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On right-angled reflection groupsin hyperbolic spaces

Leonid Potyagailo and Ernest Vinbérg

Abstract. We show thatthe right-angled hyperbolic polyhedra of finite volume in the hyperbolic
spaceH” may only exist ifn < 14. We also provide a family of such polyhedra of dimensions
n=34,...,8. We prove that for = 3, 4 the members of this family have the minimal total
number of hyperfaces and cusps among all hyperbolic right-angled polyhedra of the correspond-
ing dimension. This fact is used in the proof of the main result.
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1. Introduction

An abstract Coxeter grouyy is given by the following finite presentation:
W= (S| (sis))" =1),

wherem;; = 1if i = jandm;; € {2,3,..., 00} if i # j. By conventionm;; = oo
means that there is no relation betwegrands;. A Coxeter groupW is called
right-angled ifm;; € {1, 2, oo}.

Let P be a convex polyhedron in the hyperbolic spEtewith dihedral angles of
the formZ (m € N) at all its (ordinary)(n — 2)-dimensional faces. Then the group
generated by the reflections in the — 1)-dimensional faceshiperfaces) of P is a
Coxeter group. Such a polyhedrénis called a Coxeter polyhedron.

A polyhedron is called right-angled if all its dihedral angles@rdn this case the
corresponding reflection group is a right-angled Coxeter group. Note that any face
of a right-angled polyhedron is right-angled whereas a face of an arbitrary Coxeter
polyhedron is not necessarily a Coxeter polyhedron. The following is the main result
of the present paper:

Theorem. Right-angled Coxeter polyhedra of finite volume may exist in H" only if
n <14

*The work of the second author was partly supported by the RFBR grant 01-01-00756.
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Recall that E. Vinberg [Vi] proved that compact Coxeter polyhedi&imay exist
only if n < 29. Examples are known only up #o= 8. M. Prokhorov [Pr] proved
that non-compact Coxeter polyhedra of finite volume may exist onty # 995;
examples are known only up to= 21 [Bor].

There are some strong restrictions on the combinatorial structure of Coxeter poly-
hedra arising from the property that all their dihedral angles do not exteBdlyhe-
dra having the latter property are calklite-angled. Itis known (see, e.g., [AVS88])
that anyk-dimensional face of an acute-angled polyhedPoa H" belongs only to
n —k hyperfaces. In particular, any (ordinary) vertex belongs ontyhtgperfaces, so
the local combinatorial structure & at any vertex is the same as that of a simplicial
cone. The local combinatorial structure Bfat any vertex at infinity is the same as
that of a cone over a direct product of simplicesPifs right-angled, these simplices
must be one-dimensional (so their product @& 1)-dimensional parallelepiped).

An n-dimensional combinatorial polytope is callsdnple if any of its vertices
belongs only to: hyperfaces, andmple at edges if any of its edges belongs only
ton — 1 hyperfaces. According to the above, any compact acute-angled polyhedron
in H" is simple, and any acute-angled polyhedron of finite volume (with vertices at
infinity added) is simple at edges.

It is known that compact right-angled polyhedra do not exist it 4. This
follows from the Nikulin inequality [N] for the average numbé;of I-dimensional
faces of &-dimensional face of a simple polytope. Itimplies thatin dimension4
any simple polyhedro® must have a quadrilateral or triangular 2-dimensional face,
which is impossible ifP is right-angled (see the next section). The estimate4 is
exact as there exist right-angled compact polyhedf@’in

In the finite volume case some vertices can be at infinity so the above method
does not work. To prove the Theorem we will obtain a lower bound for the number of
4-dimensional faces of a 5-dimensional right-angled polyhedron. Then the theorem
will follow from Khovanskii's result [Kh] which generalizes the Nikulin inequality
to polytopes that are simple at edges. Contrary to the compact case, our estimate
n < 14 may be not exact as examples of right-angled polyhedra of finite volume are
known only up torn = 8 (we provide some of them in Section 3). Note also that our
result cannot be much improved using the same method since the Nikulin—Khovanskii
inequality is applied only fof < k < [5] and, on the other hand, our estimates for
the minimal number of hyperfaces of a low dimensional right-angled polyhedron are
optimal.

