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Two theorems on har monic manifolds

Y. Nikolayevsky*

Abstract. A Riemannian manifold is callelstarmonic, if for any pointx it admits a nonconstant
harmonic function depending only on the distance tdA.Lichnerowicz conjectured that any
harmonic manifold is two-point homogeneous. This conjecture is proved in dimensiod

and also for some classes of manifolds, but disproved in general, with the first counterexample
of dimension 7. We prove the Lichnerowicz Conjecture in dimension 5: a five-dimensional
harmonic manifold has constant sectional curvature. We also obtain a functional equation for
the volume density functiofi(r) of a harmonic manifold and show thag-) is an exponential
polynomial, a finite linear combination of the terms of the form(®&& +™), with ¢, A complex
constants.
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1. Introduction

A Riemannian manifoldV is calledharmonic if for any pointx € M there exists

a nonconstant harmonic function defined on a punctured neighbourhoocrud
depending only on the distance:to Equivalently, for any point € M the volume
density functiord, = ,/detg;; (in normal coordinates centereddtis radial, that is,
depends only on the distancexpthe mean (the scalar) curvature of a small geodesic
sphere depends only on its radius (see [2, Ch. 6; 1], [Ch. 2.6; 12] for other equivalent
definitions).

Two-point homogeneous spaces are harmonic. In 1944, Lichnerowicz conjec-
tured that the converse is true: any harmonic space is two-point homogeneous. This
conjecture is proved in dimensien4 [15], for compact simply connected manifolds
and for Ricci-flat manifolds [13], [14], for negatively curved compact manifolds [3],
and also for some other classes of manifolds. However, in 1992, Damek and Ricci
discovered a class of harmonic non-compact spaces, which are, in general, not sym-
metric, hence disproving the Lichnerowicz Conjecture [4]. For an account of results
on harmonic spaces and Damek—Ricci spaces we refer to [1], [14], [17].
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The lowest dimension of a non-symmetric Damek—Ricci space is 7, and one might
wonder ifthe Lichnerowicz Conjectureis true indimensiog 5, 6. A partial answer
is given by the following theorem:

Theorem 1. A five-dimensional harmonic space has constant curvature.

A similar result, under an assumption of pinched curvature, was obtained in [16].

On a harmonic manifold, the infinite sequence of algebraic conditions, the Ledger
formulae, on the curvature tensor and its covariant derivatives must hold [2, Ch. 6
8C]. The first two of them are

Ric(X, X) = TrRx = C |X|?, Tr(Rx)?>= H |IX|* ()

whereRy is the Jacobi operator defined By Y = R(X, Y)X, and the function€
andH are constant on the manifold. A Riemannian manifold satisfying (1) is called
2-stein (see, e.g. [6]).

Theorem 1 follows from Proposition 1 below and the fact that harmonic symmetric
spaces are two-point homogeneous [5], [9].

Proposition 1. Afive-dimensional 2-stein Riemannian manifold iseither of constant
curvature or is locally homothetic to the symmetric space SU(3)/ SO(3) or to its
noncompact dual SL(3)/ SO(3).

One of the main ingredients of the proof of the Lichnerowich conjecture in the
compact simply-connected case [13] is the fact that the volume density function is
a trigonometric polynomial of a special structure. Moreover, the volume densities
of Damek—Ricci spaces (including non-compact ROSS’s) are polynomials of cosh
and sinhr. We prove the following theorem.

Theorem 2. The volume density function of a harmonic manifold is an exponential
polynomial: a finite linear combination of the terms of the form Re(c; e*" ™), with
¢i, Aj complex constants.

This gives a partial answer to the question asked in[14]: what functions may occur
as volume densities of harmonic spaces? Note that, in general, nonisometric harmonic
spaces may have the same volume density function. However, in many cases, the
volume density function determines a harmonic space uniquely: a harmonic space
having the same volume density as that of one of the spade& H", HH", is
isometric to it, provided it is K&hler or quaternionic Kahler in the last two cases,
respectively ([10]; the same is true under weaker assumptions: a manifold is Einstein
and has the same volume growth of geodesic balls as that of the corresponding model
space [7, Sec.8, 9]). A harmonic space with a polynomial volume growth is flat [12].
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Note that Theorem 2 combined with the approach of [11] gives an alternative proof
of the Lichnerowich conjecture in the compact case.

