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Quiver varieties of type A

Andrea Maffei

Abstract. We prove a conjecture of Nakajima describing the relation between quiver varieties
of type A and the geometry of partial flag varieties and of the nilpotent variety.

The kind of quiver varieties we are interested in were introduced by Nakajima as a
generalization of the description of the moduli space of anti-self-dual connections
on ALE spaces constructed by Kronheimer and Nakajima [4]. They turn out to
have a rich and interesting geometry and they were used by Nakajima to give a
geometric construction of the representations of Kac—Moody algebras [7], [8]. A
similar construction had already been made in the casg, dfy Ginzburg (see [1])
using partial flag varieties. A precise conjecture of Nakajima [7, 88] describes the
relation between quiver varieties and the geometry of the nilpotent cone and of partial
flag varieties: in particular Slodowy’s varieties and Slodowy’s transversal slices (see
Theorem 8 for the precise statement). In this paper this conjecture is proved.

In the first section we state the conjecture and we recall the definition of quiver
variety and Slodowy'’s variety. In order to treat conveniently the coordinate ring of
the affine quiver varietyp, in the second section we introduce a modification of the
path algebra that we call the algebra of admissible polynomials. In the third section
we define a map between a quiver variety and the related Slodowy’s variety and in
the fourth section we prove that it is an isomorphism.

I wish to thank Corrado De Concini who introduced me to quiver varieties and
Hiraku Nakajima who pointed out an error in a previous version of this paper and the
solution to it. Finally | am grateful to Nicoletta Cantarini and Rocco Chirivi for their
helpful suggestions on the exposition of the paper.

1. The conjecture of Nakajima describing quiver varieties of typeA

1.1. Slodowy'’s varieties. In this section we recall some definitions related to the
nilpotent variety and the partial flag variety. Standard references for the material
contained in this section are [1, Sections 3.2, 3.5, 3.7,4.1and 4.4] and [9, Sections 5.3
and 7.4].
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Definition 1. If E is a vector space of dimensiav thenilpotent coneV = Mg is
the variety of nilpotent elements gl(E). Following the standard procedure, we
parameterize the GIE) orbits in & through the partitions o by associating to a
nilpotent endomorphism the dimensions of its Jordan blocks, and we denote by the
orbit associated to the partitionby 0,. Givenx € N andx, y, h anslp-triple in
gl(E), we define th&lodowy’s transversal slioaf the orbit ofx in the pointx as the
variety:

8y = {u € N suchthaf{u — x, y] = 0}.

From now on, using a nonstandard convention, we adpiit @ as anslo-triple, so
that whenx = O we have$y = . Notice also that up to isomorphism of algebraic
varietiess$, does not depend on the choiceyof:.

Definition 2. If E is a vector space of dimensi?wandr = (r1, ..., r,) is a vector
of nonnegative integers such that+ - - - +r, = N, apartial flag of E of typer is
an increasing sequenée: {0} = Fo C F1 C --- C F, = E of subspaces af such
that dimF; — dim F;_1 = r;. The GL(E)-homogeneous variety of partial flags of
typer will be denoted by#,. Let us define

~

N =T*F = {(u, F) € gl(E) x F, such thatu(F;) C F;_1},
wr: N, —> N the projection onto the first factor.

For N, r, E as above lep = (o1, p2, ..., py) be the permutation of such that
o1 = p2 = --- = p, and consider the corresponding partition ¥f A, =
1P1=p22p2=P3  pPu_ |t is known that if (u, F) is in N, thenu is in the closure
of O,,. Moreover the map

~

i Ny —> 5A,

is a resolution of singularity and it is an isomorphism o@gy. Let us define
’Sr,x =4 N 5A,a gr,x = ﬂ;l(/sr,x).

We callgr,x the Slodowy'’s varietyassociated to andx.

Itis convenient for our purposes to define these varieties also in the case of vectors
r allowing negative coefficients. Therefore we 8gt = 3§, . = @ whenr; < 0 for
some;.

The following result is well known (see [1, Corollaries 3.5.9 and 3.7.15] or the
original proofs in [9, Sections 5.3 and 7.4]).

Proposition 3. Letx € Mg be a nilpotent endomorphism with Jordan decomposition
of type191242 . (n — 1)%-1 and letr = (r1, ..., r,) be a partition ofN. Then:
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1) 8, #2 < x€ 0, < forall<k<nandforalll <ij<is<
- < ix < n the following inequality holds:

di+2do+-- -+ (k—Ddp—1 +kd +kdiy1-- -+ kdy—1 > iy +-- -+ 1. (1)

2) Anygr,x # @ is a smooth variety of dimensia@im Zy(x) — dim Zg(u,), where
u, is an element 00, .

1.2. Notation on root system and dimension vectorsin the following we will

denote by = (v1,...,v,-1) andd = (d1, ..., d,_1) vectors of integers. When
andd are vectors of nonnegative integafsand D; will be complex vector spaces
of dimensiorw; andd; fori =1,...,n — 1.

Some formulas become simpler and more familiar if we identify the two vectors
d andv with elements of the weight and root lattices.

Let P be the weight lattice for the root system of typg 1, R C P be the
root lattice ande(-;-): P x P —> Q be the Killing form. Let us fix a basis

a1, ...,a,—1 € R of simple roots with the usual order and {ef, . . ., w,_1 be the
corresponding fundamental weights.

In the following we will identify the vectod = (da, ..., d,_1) (ord, d’, etc.)
with the eIemenEf;l1 d;w; of the weight lattice and the vector= (v1, ..., v,—1)

(or 7, ', etc.) with the eIemenZ;:l1 v;«; Of the root lattice.

Observe that these identifications allow us to introduceltminant order< on
the set of vectorg, v and to define an action of the Weyl gro§p of the Dynkin
diagram of typed,,_1 on the dimension vectos v.

1.3. Quiver varieties of typeA,_1. Let us fix two dimension vectaf andv as in
1.2 and assume thdy, v; > O for alli. Let us choose also vector spadgs V; such
that dimD; = d; and dimV; = v;.

The space of “double free representation” of tyjie V) of the quiver of type
A, _1 is the vector space

n—2 n—2
S(D, V) = @ Hom(V;, Vi) & @@ Hom(Vi1, Vi)
i=1 i=1
n—1 n—1
& (P Hom(D;. Vi) @ (P Hom(V;, D).
i=1 i=1

Since inwhat follows we will give explicit constructions itis convenient to fix some
notation: fori = 1,...,n — 2 we will denote byA; an element of HorgV;, V;41)
and byB; an element of Hor(V; 1, V;). Besides, foi = 1,...,n — 1 we will also
denote byl"; an element of HorD;, V;) and by A; an element of HortV;, D;).
Finally we setA = (A1,...,A,—2),B=(B1,...,B,_2), ' =(T,...,T,—-1) and
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A = (A1, ..., Ay—1). Our notation can be summarized in the following diagram:

Dl DZ Dn—Z Dn—l

J/F]_ lf‘z \Lrnz \Lrnl

B1 B> By—3 By—2
P S <
VlC Vz\j--': Via __ _Va
J/ A1 \L Az An-3 J/ Ap—2 J{
A1 Ao Ap—2 Ap—1

Dy D D, > D, 1.

According to this notation we will refer to an element$fD, V) as a quadruple
(A, B, T, A).