Note that recently T. Januszkiewicz and J. Swiatkowki [JS] proved that there exist
abstract word hyperbolic right-angled Coxeter groups of any virtual cohomological
dimension.

Right-angled Coxeter groups in the hyperbolic spaces are known to have some
strong group-theoretical properties. For a finitely generated abstract grdepus
call a subgroufH C G closed if it is an intersection of subgroups of finite index or,
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equivalently, if it is closed in the topology defined by the subgroups of finite index.
P. Scott [Sc] proved that f  Isom H" is a discrete group commensurable with a
co-compact right-angled reflection group, then any geometrically finite subgroup of
G is closed. (Infact he considered only the case 2 but the idea of his proof works

for anyn.) I. Agol, D. Long and A. Reid [ALR] extended this theorem to groups
commensurable with co-finite right-angled reflection groups.

Acknowledgments. This work was mostly done during the stay of the second author
at the University of Lille 1 in June of 2002. He thanks this university for hospitality.
The first author is grateful to A. Vesnin for helpful remarks. We thank the referee for
pointing out some inaccuracies in the original version of the paper.

2. Compact right-angled polyhedra

For brevity, let us calt-dimensional faces of a polyhedrénsimply k-faces. Denote
the number ok-faces by, = ax(P). Following V. Nikulin [N], consider the average
numbera! of I-faces of &-face:

1
ao=— ) ap),
Yk dimF—k
where F runs over allk-faces of P. One of the main ingredients for proving the
Theorem is the following Nikulin inequality [N]:
I I
Cpny =+ C[%l

! n—k_'2
a; < Cn—l 3 T
Ciyt C[%}
forl <k <[5].
For the sake of completeness we provide the proof of the following known

Proposition ([Vi]). There are no compact right-angled polyhedra in H" for n > 4.

Proof. By the Nikulin inequality we obtain

. %= it nis even
612 < 4n f .
a1 if nisodd
For a compact right-angled polyhedron, every 2-face being also right-angled has at
least 5 sides. Thus: > 5 and the above inequality implies< 4. m)

Remarks. a) The maximal dimension = 4 given by the proposition is attained:
indeed, there exists a regular compact right-angled polyhedrtif inith 120 do-
decahedral hyperfaces [Cox], [D], [VS88].

b) There exist infinitely many compact right-angled polyhedr&#{vS88].



66 L. Potyagailo and E. Vinberg CMH

Question. Is it true that the least number of hyperfaces of a compact right-angled
polyhedron inH* is 120?

3. A seriesof non-compact right-angled polyhedra

Let us now describe one known series of right-angled hyperbolic polyhedra of finite
volume [D]. We list below (Figure 1) the Coxeter diagraBEisof some non-compact
Coxeter simpliceg\” of finite volume inH" forn = 3, 4,5, 6, 7, 8. These are some
of the so-called quasi-Lannér diagrams [VS88], pp. 206—207. The group generated
by the reflections in hyperfaces af' will be denoted byG”.

Let us introduce the following notation:

F}'. the hyperface of\" corresponding to the vertéxof the diagram,

Oy the vertex (or cusp) oA opposite toFy’,

%} the subdiagram oE" obtained by deleting the vertex

G} the stabilizer of0}, i.e. the group generated by the reflections in all the
hyperfaces ofA" but F}'; its Coxeter diagram iX;’.

3 »6

1 2 4 1 2 4 5 6 7

O—O ¢ O D) O
]3 i3

x4 =/

1 2 4 5 1 2 4 5 6 7 8

D—O—I:O O i D) O
3 3

»5 8

1 2 4 5 6 1 2 4 5 6 7 8

D—O—I—Q:D O i D) O
3 3

Figure 1

All the diagramsx! but X7 are elliptic, whileXx{ is parabolic. (See, e.g., [VS88]
for the lists of elliptic and parabolic Coxeter diagrams.) Recall that elliptic (resp.
parabolic) diagrams correspond to finite (resp. affine) Coxeter groups. DHus,
the only cusp ofA”.