Theorem 2 will follow from the functional equation (2) below.

Let y (¢) be a parameterized geodesic on a Riemannian man#oldnd denote
x=y(0),T =y(0),L =T c T.M. ForvectorsX, Y € L, let Jx y(t) be the
Jacobi field along’ such that/x y(0) = X andVrJx y = Y. Define the operator
Q(): L — L by the formulaJo gx(t) = Jx,o(t) fort € (0,11), wherer; is
the distance to the first conjugate pointjpnThe operatoQ () is symmetric, with
the asymptotic expansiartid —%tRT + o(t) att = 0, whereRy: L — L is
the Jacobi operator. Extending the density function to negative values af (by
settingé (—t) = (=" Yo@) fort > 0) we have the following proposition.

Proposition 2. On a harmonic manifold, for ¢, s € (0, t1),

ot —s)
010 (s)

det(Q(s) — Q(1) = 2
The restrictions imposed on the functié) by (2) are quite strong, though

implicit. For instance, if for a given exponential polynomégk) the equation (2)

has a unique solutio® (¢), then the harmonic space with the density functien

is two-point homogeneous (if it exists):

Proposition 3. Let M" be a harmonic manifold with the volume density function
6(1). Supposethat the equation (2) for asymmetric operator function Q(¢): R*~1 —
R”~1 with an asymptotic expansion ~1id,_1 +O(z) at 0 has a unique solution up
to a conjugation by a constant orthogonal transformation. Then M" is two-point
homogeneous.

The paper is organized as follows. In Section 2 we give the proof of Proposition 1
using technical Proposition 4 (moved to Section 4) on the structure of algebraic
curvature tensors satisfying (1). The proof of Theorem 2 and Propositions 2 and 3
are contained in Section 3.

The author is thankful to Prof. L. Vanhecke and to Prof. A. Ranjan for many useful
comments and references.

2. Five-dimensional harmonic spaces. Proof of Proposition 1

We start with an algebraic description of the curvature tensor of a Riemannian mani-
fold M°® satisfying the first two Ledger formulae (1).

An algebraic curvature tensor in a Euclidean space is a (3,1) tensor having the
same symmetries as the curvature tensor of a Riemannian manifold. Given an or-
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thonormal basi¢e; }, denoteR; ;i = (R(e;, ej)ex, e;) the components of the algebraic
curvature tensor, and letk;; = R;j;;.

Proposition 4. Let R be an algebraic curvature tensor in R® satisfying (1). Then
there exists an orthonormal basis {¢;} such that

K12 = K13 = K23 = K24 = K34 = — Y,
K25 =k3s=a — 3y, Ki5=kas=a, Kia=0o—4y,
Ri2sa=7v. Ri23s=+3y. Risza=—y, Rizs=+/3y,
Riapz=—2y, Roazs=+~3y, Raszs=—3y,

®3)

and all the other components of R vanish.

The proof of Proposition 4 (which is somewhat technically involved) is moved to
Section 4. In this section, we prove Proposition 1 assuming Proposition 4.

Let M° be a Riemannian manifold with the curvature tensor given by (3). Then
C = 4o — 6y, H = (5)?+9y2, and sax andy must be constant ow®. If y = 0,
then the sectional curvature df° is constant as follows from (3).

Assume thaty # 0. We want to show that/® is locally homothetic to
SU(3)/ SQO(3) or to SL(3)/ SOB). To do that, we first prove thau® is locally
symmetric using the second Bianchi identity, and then compare its curvature tensor
with that of SL(3)/ SO(3).

Leto' be the 1-formsdualte, andlety;, Q! be the connection and the curvature
forms, respectively:

do' = —yinwl,  dylh = -y nyk+ QL
d/; + wlj =0, Q’] = —Q{ = %Rijkla)k Aol
Introduce the 2-forms

D= -0t Aw?+ 0’ Ao+ V30° A 0,

\Il=a)2/\a)4+a)1/\a)3—\/§a)2/\a)5, 4)

F=4a)1/\a)4+2a)2/\a)3,

and IetE? = %(Q’] —a o' A wl). Sincea andy are constant, the second Bianchi
identity ', = @} A ¥k — Q5 Ay implies

d

(1]