Definition 4 (Nakajima, [7], [8]). A quadrupl€A, B, T, A) of S(D, V) is said to
satisfy the ADHM equations or, equivalently, is said tcaloenissiblef it satisfies the
following relations:

B1A1 =T'1Aq,
BiA; = A; _1B;i_1+TiA; for2<i<n-—2,
0=A4, 2B, 2+ Th_1A,_1.

We denote byA (D, V) the set of all admissible elements. An admissible element is
said to bestableif each collectionV = (Uy, ..., U,—1) of subspaces of (i.e.U; is

a linear subspace of; for everyi) and containing Ini” (i.e. ImT"; C U; for everyi)

and invariant by the action of andB (i.e. A; (U;) C U;y+1 andB;(U;+1) C U; for
everyi) must be equal t& (i.e. U; = V; for everyi). We denote byA ™ (D, V) the

set of stable admissible elements.

Notice that the two groups GIV) = [[GL(V;) and GLD) = [[ GL(D;) act
naturally onS: if g = (g;) € GL(V) andh = (h;) € GL(D) then

g((A)), (B, (T, (A) = ((gi+1Aig; V). (8i Bigii D). (T, (Aigi M)

h((Ai), (B), (T), (A)) = ((A), (B)), (Tih; ), (hiA)).
Definition 5 (Nakajima, [7], [8], p. 521-522). ObservethatD, V)andA™ (D, V)
are invariant with respect to the action of GL) so, following Nakajima, we can de-
fine quiver varieties as the categorical quotients (see [6, Definition 0.5]) under the
action of the group GLV) of the two varieties\ (D, V) andA™ (D, V):
Mo(D, V) = A(D,V)//GL(V), pois the projection from\ (D, V) to Mo(D, V),
M(D, V)= AT(D, V)//GL(V), pis the projection frooa*(D, V) to M(D, V).
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The existence of the quotient$ and My can be obtained, using standard arguments
of GIT, (see [6, Ch. 1 Theorem 1.1 and Theorem 1.10] and [8, p. 521-522]). The
construction shows also that the map M (D, V) — My(D, V) induced by the
inclusionA™ (D, V) c A(D, V) is projective. Observe that the actions of the two
groups Gl(D) and GL(V) commute, hence the group @GR) acts onM (D, V) and
Mo(D, V) and the mapr is equivariant.

Let us also notice that the quadruple=0(0, 0, 0, 0) is always admissible and we
set 0:= pp(0,0,0,0) € Mo(D, V). Finally let us denote by, (D, V) the image
of 7 with the reduced structuréZ,(D, V) is a closed subvariety @flo(D, V) since
7 IS projective.

The vector spaceS(D, V) and the varietiesA(D, V), AT(D, V), M(D, V),
Mo(D, V) and M1(D, V) do not depend, up to isomorphism, on the choice of the
vector space®;, V;, hence we will denote them also 5Yd, v), A(d, v), AT (d, v),
M(d,v), Mo(d, v) and M1(d, v) (or simply S, A, A+, M, Mo, M1 whend, v are
clear from the context).

Moreover, as in the case of Slodowy’s varieties it will turn out to be useful to
extend the definition od/ (d, v), Mo(d, v) andM;(d, v) also to the case of arbitrary
(n — D-tuples of integers: we séif(d, v) = Mpy(d, v) = M1(d,v) = @ if there
existsi such that; < 0 ord; < 0.

Remark 6. In [8] a condition of stability dual to the one given in Definition 4
above was used: an admissible element is callsthbleif each collectionU =

(Uq, ..., U,—1) contained in ken\ and invariant under the action dfandB is triv-

ial. The isomorphism between the quiver varieties constructed using this stability
condition and the one used in this paper is given by

((A)), (B), (T), (A) > ((B)), (AD), (A}, (T]).

As for the varieties$, , andZ,,x we need a criterion in order to understand when
M(d, v) is not empty: this is given by Nakajima’s construction of the irreducible
representation ofl,, (see [8, 810]). In order to state it we recall that we idendify
(resp.v) with elements of the weight (resp. root) lattice (see 1.2) and we observe that
if o € S, theno (v — d) + d is in the root lattice.

Lemma?7. If o € S, is such thab (d — v) is dominant and’ = o (v — d) + d then
Md,v)#20 & M) #0 v,{ >0 fori=1,...,n—1.

Proof. If v € N" ! the result immediately follows by Nakajima’s main theorem
(see [8, 810 Theorem 10.2]) applied to the case 0. Indeed Nakajima’s theorem
implies thatHiop(M (d, v)) is isomorphic to the weight space of weight- v of the
irreducible representation ef(n) of highest weightd. It is well known (see, for
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example, Humphreys [2], Chapter 6, §21.3) that this weight space is not zero if and
only if v} > 0O for everyi.

Now suppose that there existsuch thatv; < 0. It is enough to prove that
there existsj such thatv;. < 0. Indeed ifv" = 0 (i.e.v € Y Nsow; ) we have
v=0lW -d)+d=v+d—-")—0c"1d—") = 0sinceu = ru for all
dominantx and allt in the Weyl groups;,. a

1.4. Nakajima’s conjecture. If d = (di,...,d,—1) andv = (vy,...,v,—1) are
two (n — 1)-tuples of integers we define thetupler = r(d, v) = (r1, ..., ry) by
setting:

ri=di+---+dy-1—v1, 1y, =v,-1, and
ri=di+---+dy_1—vi+vi_q fori=2,...,n—1

We observe thap " ;r; = N = Y""iid;. Moreover we notice that onae is
fixed the map- gives a bijection betweef — 1)-tuples of integers andn-tuples of
integersr such that) ~r; = N. Indeed we have that

Upn—1="n, Vi :rn+"'+ri+l_di+l_2di+2"'_(n_i_1)dn71
fori =1,...,n —2. Now we can state the main result of this paper. We recall that

we have settled/ (d, v) = M1(d, v) = @ if v; < 0 for some and$, , = 8, , =2
if r; < 0 for somei. The following theorem was conjectured by Nakajima in [7].

Theorem 8. Letv,d, N,r = r(d, v) as above. Let € & be a nilpotent element of
typel® ... (n — 1)dni1~. Then there exist two isomorphisms of algebraic variefies,
betweenV/ (d, v) and4, ., andys betweenV1(d, v) and4, ., such that the following
diagram commutes:

Md,v) —2— 5,

Nl Mrl (2)
Mid,v) —2— 8,
Moreoverps maps0O € M1(d, v) tox € 4, .

Remark 9. If M(d, v) # @ then itis easy to see thaté® M1(d, v). This will be
also obtained as a consequence of the proof of Theorem 8.

Remark 10. Let Areg be the open (and possibly empty) subseto€onsisting of
elements with closed orbit and trivial Gl)-stabilizer. If Areg # @ we know by

[7, Theorem 4.1] that is aresolution of singularities so thfy = M7 and Theorem 8
above reduces to the conjecture as stated in [7, §88]. We observe also that by [8,
Proposition 10.5 and Theorem 10.&}eg # @ if and only if v = 0 andd — v is
dominant.
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2. Path algebra and admissible polynomials

In this section we define the path algebra. Our path algebra will be a modification of
the path algebra of the double quiver of typ®hich takes into account the presence

of the extra vector spacd¥. This algebra will play an important role in our proof. It
will be used as an “universal coordinate ring” for quiver varieties which is independent
of the dimension vectors, v.

