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Quiver varieties of typeA

Andrea Maffei

Abstract. We prove a conjecture of Nakajima describing the relation between quiver varieties
of typeA and the geometry of partial flag varieties and of the nilpotent variety.

The kind of quiver varieties we are interested in were introduced by Nakajima as a
generalization of the description of the moduli space of anti-self-dual connections
on ALE spaces constructed by Kronheimer and Nakajima [4]. They turn out to
have a rich and interesting geometry and they were used by Nakajima to give a
geometric construction of the representations of Kac–Moody algebras [7], [8]. A
similar construction had already been made in the case ofsln by Ginzburg (see [1])
using partial flag varieties. A precise conjecture of Nakajima [7, §8] describes the
relation between quiver varieties and the geometry of the nilpotent cone and of partial
flag varieties: in particular Slodowy’s varieties and Slodowy’s transversal slices (see
Theorem 8 for the precise statement). In this paper this conjecture is proved.

In the first section we state the conjecture and we recall the definition of quiver
variety and Slodowy’s variety. In order to treat conveniently the coordinate ring of
the affine quiver varietyM0, in the second section we introduce a modification of the
path algebra that we call the algebra of admissible polynomials. In the third section
we define a map between a quiver variety and the related Slodowy’s variety and in
the fourth section we prove that it is an isomorphism.

I wish to thank Corrado De Concini who introduced me to quiver varieties and
Hiraku Nakajima who pointed out an error in a previous version of this paper and the
solution to it. Finally I am grateful to Nicoletta Cantarini and Rocco Chirivì for their
helpful suggestions on the exposition of the paper.

1. The conjecture of Nakajima describing quiver varieties of typeA

1.1. Slodowy’s varieties. In this section we recall some definitions related to the
nilpotent variety and the partial flag variety. Standard references for the material
contained in this section are [1, Sections 3.2, 3.5, 3.7, 4.1 and 4.4] and [9, Sections 5.3
and 7.4].
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Definition 1. If E is a vector space of dimensionN thenilpotent coneN = NE is
the variety of nilpotent elements ingl(E). Following the standard procedure, we
parameterize the GL(E) orbits inN through the partitions ofN by associating to a
nilpotent endomorphism the dimensions of its Jordan blocks, and we denote by the
orbit associated to the partitionλ byOλ. Givenx ∈ N andx, y, h ansl2-triple in
gl(E), we define theSlodowy’s transversal sliceof the orbit ofx in the pointx as the
variety:

Sx = {u ∈ N such that[u− x, y] = 0}.
From now on, using a nonstandard convention, we admit 0,0,0 as ansl2-triple, so
that whenx = 0 we haveS0 = N . Notice also that up to isomorphism of algebraic
varietiesSx does not depend on the choice ofy, h.

Definition 2. If E is a vector space of dimensionN andr = (r1, . . . , rn) is a vector
of nonnegative integers such thatr1 + · · · + rn = N , apartial flag of E of typer is
an increasing sequenceF : {0} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = E of subspaces ofE such
that dimFi − dimFi−1 = ri . The GL(E)-homogeneous variety of partial flags of
typer will be denoted byFr . Let us define

Ñr = T ∗Fr ∼= {(u, F ) ∈ gl(E)× Fr such thatu(Fi) ⊂ Fi−1},
µr : Ñr −→ N the projection onto the first factor.

For N , r, E as above letρ = (ρ1, ρ2, . . . , ρn) be the permutation ofr such that
ρ1 � ρ2 � · · · � ρn and consider the corresponding partition ofN , λr :=
1ρ1−ρ22ρ2−ρ3 . . . nρn . It is known that if (u, F ) is in Ñr thenu is in the closure
of Oλr . Moreover the map

µr : Ñr −→ Oλr

is a resolution of singularity and it is an isomorphism overOλr . Let us define

Sr,x = Sx ∩Oλr , S̃r,x = µ−1
r (Sr,x).

We callS̃r,x theSlodowy’s varietyassociated tor andx.
It is convenient for our purposes to define these varieties also in the case of vectors

r allowing negative coefficients. Therefore we setSr,x = S̃r,x = ∅ whenri < 0 for
somei.

The following result is well known (see [1, Corollaries 3.5.9 and 3.7.15] or the
original proofs in [9, Sections 5.3 and 7.4]).

Proposition 3. Letx ∈ NE be a nilpotent endomorphism with Jordan decomposition
of type1d12d2 . . . (n− 1)dn−1 and letr = (r1, . . . , rn) be a partition ofN . Then:



Vol. 80 (2005) Quiver varieties of typeA 3

1) S̃r,x �= ∅ ⇐⇒ x ∈ Oλr ⇐⇒ for all 1 � k � n and for all 1 � i1 < i2 <

· · · < ik � n the following inequality holds:

d1 + 2d2 + · · · + (k− 1)dk−1 + kdk + kdk+1 · · · + kdn−1 � ri1 + · · · + rik . (1)

2) AnyS̃r,x �= ∅ is a smooth variety of dimensiondimZgl(x)− dimZgl(ur), where
ur is an element ofOλr .

1.2. Notation on root system and dimension vectors.In the following we will
denote byv = (v1, . . . , vn−1) andd = (d1, . . . , dn−1) vectors of integers. Whenv
andd are vectors of nonnegative integersVi andDi will be complex vector spaces
of dimensionvi anddi for i = 1, . . . , n− 1.

Some formulas become simpler and more familiar if we identify the two vectors
d andv with elements of the weight and root lattices.

Let P be the weight lattice for the root system of typeAn−1, R ⊂ P be the
root lattice andκ( · ; · ) : P × P −→ Q be the Killing form. Let us fix a basis
α1, . . . , αn−1 ∈ R of simple roots with the usual order and letω1, . . . , ωn−1 be the
corresponding fundamental weights.

In the following we will identify the vectord = (d1, . . . , dn−1) (or d̃, d ′, etc.)
with the element

∑n−1
i=1 diωi of the weight lattice and the vectorv = (v1, . . . , vn−1)

(or ṽ, v′, etc.) with the element
∑n−1
i=1 viαi of the root lattice.

Observe that these identifications allow us to introduce thedominant order� on
the set of vectorsd, v and to define an action of the Weyl groupSn of the Dynkin
diagram of typeAn−1 on the dimension vectorsd, v.

1.3. Quiver varieties of typeAn−1. Let us fix two dimension vectord andv as in
1.2 and assume thatdi, vi � 0 for all i. Let us choose also vector spacesDi , Vi such
that dimDi = di and dimVi = vi .

The space of “double free representation” of type(D, V ) of the quiver of type
An−1 is the vector space

S(D, V ) =
n−2⊕
i=1

Hom(Vi, Vi+1)⊕
n−2⊕
i=1

Hom(Vi+1, Vi)

⊕
n−1⊕
i=1

Hom(Di, Vi)⊕
n−1⊕
i=1

Hom(Vi,Di).

Since in what follows we will give explicit constructions it is convenient to fix some
notation: fori = 1, . . . , n − 2 we will denote byAi an element of Hom(Vi, Vi+1)

and byBi an element of Hom(Vi+1, Vi). Besides, fori = 1, . . . , n− 1 we will also
denote by�i an element of Hom(Di, Vi) and by�i an element of Hom(Vi,Di).
Finally we setA = (A1, . . . , An−2), B = (B1, . . . , Bn−2), � = (�1, . . . , �n−1) and
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� = (�1, . . . , �n−1). Our notation can be summarized in the following diagram:

D1

�1

��

D2

�2

��

Dn−2

�n−2

��

Dn−1

�n−1

��
V1

�1

��

A1

�� V2

�2

��

A2

��

B1�� . . .
B2��

An−3

�� Vn−2

�n−2

��

An−2

��

Bn−3
��

Vn−1

�n−1

��

Bn−2��

D1 D2 Dn−2 Dn−1 .

According to this notation we will refer to an element ofS(D, V ) as a quadruple
(A,B, �,�).

Definition 4 (Nakajima, [7], [8]). A quadruple(A,B, �,�) of S(D, V ) is said to
satisfy the ADHM equations or, equivalently, is said to beadmissibleif it satisfies the
following relations:

B1A1 = �1�1,

BiAi = Ai−1Bi−1 + �i�i for 2 � i � n− 2,

0 = An−2Bn−2 + �n−1�n−1.

We denote by�(D,V ) the set of all admissible elements. An admissible element is
said to bestableif each collectionU = (U1, . . . , Un−1) of subspaces ofV (i.e.Ui is
a linear subspace ofVi for everyi) and containing Im� (i.e. Im�i ⊂ Ui for everyi)
and invariant by the action ofA andB (i.e.Ai(Ui) ⊂ Ui+1 andBi(Ui+1) ⊂ Ui for
everyi) must be equal toV (i.e.Ui = Vi for everyi). We denote by�+(D, V ) the
set of stable admissible elements.

