k

∑
i<j

Qi,kQj,k.

In the case of a singular configuration of depth 2 (namely when all sub-configura-
tions are non-singular) we obtain, from Fα

i = 0 and Fα = 0 respectively

∀α,
∑

k

∑
i,j∈α

i<j

Qi,kQj,k = 0 and
∑

k

∑
α<β

Qα,kQβ,k = 0.

Here the notation α < β simply means that we sum on all unordered pairs {α, β}.
Now ∑

k

∑
i<j

Qi,kQj,k =
∑

k

∑
α

∑
i,j∈α

i<j

Qi,kQj,k +
∑

k

∑
α<β

∑
i∈α

Qi,k︸ ︷︷ ︸
Qα,k

∑
j∈β

Qj,k

︸ ︷︷ ︸
Qβ,k

= 0.

Clearly the result follows in general by induction on the depth of the nested con-
figuration. �

3.2. A criterion for uniform speed

The levels of the ends of a limit surface Mi,∞ form a set of consecutive integers,
for if there were a gap at some level k, Mi,n would cross the unbounded domain
Ωk,n which contradicts embeddedness. In this section we prove
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Proposition 5. Consider some level k and assume that some limit surface Mi,∞
has ends at levels k and k +1 whose logarithmic growths are equal: Qi,k = Qi,k+1.
Then Qk+1 ≤ Qk.

This implies as a corollary:

Theorem 8. Assume that the surfaces Mn have uniformly separated ends. Then
the sequence (Mn)n has uniform speed, and all the limit surfaces Mi,∞ have sep-
arated ends.

Indeed, if the sequence (Mn)n does not have uniform speed, then at least one
limit surface Mi,∞ is flat so all its ends satisfies Qi,k = 0. If the ends are uniformly
separated then Qk < Qk+1.

3.2.1. Proof in the non-singular case

First assume that the limit configuration is non-singular. We shall use the
following doubtful but very convenient notation:

∆Qi,k = Qi,k+1 − Qi,k.

I claim that ∀j, ∆Qj,k ≤ 0. Indeed, if Mj,∞ has ends at levels k and k + 1, then
∆Qj,k = ∆Qi,k = 0 by the charge equation (Theorem 4). Else, either Mj,∞ has
its top end at level k, in which case ∆Qj,k = −Qj,k ≤ 0, or its bottom end at level
k + 1, in which case ∆Qj,k = Qj,k+1 ≤ 0, or no end at level k nor k + 1, in which
case ∆Qj,k = 0. Summing on j gives ∆Qk ≤ 0. �

3.2.2. Proof of Proposition 5 in the singular case

In the case of singular configuration, we argue by induction on the depth r of the
configuration. So assume that we have proven the proposition for all configurations
of depth < r and consider a configuration of depth r. Without loss of generality
we may assume that all leaves of the tree have the same depth r, by introducing if
necessary trivial sub-configurations (namely, configurations with only one point).

Let α0 be the root of the tree. Let i be given in the hypothesis of the proposi-
tion, and let α0, α1, · · · , αr = i be the descending path from the root to i. By the
induction hypothesis, we have ∆Qαs,k ≤ 0 for each s ≥ 1, because we may see the
sub-configuration αs as a configuration of depth < r. Hence

Hk = ρr∆Qαr,k + · · · + ρ1∆Qα1,k ≤ 0.

Consider now any leaf j and let α0, β1, β2 · · · , βr = j be the descending path
from the root to j. I claim that there exists non-negative numbers ρ1, · · · , ρr, not
all zero, such that

ρr∆Qβr,k + ρr−1∆Qβr−1,k + · · · + ρ1∆Qβ1,k ≤ 0.
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If j ∈ I(k) ∩ I(k + 1), this follows from Hk ≤ 0 and Theorem 6. Else we have as
above ∆Qj,k ≤ 0, so the claim holds with ρr−1 = · · · = ρ1 = 0.