2.1. Notation on quivers and paths.The vertices and the arrows of tideuble
quiver @ of type A, _1 will be denoted as indicated in the following diagram:

by b2 bn-3 by—2
—————
Q17 227 T “n-2" "n-1. 3
ai az an—3 an—2
In particular,I = {1,...,n — 1} is the set of vertices anff = {a1,...,a,—2,
b1, ...,b,_o) the set of arrows.

Itis convenient to consider also the following double verdiagh of the quiverQ@:

1 2! - (n — 2)* (n — 1F
(N [ [
DO : Vl-\\ /811717/2& /“Slbz b,,_)gkz& | 8n—2 n_Zanli\ /18,,_1 (4)
1 S ST w-2 -1
ay az anp-3 Aap-2

Let us definel® = {1%, ..., (n — D*}andH® = {y1, ..., ¥u—1,01,...,8,—1} and
let us denote by = I U I? the set of vertices arlll = H U H* the set of arrows of
this quiver.

Given an arrow: € H we callhg its source and its target. Apatha in a quiver
is a sequence™ ... h@ of arrows such that\’ = K™ fori = 1,...,m — 1.
We callhgl) the sourceof « and we denote it byo and we callhg’") thetargetof «
and we denote it bw1. Moreover we say that thegegreeof « is m and we denote it
by degreéx). If g = o1 we say thatr is a closed path. If is a vertex we define
thei-empty patho; whose sourcé€a;)o and targei{ ;)1 are equal ta and whose
degree is equal to 0. The composition of paths is defined in the obvious way.

We call a path for the quive® a @-path and a path for the quivBrQ aD@-path.
A D@-pathe is said to be amdmissible pathf og, a1 € I°.

2.2. The algebra of admissible polynomials.The path algebraof a quiver is the
vector space spanned by all paths with the product induced by composition. Itis an
associative algebra graded by the degree of paths. Consider now the path &gebra
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of the quiverD@. Fori € I let6; be the following element oRk:

y161 — birax if i =1,
0; = { yid; + a;_1b;_1 — bia; ifi=2,...,n—2,
Vi-10n—1+ an_2by,_» fi=n—1

DefineZ to be the bilateral ideal oR generated by these elements, &/do be the
quotient algebrar /1. If o is aD@-path then we denote Hw] its image inR’.

Definition 11. The algebra ofidmissible polynomialss the subalgebrak of R’
generated by the elemerits] with « an admissible path. Since the idgais homo-
geneousR’ and R can be graded using the degree of paths and we d&finas
the subspace aR of homogeneous admissible polynomials of deghegnd R, as
@m>0 ‘Rm'

If i, j € I we also setr; ; := [2:1R[9;:] and we say that an element 8f ;
is an admissible polynomial of typ@, j).

Finally we define some special paths: fordli < j < n —1lety;,; =
b;... bj—l)/j and8,-_>j = 3jaj_1 ... ag, and observe thaﬁl—ﬁyi—)l] € J’R,"j.

Lemma 12. The algebra of admissible paths is generated by the elerentsfor
i® e I* and by the admissible polynomials in the following set:

P = {[81vi-1] : i, j € I andl < minGi, /). (5)

Proof. Let 4 be the subalgebra ok generated by? and by the elemenis;;:] for
itelt

Observe first that the algebsais generated by the admissible polynomiads: ]
with i¥ € I* and by the admissible polynomiags of the form[§;ay;] with « a
(possibly empty)@-path. In particular it is enough to show that the admissible
polynomials of this form belong te.

Notice that{s; . ;y;—:] = [8;y;] hence we can restrict ourself to study the case in
whicha is not empty. Letr = 1 ... ™D with h® e H for all t. We say that is
a corner ofx if there exists such that:) = a;,_; andh+tD = p,_1. Observe that
if « has no corner thef is an element of?. We define MQa) to be the maximal
corner ofx if « has a corner, and 0df has no corner. If = MC(«) we define also
c(o) = cards : h'Y = ay_1 andhtD = p,_4).

Now we proveB € 4 by induction onN = degreéa) + MC(a) + c().

Observe that itv = 0 thena = @; for somei and we have already examined
this case.

If N > 0 and« has no corner thefi is an element ofP.
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So we can suppos€ > 0 anda has a corner. Let = MC(«) and notice thai
can be written in the forma”by_1a,_10’. Now using the definition of the idedl, if
£ > 1 we have

B =[8jay] =[8;0"be_1a_10y;]
= (80" be—2asr—2a'yi] + [8j0" yeSea'yi]
= [8ja"by—sap—20"yi1 + [8j0" ve] - [Secd ;1.
We observe now that the admissible pdths:”by_>a;—oa'y;1, [8 0" ye] and[8ea’y; ]
belong toA by the inductive hypothesis.

Inthe case = 1 the argument is the same, but the sumnfane’b,_>a,_>a'y;]
on the right hand side of the formula above is zero. O

We define now an evaluation of paths 8nif 4 € H is an arrow (or an empty
path) we define an evaluation bfon an element = (A, B, I", A) € S§(D, V) inthe
following way:

idVi if h=g; andi € I,

idp, if h =2, andi® € I*,
h(S) — A,‘ If h = a;,

B; Ifh:b,',

I; if h =y,

A, ifh=6;.

Let us extend this evaluation to all paths using compositiom:=f 2 ... 1D then
a(s) = h™(s)o--- o hV(s).

In particular ifi < jwesetl’;,; ;= y;;(s) andA; ; := 8§ ;(s).

Finally observe that if € A(D, V), this evaluation is well defined also on the
vector space®; ;. In particular if f € R; ; then f(s) e Hom(D;, D;). Moreover
we observe that, iff € R; ; thenf(g-s) = f(s) foralls € A(D, V) and for all
g € GL(V), hence they are well-defined regular functions on the varigfiesd M.

2.3. The coordinate ring of Mp. The following theorem describes the relation be-
tween the path algebra and the coordinate ringfgfin the case of the quiver of
typeA.

Theorem 13(Lusztig [5], Theorem 1.3)The ringC[S(D, V)]®-() is generated by
the polynomials

s —>p(a(s))  for o an admissible path angd € (Hom(Dy,, Doy))*  (6)
and
s —> Tr(a(s)) for a aclosed@-path. @)
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As a consequence the coordinate riBigh (D, V)]C-(V) of the affine varietyMg
is generated by the same polynomials restricted ¢®, V). In the case of a quiver
of typeA one can see that the second type of polynomials are not necessary: indeed,
as in proof of Lemma 12, we can show by induction that we can express the second
type of polynomials in terms of the first type. The following lemma describes a finite
set of generators of the coordinate ringhj.

Lemma 14. 1) C[A(D, V)]°") is generated by the polynomials
s —> @(B(s)) for p € P andg € (Hom(Dg,, Dg,))*.