Notice that the two groups GL(V ) = ∏
GL(Vi) and GL(D) = ∏

GL(Di) act
naturally onS: if g = (gi) ∈ GL(V ) andh = (hi) ∈ GL(D) then

g((Ai), (Bi), (�i), (�i)) = ((gi+1Aig
−1
i ), (giBig

−1
i+1), (gi�i), (�ig

−1
i ));

h((Ai), (Bi), (�i), (�i)) = ((Ai), (Bi), (�ih
−1
i ), (hi�i)).

Definition 5 (Nakajima, [7], [8], p. 521–522). Observe that�(D,V )and�+(D, V )
are invariant with respect to the action of GL(V ) so, following Nakajima, we can de-
fine quiver varieties as the categorical quotients (see [6, Definition 0.5]) under the
action of the group GL(V ) of the two varieties�(D,V ) and�+(D, V ):

M0(D, V ) = �(D,V )//GL(V ), p0 is the projection from�(D,V ) toM0(D, V ),

M(D,V ) = �+(D, V )//GL(V ), p is the projection from�+(D, V ) toM(D,V ).
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The existence of the quotientsM andM0 can be obtained, using standard arguments
of GIT, (see [6, Ch. 1 Theorem 1.1 and Theorem 1.10] and [8, p. 521–522]). The
construction shows also that the mapπ : M(D,V ) −→ M0(D, V ) induced by the
inclusion�+(D, V ) ⊂ �(D,V ) is projective. Observe that the actions of the two
groups GL(D) and GL(V ) commute, hence the group GL(D) acts onM(D,V ) and
M0(D, V ) and the mapπ is equivariant.

Let us also notice that the quadruple 0= (0,0,0,0) is always admissible and we
set 0:= p0(0,0,0,0) ∈ M0(D, V ). Finally let us denote byM1(D, V ) the image
of π with the reduced structure:M1(D, V ) is a closed subvariety ofM0(D, V ) since
π is projective.

The vector spaceS(D, V ) and the varieties�(D,V ), �+(D, V ), M(D,V ),
M0(D, V ) andM1(D, V ) do not depend, up to isomorphism, on the choice of the
vector spacesDi , Vi , hence we will denote them also byS(d, v),�(d, v),�+(d, v),
M(d, v), M0(d, v) andM1(d, v) (or simplyS, �, �+, M, M0, M1 whend, v are
clear from the context).

Moreover, as in the case of Slodowy’s varieties it will turn out to be useful to
extend the definition ofM(d, v),M0(d, v) andM1(d, v) also to the case of arbitrary
(n − 1)-tuples of integers: we setM(d, v) = M0(d, v) = M1(d, v) = ∅ if there
existsi such thatvi < 0 ordi < 0.

Remark 6. In [8] a condition of stability dual to the one given in Definition 4
above was used: an admissible element is called∗-stable if each collectionU =
(U1, . . . , Un−1) contained in ker� and invariant under the action ofA andB is triv-
ial. The isomorphism between the quiver varieties constructed using this stability
condition and the one used in this paper is given by

((Ai), (Bi), (�i), (�i)) �−→ ((Bti ), (A
t
i), (�

t
i), (�

t
i )).

As for the varietiesSr,x andS̃r,x we need a criterion in order to understand when
M(d, v) is not empty: this is given by Nakajima’s construction of the irreducible
representation ofsln (see [8, §10]). In order to state it we recall that we identifyd
(resp.v) with elements of the weight (resp. root) lattice (see 1.2) and we observe that
if σ ∈ Sn thenσ(v − d)+ d is in the root lattice.

Lemma 7. If σ ∈ Sn is such thatσ(d − v) is dominant andv′ = σ(v − d)+ d then

M(d, v) �= ∅ ⇐⇒ M(d, v′) �= ∅ ⇐⇒ v′
i � 0 for i = 1, . . . , n− 1.

Proof. If v ∈ Nn−1
�0 the result immediately follows by Nakajima’s main theorem

(see [8, §10 Theorem 10.2]) applied to the casex = 0. Indeed Nakajima’s theorem
implies thatHtop(M(d, v)) is isomorphic to the weight space of weightd − v of the
irreducible representation ofsl(n) of highest weightd. It is well known (see, for
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example, Humphreys [2], Chapter 6, §21.3) that this weight space is not zero if and
only if v′

i � 0 for everyi.
Now suppose that there existsi such thatvi < 0. It is enough to prove that

there existsj such thatv′
j < 0. Indeed ifv′ � 0 (i.e. v′ ∈ ∑

N�0αi ) we have

v = σ−1(v′ − d) + d = v′ + (d − v′) − σ−1(d − v′) � 0 sinceu � τu for all
dominantu and allτ in the Weyl groupSn. �

1.4. Nakajima’s conjecture. If d = (d1, . . . , dn−1) andv = (v1, . . . , vn−1) are
two (n − 1)-tuples of integers we define then-tuple r = r(d, v) = (r1, . . . , rn) by
setting:

r1 = d1 + · · · + dn−1 − v1, rn = vn−1, and

ri = di + · · · + dn−1 − vi + vi−1 for i = 2, . . . , n− 1.

We observe that
∑n
i=1 ri = N = ∑n−1

i=1 idi . Moreover we notice that onced is
fixed the mapr gives a bijection between(n− 1)-tuples of integersv andn-tuples of
integersr such that

∑
ri = N . Indeed we have that

vn−1 = rn , vi = rn + · · · + ri+1 − di+1 − 2di+2 · · · − (n− i − 1)dn−1

for i = 1, . . . , n− 2. Now we can state the main result of this paper. We recall that
we have settledM(d, v) = M1(d, v) = ∅ if vi < 0 for somei andS̃r,x = Sr,x = ∅

if ri < 0 for somei. The following theorem was conjectured by Nakajima in [7].

Theorem 8. Letv, d,N , r = r(d, v) as above. Letx ∈ N be a nilpotent element of
type1d1 . . . (n− 1)dn−1. Then there exist two isomorphisms of algebraic varieties,ϕ̃

betweenM(d, v) andS̃r,x , andϕ1 betweenM1(d, v) andSr,x , such that the following
diagram commutes:

M(d, v)
ϕ̃−−−−→ S̃r,x

π

� µr

�
M1(d, v)

ϕ1−−−−→ Sr,x .

(2)

Moreoverϕ1 maps0 ∈ M1(d, v) to x ∈ Sr,x .

Remark 9. If M(d, v) �= ∅ then it is easy to see that 0∈ M1(d, v). This will be
also obtained as a consequence of the proof of Theorem 8.

Remark 10. Let �reg be the open (and possibly empty) subset of� consisting of
elements with closed orbit and trivial GL(V )-stabilizer. If�reg �= ∅ we know by
[7, Theorem 4.1] thatπ is a resolution of singularities so thatM0 = M1 andTheorem 8
above reduces to the conjecture as stated in [7, §8]. We observe also that by [8,
Proposition 10.5 and Theorem 10.2]�reg �= ∅ if and only if v � 0 andd − v is
dominant.
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2. Path algebra and admissible polynomials

In this section we define the path algebra. Our path algebra will be a modification of
the path algebra of the double quiver of typeA which takes into account the presence
of the extra vector spacesDi . This algebra will play an important role in our proof. It
will be used as an “universal coordinate ring” for quiver varieties which is independent
of the dimension vectorsd, v.

2.1. Notation on quivers and paths.The vertices and the arrows of thedouble
quiverQ of typeAn−1 will be denoted as indicated in the following diagram:

Q : 1
a1

�� 2
a2

��

b1
		 . . .

b2
		

an−3
�� n− 2

an−2

��

bn−3
��

n− 1
bn−2��

. (3)

In particular,I = {1, . . . , n − 1} is the set of vertices andH = {a1, . . . , an−2,

b1, . . . , bn−2} the set of arrows.
It is convenient to consider also the following double versionDQ of the quiverQ:

DQ :
1�

γ1





2�

γ2

��

. . . (n− 2)�

γn−2





(n− 1)�

γn−1




1

a1

��

δ1

��

2
a2

��

b1
		

δ1

��

. . .
b2

		

an−3

�� n− 2
an−2

��

δn−2



bn−3
��

n− 1 .
bn−2��

δn−1



(4)

Let us defineI � = {1�, . . . , (n − 1)�} andH� = {γ1, . . . , γn−1, δ1, . . . , δn−1} and
let us denote byI = I ∪ I � the set of vertices andH = H ∪H� the set of arrows of
this quiver.

Given an arrowh ∈ H we callh0 its source andh1 its target. Apathα in a quiver
is a sequenceh(m) . . . h(1) of arrows such thath(i)1 = h

(i+1)
0 for i = 1, . . . , m − 1.

We callh(1)0 thesourceof α and we denote it byα0 and we callh(m)1 the target of α
and we denote it byα1. Moreover we say that thedegreeof α ism and we denote it
by degree(α). If α0 = α1 we say thatα is a closed path. Ifi is a vertex we define
the i-empty path∅i whose source(∅i )0 and target(∅i )1 are equal toi and whose
degree is equal to 0. The composition of paths is defined in the obvious way.