From this we want to deduce that

ρ′r−1∆Qβr−1,k + · · · + ρ′1∆Qβ1,k ≤ 0 (1)

for some other non-negative numbers ρ′1, · · · , ρ′r−1, not all zero. We fix βr−1 and
consider all its sons βr. (The numbers ρ1, · · · , ρr depend on βr.) If there exists a
son βr of βr−1 such that ρr = 0, then we are done. Else we divide by ρr to obtain

∆Qβr,k +
ρr−1

ρr
∆Qβr−1,k + · · · + ρ1

ρr
∆Qβ1,k ≤ 0.

Summing on all the sons βr of βr−1 we obtain

∆Qβr−1,k + ρ′′r−1∆Qβr−1,k + · · · + ρ′′1∆Qβ1,k ≤ 0

for some non-negative numbers ρ′′r−1, · · · , ρ′′1 . This proves (1). Now iterating this
summation process we obtain by induction that ∆Qβ1,k ≤ 0. So we have proven
that for all sons β of the root, ∆Qβ,k ≤ 0. Summing on β we obtain ∆Qk ≤ 0. �

3.3. Classification of configurations with 3 ends

In this section we assume that each surface Mn has N = 3 ends. Then each limit
surface Mi,∞ is either a minimal surface with three ends, or a catenoid with ends
at levels 1 and 2, or a catenoid with ends at levels 2 and 3. In the later two cases
we call it a catenoid at level 1 and 2, respectively. The size of a catenoid is the
logarithmic growth of its top end (this is equal to the radius of its waist circle).

Proposition 6 (classification). Assume that N = 3 and the sequence (Mn)n has
uniform speed. Then the possible weak limits {M1,∞, · · · ,Mm,∞} are, up to nor-
malisation (namely: changing indices i, scaling charges Qi,k, translating/scaling/
rotating the pi, and putting all surfaces Mn upside down)

1) m = 1, and M1,∞ is a minimal surface with three ends.
2) m = r + 1 where r ≥ 2. M1,∞, · · · ,Mr,∞ are catenoids at level 1 with size

1. Mr+1,∞ is a catenoid at level 2 with size r − 1. The configuration is as
follows: p1, · · · , pr are the rth roots of unity, pr+1 = 0.

3) m = 4, all Mi,∞ are catenoids of size 1, at level 1 if i = 1, 2 and 2 if i = 3, 4.
The configuration is given by p1 = 1, p2 = −1, p3 = a and p4 = 1/a where
a ∈ C \ {0, 1,−1} is a free parameter.

4) m = 4 and the configuration is singular with two sub-configurations: a sub-
configuration of three catenoids of size 1 given by point 2) above with r = 2,
and one single catenoid M4,∞ at level 2 with size c ∈ (0, 1]. Namely, if
we write α = {1, 2, 3} for the sub-configuration, then M1,∞ and M2,∞ are
catenoids at level 1 with size 1, M3,∞ is a catenoid at level 2 with size 1,
pα
1 = 1, pα

2 = −1 and pα
3 = 0.
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Case 2 is the configuration that we obtain as a limit of the Costa Hoffman Meeks
family of genus r − 1. This configuration is non-degenerate, in the sense that it
admits no non-trivial infinitesimal deformation (see [11]). As a consequence, if
(Mn)n converges to this configuration, then Mn must be a Costa Hoffman Meeks
surface for n large enough (see [11] – this follows from uniqueness in the implicit
function theorem).

Case 3 is the possible limit of a family of minimal surfaces of genus 2 and 3
ends, known as Horgan surfaces, whose existence remains doubtful (see [11]). This
configuration admits a non-trivial deformation so is degenerate. Case 4 may be
seen as a limit case of case 3 when a → 0. It is illustrated in figure 4.