2) If (A, B,T, A) € A(D, V) thenitis an element ok (D, V) if and only if for
all1 <i <n-1we have
n—1
ImA;_1+ Z Im Fj_”' =V.
j=i
Proof. 1) is a consequence of Lemma 12 and Theorem 13 above. In order to prove 2)
let us notice first that the condition of stability is equivalent to

D Im@)yu(s) =V; fori=0,....n—1
«a a@-path
andaq =i
Indeed ifU; is the vector space on the left of the formula thiéf, ..., U,—_1) is the
minimal subspace df containing ImI" and invariant by the action of andB. The
proof can now be completed following the line of the proof of Lemma 12. O

3. Construction of the isomorphism

In this section we will define the mags andg in the case;, d; > 0 for eachi. We
examine first a simple and already known case of Theorem 8:

Lemma 15(Nakajima [7]). f N > v1 > --- > vy,_1andifd = (N, 0, ..., 0) then
the conjecture is true. In this case we hawéd, v) ~ N, and M1(d, v) ~ 51,.

Proof. The proof is given in [7], Theorem 7.2, but there Nakajima considers the
inverse condition of stability so we remind the definition of the isomorphism in our
case. Observe that in this case we have- (D4, 0, ..., 0) and that we can choose
the vector spac& of Section 1.1 to beD;. The isomorphisny betweenM (d, v)
andT* ¥, is given by:

p(A, B, T, A) —> (A1T'1, {0} C kerl'y C kerA1T1 C -+ C KerA,_1...A1T1).
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It is easy to check that this map is well defined and that it is bijective so that, since
M andT*¥ are complex smooth varieties, it is an algebraic isomorphism.

The mapgg betweenM1(d, v) and 5)\, or the mapyp1 betweenMy(d, v) and
N is given bypo(A, B, T, A) — A1I'1. We observe first thapy7w = u,¢ so that
p1(M1) = 5Ar. By Lemma 14 we see that the coordinate ringMyf, hence the
coordinate ring of its closed subvarig¥, is generated by the matrix coefficients of
the matrixA1I'1 hence the map betweédd; and 4, . C N is a closed immersion.
Thuse; is a surjective closed immersion between two affine (reduced) varieties (over
an algebraically closed field), hence it is an isomorphism. O

Before giving the proof of the general case | will explain the main steps of the
proof:

(1) Given(n — 1)-tuplesd, v of natural numbers and vector spades V; of the
dimension prescribed by these natural numbers, we construginewd)-tuples
of natural numbed, & and new vector spacé:vsi, \71 In particular the(n — 1)-
tupled will be of the form of the Lemma 15 abové:= (N, 0, ..., 0). _

(2) We use the Lemma 15 above to give a description of the varigtiesand 3§, .
as subvarieties off1(d, 7) andM (d, 7).

(3) We construct a subvariefyof the varietyA (d, 7), that we call the set of transver-
sal elements, and we introduce also its open subset= AT, D) NT. We
observe also that the image ®f(resp. of¥*) in M1(d, ¥) (resp.M(d, 7)) is
contained ins,.. (resp.3..).

(4) The main pointofthe proofis now to prove that thisSeisomorphicto (d, v):
Lemma 18 allows to construct a map frafid, v) to ¥ and in Lemma 19 we
prove that it is an isomorphism. We also observe that this isomorphism sends
stable elements in stable elements, so that at the end of this section we are able
to introduce maps

¢: Ad,v) — T and ¢T: AT(d,v) — TT.
(5) We observe that and¢™ define maps at the level of quiver varieties:

@1: Mai(d,v) —> 8, C Mai(d, D)
and _
@:M(d,v) — 8., C M, D).

In Lemma 23 we prove that; is a closed immersion and this allows us to show
that the mag is proper. The injectivity of the mag follows from Lemma 22.

(6) We conclude the proof as followsy is a proper injective map between two
smooth complex varieties of the same dimension, moreover it is known that the
varietygr,x is connected (this can be deduced for example by the Zariski Main
Theorem and the normality of the closures of nilpotent orbits proved by Kraft
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and Procesi [3], see for example [1], Lemma 4.1.3), so the ¢ghiags to be also
surjective, hence it is an isomorphism of algebraic varieties. Finally, girise
surjective, als@j has to be surjective hence it is a surjective closed immersion
between two affine varieties, which implies thatis an isomorphism.

3.1. Notation and description of Slodowy’s varieties as subvarieties of a quiver
\{ariety. Letd, v, r, A, be as in Theorem 8 and let us defige= 0 if i > 1 and
dy=N=Y"""7jd;, % = v + Y1 1(j — i)d;. We will construct some vector
spaces/;, D; of dimensiond; and#; in terms of the vector spacés, D;. Let Di(’)
be an isomorphic copy ab; and define:

E=Di= @ »p¥ and Di=0 fori=2....n—1, (8a)
1<k<j<n—1
Vi=V, @ P DY fori=2...n—1 (8b)

1<k j—i<n—i—1

ItW|II be convenlent to sevo = Dl, and, |f(A B F A) is an element of\(D V)

Ao = Fl, andBo = Al We will always conS|der the map?s B as block-matrices

with respect to the decomposition uf, D1 given in (8a), (8b) and by a projection

on to one of these subspaces, we will always mean a projection with respect to the
same decomposition. §f = (A,B,T,A) € S(D, V) we fix the following notation

for the blocks of the mapAi andBi fori =0,...,n—1:

~ j/ h/ /h/

mpm il = Tij D(h)B b an = =Sijh
, _QV

D(h)A ‘v = Tz 2ok ”Dj.’” B’|v,-+1 =S/ jn

/ h/ . ~ j/ h/ (9)
”Vi+1Ai|D<h’> =Ty v Bi| oy =Sy
J' J!

7TV+1Ai|Vi:Ai JT\/I.B,'|W+1=B,'.

Whenever we want to stress the dependencewe will write T} (5), Si(5), etc.
. (k)

Let us define the subfpacé)$ = Drck<ji<n—i-1Dj ajmd oklserve that for
i=1...,n—1wehaveV; = V; & D; and fori = 0 we haveVp = D; = D;. We
consider the group GLIV) as the subgroup of QIV) acting as the identity map on
D! and mapping/; into V;.

Now let us now choose the following spedi&l2)-triple (x;, y;, [x;, yi]) of sl(D}):

X; |D('l) =0, X; |D(h) = idDj : D§h) — D;hil),
j J : () (h+1) (10)
vi| pu-n =0, yi\D(h>=h(j—i—h)ldDjiDj —- D,
J J N
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and let us notice that = xg, y = yo, and[x, y] is anslo-triple in 5[(51) of the type
required in Theorem 8.

Observe that, by Lemma 18/(D, V) = T*%, andMy(D, V) = 0,,. Hence
we can describé,., and3,., as subvarieties af/1(D, V) andM (D, V):

8. = po({(A, B,T',A) € A(D, V) : [A1T1 — x, y] = 0}) N M1(D, V),
5. =p({(A,B,T,A) e A*(D,V) : [Ail'1 —x,y] =0}).

3.2. The transversal subvariety. This subsection is devoted to the description of a
special subvariety ol (D, V). We will first introduce a formal degree of the blocks
of our matrices. More precisely we will define two different kinds of degrees, the
gradoand thedegreeand we denote them by grad and by deg respectively:

grad(T { h):mln(h K +1Lh—h+1+j —)),
deg(T/ %) =2h — 21" + 2+ — .
grad(S IJ hh) =minth —h',h—h +j —j),
deg(S/}l}) = 2n— 20" +j' — j.
Letusrecall thatfoi = 0, ..., n — 2 we have define®; = @Kk@_ign_i_l Dj.k).