We call a path for the quiverQ aQ-path and a path for the quiverDQ aDQ-path.
A DQ-pathα is said to be anadmissible pathif α0, α1 ∈ I �.
2.2. The algebra of admissible polynomials.Thepath algebraof a quiver is the
vector space spanned by all paths with the product induced by composition. It is an
associative algebra graded by the degree of paths. Consider now the path algebraR̃
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of the quiverDQ. For i ∈ I let θi be the following element of̃R:

θi =


γ1δ1 − b1a1 if i = 1,

γiδi + ai−1bi−1 − biai if i = 2, . . . , n− 2,

γn−1δn−1 + an−2bn−2 if i = n− 1.

Define� to be the bilateral ideal of̃R generated by these elements, andR′ to be the
quotient algebrãR/� . If α is aDQ-path then we denote by[α] its image inR′.

Definition 11. The algebra ofadmissible polynomialsis the subalgebraR of R′
generated by the elements[α] with α an admissible path. Since the ideal� is homo-
geneous,R′ andR can be graded using the degree of paths and we defineRm as
the subspace ofR of homogeneous admissible polynomials of degreem andR+ as⊕

m>0 Rm.
If i, j ∈ I we also setRi,j := [∅j�]R[∅i�] and we say that an element ofRi,j

is an admissible polynomial of type(i, j).
Finally we define some special paths: for 1� i � j � n − 1 let γj→i =

bi . . . bj−1γj andδi→j = δjaj−1 . . . ai , and observe that[δl→j γi→l] ∈ Ri,j .

Lemma 12. The algebra of admissible paths is generated by the elements[∅i�] for
i� ∈ I � and by the admissible polynomials in the following set:

P = {[δl→j γi→l] : i, j ∈ I andl � min(i, j)}. (5)

Proof. Let A be the subalgebra ofR generated byP and by the elements[∅i�] for
i� ∈ I �.

Observe first that the algebraR is generated by the admissible polynomials[∅i�]
with i� ∈ I � and by the admissible polynomialsβ of the form [δjαγi] with α a
(possibly empty)Q-path. In particular it is enough to show that the admissible
polynomials of this form belong toA.

Notice that[δi→iγi→i] = [δiγi] hence we can restrict ourself to study the case in
whichα is not empty. Letα = h(m) . . . h(1) with h(t) ∈ H for all t . We say that� is
a corner ofα if there existst such thath(t) = a�−1 andh(t+1) = b�−1. Observe that
if α has no corner thenβ is an element ofP . We define MC(α) to be the maximal
corner ofα if α has a corner, and 0 ifα has no corner. If� = MC(α) we define also
c(α) = card{s : h(s) = a�−1 andh(s+1) = b�−1}.

Now we proveβ ∈ A by induction onN = degree(α)+ MC(α)+ c(α).
Observe that ifN = 0 thenα = ∅i for somei and we have already examined

this case.
If N > 0 andα has no corner thenβ is an element ofP .
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So we can supposeN > 0 andα has a corner. Let� = MC(α) and notice thatα
can be written in the formα′′b�−1a�−1α

′. Now using the definition of the ideal� , if
� > 1 we have

β = [δjαγi] = [δjα′′b�−1a�−1α
′γi]

= [δjα′′b�−2a�−2α
′γi] + [δjα′′γ�δ�α′γi]

= [δjα′′b�−2a�−2α
′γi] + [δjα′′γ�] · [δ�α′γi].

We observe now that the admissible paths[δjα′′b�−2a�−2α
′γi], [δjα′′γ�] and[δ�α′γi]

belong toA by the inductive hypothesis.
In the case� = 1 the argument is the same, but the summand[δjα′′b�−2a�−2α

′γi]
on the right hand side of the formula above is zero. �

We define now an evaluation of paths onS: if h ∈ H is an arrow (or an empty
path) we define an evaluation ofh on an elements = (A,B, �,�) ∈ S(D, V ) in the
following way:

h(s) :=



idVi if h = ∅i andi ∈ I,
idDi if h = ∅i� andi� ∈ I �,
Ai if h = ai,

Bi if h = bi,

�i if h = γi,

�i if h = δi .

Let us extend this evaluation to all paths using composition: ifα = h(m) . . . h(1) then

α(s) = h(m)(s) � · · · � h(1)(s).
In particular ifi � j we set�j→i := γj→i (s) and�i→j := δi→j (s).

Finally observe that ifs ∈ �(D,V ), this evaluation is well defined also on the
vector spacesRi,j . In particular iff ∈ Ri,j thenf (s) ∈ Hom(Di,Dj ). Moreover
we observe that, iff ∈ Ri,j thenf (g · s) = f (s) for all s ∈ �(D,V ) and for all
g ∈ GL(V ), hence they are well-defined regular functions on the varietiesM andM0.

2.3. The coordinate ring ofM0. The following theorem describes the relation be-
tween the path algebra and the coordinate ring ofM0 in the case of the quiver of
typeA.

Theorem 13(Lusztig [5], Theorem 1.3).The ringC[S(D, V )]GL(V ) is generated by
the polynomials

s �−→ϕ(α(s)) for α an admissible path andϕ ∈ (Hom(Dα0,Dα1))
∗ (6)

and
s �−→ Tr(α(s)) for α a closedQ-path. (7)
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As a consequence the coordinate ringC[�(D,V )]GL(V ) of the affine varietyM0
is generated by the same polynomials restricted to�(D,V ). In the case of a quiver
of typeA one can see that the second type of polynomials are not necessary: indeed,
as in proof of Lemma 12, we can show by induction that we can express the second
type of polynomials in terms of the first type. The following lemma describes a finite
set of generators of the coordinate ring ofM0.

Lemma 14. 1) C[�(D,V )]GL(V ) is generated by the polynomials

s �−→ ϕ(β(s)) for β ∈ P andϕ ∈ (Hom(Dβ0,Dβ1))
∗.

2) If (A,B, �,�) ∈ �(D,V ) then it is an element of�+(D, V ) if and only if for
all 1 � i � n− 1 we have

ImAi−1 +
n−1∑
j=i

Im �j→i = Vi.

Proof. 1) is a consequence of Lemma 12 and Theorem 13 above. In order to prove 2)
let us notice first that the condition of stability is equivalent to∑

α aQ-path
andα1=i

Im(α(s)γα0(s)) = Vi for i = 0, . . . , n− 1.

Indeed ifUi is the vector space on the left of the formula then(U1, . . . , Un−1) is the
minimal subspace ofV containing Im� and invariant by the action ofA andB. The
proof can now be completed following the line of the proof of Lemma 12. �

3. Construction of the isomorphism

In this section we will define the mapsϕ1 andϕ̃ in the casevi, di � 0 for eachi. We
examine first a simple and already known case of Theorem 8:

Lemma 15(Nakajima [7]). If N � v1 � · · · � vn−1 and ifd = (N,0, . . . , 0) then
the conjecture is true. In this case we haveM(d, v) � Ñr andM1(d, v) � Oλr .

Proof. The proof is given in [7], Theorem 7.2, but there Nakajima considers the
inverse condition of stability so we remind the definition of the isomorphism in our
case. Observe that in this case we haveD = (D1,0, . . . , 0) and that we can choose
the vector spaceE of Section 1.1 to beD1. The isomorphism̃ϕ betweenM(d, v)
andT ∗Fr is given by:

p(A,B, �,�) �−→ (�1�1, {0} ⊂ ker�1 ⊂ kerA1�1 ⊂ · · · ⊂ kerAn−1 . . . A1�1).
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It is easy to check that this map is well defined and that it is bijective so that, since
M andT ∗F are complex smooth varieties, it is an algebraic isomorphism.

The mapϕ0 betweenM1(d, v) andOλr or the mapϕ1 betweenM0(d, v) and
N is given byp0(A,B, �,�) �→ �1�1. We observe first thatϕ1π = µrϕ̃ so that
ϕ1(M1) = Oλr . By Lemma 14 we see that the coordinate ring ofM0, hence the
coordinate ring of its closed subvarietyM1, is generated by the matrix coefficients of
the matrix�1�1 hence the map betweenM1 andSr,x ⊂ N is a closed immersion.
Thusϕ1 is a surjective closed immersion between two affine (reduced) varieties (over
an algebraically closed field), hence it is an isomorphism. �

Before giving the proof of the general case I will explain the main steps of the
proof:

(1) Given(n − 1)-tuplesd, v of natural numbers and vector spacesDi , Vi of the
dimension prescribed by these natural numbers, we construct new(n−1)-tuples
of natural number̃d, ṽ and new vector spaces̃Di, Ṽi . In particular the(n − 1)-
tuple d̃ will be of the form of the Lemma 15 above:̃d = (N,0, . . . , 0).

(2) We use the Lemma 15 above to give a description of the varietiesSr,x andS̃r,x
as subvarieties ofM1(d̃, ṽ) andM(d̃, ṽ).