One can note that the hyperfaeg, ; of A" forms only angles; and7 with the
other hyperfaces and the gro@Gy} , , isfinite. Thusthe translates af' underG;,_ , fit
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together aD,;  , to give a right-angled polyhedra®" of finite volume. Its boundary
is composed of the translates Bf _, (some of them lying in one hyperplane).

Let us describe the polyhedrdt®. Applying to A3 the group of order 6 generated
by the reflections irFl3 andF23, we get a tetrahedron with 3 cusps whose faces passing
through the ordinary vertex are mutually perpendicular and form arglegh the
remaining face (which contains all the cusps). Applying to this tetrahedron the group
of order 2 generated by the reflectionﬁﬁ, we getP3 (see Figure 2, where the cusps
are marked by small circles).

Figure 2

Any face of P2 is composed of two copies ij’ and is a triangle with two cusps and
an angle at the ordinary vertex. HencEf is a triangle with one cusp and angles
% and7 at the ordinary vertices.

Proposition 3.1. For n = 4,5, 6, 7, 8, all the hyperfaces of the polyhedron P" are
polyhedra P"~1. The numbersof hyperfacesand cusps of the polyhedra P” aregiven
in the following table:

Number of hyperfaces Number of cusps
p3 6 3
P 10 5
P> 16 10
pS 27 27
P’ 56 126
P8 240 2160

Proof. In addition to the above notation, let us introduce the following one:
F!' = F' N F],
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X;,: the subdiagram of” obtained by deleting the verticésand/,
G}, = G} N G}, this is a reflection group whose Coxeter diagrarifs.

All the diagramsx}; are elliptic and the groupsy; are finite.

The hyperface” of P" containingF,’, ; is composed of the translates Bf, ;
under the subgroufd” of G}, generated by the reflections in hyperfadgsper-
pendicular toF,’ ;. All the hyperfaces of?" are the translates af underG;_,,
hence

#(hyperfaces ofP") = |GZ_+1|
=
Forn > 3, all the faces', k = 1,...,n — 1, are perpendicular t6)', ,, SOH" =
Z,n—i—li whence
Gyl
#(hyperfaces ofP") = —_ "1
|Gn,n+1|

The orders of the finite Coxeter groups being known, this allows us to calculate the
numbers of hyperfaces of the polyhedta.

In a similar way, one can calculate the number of cuspB’of They constitute
just the orbit ofO7 underG; , ;. The stabilizer is57] , , , hence

n |GZ+1|
#(cusps ofP") = ———.

G144l

Let us now prove that for > 3 the faceF,’ , of the simplexA” is the simplex
A"=1 which willimply that the face” of the polyhedrorP” is the polyhedroP” 1.

Obviously, if F;' and F;" are perpendicular t&', ,, then the angle between the
corresponding faces;’, ., and F", ., of the simplexF}',, is equal to the angle
betweenF;’ and F;".

If F is perpendicular t@,, ,, while the angle betweeR andF; , is 7, then,
as one can observe in Figure 1, the angle betwgeand ' isa = 7 or 3. Letus
find the angles betweenry’, ., andF;" . Considering a 3-dimensional orthogonal
section, we reduce the problem to the following one: given a tetrahedral angle with
dihedral angles;, 7 anda, find its plane anglg opposite tax. Clearly, ifa = 7.
theng = 7. If @ = 3. then our tetrahedral angle is just the angle at the ve(m%x
of the tetrahedrom\ and, as we proved abové,= .