Definition 16. An element(A, B, T, A) of A(D, V) is calledtransversalif it satis-
fies the following relations for & i < n — 2:

T/ =0 if grad(T/ %) <0

Tf/}h,; =0 if grad(T l.’]i’hh) =0and(j’, ') # (j,h+1)

T/, =idp, if grad(T/ ) = 0and(j’, h') = (j.h + 1)

TY ;=0

T/ =0  ifn %1 an
S{th =0 if grad(S{ th) <0

s/ =0 if grad(s/}},) = 0and(j’. n) # (i)

S/} =idp, if grad(8/}l;) = 0 and(i’, n) = (. )

S in=0 ifh£j—i

i
iy =0
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and, finally, o
[”D; BiA;

D — Xis yi] =0. (12)

We denote by¥ the set of transversal elements and®Y the set of transversal
elements which are additionally stable

Observe thap(T+) C 3,7)6 and thatvo(T)ﬁML(lN); ‘7) C & x .~Op‘serve also that
T andZt are closed GLV)-invariant subset oA (D, V) andA ™' (D, V) respectively
(but they are not GL) invariant).

Before giving the construction of the mapsg, let us give an example in or-
der to explain the notation and the definitions introduced hitherto. We consider
Au_a: V4 —> V,_3. We have:

Vn74 =V,4® D,il_)g @D D,gl_)z ® D,(12_)2 ® D,(ll_)l @ D,(lz_)l @ Dr(z:?l;

ad 1 1 2
Viz=V, 3@ D,(,,)Z ® Dfljl ® D,(l,)]_

Now let us WriteZ,,_4 as a block matrix and let us write down the blocks introduced
in (9) explicitly:

@ @ 2 @ 2 3
H Vn—a H anS H Dn72 ‘ Dn72 H anl ‘ D7171 ‘ anl H

n—31 n—2,1 n—2,2 n—11 n—12 n—13
Vn-3 ‘ An—a H Tu—av H Ta-ay ‘ Tu—av H Ty—av ‘ Ty-ay ‘ Ta-av H
1) Vv n—3,1 n—2,1 n—2,2 n—1,1 n—1,2 n—13
Dn72 H Tn74.n72.l 'ﬂ‘nf4.r172,1 'ﬂ‘n74,n72,l Tn74.n72.l T)174,nf2,1 'ﬂ‘n74,n72,l Tn74,n72.1

(0] A4 n—3,1 n—2,1 n—2,2 n—1,1 n—12 n—13
Dz || Taan—11 || Tu—an—11 || To-gn—11 | To—an-11 || Tn-an—11 | To—gn-11 | Ta-tn-11

2 vV n—3,1 n—2,1 n—2,2 n—1,1 n—12 n—13
Dn—l T11—4,n—1,2 Tn—4,n—l‘2 Tn—4‘n—1,2 Tn—4,n—l,2 Tn—4,n—142 Tn—4‘n—1,2 Tn—4,n—1.2

(In the matrix above we indicated on the boundary the domain and the codomain
of each block). In the following matrix we list the degree and the grado of each block
(observe that we have not defined these numbers for the first row and the first column)

g aeg || v || o0 || o, | o2, || o | 020 | 02y |
o o - -1 - J -] -]
Dﬁi_)z H - H 0; -1 H 1;2 ‘ 0;0 H 1:3 ‘ 0;1 ‘ -1; -1 H

Finally we write a matrix satisfying conditions (11) in the definition of a transversal
element
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[ oo || ot || o2 | o2 [ o | o | o2 |
ool - [ o[- [-]
Dész o [ o [l - Juo.] - \_o N

3.3. The main construction. We will define the map$, ¢ by giving a GL(V)-
equivariant mapd from A(D, V) to €. The following two lemmas are the main
ingredient in this construction. The proofs of the two lemmas are very similar but in
the second lemma we consider a more complicated situation in which the definitions
of degree and grado given above play an essential role.

We recall that in case = (A, B,T", A) € S(D, V) andi < j we have settled
Lisi=yjsi(s)andA; ;=8 (s).

Lemma 17. Lets = (A, B,T', A) € A(D, V) and let(A, B, T, A) € T such that

A = A, B; = B;, (13a)
Tﬁj/l’l =Tiq1, SYit11 = Aist, (13b)
foralli =0,...,n—2 Thenforalli =0,...,n —2and for all j > i we have
i1
Ty =vjsita(s), S/ ;i =8i11-j(s). (13c)

Proof. We prove this claim by decreasing induction onlf i = n — 2 we have
nothing to prove. Let now & i < n — 3 and assume that formula (13c) holds for
i+1,...,n—2. Consider the ADHM equation in Definition 5B = B,+1Al+1
Now usmg the equallterHA B; ]Dm = nVIHB,HAlH}D(l), relations (11) and

induction we obtain
i1
T{,V = Biy1ljsivo =Tjsiy1.
Besides, using the equality, ;- A; B; Viea = Tpli=o Bi+1Ai+1|v,~+1’ relations (11)
. . . J J
and induction we obtain

v
Sijj—i = Ait2—jAir1 = Aig1

proving the thesis. O
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Lemma 18. For a givens = (A, B,I', A) € A(D, V) there exists a uniqué =
(A, B,T,A) € T such that(13a) and (13b) are sat|sf|ed Moreover there exist

homogeneous admissible polynomvﬁ,ljsf}l andsl.’j’h in R/ ; such that
l’l .,,l’l, '/,/’l/ - -/,h,
T{ @ =1t and §/7@) =5/ (14)

forall s € A(D, V). Finally when the graplo of the corresponding block is positive
(i.e. Whengract"]l‘{d’.f’h) > 0or WhengradS{,]’.f’h) > 0) these polynomials satisfy the
following propertieS'

(i) degreeét )_ degﬂl" H W) anddegrees’ A ) = degs!”
(ii) tlj/]};l andsl.vj’h can be ertten inthe foIIowmg form:

ljh
Jh — fh 4 h /h/
ll]h )»”h[&z—n)/] —>Z]+quh and S h l]h[af—ﬂyj _)Z]+pl]h

wheret = j +h' — h, ¢} and p} are homogeneous admissible polynomials in
iH

the subalgebrar; of R generated byR, - R andkfjhh, w; ;. are rational
numbers;
(i) fh'=1,i+2< ' <n—landl<h < j—i—1<n—i—2them] ”h>o
(iv) ifl<h' < j—z—l n—1—2and1 h<j—i—1< n—l—2then
n h—1
)‘l],h"‘/‘z],h > 0;
W) ifl<hW<<j—-i-1<n—-i—-2h=j—iandi+1<j<n-—1then
./,h/
,ulj’j’h>0

Proof. We shall prove that all the blocks (ﬁi and Ei fori =0,...,n — 2 are
uniquely determined and have the required form. We observe first that by Lemma 17
and relations (11) the following relations hold for gllj, 2

Ao
i,V 0;

Vir—it1(s) ifh =1, v Sit1j(s) ifh=j—i,

T/
o= . i,j.h .
0 otherwise; 0 otherwise.

Moreover if graa[T/ h) 0 (resp. if graaij h) 0) thenT’ hh (resp. SJ hh)
is completely determlned by relations (11). We prove the Iemma for the remalnlng
cases by decreasmg mductlon Qmyiving an inductive formula for the computation

of the blocksT/ ]hh, S’ ;. in these cases.