(3) We construct a subvarietyT of the variety�(d̃, ṽ), that we call the set of transver-
sal elements, and we introduce also its open subsetT+ = �+(d̃, ṽ) ∩ T. We
observe also that the image ofT (resp. ofT+) in M1(d̃, ṽ) (resp.M(d̃, ṽ)) is
contained inSr,x (resp.S̃r,x).

(4) The main point of the proof is now to prove that this setT is isomorphic to�(d, v):
Lemma 18 allows to construct a map from�(d, v) to T and in Lemma 19 we
prove that it is an isomorphism. We also observe that this isomorphism sends
stable elements in stable elements, so that at the end of this section we are able
to introduce maps

φ : �(d, v) −→ T and φ+ : �+(d, v) −→ T
+.

(5) We observe thatφ andφ+ define maps at the level of quiver varieties:

ϕ1 : M1(d, v) −→ Sr,x ⊂ M1(d̃, ṽ)

and
ϕ̃ : M(d, v) −→ S̃r,x ⊂ M(d̃, ṽ).

In Lemma 23 we prove thatϕ1 is a closed immersion and this allows us to show
that the map̃ϕ is proper. The injectivity of the map̃ϕ follows from Lemma 22.

(6) We conclude the proof as follows:̃ϕ is a proper injective map between two
smooth complex varieties of the same dimension, moreover it is known that the
variety S̃r,x is connected (this can be deduced for example by the Zariski Main
Theorem and the normality of the closures of nilpotent orbits proved by Kraft
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and Procesi [3], see for example [1], Lemma 4.1.3), so the mapϕ̃ has to be also
surjective, hence it is an isomorphism of algebraic varieties. Finally, sinceϕ̃ is
surjective, alsoϕ1 has to be surjective hence it is a surjective closed immersion
between two affine varieties, which implies thatϕ1 is an isomorphism.

3.1. Notation and description of Slodowy’s varieties as subvarieties of a quiver
variety. Let d, v, r, λr be as in Theorem 8 and let us defined̃i = 0 if i > 1 and
d̃1 = N = ∑n−1

j=1 jdj , ṽi = vi + ∑n−1
j=i+1(j − i)dj . We will construct some vector

spaces̃Vi, D̃i of dimensiond̃i andṽi in terms of the vector spacesVi , Di . LetD(j)i
be an isomorphic copy ofDi and define:

E = D̃1 =
⊕

1�k�j�n−1

D
(k)
j and D̃i = 0 for i = 2, . . . , n− 1, (8a)

Ṽi = Vi ⊕
⊕

1�k�j−i�n−i−1

D
(k)
j for i = 2, . . . , n− 1. (8b)

It will be convenient to set̃V0 = D̃1, and, if(Ã, B̃, �̃, �̃) is an element of�(D̃, Ṽ ),
Ã0 = �̃1, andB̃0 = �̃1. We will always consider the maps̃Ai , B̃i as block-matrices
with respect to the decomposition of̃Vi , D̃1 given in (8a), (8b) and by a projection
on to one of these subspaces, we will always mean a projection with respect to the
same decomposition. If̃s = (Ã, B̃, �̃, �̃) ∈ S(D̃, Ṽ ) we fix the following notation

for the blocks of the maps̃Ai andB̃i for i = 0, . . . , n− 1:

π
D
(h)
j

Ãi
∣∣
D
(h′)
j ′

= T
j ′,h′
i,j,h π

D
(h)
j

B̃i
∣∣
D
(h′)
j ′

= S
j ′,h′
i,j,h

π
D
(h)
j

Ãi
∣∣
Vi

= TVi,j,h π
D
(h)
j

B̃i
∣∣
Vi+1

= SVi,j,h

πVi+1Ãi
∣∣
D
(h′)
j ′

= T
j ′,h′
i,V πVi B̃i

∣∣
D
(h′)
j ′

= S
j ′,h′
i,V

πVi+1Ãi
∣∣
Vi

= Ai πVi B̃i
∣∣
Vi+1

= Bi .

(9)

Whenever we want to stress the dependence ons̃ we will write T∗∗(s̃),S∗∗(s̃), etc.
Let us define the subspacesD′

i = ⊕
1�k�j−i�n−i−1D

(k)
j and observe that for

i = 1, . . . , n− 1 we havẽVi = Vi ⊕D′
i and fori = 0 we havẽV0 = D̃1 = D′

0. We
consider the group GL(V ) as the subgroup of GL(Ṽ ) acting as the identity map on
D′
i and mappingVi into Vi .

Now let us now choose the following specialsl(2)-triple(xi, yi, [xi, yi])of sl(D′
i ):

xi
∣∣
D
(1)
j

= 0, xi
∣∣
D
(h)
j

= idDj : D(h)j → D
(h−1)
j ,

yi
∣∣
D
(j−i)
j

= 0, yi
∣∣
D
(h)
j

= h(j − i − h)idDj : D(h)j → D
(h+1)
j ,

(10)
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and let us notice thatx = x0, y = y0, and[x, y] is ansl2-triple in sl(D̃1) of the type
required in Theorem 8.

Observe that, by Lemma 15,M(D̃, Ṽ ) = T ∗Fr andM1(D̃, Ṽ ) = Oλr . Hence
we can describeSr,x andS̃r,x as subvarieties ofM1(D̃, Ṽ ) andM(D̃, Ṽ ):

Sr,x = p0
({
(Ã, B̃, �̃, �̃) ∈ �(D̃, Ṽ ) : [�̃1�̃1 − x, y] = 0

}) ∩M1(D̃, Ṽ ),

S̃r,x = p
({
(Ã, B̃, �̃, �̃) ∈ �+(D̃, Ṽ ) : [�̃1�̃1 − x, y] = 0

})
.

3.2. The transversal subvariety. This subsection is devoted to the description of a
special subvariety of�(D̃, Ṽ ). We will first introduce a formal degree of the blocks
of our matrices. More precisely we will define two different kinds of degrees, the
gradoand thedegreeand we denote them by grad and by deg respectively:

grad
(
T
j ′,h′
i,j,h

) = min(h− h′ + 1, h− h′ + 1 + j ′ − j),

deg
(
T
j ′,h′
i,j,h

) = 2h− 2h′ + 2 + j ′ − j,

grad
(
S
j ′,h′
i,j,h

) = min(h− h′, h− h′ + j ′ − j),

deg
(
S
j ′,h′
i,j,h

) = 2h− 2h′ + j ′ − j.

Let us recall that fori = 0, . . . , n−2 we have definedD′
i = ⊕

1�k�j−i�n−i−1D
(k)
j .

Definition 16. An element(Ã, B̃, �̃, �̃) of �(D̃, Ṽ ) is calledtransversalif it satis-
fies the following relations for 0� i � n− 2:

T
j ′,h′
i,j,h = 0 if grad

(
T
j ′,h′
i,j,h

)
< 0

T
j ′,h′
i,j,h = 0 if grad

(
T
j ′,h′
i,j,h

) = 0 and(j ′, h′) �= (j, h+ 1)

T
j ′,h′
i,j,h = idDj if grad

(
T
j ′,h′
i,j,h

) = 0 and(j ′, h′) = (j, h+ 1)

TVi,j,h = 0

T
j ′,h′
i,V = 0 if h′ �= 1

S
j ′,h′
i,j,h = 0 if grad

(
S
j ′,h′
i,j,h

)
< 0

S
j ′,h′
i,j,h = 0 if grad

(
S
j ′,h′
i,j,h

) = 0 and(j ′, h′) �= (j, h)

S
j ′,h′
i,j,h = idDj if grad

(
S
j ′,h′
i,j,h

) = 0 and(j ′, h′) = (j, h)

SVi,j,h = 0 if h �= j − i

S
j ′,h′
i,V = 0

(11)
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and, finally, [
πD′

i
B̃i Ãi

∣∣
D′
i
− xi, yi

] = 0. (12)

We denote byT the set of transversal elements and byT+ the set of transversal
elements which are additionally stable

Observe thatp(T+) ⊂ S̃r,x and thatp0(T)∩M1(D̃, Ṽ ) ⊂ Sr,x . Observe also that
T andT+ are closed GL(V )-invariant subset of�(D̃, Ṽ ) and�+(D̃, Ṽ ) respectively
(but they are not GL(Ṽ ) invariant).

Before giving the construction of the mapsϕ, ϕ̃, let us give an example in or-
der to explain the notation and the definitions introduced hitherto. We consider
Ãn−4 : Ṽn−4 −→ Ṽn−3. We have:

Ṽn−4 = Vn−4 ⊕D
(1)
n−3 ⊕D

(1)
n−2 ⊕D

(2)
n−2 ⊕D

(1)
n−1 ⊕D

(2)
n−1 ⊕D

(3)
n−1;

Ṽn−3 = Vn−3 ⊕D
(1)
n−2 ⊕D

(1)
n−1 ⊕D

(2)
n−1.