[1]

i i k _ ok i
i KAV — B A
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The 2-formsZ’; can be found from (3):

gl=0, Ei=-0, Ei=-V30,
ES=-v, Ei=-v, EZ=V3y, (5)
g;=-T, 8j=-ir, el=gl=0

Differentiating&t = 8¢ = 81+ &3 = 8} - 82 =4E}+ B+ V3EE =0 we

get, respectively:

DA WE+ V33 — WA WE+V3Y3) —T Ayl =0, (6)

DAWE -V + VA WE+ VYD) +T Ayd =0, @)
OAYE+WAYE+ BT A @E—yd) =0, (8)
—OAYEFUAYE+ LI AWE+YH =0,  (9)

WA (695 — 3yd+5v3yd) + T A (Qyf —3yd + Lyd =0 (10)

From (4) we obtain by a straightforward computation:

Lemmal f®Ax+ ¥ Ay+T Az=0for1formsx, y, z, then

X = 2zga)1 - Z4a)2 + (221 — yz)a)3 - 2220)4 - 2«/1_’:220)5,
y = 2700t + yza)z + z40° + 2z30% — 2v/37300°,
z= zlwl + Z2w2 + Z3w3 + Z4a)4.

Equations (6, 7) and Lemma 1 imply that the:components of/2 andy2 vanish.
Applying this and Lemma 1 to (8, 9) we find:
Vs =ao’—bw’ Y§=bw’+aw’, (11)
1//2 — w% = %(awl — ba)4), wzl + 1//2 = %(bwl +aa)4).

Substitutingwé andwg1 to (6, 7) and using Lemma 1 again we obtain
Y2 +V/3y3 = —2a0' + c10° + 2bw* 4+ 24/3b0®,
wéf + \/élﬁzl = 2bw! + c10° + 2a0* — 2/3a0°,
wg’ - ~/§w§’ = —2bw' + c20° — 2a0”* — 2v/3a0°,
1//52 + @1//2 = 200! — c20° — 2bw* + 24/3bw°.

Subtracting the third equation from the second one and substituting the expression
for wzl + 1//2 from (11) we find thatt = b = ¢1 = ¢ = 0, and so

Ve =yE =i —vi=va+vi=vE+V3ui=vi+ 3yl =0
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It now follows from (10) that 2,7/3? = z/fi. Thus there exist 1-forms 7, o such that
the connection forms are

w% = w:%z Ta wg = _\/éf, w% = —7’], wg’: 7], w53= \/§n’
v2=0, Yi=20, yi=vyi=0.
Thenwe have G=d(y3 +v3) = Yyl Ayl + Qi —yi Ayl + Qi = Qi+ Qf =

V(E% + Ei) + Ol(a)l Aw?+ w3 A a)4), and sax = 0 by (5).
Then by (3) the nonzero components of the curvature tensor are

(12)

Rizi2=—y, Rizza=y, Rizzs=+/3y, Rizza=—y, Riziz=—v,
Rizos=v/3y, Risra= —4y, Ruapa= —2y, Rozos= —y,  Roaza= —y, (13)
Ro425= \/é)/, Roso5 = —3y, R3s3a= —y, Ras3zs= —\/'\_3,'}/, R3s35= —3y.
Using (12, 13) we find that the covariant derivativeRo§iven by
Rijun@" = dRiji — Rijis Vi — Rijsiri — RisitV; — Ryjuy}

vanishes, and so the Riemannian sp&tSeis locally symmetric.

Consulting the list of symmetric spaces [8] we find that the only possible candi-
dates forM® are SU3)/ SO(3), or its noncompact dual §B)/ SO(3). Thisis indeed
the case: the tangent spasdo SL(3)/ SO(3) at the origin can be identified with a
Lie triple system of 3x 3 real traceless symmetric matrices. The inner product and
the curvature tensor are given by

(X,Yy=Tr(XY), RX,Y)Z=-[[X,Y].Z], X,Y,Zem.

Then, with respect to the orthonormal basis

a-t{100 ez:i(SSé , LSS‘;’)
v2\0 0 0 v2\1 0 0 V210 1 0
wet{o 1 8) w-tfo1 o
v2\o 0 o0 Vélo 0 -2
the components of the curvature tensor of(3l. SO(3) are proportional to those
given by (13). O

3. Thevolume density function and the matrix equation

In this section, we prove Theorem 2 and Propositions 2 and 3.
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Lety = y(r) be a geodesic on a Riemannian manifdfd, with ¢+ an arclength
parametery(0) = x, y(0) = T € TyM". Lety(r1), t1 > 0 be the first point
conjugate toc alongy .