Before proving the proposition, let us prove Theorem 2 as a corollary. Let
(Mn)n be a sequence of minimal surfaces as in this theorem. Since the ends are
uniformly separated, the surface has uniform speed by Theorem 8, so we are in
one of the four cases of the above classification. Case 3 and 4 are excluded because
Mn would have genus 2. Case 2 is also excluded because in this case, Mn would
be a Costa Hoffman Meeks surface of genus r − 1 for n large enough. Therefore,
the only possibility is case 1, which proves the theorem. �

Remark 2. If we remove the hypothesis that the sequence has uniform speed,
then many other weak limits are possible (or at least, we cannot rule them out).
Here is an example: m = 2, M1,∞ is a 3-ended surface with Q1,1 = Q1,2 < Q1,3

and M2,∞ is a catenoid at level 1 with size 0. There might also be more catenoids
of size 0 at level 1, which gives examples of arbitrary genus ≥ 2 (see figure 2).
These examples do not have uniformly separated ends of course.

3.3.1. Proof in the non-singular case

We first prove the proposition in the non-singular case. Let n1, n2 and n3

be respectively the number of catenoids at level 1, at level 2, and the number of
minimal surfaces with three ends. For a catenoid of size c with ends at levels k
and k + 1 we have Qi,k = −c and Qi,k+1 = c so Qi,k+1 −Qi,k = 2c. By the charge
equation (Theorem 4), all catenoids at the same level have the same size. Let
c1 > 0 and c2 > 0 be the size of the catenoids at level 1 and 2. Let J be the set
of indices i such that Mi,∞ has three ends. The quadratic equation (Theorem 7)
gives an equation of the form A + B + C = 0 where

A =
3∑

k=1

∑
i,j∈J

i<j

Qi,kQj,k,

B =
∑
i∈J

n1c1(Qi,2 − Qi,1) + n2c2(Qi,3 − Qi,2),

C = n1(n1 − 1)c2
1 + n2(n2 − 1)c2

2 − n1n2c1c2.

The idea is to obtain informations by proving each term is non-negative.
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Step 1. We prove that A ≥ 0 with equality only if n3 ≤ 1. If i ∈ J then
Qi,1 ≤ Qi,2 ≤ Qi,3 and at least one inequality is strict. Moreover Qi,1 < 0 and
Qi,3 > 0. This gives

Qi,1Qj,1 + Qi,2Qj,2 + Qi,3Qj,3Qi,2(Qj,1 + Qj,2 + Qj,3) = 0.

This proves the claim.

Step 2. We classify the case n3 ≥ 1. By the charge equation (Theorem 4), we
have if i ∈ J , Qi,2 − Qi,1 = 2c1 and Qi,3 − Qi,2 = 2c2 so all terms in B are
non-negative. Keeping only one term we get

B ≥ 2n1c
2
1 + 2n2c

2
2.

This gives

B + C ≥ 1
2

[
(n1c1 − n2c2)2 + n1(n1 + 2)c2

1 + n2(n2 + 2)c2
2

]
.

All terms are non-negative so all must be zero, hence n1 = n2 = 0 and A = 0
which gives n3 = 1. This is case 1 of the proposition.

Step 3. We classify the case n3 = 0. Only the C term remains which we rewrite
as

C =
1
2

[
(n1c1 − n2c2)2 + n1(n1 − 2)c2

1 + n2(n2 − 2)c2
2

]
= 0.

If n1 ≥ 2 and n2 ≥ 2 then all terms are non-negative so n1 = n2 = 2 and c1 = c2.
This is case 3 of the proposition. If n1 = 1 then c1 = (n2 − 1)c2 so c1 > 0 implies
n2 ≥ 2. This is case 2 upside down. The case n2 = 1 is similar. It remains to
classify the possible configurations p1, · · · , pm in each case. This is done in [11].

�

3.3.2. Proof of Proposition 6 in the singular case

Assume the configuration is singular. First observe that there are no non-trivial
configurations with N = 2 – this clearly follows from the quadratic equation.
Hence any non-trivial sub-configuration must have 3 ends. As far as forces are
concerned, each sub-configuration may be seen as one single surface with three
ends of logarithmic growths Qα,1, Qα,2 and Qα,3. So in this section, we see each
sub-configuration as a “fake” 3-ended surface. The difference between a sub-
configuration and a “true” 3-ended surface is that for a sub-configuration, the
charge equation Hk = Qi,k+1 − Qi,k does not hold and must be replaced by some
inequalities as explained after Theorem 5.