Now let us writeÃn−4 as a block matrix and let us write down the blocks introduced
in (9) explicitly:

Vn−4 D
(1)
n−3 D

(1)
n−2 D

(2)
n−2 D

(1)
n−1 D

(2)
n−1 D

(3)
n−1

Vn−3 An−4 T
n−3,1
n−4,V T

n−2,1
n−4,V T

n−2,2
n−4,V T

n−1,1
n−4,V T

n−1,2
n−4,V T

n−1,3
n−4,V

D
(1)
n−2 T

V
n−4,n−2,1 T

n−3,1
n−4,n−2,1 T

n−2,1
n−4,n−2,1 T

n−2,2
n−4,n−2,1 T

n−1,1
n−4,n−2,1 T

n−1,2
n−4,n−2,1 T

n−1,3
n−4,n−2,1

D
(1)
n−1 T

V
n−4,n−1,1 T

n−3,1
n−4,n−1,1 T

n−2,1
n−4,n−1,1 T

n−2,2
n−4,n−1,1 T

n−1,1
n−4,n−1,1 T

n−1,2
n−4,n−1,1 T

n−1,3
n−4,n−1,1

D
(2)
n−1 T

V
n−4,n−1,2 T

n−3,1
n−4,n−1,2 T

n−2,1
n−4,n−1,2 T

n−2,2
n−4,n−1,2 T

n−1,1
n−4,n−1,2 T

n−1,2
n−4,n−1,2 T

n−1,3
n−4,n−1,2

(In the matrix above we indicated on the boundary the domain and the codomain
of each block). In the following matrix we list the degree and the grado of each block
(observe that we have not defined these numbers for the first row and the first column)

grad; deg Vn−4 D
(1)
n−3 D

(1)
n−2 D

(2)
n−2 D

(1)
n−1 D

(2)
n−1 D

(3)
n−1

Vn−3 - - - - - - -

D
(1)
n−2 - 0 ; −1 1 ; 2 0 ; 0 1 ; 3 0 ; 1 −1 ; −1

D
(1)
n−1 - −1 ; −4 0 ; −1 −1 ; −3 1 ; 2 0 ; 0 −1 ; −2

D
(2)
n−1 - 0 ; −2 1 ; 1 0 ; −1 2 ; 4 1 ; 2 0 ; 0

.

Finally we write a matrix satisfying conditions (11) in the definition of a transversal
element



Vol. 80 (2005) Quiver varieties of typeA 15

Vn−4 D
(1)
n−3 D

(1)
n−2 D

(2)
n−2 D

(1)
n−1 D

(2)
n−1 D

(3)
n−1

Vn−3 ∗ ∗ ∗ 0 ∗ 0 0

D
(1)
n−2 0 0 ∗ idDn−2 ∗ 0 0

D
(1)
n−1 0 0 0 0 ∗ idDn−1 0

D
(2)
n−1 0 0 ∗ 0 ∗ ∗ idDn−1

.

3.3. The main construction. We will define the maps̃ϕ, ϕ by giving a GL(V )-
equivariant map� from �(D,V ) to T. The following two lemmas are the main
ingredient in this construction. The proofs of the two lemmas are very similar but in
the second lemma we consider a more complicated situation in which the definitions
of degree and grado given above play an essential role.

We recall that in cases = (A,B, �,�) ∈ S(D, V ) andi � j we have settled
�j→i := γj→i (s) and�i→j := δi→j (s).

Lemma 17. Let s = (A,B, �,�) ∈ �(D,V ) and let(Ã, B̃, �̃, �̃) ∈ T such that

Ai = Ai, Bi = Bi, (13a)

T
i+1,1
i,V = �i+1, SVi,i+1,1 = �i+1, (13b)

for all i = 0, . . . , n− 2. Then for alli = 0, . . . , n− 2 and for all j > i we have

T
j,1
i,V = γj→i+1(s), SVi,j,j−i = δi+1→j (s). (13c)

Proof. We prove this claim by decreasing induction oni. If i = n − 2 we have
nothing to prove. Let now 0� i � n − 3 and assume that formula (13c) holds for
i + 1, . . . , n− 2. Consider the ADHM equation in Definition 5:̃AiB̃i = B̃i+1Ãi+1.
Now using the equalityπVi+1ÃiB̃i

∣∣
D
(1)
j

= πVi+1B̃i+1Ãi+1
∣∣
D
(1)
j

, relations (11) and

induction we obtain
T
j,1
i,V = Bi+1�j→i+2 = �j→i+1.

Besides, using the equalityπ
D
(j−i)
j

Ãi B̃i
∣∣
Vi+1

= π
D
(j−i)
j

B̃i+1Ãi+1
∣∣
Vi+1

, relations (11)

and induction we obtain

SVi,j,j−i = �i+2→jAi+1 = �i+1→j

proving the thesis. �
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Lemma 18. For a givens = (A,B, �,�) ∈ �(D,V ) there exists a uniquẽs =
(Ã, B̃, �̃, �̃) ∈ T such that(13a) and (13b) are satisfied. Moreover there exist

homogeneous admissible polynomialstj
′,h′
i,j,h andsj

′,h′
i,j,h in Rj ′,j such that

T
j ′,h′
i,j,h(s̃) = t

j ′,h′
i,j,h (s) and S

j ′,h′
i,j,h(s̃) = s

j ′,h′
i,j,h(s) (14)

for all s ∈ �(D,V ). Finally when the grado of the corresponding block is positive

(i.e. whengrad(Tj
′,h′
i,j,h) > 0 or whengrad(Sj

′,h′
i,j,h) > 0) these polynomials satisfy the

following properties:

(i) degree(tj
′,h′
i,j,h ) = deg(Tj

′,h′
i,j,h) anddegree(sj

′,h′
i,j,h) = deg(Sj

′,h′
i,j,h);

(ii) t
j ′,h′
i,j,h andsj

′,h′
i,j,h can be written in the following form:

t
j ′,h′
i,j,h = λ

j ′,h′
i,j,h[δ�→j γj ′→�] + q

j ′,h′
i,j,h and s

j ′,h′
i,j,h = µ

j ′,h′
i,j,h[δ�→j γj ′→�] + p

j ′,h′
i,j,h

where� = j + h′ − h, q∗∗ andp∗∗ are homogeneous admissible polynomials in

the subalgebraR� of R generated byR+ · R+ andλj
′,h′
i,j,h, µ

j ′,h′
i,j,h are rational

numbers;
(iii) if h′ = 1, i+2 � j ′ � n−1and1 � h � j− i−1 � n− i−2 thenλj

′,h′
i,j,h > 0;

(iv) if 1 < h′ � j ′ − i − 1 � n− i − 2 and1 � h � j − i − 1 � n− i − 2 then

λ
j ′,h′
i,j,h + µ

j ′,h′−1
i,j,h > 0;

(v) if 1 � h′ � j ′ − i − 1 � n − i − 2, h = j − i and i + 1 � j � n − 1 then

µ
j ′,h′
i,j,h > 0.

Proof. We shall prove that all the blocks of̃Ai and B̃i for i = 0, . . . , n − 2 are
uniquely determined and have the required form. We observe first that by Lemma 17
and relations (11) the following relations hold for alli, j, h

TVi,j,h = 0; S
j ′,h′
i,V = 0;

T
j ′,h′
i,V =

{
γj ′→i+1(s) if h′ = 1,

0 otherwise;
SVi,j,h =

{
δi+1→j (s) if h = j − i,

0 otherwise.

Moreover if grad(Tj
′,h′
i,j,h) � 0 (resp. if grad(Sj

′,h′
i,j,h) � 0) thenT

j ′,h′
i,j,h (resp.Sj

′,h′
i,j,h)

is completely determined by relations (11). We prove the lemma for the remaining
cases by decreasing induction oni, giving an inductive formula for the computation

of the blocksTj
′,h′
i,j,h, S

j ′,h′
i,j,h in these cases.

Notice thatÃn−2 andB̃n−2 are already completely defined by relations (13) and
they verify the relatioñAn−2B̃n−2 = 0 and[πD′

n−2
B̃n−2Ãn−2

∣∣
D′
n−2

−xn−2, yn−2] = 0.