For everyr e (0, r;) we define the operato@(r): L — L, L = T putting
0X = Z,if Joz(t) = Jx.0(t), whereJy y is the Jacobi field along such that
Jx.y(0) = X, J; ,(0) =Y, prime stands for the covariant derivative algng

The operatorQ(¢) is symmetric. Indeed, forp € (0,#1) andX,Y € L, let
J1 = Jo,gup)x» J2 = Jx,0, J3 = Jo,0(i0)y, J4 = Jy,0 be the corresponding Jacobi
fields. DenotdJ = J1(t0) = J2(to), V = J3(to) = Ja(to). Since for any two Jacobi
fieldsI andJ along a geodesic, the functig®’, J) — (I, J') is constant, we obtain
at the pointy:

(J1. V) = (U3, U) = (J3. V) = (U, U) =0,
(JI. V) = (U3, U) = (Qt0) X, Y),  (J3, V) — (J3,U) = —(Qt0)Y, X),

and the claim follows.

Fix an orientation on a neighbourhoodqb ;). Choose orthonormal vector fields
{e1,...,en—1, ey, = y (1)} parallel alongy and forming a positively oriented basis.
DenoteR(t) = (R;; (1)), i, j = 1,...,n — 1 the matrix of the Jacobi operator with
respecttothe basiss, ..., e,—1}. LetA,(r) be an(n — 1) x (n — 1)-matrix satisfying
the Jacobi equationis(t) + R(@)A;(t) = 0 alongy, with the initial conditions
As(s) = 0, Ay(s) = I,_1, the identity matrix, and = d/dt. Denoted;(r) =
detA;(1),s,t € R.

If the spaceM” is harmonic, then for any choice ¢fands, 6,(t) = 0(t — s)
[2, Ch. 6]. The volume density functiagi(z) is analytic and)(—r) = (—1)"~16(z).

Proof of Proposition 2. Let A(t), B(t) be two matrix solutions of the Jacobi equation
suchthat (0) = B(0) = 0,A(0) = B(0) = I,. Thenthe matrix of the operat@(r)
isQ(t) = A~1(t)B(r), andwe havel,(r) = A()(Q(s)— Q(t)) M (s), whereM (s) =
(A(s)A™L(s)B(s) — B(s))"1, for s, € (0,11). Indeed, the matrixa(r)(Q(s) —
QM)M(s) = A(®)(Q(s)M(s)) — B(r)M (s) satisfies the Jacobi equatigtéAs(t) +
R(t)A;(t) = 0, it vanishes at = s, and%(A(t)(Q(s) — Q)M () ji=s = In-1.
We have det A~Y) = det(A’AA~B — A'B)™! = 1, sinceA’A — A’A = 0
andA’B — A'B = —1,. Hence deM (s) = 0(s), and sod(s — 1) = detA,(t) =
0(t)0(s) det(Q(s) — Q(1)). u

Remark 1. We can give another interpretation to (2). Dendétg: T, \M" —
T.M" the parallel translation along, and for everyr € R define a linear map
Ft): L®&L — LbyF(@#)(X,Y) = PoJx,y(). Denotew(r) a volume form on
F*(®)(L*). Thenw(z)isacurve onthe Grassmannidin—1, 2n—2) C A"(L&L)*,
and (2) has the form:

w@)Aw(@) =0 —s)*1 (14)
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for all 7, s € R. The proof follows from the fact that

A(s) B(s)) _ B o
det(A(t) B(t)) = detA(s) detA(r) det(Q(s) — O(t)) = 0(t — s),
by (2), with A and B as in the proof of Proposition 2.

One might compare (14) to the fact that for a Nice Embeddingf a harmonic
manifold [2], [13], [14], the equatiord (y (¢)), P(y(s))) = O( — s) holds, with
some functior®, along every geodesie .