As in the previous section, let n1 and n2 be the number of catenoids at level
1 and 2 which correspond to non-singular points of the configuration. Let n3 be
the number of 3-ended surfaces plus the number of sub-configurations (or “fake”
3-ended surfaces).

The equation A + B + C = 0 still holds provided we replace J by J ∪ J ′

where J ′ is the set of α corresponding to sub-configurations. If α is a non-trivial
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sub-configuration, then it must match one of the cases 2,3,4 of Proposition 6.
Observe that in all cases, the logarithmic growths of the sub-configuration satisfy
Qα,1 ≤ Qα,2 ≤ Qα,3 with at least one strict inequality. Hence, we conclude as in
step 1 that A ≥ 0, with equality if n3 ≤ 1.

To estimate the B term in step 2, we need to obtain some inequalities for
Qα,k+1 − Qα,k. We deal with each case of the proposition separately.

Case 2. Assume the configuration contains a sub-configuration α given by case
2 of the classification. If i ∈ α is a catenoid at level 1, we have by point 2b) of
Theorem 5

Qi,2 − Qi,1 = 2, Qα,2 − Qα,1 = r + 1 =⇒ 2 ≤ 2c1 ≤ r + 1.

If j ∈ α is the catenoid at level 2, we have

Qj,3 − Qj,2 = 2r − 2, Qα,3 − Qα,2 = r − 2 =⇒ r − 2 ≤ 2c2 ≤ 2r − 2.

These inequalities are enough to conclude. Indeed, we obtain

Qα,2 − Qα,1 ≥ 2c1, Qα,3 − Qα,2 ≥ r − 2
r − 1

c2.

We use this to estimate B, this gives

B + C ≥ 1
2

[
(n1c1 − n2c2)2 + c2

1(n
2
1 + 2n1) + c2

2n2

(
n2 − 2

r − 1

)]
.

If n2 = 0, or n2 = 1 and r ≥ 3, or n2 ≥ 2, the last term is non-negative, so all
must be zero, which gives n1 = n2 = 0. The only remaining case is n2 = 1 and
r = 2. In this case, we obtain, from the first inequalities, that c2 ≤ c1. This gives

B + C ≥ 1
2

[
(n1c1 − c2)2 + c2

1(n
2
1 + 2n1) − c2

1

]
.

If n1 ≥ 1 this is positive, so n1 = 0. Hence A = 0 so n3 = 1. This is case 4 of the
classification.

Case 3. Assume the configuration contains a sub-configuration α given by
case 3 of the classification. If i ∈ α is a catenoid at level k ∈ {1, 2}, we have

Qi,k+1 − Qi,k = Qα,k+1 − Qα,k = 2, =⇒ 2ck = 2.

Hence in this case, the sub-configuration behaves as a “true” 3-ended surface. As
in the non-singular case, we conclude that this case cannot happen.

Case 4. Assume the configuration contains a sub-configuration β given by
case 4 the classification, so that we have nested configurations α ⊂ β. If i ∈ α is
a catenoid at level 1, we have by Theorem 6

Qi,2 − Qi,1 = 2, Qα,2 − Qα,1 = 3, Qβ,2 − Qβ,1 = 3 − c =⇒ 2 ≤ 2c1 ≤ 3.

If i ∈ α is the catenoid at level 2, we have

Qi,3 − Qi,2 = 2, Qα,3 − Qα,2 = 0, Qβ,3 − Qβ,2 = 2c =⇒ 0 ≤ 2c2 ≤ 2.
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Hence Qβ,2 − Qβ,1 ≥ 4c1/3 and c2 ≤ c1. We conclude as in case 2 that n2 = 1
and n1 = 0. Then since Qβ,3 − Qβ,2 > 0, we have B + C > 0, so this case cannot
happen. �

Remark 3. From embeddedness, we have Qk ≤ Qk+1. We were careful not to use
this information in the proof. Indeed, it is a priori not true that for a subconfigu-
ration, one has Qα,k ≤ Qα,k+1. We conclude a posteriori, from the classification,
that this is true.