Thus, F,', ; is again a Coxeter simplex and its diagram is obtained fE&hby
deleting the vertex + 1 and replacing all simple edges joining the veraxith other
vertices by double edges. (Foe= 4, there are two such edges; in all the other cases,
there is only one.) One can observe that in such a way we get just the diagram

Now the hyperfacd” of P" is obtained by fitting together the translatesif ;
underH". As F , is the simplexA”~t and H" = G!~, F (and, hence, each
hyperface ofP”) is the polyhedrorP™ 1, a
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4. Proof of thetheorem

In this section, the word “polyhedron” always means “polyhedron of finite volume”,
i.e. a convex hull of finitely many ordinary points and points at infinity. The latter
ones are called cusps of the polyhedron. We tacitly add them to the polyhedron and
to its faces, so the expression “the fadgs. .., Fy intersect” means that the faces
F1, ..., F;, have acommon ordinary point or their closures in the compactification of
H" have a common point at infinity. For a hyperfaEef a polyhedron, we denote
by H(F) the closure of the hyperplane containiAign the compactification ofl”.
Recall that two hyperplanes &f* are calledoarallel if they do not intersect but
their closures have a (single) point at infinity in common. We shall call two hyperfaces
F1 and F» of a polyhedrormparalld if the hyperplanes containing them are parallel.
It follows from the local combinatorial structure of right-angled polyhedra (see the
introduction) that for any hyperface of such a polyhedron passing through gcusp
there is a unique parallel hyperface passing through
The following properties will be used in the subsequent proof.

Proposition 4.1. Let F1, Fo, ... behyperfaces of a right-angled polyhedron. Then

(a) if H(F1) and H (F>») intersect, then F1 and F» intersect; in particular, if F1 and
F> are parallel, then they meet at a cusp;

(b) if Fy, F», F3 are pairwise mutually adjacent, then they meet at an (n — 3)-dimen-
sional face;

(c) if F1 and F» are parallel and F3 is adjacent to them, then F1, F», F3 meet at a
cusp;

(d) if Fpand F» areparallel and F3 and F, are adjacent to them, then F1, Fo, F3, F4
meet at a cusp.

Proof. It is proved in [A70] (see also [AVS88]) that, for any hyperfadas. .., F
of an acute-angled polyhedron

dmFiN---NF =dimH(F1) N---N H(F), (*)

where the dimension of a point at infinity is assumed te-ie while the dimension
of the empty set is-co. This proves (a).

To show (c) note that the hyperfacHS F;) (i = 1, 2, 3) must meet in a cusp, for
otherwise in a 2-dimensional orthogonal plane there would exist a triangle with two
right angles and one zero angle which is impossible. Thus (c) follows now from the
dimension identity.

To prove (b) note similarly that three mutually perpendicular hyperplanes must
intersectin &n — 3)-dimensional plane. Indeed, if there were no common intersection
between them, in the orthogonal 2-dimensional plane one would obtain a right-angled
triangle which is not possible. The dimension identity implies now (b).
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To prove (d), note that by (c) bothy, F», F3 andF1, F», F4 meet at a cusp. But
these two cusps must coincide, becafisandF»> have only one cusp in commonm)

Let us now obtain lower bounds for some combinations of the numbers of hyper-
faces and cusps of a right-angled polyhedrforr H” for smalln.

Recall thata;y = ar(P) denotes the number éffaces ofP. In particular,ap =
ao(P) is the total number of ordinary vertices and cusp®ofThe number of cusps
will be denoted by = ¢(P).

Casen = 2. Since the sum of exterior angles of a hyperbolic polygon is greater than
2, for a right-angled polygo® we get

ai+c > 5. (@)
The differencei; + ¢ — 5 will be called theexcess of P and denoted by = ex(P).
Casen = 3. For each face” of a right-angled polyhedroR c H® we have
a1(F) + c¢(F) = 5+ ex(F).

Summing over allF and taking into account that each edgePobelongs to 2 faces
and each cusp belongs to 4 faces, we get

2a1 + 4¢ = Bay + Zex(F). 2)
F

On the other hand, eliminating from the Euler equationg — a; + a2 = 2 and
the obvious equation@ = 3ag + ¢ gives

a1+ c¢=3ax— 6. 3
Substituting this into (2), we finally obtain

ap+2c =12+ Z ex(F) > 12. 4
F

At the same time
az > 6. (5)

Indeed, ifP has no cusps, this follows from (4); # has at least one cusp amg < 6,
then P is a quadrilateral pyramid (whose apex is at infinity), which is obviously
impossible.