Notice thatA,,_ zandB,, 2 are already completely defined by relations (13) and
they verify the relationt, _ B, 2=0andry B, zAn 2|D, -2, 3n-2] =0.

Now we assume to have constructg*q ands?” | for j > i + 1, satisfying

]**'
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the properties stated in the lemma and such that the ADHM equaﬁpﬁs =
Bit1Aiv1,...,A,_3B,—3 = B,_2A,_» and relations (12) fo¥ —|— 1,...,n -2
are satisfied. We need to prove that there exist unigjye, ands;;’, such that:

~

(7 BiAi]py — xi,i11=0 and A;B; = Biy14i41, (15)

and that they have the required form. First we observe that relations (11) and (13)
imply the following equations:

7TVi+1AiBi|VH_l = AiBi + 'i1Aiv1 = Biv1Ai41 = 7TVi+1Bi+1Ai+1|Vi+l
7y, Ai Bi |D§.’” =0l jsiv1 =0 1Bipaljit2 = 7TV,-+1Bi+lAi+1|D§h)

”D;h)AiBi‘V’_H =0, j—i-18it1>j = Op, j—i—1Ai42 jAj1 = JTD;m Bi+1Ai+1}Vi+l

(0 is Kronecker’s delta). Now we express equations (15) in a more suitable form. We

introduce the linear maps := Bi+1Ai+1, = A;B; andN = zrD/Bi D — i
and let us define the bloclls’ MJ A andN’hh analogously to (9):
Jh j' 1, i
Ly = ”D§h>L|D<f;’ St ;nTiiay Zglflj W Lif10m (16)
’ J I,m

and similarly forM{/,’lh/ and Nj’f/;lh/. Hence equations (15) can be formulated as
follows: v ’

./,h/ .,,h,
Mi, =L}, (17a)
forl<h <j—i—-1<n—i—-2andl<h<j—i—-1<n—i-2,
NJ{ S =0 (17b)
forl+i<j<n—-landil<h<j—i—-1<n—i-2,
'/,h/
Nj{l =0 (17¢)
forl+i<j<n—-land2<h' <j —i<n—i-1,and
(' —i— N = h(—i — N (17d)

j.h+1

forl<h <j —i—-1<n—-i—-2and1l<h<j—i—-1<n—i-2.
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In order to study these equations we introduce two kinds of degreegrale
that we denote with grad and tlegreethat we denote with deg, as we have done
for T andsS:

gractLJ:/;f‘/) = gractMJf/,’lh/) = gracth/,;h/) =minh —h +1Lh—h+14+j — ),
degL’ ;") = degm?!;") = degNi;"y = 2n —2n' + 2+ j' — .

Equations (17) are homogeneous and we will call grado (resp. degree) of each of

these equations the grado (resp. the degree) of the blocks involved in the equation.
Observe now that mim — A’ +1,m —h' + 1+ j' — j)+min(h —m, h —m +

I—jpH<minh—h +Lh—h+1+; —j)andminm —h',m —h'+j — j)+

mnh—-—m+1Lh—m+1+1—j)<minhh—h+1,h—h+1+j — j), hence

grad and deg behave well under composition:

n ",h’
grac{SlH Js h) + gractle-i-ll m grad[‘j’

y (18a)
degs; !} i) T deth]-i-ll m) = degLJ h )
ractTl W) T ractSl m) racth,’h/
J o J ) <0 (18b)
deg7;",) + degSl / My = degMJh )
rad(s;",) + grad 7/, ) raoKN-f E
grads; ) + 9radT;),) < 0 (18c)

il,m

degsi”,) + deg T/ h) = degN;").

One can check that when the grado of the a block is less than or equal to 0 equations
(17a), (17b), (17c) and (17d) are always satisfied independently of the ch@icg of
andS’* . Here we consider just the case of equation (17a). In this case observe first

1,%,%"

thatif”’ = 1 andh = j — i then graajLJ:,;lh,) =min(j — i, j/ —i) > 2 in the case

of equation (17a). Hence if grad 0 thenS,
formula (16) is always 0.
Now if grad < 0, by relations (18), at least one of the two factors of the summand

Sfjrnlj thj+llm in the right hand side of formula (16) has grad less than 0, hence

vanishes by relations (11). The same argument applies to the Me}g’k hence if
grad < 0 equation (17a) reduces to the identity=. ‘

In the case grae: 0 the same argument together with relations (11) and equation
(17a) is equivalent to the following:

l,m ] L . lm i W
Z Sz—i—l] h>i4+1,l,m — Z Ti,j,hSi,l,m

gradT=0 and(m,l)=(j’,h'—1) gradT=0 and(m,l)=(j,h+1)
gradS=0 and(m,l)=(j,h) gradS=0 and(m,l)=(j’,h")

DL, h"]I“lJle v in the right hand side of
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which reduces to G= 0 if (j',#') # (j,h + 1) and to ith;, = idp; if (j',) =
(., h+ 1.

In particular we observe that in the case of equations (17b) and (17c) the grado is
always less than or equal to 0, hence these equations are always satisfied.

Now we study the remaining equations arguing by inductiod ea grad > 0.
We assume to have construct@ﬁj’.% andS-L.’;,J’.fl}; for the blocks with grad< 4 such
that all the equations (17a) and (17d) with grad/ are satisfied, and we prove that
T{/’.h}; andS{/’.h}: for blocks of grad= d are uniquely determined by equations (17a)
and (17d) of grad= d. We need to solve the following equations:

MU =L and WG —i NG =0 —i =N (k)
forl<hW<<j—-i-1<n—-i—-2andl<h<<j—-i—-1<n-i-2and
min(h —h'+1, h—h'+1+ j'— j) = d > 0. (The shape of the equation is the same
as in (17a) and (17d); what is changed is the range of the indices involved in these

equations). By the inductive hypothesis, under this assumptionis o, 1, d the
following formulas for the blocks of., M, N hold:

YN .o s
J'sh J'h j'h
Lj,h =i AV} BTN +Cj,h (s),

./,h/ .,,h, ./,h/ -/’h/
ij.’h =S/ +T! +d},h (s),

i,j,h+ i,j,h
i’ h T
j/,h/ . j/,/’l/ Ti,j,h |f h = l
Njh _ejh (S)+ i j'h—1 i , . .
. : Ty ;0 +Sijn ifl<h<j —i—-1,
i’ h' . . .
!t fh=j—i—-1

JHAL S},
Nippr =Fin O+ i /K 1 <hei_i1
i1t Mlsh<y—1-4

wheret = j +h' —h andc]./;lh/, djf./;lh/, e;/;lh/, f.’;;h/ are homogeneous admissible
polynomials that we already know by induction. In particular these polynomials
belong to the subalgebi®; of R generated byR . - R and their degree is equal to
the degree (deg) of the corresponding block. Finaflys the following coefficient:

1 ifh=1landh=j—i—1,

i , .
i )‘{g/rl,/',h if ¥ =1andh < j —i—1,
jih Wl if h=j—i—1andh > 1,

i’ i1 e, .
S N o T if ¥ >1landh < j—i—1

1

By the inductive hypothesis we see thdtis always a positive rational number.
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Now we group all the equations with the samhand the samg’ together and
we solve them. Once we have fixgdand j/ we can organize the indeces in a more
convenient form. Lek; = j —i — 1 and

|4 ity =i _[1-d it j' > j
"Tla+j—j Wj<j " |1+j—j—d ifj <]