Now we assume to have constructedt∗,∗j,∗,∗ and s∗,∗j,∗,∗, for j � i + 1, satisfying
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the properties stated in the lemma and such that the ADHM equationsÃiB̃i =
B̃i+1Ãi+1, . . . , Ãn−3B̃n−3 = B̃n−2Ãn−2 and relations (12) fori + 1, . . . , n − 2
are satisfied. We need to prove that there exist uniqueT

∗,∗
i,∗,∗ andS

∗,∗
i,∗,∗ such that:

[πD′
i
B̃i Ãi

∣∣
D′
i
− xi, yi] = 0 and ÃiB̃i = B̃i+1Ãi+1, (15)

and that they have the required form. First we observe that relations (11) and (13)
imply the following equations:

πVi+1ÃiB̃i
∣∣
Vi+1

= AiBi + �i+1�i+1 = Bi+1Ai+1 = πVi+1B̃i+1Ãi+1
∣∣
Vi+1

πVi+1ÃiB̃i
∣∣
D
(h)
j

= dh,1�j→i+1 = dh,1Bi+1�j→i+2 = πVi+1B̃i+1Ãi+1
∣∣
D
(h)
j

π
D
(h)
j

Ãi B̃i
∣∣
Vi+1

= dh,j−i−1�i+1→j = dh,j−i−1�i+2→jAi+1 = π
D
(h)
j

B̃i+1Ãi+1
∣∣
Vi+1

(d is Kronecker’s delta). Now we express equations (15) in a more suitable form. We
introduce the linear mapsL := B̃i+1Ãi+1, M := ÃiB̃i andN := πD′

i
B̃i Ãi

∣∣
D′
i
− xi

and let us define the blocksLj
′,h′
j,h ,Mj ′,h′

j,h andNj ′,h′
j,h analogously to (9):

L
j ′,h′
j,h := π

D
(h)
j

L
∣∣
D
(h′)
j ′

= SVi+1,j,hT
j ′,h′
i+1,V +

∑
l,m

S
l,m
i+1,j,hT

j ′,h′
i+1,l,m (16)

and similarly forMj ′,h′
j,h andNj ′,h′

j,h . Hence equations (15) can be formulated as
follows:

M
j ′,h′
j,h = L

j ′,h′
j,h (17a)

for 1 � h′ � j ′ − i − 1 � n− i − 2 and 1� h � j − i − 1 � n− i − 2,

N
j ′,j ′−i
j,h = 0 (17b)

for 1 + i � j ′ � n− 1 and 1� h � j − i − 1 � n− i − 2,

N
j ′,h′
j,1 = 0 (17c)

for 1 + i � j � n− 1 and 2� h′ � j ′ − i � n− i − 1, and

h′(j ′ − i − h′)Nj ′,h′+1
j,h+1 = h(j − i − h)N

j ′,h′
j,h (17d)

for 1 � h′ � j ′ − i − 1 � n− i − 2 and 1� h � j − i − 1 � n− i − 2.
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In order to study these equations we introduce two kinds of degrees, thegrado
that we denote with grad and thedegreethat we denote with deg, as we have done
for T andS:

grad(Lj
′,h′
j,h )= grad(Mj ′,h′

j,h )= grad(Nj ′,h′
j,h )= min(h− h′ + 1, h− h′ + 1 + j ′ − j),

deg(Lj
′,h′
j,h ) = deg(Mj ′,h′

j,h ) = deg(Nj ′,h′
j,h ) = 2h− 2h′ + 2 + j ′ − j.

Equations (17) are homogeneous and we will call grado (resp. degree) of each of
these equations the grado (resp. the degree) of the blocks involved in the equation.

Observe now that min(m− h′ + 1,m− h′ + 1+ j ′ − j)+ min(h−m,h−m+
l − j) � min(h− h′ + 1, h− h′ + 1+ j ′ − j) and min(m− h′,m− h′ + j ′ − j)+
min(h−m+ 1, h−m+ 1+ l − j) � min(h− h′ + 1, h− h′ + 1+ j ′ − j), hence
grad and deg behave well under composition:

grad(Sl,mi+1,j,h)+ grad(T j
′,h′

i+1,l,m) � grad(Lj
′,h′
j,h )

deg(Sl,mi+1,j,h)+ deg(T j
′,h′

i+1,l,m) = deg(Lj
′,h′
j,h )

(18a)

grad(T l,mi,j,h)+ grad(Sj
′,h′
i,l,m) � grad(Mj ′,h′

j,h )

deg(T l,mi,j,h)+ deg(Sj
′,h′
i,l,m) = deg(Mj ′,h′

j,h )
(18b)

grad(Sl,mi,j,h)+ grad(T j
′,h′

i,l,m ) � grad(Nj ′,h′
j,h )

deg(Sl,mi,j,h)+ deg(T j
′,h′

i,l,m ) = deg(Nj ′,h′
j,h ).

(18c)

One can check that when the grado of the a block is less than or equal to 0 equations
(17a), (17b), (17c) and (17d) are always satisfied independently of the choice ofT

∗,∗
i,∗,∗

andS
∗,∗
i,∗,∗. Here we consider just the case of equation (17a). In this case observe first

that if h′ = 1 andh = j − i then grad(Lj
′,h′
j,h ) = min(j − i, j ′ − i) � 2 in the case

of equation (17a). Hence if grad� 0 thenSVi+1,j,hT
j ′,h′
i+1,V in the right hand side of

formula (16) is always 0.
Now if grad< 0, by relations (18), at least one of the two factors of the summand

S
l,m
i+1,j,hT

j ′,h′
i+1,l,m in the right hand side of formula (16) has grad less than 0, hence

vanishes by relations (11). The same argument applies to the blockM
j ′,h′
j,h hence if

grad< 0 equation (17a) reduces to the identity 0= 0.
In the case grad= 0 the same argument together with relations (11) and equation

(17a) is equivalent to the following:∑
gradT=0 and(m,l)=(j ′,h′−1)

gradS=0 and(m,l)=(j,h)

S
l,m
i+1,j,hT

j ′,h′
i+1,l,m =

∑
gradT=0 and(m,l)=(j,h+1)
gradS=0 and(m,l)=(j ′,h′)

T
l,m
i,j,hS

j ′,h′
i,l,m
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which reduces to 0= 0 if (j ′, h′) �= (j, h + 1) and to idDj = idDj if (j ′, h′) =
(j, h+ 1).

In particular we observe that in the case of equations (17b) and (17c) the grado is
always less than or equal to 0, hence these equations are always satisfied.

Now we study the remaining equations arguing by induction ond = grad> 0.

We assume to have constructedT
j ′,h′
i,j,h andS

j ′,h′
i,j,h for the blocks with grad< d such

that all the equations (17a) and (17d) with grad< d are satisfied, and we prove that

T
j ′,h′
i,j,h andS

j ′,h′
i,j,h for blocks of grad= d are uniquely determined by equations (17a)

and (17d) of grad= d. We need to solve the following equations:

M
j ′,h′
j,h = L

j ′,h′
j,h and h′(j ′ − i − h′)Nj ′,h′+1

j,h+1 = h(j − i − h)N
j ′,h′
j,h (∗d )

for 1 � h′ � j ′ − i − 1 � n − i − 2 and 1� h � j − i − 1 � n − i − 2 and
min(h−h′ +1, h−h′ +1+ j ′ − j) = d > 0. (The shape of the equation is the same
as in (17a) and (17d); what is changed is the range of the indices involved in these
equations). By the inductive hypothesis, under this assumptions onj, j ′, h, h′, d the
following formulas for the blocks ofL,M,N hold:

L
j ′,h′
j,h = ν

j ′,h′
j,h ��→j�j ′→� + c

j ′,h′
j,h (s),

M
j ′,h′
j,h = S

j ′,h′
i,j,h+1 + T

j ′,h′
i,j,h + d

j ′,h′
j,h (s),

N
j ′,h′
j,h = e

j ′,h′
j,h (s)+

{
T
j ′,h′
i,j,h if h′ = 1

T
j ′,h′
i,j,h + S

j ′,h′−1
i,j,h if 1 < h′ � j ′ − i − 1,

N
j ′,h′+1
j,h+1 = f

j ′,h′
j,h (s)+

{
S
j ′,h′
i,j,h+1 if h = j − i − 1

T
j ′,h′+1
i,j,h+1 + S

j ′,h′
i,j,h+1 if 1 � h < j − i − 1,

where� = j + h′ − h andcj
′,h′
j,h , dj

′,h′
j,h , ej

′,h′
j,h , f j

′,h′
j,h are homogeneous admissible

polynomials that we already know by induction. In particular these polynomials
belong to the subalgebraR� of R generated byR+ · R+ and their degree is equal to
the degree (deg) of the corresponding block. Finallyν∗∗ is the following coefficient:

ν
j ′,h′
j,h =


1 if h′ = 1 andh = j − i − 1,

λ
j ′,h′
i+1,j,h if h′ = 1 andh < j − i − 1,

µ
j ′,h′−1
i+1,j,h if h = j − i − 1 andh′ > 1,

λ
j ′,h′
i+1,j,h + µ

j ′,h′−1
i+1,j,h if h′ > 1 andh < j − i − 1.

By the inductive hypothesis we see thatν∗∗ is always a positive rational number.



20 Andrea Maffei CMH

Now we group all the equations with the samej and the samej ′ together and
we solve them. Once we have fixedj andj ′ we can organize the indeces in a more
convenient form. Leth1 = j − i − 1 and

h0 =
{
d if j ′ � j

d + j − j ′ if j ′ < j,
k =

{
1 − d if j ′ � j

1 + j ′ − j − d if j ′ < j.