3.4. Classification in the low genus case

In this section we prove Theorem 1. We fix some genus G and assume that
conjecture 1 holds for all genus G′ < G, namely, any embedded minimal surface
of genus G′ has at most G′ + 2 ends. We consider a sequence (Mn)n of embedded
minimal surfaces of genus G and with N ends which are counterexamples to the
conjecture, namely N ≥ G + 3. We want to prove that the limit configuration is
trivial (only one surface) so (Mn)n converges to a counterexample. So we assume
the limit configuration is non-trivial and we obtain a contradiction. Claims 1 and
2 below reduce the problem to the analysis of the configurations of type 1-2-2· · · 1
(by which we mean that there is one catenoid at level 1, two catenoids at level 2,
and so on). We can then easily rule out these configurations by proving that the
quadratic equation is negative.

It is interesting to compare this with the argument of A. Ros in [8]. By a
completely different argument he could rule out configurations of type 1-1 (which
is a particular case of the above case with no 2’s). So he obtained similar, but
weaker, compactness results.
Claim 1. There exists levels a and b, with a ≤ b, such that the following holds:
• there is precisely one surface Mi,∞ between levels a−1 and a (by this we mean

that Mi,∞ is the only surface which has ends at levels a− 1 and a, it may have
more ends).

Fig. 7. A sequence of minimal surfaces of genus 4 with 7 ends. We keep only the shaded
surfaces in Claim 2.
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• For each k such that a ≤ k < b, there are precisely two surfaces between levels
k and k + 1, and these are catenoids.

• There is one surface between levels b and b+1, which we call Mj,∞, with j �= i.
It follows that Mi,∞ has its top end at level a and Mj,∞ has its bottom end at

level b. Both Mi,∞ and Mj,∞ may, or may not, be catenoids.

Claim 2. Remove all surfaces which are below a, and all surfaces which are above
b+1 (namely, keep only Mi,∞, Mj,∞ and the middle catenoids, if any). Then this
new configuration is still balanced.

Claim 3. The configuration of Claim 2 cannot be balanced.

Proof of Claim 1. Let Gi and Ni be the genus and number of ends of Mi,∞. The
genus of Mn is given by

G =
∑

i

(Gi + Ni − 1) − N + 1.

For 1 ≤ k ≤ N − 1, define

ai,k =

⎧⎨
⎩

1 if Mi,∞ has its top end at level k + 1,
2 if Mi,∞ has ends at levels k and k + 1, and k + 1 is not the top end,
0 else.

Then
N−1∑
k=1

ai,k = 2Ni − 3

ak =
∑

i

ai,k ≥ 1 because Mn is connected.

If there exists i such that Gi = G, then all other surfaces must have genus zero
so be catenoids, and there is only one per level, so the claim holds with a = b
(because the configuration is non-trivial).

Else we have Gi < G for all i, so Gi ≥ Ni − 2. This gives

2N − 4 ≥ G + N − 1 =
∑

i

(Gi + Ni − 1) ≥
∑

i

(2Ni − 3) =
∑

i

∑
k

ai,k =
∑

k

ak.

We have N − 1 integers ak ≥ 1 to make a total ≤ 2(N − 1) − 2, so the sequence
a1, · · · , aN−1 must contains a subsequence of the form 1, 2, · · · , 2, 1 (the number
of 2 may be zero). The claim easily follows. �

Proof of Claim 2. The claim follows from the following

Lemma 3 (pruning the configuration). Assume we have a balanced configu-
ration such that for some level a, there is only one surface Mi,∞ between levels a
and a + 1. Let I− (respectively I+) be the set of j such that Mj,∞ has all its ends
at level ≤ a (respectively ≥ a+1). Then the configuration obtained by removing all
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surfaces Mj, j ∈ I− is still balanced. In the same way, the configuration obtained
by removing all surfaces Mj, j ∈ I+, is balanced.