For fixed j, j/ (andd) let us also introduce the positive rational numbejs=
(h+k)(j' =i —k—h), By = h(j —i — h) andv, = v/ ;"™ Then the equations
(x4) can be written as follows:

j/,h, _ j/,h/ j/,h/+1 . j/,h/
Mj,h = Lj,h and ,Bth’thl = O(th’h (*djj/)
forh' =k +handhg < h < hy.
Now let us introduce the following variablest;, = T{/Jh,; andY;, = S{jj’.%ﬂ.
and let us write systemxf;;-) in the following way:
Xho + Yho = VhoAE—U'Fj/—)Z + pl,ho(s)
: (19)
Xny + Yy = vy Ag—s jT g + p1ay ()
and
Ang(Yng + Xno+1) = BroXno + P2, (s)
Ang+1(Yno+1 + Xng+2) = Bho+1(Yng + Xno+1) + P2.ho+1(s)
(20)

hy—1(Yny—1+ Xny) = Bny—1(Yny—2 + Xny—1) + p2.ny—1(s)
ny Yy = Bny(Yny—1+ Xny) + p2,ny (5)
wherel = j +k andp, . are known homogeneous admissible polynomials of degree

equal to the degree (deg) of the corresponding block and that are elemetits of
Observe that the system of equations (20) can be rewritten in the following form:

Yho + Xho+1 = /OhoXho + P3,ho(S)
Yiot1 + Xng+2 = Pho+1Xng + P3,hg+1(5)
: (21)
Yii—1+ X, = pn—1Xng + p3.p-105)
th = ;Ohlxho + P3,h1(s)
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where thep; are (strictly) positive rational numbers and thg; are a linear combi-
nation of theps ;. Now the system (19,21) is a linear system in as many variables as
equations and has a unique solution. Indeed this system can be written as

MXx =v
where
X= Xngs--» Xnps Yigs -+ Yiy)s
V= (WnoAp—s;Tjrse+ prug(s), ..., vp Do T
+ P11 (8)), P3.1g(S), - .-, P31 (5));
M — (idhl—ho+1 tdhl—ho+1>
N 'dhl—ho+1
and
-y 1 0 ... O
—Pho+1 0 1. 0
N= : : oo
—pm-1 0 0 ... 1
—pny 0 0 ... 0

Now if we subtract theé-th column to the + (k1 — hg + 1)-th column we obtain that
detM = det(id;,—no+1 — N) = pn(1), the characteristic polynomial of evaluated
in 1. Observe thaty (t) = t"17104 pj, 11710 4. . .+ p, is a polynomial with strictly
positive coefficients, hence ddt= pn(1) # 0. SoM is invertible andxk = M~ 1v.
In particular X, and Y, can be expressed as in equations (14) by homogeneous
admissible polynomials satisfying properties (i) and (ii).

In order to prove that properties (iii), (iv) and (v) hold we observe that we can use
equations (19) and (21) to give an inductive formula for the coeﬁiciﬁeﬁﬁ and

Ml Indeed they are the coefficients of the tetwn, ;I";/_,, in the expression of

X, = T{j , andyy, = S{j , above. Hence they solve the systems (19) and (21) but
with the “constant coefficientSp* « equal to zero. Therefore if we use the variables

Xp = )J ih andyh = [,L h we obtain from systems (19) and (21) that they are the
solutlons of the foIIowmg systems:

Xho + Yho = Vhg
(22)

Xhy + Yhy = Vny
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and
Yho + Xho+1 = PhoXho
(23)
Yhi—1+ Xpy = Phy—1Xhg
Yhy = Ph1Xhg
Notice thaty,,, (yn,+Xne+1). - - -, Yi, are exactly the coefficients appearing in points

(iii), (iv) and (v) of the lemma, hence, by system (23) itis enough to proveffjat O.
If we sum the equations in system (22) we obtain:
. pg et upl

1+,0ho+"'+,0h1

Xho

which is a positive rational number. The lemma is proved. O

Using this lemma we can define the mé&p A(D, V) — T by ®(s) = 5. By
formulas (13) and (14) this is a GV)-equivariant algebraic morphism. The next
lemma shows that it is an isomorphism.

Lemma19. 1) &: A(D, V) — T isaGL(V)-equivariant isomorphism.
2) ®(s) € TT < se AT(D,V)and®|,.: AT (D, V) — TtisaGL(V)-
equivariant isomorphism

Proof. We prove 1) writing the explicit formula for the inverse of
oA, B, T, &) = (A, B), (TIHH). (81 410))-

The equationd~1 o ® = id(p.,) follows now by (13a) and (13b), while the relation
® o d~1 = ids follows by the unicity of the elemestproved in Lemma 18.

In order to prove 2) we first notice that for, B, T', A) € S(D, V) the stability
condition is equivalent to the surjgctivity df fori =0, ..., n— 2. Fori =0,...,
n — 2 consider the subspad¥ of V; and the subspac®;" of V; defined byD;" =
Dok icni_1 DI¥. Observethatfofd, B. T, A) e Twe have by relations (11)

thatA; | ,+ is anisomorphism ont®,_ ;. Notice also thaV;" := V; & fol & @

D,(ll_)1 is a complementary subspacelof in V; and thatV;,1 is a complementary
subspace oD;_ , in V,-H, hence in this case the stability condition is equivalent to
7TW+1Zi | vt is surjective fori =0, ..., n — 2 and by equations (13) this is equivalent
0A @Tis1® - ®Tyo1mig1: Vi ® DY) @ - @ DLy —> Vi is surjective
fori =0,...,n — 2; which is exactly the condition of Lemma 14, assertion 2) for
the stability of(A, B, T, A). O
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Definition 20. As observedd is a GL(V)-equivariant morphism, so we can define
@o andg as the maps making the following diagrams commute:

Ad.v) —25 T Atd, v) —2 T+

Pol pol Pl Pl
Mo(d,v) —2~ Mo@d, %)  M(d,v) —— 3,
andifwe setp; = (po|Ml(d » Ve observe that by definition the diagram (2) commutes,

and that Imp1 C wa(8rx) = &rx.

4. Proof of Theorem 8

We begin the proof of the theorem with some remarks on the degenerate cases and
on the dimension of the varietidg (d, v) and4; ..

Lemma 21. Letr, d, v, N be as in Sectiofi.4. Then the following holds:

1) If there exists such that; < OthenM(d,v) = @

2) If there existg such that; < Othens, , = @.

3) Zr,x # gifandonlyifM(d, v) # @ and inthis case they are two smooth varieties
of the same dimension.

Proof. 1) This is an easy consequence of 2) in Lemma 14 and the definitian of
2) If v; < Othen

— (1t =t i
<dit1+2diy2---+(n—i—1dy1
— i+ + (= Ddi1+ id; + idig1 + -+ idy).

Sory+-- 471 >di+ - +id; + - +id, and3,, is empty by Proposition 3.

3) Since we have constructed a map fréftd, v) to 8, itis clear thatM (d, v) #
@ implies Zr,x #+ &. To show the converse we observe that the Weyl gi§upacts
by permutation on the-tupler and that ifo € S,;:

(1) 5o(r),x ?é g ’Sr,x ;é g,

2) rd,o(v—d)+d) =o(r(d,v)).