For fixed j , j ′ (and d) let us also introduce the positive rational numbersαh =
(h + k)(j ′ − i − k − h), βh = h(j − i − h) andνh = ν

j ′,h+k
j,h . Then the equations

(∗d ) can be written as follows:

M
j ′,h′
j,h = L

j ′,h′
j,h and βhN

j ′,h′+1
j,h+1 = αhN

j ′,h′
j,h

for h′ = k + h andh0 � h � h1.
(∗djj ′)

Now let us introduce the following variables:Xh = T
j ′,h′
i,j,h andYh = S

j ′,h′
i,j,h+1.

and let us write system (∗djj ′) in the following way:

Xh0 + Yh0 = νh0��→j�j ′→� + p1,h0(s)

...

Xh1 + Yh1 = νh1��→j�j ′→� + p1,h1(s)

(19)

and
αh0(Yh0 +Xh0+1) = βh0Xh0 + p2,h0(s)

αh0+1(Yh0+1 +Xh0+2) = βh0+1(Yh0 +Xh0+1)+ p2,h0+1(s)

...

αh1−1(Yh1−1 +Xh1) = βh1−1(Yh1−2 +Xh1−1)+ p2,h1−1(s)

αh1Yh1 = βh1(Yh1−1 +Xh1)+ p2,h1(s)

(20)

where� = j+k andp∗,∗ are known homogeneous admissible polynomials of degree
equal to the degree (deg) of the corresponding block and that are elements ofR�.

Observe that the system of equations (20) can be rewritten in the following form:

Yh0 +Xh0+1 = ρh0Xh0 + p3,h0(s)

Yh0+1 +Xh0+2 = ρh0+1Xh0 + p3,h0+1(s)

...

Yh1−1 +Xh1 = ρh1−1Xh0 + p3,h1−1(s)

Yh1 = ρh1Xh0 + p3,h1(s)

(21)
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where theρi are (strictly) positive rational numbers and thep3,i are a linear combi-
nation of thep2,i . Now the system (19,21) is a linear system in as many variables as
equations and has a unique solution. Indeed this system can be written as

M x = v

where

x = (Xh0, . . . , Xh1, Yh0, . . . , Yh1);
v = (νh0��→j�j ′→� + p1,h0(s), . . . , νh1��→j�j ′→�

+ p1,h1(s)), p3,h0(s), . . . , p3,h1(s));

M =
(

idh1−h0+1 idh1−h0+1
N idh1−h0+1

)
and

N =


−ρh0 1 0 . . . 0

−ρh0+1 0 1 . . . 0
...

...
. . .

...

−ρh1−1 0 0 . . . 1
−ρh1 0 0 . . . 0

 .

Now if we subtract thei-th column to thei+ (h1 −h0 + 1)-th column we obtain that
detM = det(idh1−h0+1 − N) = pN(1), the characteristic polynomial ofN evaluated
in 1. Observe thatpN(t) = th1−h0+ρh0t

h1−h0+· · ·+ρh1 is a polynomial with strictly
positive coefficients, hence detM = pN(1) �= 0. SoM is invertible andx = M−1v.
In particularXh and Yh can be expressed as in equations (14) by homogeneous
admissible polynomials satisfying properties (i) and (ii).

In order to prove that properties (iii), (iv) and (v) hold we observe that we can use

equations (19) and (21) to give an inductive formula for the coefficientsλ
j ′,h′
i,j,h and

µ
j ′,h′
i,j,h. Indeed they are the coefficients of the term��→j�j ′→� in the expression of

Xh = T
j ′,h′
i,j,h andYh = S

j ′,h′
i,j,h above. Hence they solve the systems (19) and (21) but

with the “constant coefficients”p∗,∗ equal to zero. Therefore if we use the variables

xh = λ
j ′,h′
i,j,h andyh = µ

j ′,h′
i,j,h we obtain from systems (19) and (21) that they are the

solutions of the following systems:

xh0 + yh0 = νh0

...

xh1 + yh1 = νh1

(22)
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and

yh0 + xh0+1 = ρh0xh0

...

yh1−1 + xh1 = ρh1−1xh0

yh1 = ρh1xh0

(23)

Notice thatxh0, (yh0 +xh0+1), . . . , yh1 are exactly the coefficients appearing in points
(iii), (iv) and (v) of the lemma, hence, by system (23) it is enough to prove thatxh0 > 0.
If we sum the equations in system (22) we obtain:

xh0 = νh0 + · · · + νh1

1 + ρh0 + · · · + ρh1

which is a positive rational number. The lemma is proved. �

Using this lemma we can define the map� : �(D,V ) −→ T by�(s) = s̃. By
formulas (13) and (14) this is a GL(V )-equivariant algebraic morphism. The next
lemma shows that it is an isomorphism.

Lemma 19. 1) � : �(D,V ) −→ T is aGL(V )-equivariant isomorphism.

2) �(s) ∈ T+ ⇐⇒ s ∈ �+(D, V ) and�
∣∣
�+ : �+(D, V ) −→ T+ is a GL(V )-

equivariant isomorphism

Proof. We prove 1) writing the explicit formula for the inverse of�:

�−1(Ã, B̃, �̃, �̃) = ((Ai ), (Bi ), (T
i+1,1
i,V ), (SVi,i+1,1)).

The equation�−1 �� = id�(D,v) follows now by (13a) and (13b), while the relation
� ��−1 = idT follows by the unicity of the elements̃ proved in Lemma 18.

In order to prove 2) we first notice that for(Ã, B̃, �̃, �̃) ∈ S(D̃, Ṽ ) the stability
condition is equivalent to the surjectivity of̃Ai for i = 0, . . . , n− 2. Fori = 0, . . . ,
n − 2 consider the subspaceD′

i of Ṽi and the subspaceD+
i of Ṽi defined byD+

i =⊕
2�k�j−i�n−i−1D

(k)
j . Observe that for(Ã, B̃, �̃, �̃) ∈ T we have by relations (11)

thatÃi
∣∣
D+
i

is an isomorphism ontoD′
i+1. Notice also thatV +

i := Vi ⊕D(1)i+1 ⊕· · ·⊕
D
(1)
n−1 is a complementary subspace ofD+

i in Ṽi and thatVi+1 is a complementary
subspace ofD′

i+1 in Ṽi+1, hence in this case the stability condition is equivalent to
πVi+1Ãi

∣∣
V+
i

is surjective fori = 0, . . . , n−2 and by equations (13) this is equivalent

toAi ⊕ �i+1 ⊕ · · · ⊕ �n−1→i+1 : Vi ⊕D
(1)
i+1 ⊕ · · · ⊕D

(1)
n−1 −→ Vi+1 is surjective

for i = 0, . . . , n − 2; which is exactly the condition of Lemma 14, assertion 2) for
the stability of(A,B, �,�). �
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Definition 20. As observed� is a GL(V )-equivariant morphism, so we can define
ϕ0 andϕ̃ as the maps making the following diagrams commute:

�(d, v)
�−−−−→ T

p0

� p0

�
M0(d, v)

ϕ0−−−−→ M0(d̃, ṽ)

�+(d, v) �−−−−→ T+

p

� p

�
M(d, v)

ϕ̃−−−−→ S̃r,x

and if we setϕ1 = ϕ0
∣∣
M1(d,v)

we observe that by definition the diagram (2) commutes,

and that Imϕ1 ⊂ µd(S̃r,x) = Sr,x .

4. Proof of Theorem 8

We begin the proof of the theorem with some remarks on the degenerate cases and
on the dimension of the varietiesM(d, v) andS̃r,x .

Lemma 21. Let r, d, v,N be as in Section1.4. Then the following holds:

1) If there existsi such thatri < 0 thenM(d, v) = ∅.
2) If there existsi such thatvi < 0 thenS̃r,x = ∅.

3) S̃r,x �= ∅ if and only ifM(d, v) �= ∅ and in this case they are two smooth varieties
of the same dimension.

Proof. 1) This is an easy consequence of 2) in Lemma 14 and the definition ofr.
2) If vi < 0 then

N − (r1 + · · · + ri) = rn + · · · + ri+1

< di+1 + 2di+2 · · · + (n− i − 1)dn−1

= N − (d1 + · · · + (i − 1)di−1 + idi + idi+1 + · · · + idn).

Sor1 + · · · + ri > d1 + · · · + idi + · · · + idn andS̃r,x is empty by Proposition 3.
3) Since we have constructed a map fromM(d, v) to S̃r,x it is clear thatM(d, v) �=

∅ implies S̃r,x �= ∅. To show the converse we observe that the Weyl groupSn acts
by permutation on then-tupler and that ifσ ∈ Sn:
(1) S̃σ(r),x �= ∅ ⇐⇒ S̃r,x �= ∅,
(2) r(d, σ (v − d)+ d) = σ(r(d, v)).