It follows from (4) and (5) that

a»+c > 9. (6)

Note that all the estimates (4)—(6) are attained#8r(see Figure 2).
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Casen = 4. Let P be aright-angled polyhedron ii*. Take any hyperfacé of it.
There arera(F) hyperfaces adjacent t6 and, for each cusp af, there is an extra
hyperface having only this cusp in common with Together withF, this gives at
least 14 a>(F) + ¢(F) hyperfaces. So (6) implies

a3 > 10. (7)
We need, however, a more subtle inequality:
az+c¢ > 15 €)

To prove it, take again any hyperfageof P. There are at least-¥ ax(F) + ¢(F)
hyperfaces meeting' and at least(F) cusps, s@z + ¢ > 1+ ax(F) + 2¢(F). If
az(F) + 2¢(F) > 14, then (8) follows.

By (4) we havaus(F) + 2¢(F) > 12.

Letaa(F) + 2¢(F) = 13. Then (4) implies that all but one 2-faces©fhave
zero excess. Lef be a 2-face of with zero excess, i.ei1(f) + ¢(f) = 5. Since
c(f) < 2, we have

1+a1(f)+2c(f) <8 )

Let F’ be the hyperface ofP adjacent toF along f. By (6) we have that
az(F’) + ¢(F’) > 9. Comparing this with (9), we see that must have either a
2-face f’ not intersectingF, or a cusp beyond . In the first case the hyperface
adjacent toF’ along /' does not interseck by Proposition 4.1 (b), (). So in both
cases (8) holds.

Letaa(F)+2c(F) = 12. Then (4) implies that all 2-faces 6fhave zero excess.
Let f be any of them. Therf is a triangle with two cusps, or a quadrilateral with
one cusp, or else a pentagon without cuspg. ig not a triangle, then

1+ai(f)+2(f) =T (10

As above, consider the hyperfagé of P adjacent taF along f. Then (10) implies
that F’ has at least two 2-faces not intersectingr cusps beyond’, whence again
(8) follows.

Let finally all 2-faces ofF’ be triangles with two cusps. Take any parallel 2-faces
f1and f> of F, and letF; and F» be the hyperfaces df adjacent toF along f1 and
f2 respectively. By the above each of them must have either a 2-face not intersecting
F or acusp beyond'. If these are two 2-faces, then the hyperfaceB afdjacent to
F1 and F» along them, cannot coincide by Proposition 4.1(d). If these are two cusps,
then they cannot coincide & and F» are parallel at a cusp df. Soin all the cases
(8) holds.

Note that both the estimates (7) and (8) are attained for the polyhétfraon-
structed in Section 3.
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Casen = 5. Let P be aright-angled polyhedron ii°. Take any hyperfacé of it.
There arex3(F) hyperfaces adjacent t6 and, for each cusp af, there is an extra
hyperface having only this cusp in common with Together withF, this gives at
least 14 a3(F) + ¢(F) hyperfaces. So (8) implies

as > 16. @)

This estimate is attained for the polyhedrBp constructed in Section 3.

Proof of the theorem. Let P C H" be a right-angled Coxeter polyhedron. The
Nikulin—Khovanskii inequality [N], [Kh] gives for the average numlm—g*rof 4-faces
of a 5-face ofP:

100—4) ¢
== if nis even

% if 7 is odd

4
a5<

On the other hand, it follows from the above tbétz 16. In both cases this means
thatn < 14. O

We finish this section with some questions and remarks.

Questions. 1) Is it true that the least number of hyperfaces of a right-angled 6-
dimensional polyhedron is 27 (which is attained f5t)?

2) Do there exist right-angled polyhedraliif forn = 9, 10, 11, 12, 13, 14?

Remark. By a similar argument, a positive answer to the first question would exclude
the dimensions 13 and 14.
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