The first property is clear from Proposition 3 (indeed with a little more effort one
could check tha&,(,) P 5” but we do not need this result). The second property
is a computation that can easily be checkedsfee (i, i + 1). So by Lemma 8 itis
enough to prove thaZfr,)C # & = M(d, v) # @ whend — v is dominant. If we set
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i1 =1,...,ix = k in the inequality (1) we obtain; > Ofork=1,...,n —1and
M(d,v) # 2 by Lemma?7.

Finally by a result of Nakajima (see [8, Corollary 3.12]Mf(d, v) is not empty
then itis a smooth variety of dimensiati2d — v ; v) and the equality of dimensions
is an easy consequence of Proposition 3. O

In the following two lemmas we study the injectivity of the magsandg.

Lemma 22. Lets € %, g € GL(17) and assume thai(s) € €. Then there exists
g € GL(V) such thatg(s) = g(5).

Proof. We prove first thag; (V;) = V; andg; (D;) = D;. In order to prove them we
introduce fori =0,...,n =2,/ =0,...,n—2—iandh =0,...,n —2—i -1
the following subspaces df;:

j—i—h' _
Wil,(h): @ DE/ i—h") and D = @ D;k)'
o< <h i+2<j<n-1
i+1+14+h < j<n—1 1<k j—i—-1
0,(n—i-2) 0,(0)

and observe thaW, = D; and thatW;”™” @ D, = D;]. Notice that by

relations (11) for al(4, B, T', A) € ¥ the following properties hold:

() Zi|wg,<h) is an isomorphism ontWilJ:ll’(h) forl > 1,

(2) Ei{D,f+1 is an isomorphism ont® ",

3) Bi(Vizn c WP @ v,

Now we prove thag; (W) = W/ by induction oni. Lets = (4, B, T, A)
ands’ = 3(5) = (A, B/, T, A'). In the casé = O there is nothing to prove singe
does notactoiy = Di. Ifi+1 > 0 using the inductive hypothesis and property (1)
above, we obtain

~ 1-1,(h - ~ I
G W ") = g (AW )

p A5 Lwht 7l ( I-1,(h

= gir1(A @ o My = A ow) My = wi P

i+1
proving the claim.

In particular forl = 0 andh = n — i — 2 we obtaing;(D;) = D;.

In order to proveg; (V;) = V; we also argue by induction an Fori = 0 again
there is nothing to prove. i+ 1 > 0 using induction and property (3) above, we
obtain

B~ ~ ~ 0,0 0,0
B} §i41(VisD) = & Bi(Virn) c s WP e vy = w P @ v

Hence by property (2) above and the fact that= V; @ Wl.o’(o) ® D;” we obtain
gi+1(Vit1) = Viq1.



Vol. 80 (2005) Quiver varieties of type 25

~I!

Now we consideg; = §i|v,- and we prove thag(s) = g(5). Lets” = g(s5) and

observe thaf’ ands” are elements ¢f. Hence, by the unicity proved in Lemma 18,
in order to show that they are equal it is enough to show that faér all

A3 = A G, B;(5) = IB%-C”)
1+1 1(~/) _ l+1 1(~//) S”_;,_]_ 1(S) _ ”+1 1(5//).
By construction we have already proved the equality ofthandB; blocks. Now for
the remaining blocks we observe that it is enough to pgb*/gm = idD<1> . Indeed
i+1

we observe thafi; |w’ © Is the identity map fronW’ O o W’ 1 O Arguing by

induction as above we conclude tIg@F 1.0 is the identity map. Flnally we observe
thatp?; c w>©. O

Lemma 23. ¢g and¢; are closed immersions.

Proof. It is enough to prove thagtg is a closed immersion, hence to show that the
associate mapo® between the coordinate rings of the two affine varieliggd, v)
andMy(d, ) is surjective.
Observe that by Lemma 18 there existhomogeneous admissible polynoﬁ)f’éls
oftype(j’, j) such thatforalf = (A, B, T, A) = ®(s) we havezrD;m 511:‘1|D(.,,,/) =
J

nj,’hh,(s). Let Rn be the subalgebra ok generated by these polynomials. By The-

orem 13, the surjectivity opo” follows if we show that for alla] € 2 there exists
f € Rn of type(ag, 1) such thafa](s) = f(s) foralls € A(D, V). We prove this
claim by induction on the degrekof the polynomialg = [«] € &

If d < 0O there is nothing to prove since there are not polynomial® im this
case.

In order to study the cagse> 0 we observe first that iR (m) is the subalgebra of
R generated by the polynomials i of degree less than or equaltothen, f € R
and degre¢ < m + 1 implies f € R(m). Now we study the cas¢é > 0. Let
B =1[8¢-jvj—¢] € P of degreel. By relations (11) and the definition of the mdp
we have:

W () = mp (BaFD)| = £ + | A Te=1
ik DA g Mty Be) i e>1,

where, by Lemma 18f is an homogeneous admissible polynomials of type )
of degreed and it is also an element &®;. In particular, by what we have noticed
above,f € R(d — 1) and by the inductive hypothesis, there exifts Rn of type
(j’, j) such thatf(s) = f(s) forall s € A(D, V). Finally we observe that if is
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the coefficient ofg in the formula above, by property (iii) in Lemma 18 we always
havev # 0. HenceB(s) = v—l(nj.’;lh (s) — f(s)) for all s proving the claim. O

Proof of Theoren8. By Lemma 23 and the fact that; ands are projective we see
thaty is proper. Since by a result of Nakajima (see [8, Corollary 3.12]) all orbits in
AT(d,v) andAt(d, 7) are closed, Lemmas 19 and 22 imply tfds also injective.
Since by Lemma2M (d, v) and»ffr,)C are smooth varieties of the same dimension and
gr,x is connected we have proved that it is an isomorphism of holomorphic varieties
and by consequence is also an isomorphism of algebraic varieties. In pargicslar
surjective and this together with the surjectivity of the mapmplies the surjectivity

of p1. S0y is a surjective closed immersion of affine varieties, hence it must be
an isomorphism of algebraic varieties. Finafly(0) = x € 4, ., andx is in the
image ofgs, hence by the injectivity ofpp proved in the previous lemma we have

0 e M1(d, v) andg1(0) = x. O

Remark 24. In Nakajima’s theory an essential role is played by the variety
I'(d,v) := 7~%0) ¢ M(d,v). We observe that the map restricted toI'(d, v)

take a more explicit and simple form. Indeed it is easy to see that in this case the
mapsA; vanish, heﬂcel:”j’};l (s) = Sljj};, (s) = 0 and (11) and (13) give an explicit
formula for the map.

Remark 25. As itis noticed in [7], Nakajima’s conjecture does not generalize to dia-
grams of typeE andD. However we observe that, in general, interesting subvarieties
of a quiver variety can be described as quiver varieties themselves (see, for example,
the stratification of quiver varieties constructed by Nakajima in [7], [8]) From this
point of view let us remark that it is possible to explicitly give a pair of injective maps

¥ andy from M(d, v) to M(d, ©), and fromMo(d, v) to Mo(d, ©) respectively, such

that diagram (2) commutes agid0) = x. As we have already noted their definition

is simpler than that of andg; but, on the other hand, their image is not contained

in 8, and4, , respectively, hence they “describe” different transversal slices.
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