The first property is clear from Proposition 3 (indeed with a little more effort one
could check that̃Sσ(r),x � S̃r,x but we do not need this result). The second property
is a computation that can easily be checked forσ = (i, i + 1). So by Lemma 8 it is
enough to prove that̃Sr,x �= ∅ ⇒ M(d, v) �= ∅ whend − v is dominant. If we set
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i1 = 1, . . . , ik = k in the inequality (1) we obtainvk � 0 for k = 1, . . . , n − 1 and
M(d, v) �= ∅ by Lemma 7.

Finally by a result of Nakajima (see [8, Corollary 3.12]) ifM(d, v) is not empty
then it is a smooth variety of dimensionκ(2d − v ; v) and the equality of dimensions
is an easy consequence of Proposition 3. �

In the following two lemmas we study the injectivity of the mapsϕ0 andϕ̃.

Lemma 22. Let s̃ ∈ T, g̃ ∈ GL(Ṽ ) and assume that̃g(s̃) ∈ T. Then there exists
g ∈ GL(V ) such thatg̃(s̃) = g(s̃).

Proof. We prove first that̃gi(Vi) = Vi andg̃i(D′
i ) = D′

i . In order to prove them we
introduce fori = 0, . . . , n− 2, l = 0, . . . , n− 2 − i andh = 0, . . . , n− 2 − i − l

the following subspaces of̃Vi :

W
l,(h)
i =

⊕
0�h′�h

i+1+l+h′�j�n−1

D
(j−i−h′)
j and D−

i =
⊕

i+2�j�n−1
1�k�j−i−1

D
(k)
j .

and observe thatW0,(n−i−2)
i = D′

i and thatW0,(0)
i ⊕ D−

i = D′
i . Notice that by

relations (11) for all(Ã, B̃, �̃, �̃) ∈ T the following properties hold:

(1) Ãi
∣∣
W
l,(h)
i

is an isomorphism ontoWl−1,(h)
i+1 for l � 1,

(2) B̃i
∣∣
D′
i+1

is an isomorphism ontoD−
i ,

(3) B̃i(Vi+1) ⊂ W
0,(0)
i ⊕ Vi .

Now we prove that̃gi(W
l,(h)
i ) = W

l,(h)
i by induction oni. Let s̃ = (Ã, B̃, �̃, �̃)

ands̃′ = g̃(s̃) = (Ã′, B̃ ′, �̃′, �̃′). In the casei = 0 there is nothing to prove sincẽgi
does not act oñV0 = D̃1. If i+1> 0 using the inductive hypothesis and property (1)
above, we obtain

g̃i+1(W
l−1,(h)
i+1 ) = g̃i+1(Ãi(W

l,(h)
i ))

= g̃i+1(Ãi(g̃
−1
i (W

l,(h)
i ))) = Ã′

i (W
l,(h)
i ) = W

l−1,(h)
i+1

proving the claim.
In particular forl = 0 andh = n− i − 2 we obtaing̃i(D′

i ) = D′
i .

In order to proveg̃i(Vi) = Vi we also argue by induction oni. For i = 0 again
there is nothing to prove. Ifi + 1 > 0 using induction and property (3) above, we
obtain

B̃ ′
i g̃i+1(Vi+1) = g̃i B̃i(Vi+1) ⊂ g̃i(W

0,(0)
i ⊕ Vi) = W

0,(0)
i ⊕ Vi.

Hence by property (2) above and the fact thatṼi = Vi ⊕ W
0,(0)
i ⊕ D−

i we obtain
g̃i+1(Vi+1) = Vi+1.
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Now we considergi = g̃i
∣∣
Vi

and we prove that̃g(s̃) = g(s̃). Let s̃′′ = g(s̃) and

observe that̃s′ ands̃′′ are elements ofT. Hence, by the unicity proved in Lemma 18,
in order to show that they are equal it is enough to show that for alli:

Ai (s̃
′) = Ai (s̃

′′), Bi (s̃
′) = Bi (s̃

′′),
T
i+1,1
i,V (s̃′) = T

i+1,1
i,V (s̃′′), SVi,i+1,1(s̃

′) = SVi,i+1,1(s̃
′′).

By construction we have already proved the equality of theAi andBi blocks. Now for
the remaining blocks we observe that it is enough to proveg̃i

∣∣
D
(1)
i+1

= id
D
(1)
i+1

. Indeed

we observe that̃Ai
∣∣
W
l,(0)
i

is the identity map fromWl,(0)
i to Wl−1,(0)

i+1 . Arguing by

induction as above we conclude thatg̃i
∣∣
W
l,(0)
i

is the identity map. Finally we observe
thatD(1)i+1 ⊂ W

0,(0)
i . �

Lemma 23. ϕ0 andϕ1 are closed immersions.

Proof. It is enough to prove thatϕ0 is a closed immersion, hence to show that the
associate mapϕ0

� between the coordinate rings of the two affine varietiesM0(d, v)

andM0(d̃, ṽ) is surjective.

Observe that by Lemma 18 there exist homogeneous admissible polynomialsn
j ′,h′
j,h

of type(j ′, j) such that for all̃s = (Ã, B̃, �̃, �̃) = �(s)we haveπ
D
(h)
j

D̃1�̃1
∣∣
D
(h′)
j ′

=
n
j ′,h′
j,h (s). Let Rn be the subalgebra ofR generated by these polynomials. By The-

orem 13, the surjectivity ofϕ0
� follows if we show that for all[α] ∈ P there exists

f̃ ∈ Rn of type(α0, α1) such that[α](s) = f̃ (s) for all s ∈ �(D,V ). We prove this
claim by induction on the degreed of the polynomialβ = [α] ∈ P .

If d � 0 there is nothing to prove since there are not polynomials inP in this
case.

In order to study the cased > 0 we observe first that ifR(m) is the subalgebra of
R generated by the polynomials inP of degree less than or equal tom then,f ∈ R�

and degreef � m + 1 impliesf ∈ R(m). Now we study the cased > 0. Let
β = [δ�→j γj ′→�] ∈ P of degreed. By relations (11) and the definition of the map�
we have:

n
j ′,h′
j,h (s) = π

D
(h)
j

(�̃1�̃1)
∣∣
D
(h′)
j ′

= f (s)+
{

1 · β(s) if � = 1,

λ
j ′,1
0,j,h · β(s) if � > 1,

where, by Lemma 18,f is an homogeneous admissible polynomials of type(j ′, j)
of degreed and it is also an element ofR�. In particular, by what we have noticed
above,f ∈ R(d − 1) and by the inductive hypothesis, there existsf̃ ∈ Rn of type
(j ′, j) such thatf (s) = f̃ (s) for all s ∈ �(D,V ). Finally we observe that ifν is
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the coefficient ofβ in the formula above, by property (iii) in Lemma 18 we always

haveν �= 0. Henceβ(s) = ν−1(n
j ′,h′
j,h (s)− f̃ (s)) for all s proving the claim. �

Proof of Theorem8. By Lemma 23 and the fact thatµd andπ are projective we see
that ϕ̃ is proper. Since by a result of Nakajima (see [8, Corollary 3.12]) all orbits in
�+(d, v) and�+(d̃, ṽ) are closed, Lemmas 19 and 22 imply thatϕ̃ is also injective.
Since by Lemma 21M(d, v) andS̃r,x are smooth varieties of the same dimension and
S̃r,x is connected we have proved that it is an isomorphism of holomorphic varieties
and by consequence is also an isomorphism of algebraic varieties. In particularϕ̃ is
surjective and this together with the surjectivity of the mapµd implies the surjectivity
of ϕ1. Soϕ1 is a surjective closed immersion of affine varieties, hence it must be
an isomorphism of algebraic varieties. Finallyϕ0(0) = x ∈ Sr,x , andx is in the
image ofϕ1, hence by the injectivity ofϕ0 proved in the previous lemma we have
0 ∈ M1(d, v) andϕ1(0) = x. �

Remark 24. In Nakajima’s theory an essential role is played by the variety
�(d, v) := π−1(0) ⊂ M(d, v). We observe that the map̃ϕ restricted to�(d, v)
take a more explicit and simple form. Indeed it is easy to see that in this case the

maps�i vanish, hencetj
′,h′
i,j,h (s) = s

j ′,h′
i,j,h(s) = 0 and (11) and (13) give an explicit

formula for the map̃ϕ.

Remark 25. As it is noticed in [7], Nakajima’s conjecture does not generalize to dia-
grams of typeE andD. However we observe that, in general, interesting subvarieties
of a quiver variety can be described as quiver varieties themselves (see, for example,
the stratification of quiver varieties constructed by Nakajima in [7], [8]) From this
point of view let us remark that it is possible to explicitly give a pair of injective maps
ψ̃ andψ fromM(d, v) toM(d̃, ṽ), and fromM0(d, v) toM0(d̃, ṽ) respectively, such
that diagram (2) commutes andψ(0) = x. As we have already noted their definition
is simpler than that of̃ϕ andϕ1 but, on the other hand, their image is not contained
in S̃r,x andSr,x respectively, hence they “describe” different transversal slices.
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