Proof. First assume the configuration is non-singular. Let

F±
i =

N∑
k=1

∑
j∈I±

Qi,kQj,k

pi − pj

so that Fi = F+
i + F−

i . Then

F−
i +

∑
j∈I−

Fj =
N−1∑
k=1

∑
j,�∈I−∪{i}

j �=�

Qj,kQ�,k

pj − p�
= 0

because the last sum is zero whatever the value of the pj . Hence F−
i = F+

i = 0.
When we remove all surfaces below level a, namely Mj,∞ with j ∈ I−, the forces Fj

for j ∈ I+ do not change (because the surfaces below level a do not interact with
the surfaces above level a + 1) and Fi is replaced by F+

i . Hence the configuration
is still balanced.

In the singular case, we need to prove that the configuration is balanced in
the sense of Theorem 6. Let α be the class of i. Let I− (respectively I+) be
the set of classes β such that all surfaces Mj,∞ for j ∈ β have ends below level a
(respectively above a+1). Then as above, we have F+

α = 0. Observe that pruning
only changes the charges Qα,k for k ≤ a, but these do not interact with the points
pβ for β ∈ I+. Hence, the configuration remains balanced after pruning, in the
sense Fβ = 0. It is clear that each sub-configuration remains balanced, simply
forget about the rest of the configuration and use the same argument. �

Proof of Claim 3. For a ≤ k < b, let ck and c′k be the sizes of the two catenoids at
level k. Note that we do not assume that the configuration is non-singular here, so
we cannot say that ck = c′k. We do not assume either that it has uniform speed,
so we might have ck = c′k = 0. The quadratic equation gives

−Qi,a(ca + c′a) + Qj,b(cb−1 + c′b−1) +
b−1∑
k=a

2ckc′k −
b−2∑
k=a

(ck + c′k)(ck+1 + c′k+1) = 0.

We rewrite this as

(2cac′a − Qi,a(ca + c′a)) + Qj,b(cb−1 + c′b−1)

+
b−2∑
k=a

(
2ck+1c

′
k+1 − (ck+1 + c′k+1)(ck + c′k)

)
= 0.

(2)

We want to prove that each term is non-positive. Since Mn is embedded we have
Qk ≤ Qk+1 for all 1 ≤ k ≤ N − 1 (here Qk is the logarithmic growth before the
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pruning operation). We have

Qa−1 ≥ Qi,a−1 ≥ −Qi,a

Qa = Qi,a − ca − c′a

Qk = ck−1 + c′k−1 − ck − c′k for a + 1 ≤ k ≤ b − 1

This gives for a ≤ k ≤ b − 2,

−ck − c′k ≤ Qk ≤ Qk+1 = ck + c′k − ck+1 − c′k+1 =⇒ −2(ck + c′k) ≤ −(ck+1 + c′k+1)

=⇒ 2ck+1c
′
k+1 − (ck+1 + c′k+1)(ck + c′k) ≤ −1

2
(ck+1 − c′k+1)

2 ≤ 0.

In the same way,
−Qi,a ≤ Qa−1 ≤ Qa ≤ Qi,a − ca − c′a

implies that
2cac′a − Qi,a(ca + c′a) ≤ 0.

Since Qj,b ≤ 0, all terms in (2) are non-positive, so all are zero. In particular, we
have either Qj,b = 0, so Mj,b is flat, or cb−1 = c′b−1 = 0, so the catenoids at level
b − 1 are flat. The following lemma shows that this cannot happen

Lemma 4. For each k, 1 ≤ k ≤ N − 1, there is at least one surface Mi,∞ which
has ends at levels k and k + 1 and is not flat.

Proof. Assume to the contrary that there is some k such that all surfaces which
have ends at levels k and k + 1 are flat. Then Qk ≥ 0, with equality only if all
surfaces which have their top end at level k are flat. In the same way Qk+1 ≤ 0,
with equality only if all surfaces which have their bottom end at level k + 1 are
flat. Since Qk ≤ Qk+1, this proves that all surfaces which have ends at levels k−1
and k, or k + 1 and k + 2, are flat. By induction we find that all surfaces are flat,
which is impossible. �
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