Proof of Theorem 2. Letr, s € (0, 71). Multiplying (2) by 6(¢)0(s) and expanding

the determinant on the left hand side, we obtain—s) = ), fu()gu(s), with
functionsf,, g, being linear combinations of minors of the mat@xmultiplied by

6. Taking appropriate linear combinations, we can assume that both sets of functions
{f«} and{g.} are linearly independent ov&. Let N = rk{f,} = rk{g,}. We have

0= (8/0t 4+ 3/3s)0(t —s) = Za(fa(t)ga(s) + fo()£u(s)). So there exists an

N x N constant matrixC such thatf = Cf, ¢ = —C'g, wheref = (f1,..., fv)',

g = (g1, ...,8n)". Thusf(r) = e“u, g(s) = (e~ C%)"v for some constant vectors
u,v € RN, Thend(t —s) = (f(1), g(s)) = (eu, (e~ C)v) = (€9, v), that
is, 0(x) = (¢“*u, v), with some constant matri€ and constant vectots v. O

Remark 2. Asitfollows from the proof, the number of monomials of the exponential
polynomial@ is not greater tha(l(znn) +2m)/2.

Proof of Proposition 3. Let y(¢), 7 (t) be two geodesics od”. We equip all the
objects related tgr (r) with the tilde. Construct the operato@(z), Q(t) for y(¢)
andy (¢) respectively. By assumption, we can choose orthonormal bagegau”
andTy oM™ such thatQ(t) = O(1).

Introduce the matrices andB as in the proof of Proposition 2. Theh= A~1B
andB'B — B'B = 0, A'B — A'B = —1I, and a direct computation shows that
Q1)) = (B()' B() ™.

It follows that B(r) = V (#) B(r) with V (#) an orthogonal matrix function. Since
B'B — B'B = B'B — B'B = 0, the matrixV () must be constant. Thug(t) =
V R(t)V 1 for some constant orthogonal matiix

So, for any two geodesicg(t) andy(¢), we can choose parallel orthonormal
bases such thak(r) = R(). In particular, for any poink € M" and unit vec-
torsX,Y € T,M", the operatorg(Vx R)(X, X)) xL and ((VyR)(Y, DY)y are
equal, up to an orthogonal conjugation. By [14, Lemma 1.1] applied to the operator
((VxR)(X,.)X) x1, we getVR =0 and the claim follows. O

Example 1. If M™ is two-point homogeneous, then the operalr) is diagonaliz-
able, with diagonal entries of the forkircot(ir), A coth(ir) or 1~ depending on the
curvature.
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Example 2. In this example, we use the results and notation of [1, Ch. 4].

Let M*'*3 = n® 3 @ a be a Damek—Ricci space with dim= 2, and lety (r) be a
generic geodesic starting at the origin. Identifying tangent spgigg9/ alongy (1)
via left translation, we have(r) = V() + Y () +s(@)A,withV = V(0),Y(0) =Y,
5(0) = s nonzero, and’, ;)M = s4® p @ q. This decomposition is orthogonal, with
subspacesy, p andq being R (¢)-invariant and parallel along, sincey (¢) € s4 and
the two-dimensional subspage= Span(V (), Jy)V (t)) does not depend an

Now s4 is tangent to a totally geodesitif? ¢ M, andR(t), = —% id),. Hence
Q(1) is diagonalizable on thend— 1-dimensional spacés @ p) N y (1)L, with
diagonal entries coth) of multiplicity one and% coth(r/2) of multiplicity 4n — 2.

The behavior ofQ(¢) is more complicated on the three-dimensional space
First find six Jacobi fields along lying in q. Denotex = s + | Y| and introduce a
complex functionp (r) = « sinh(r/2) — cosht/2) and a real functiorf (1) = ¢p =
(s sinh(t /2) — cosht/2))2 + || Y |2 sink(¢/2) (note thatf (1) = 1/ h(r), the function
h(t) defined in 4.1.11 of [1]). LeK € 3 be a unit vector orthogonal t6. Then the
vector field f () X is Jacobi, which can be checked directly.

Taking this into account we can rewrite the Jacobi equation for a vector field
U@)+ g@)X C qas follows:

U= JyoU + Iyl — 31+ 1YOIDU + $Ix V() =0,
gf — fé&+ flIxU, V(@) =c
for some constant. DenoteW (t) = JxU (1), J = ||Y(t)||—1JY(,). ThenW(z) is
inb, andJ: b — b is a skew-symmetric orthogonal operator. Introduce complex
valued functionsw () = (W), V) + i(W@), JV)/IIVI,v@) = (V(@®),V) +
V), JVY)/IIVI|. The Jacobi equation now has the form
B — iVl f b — gL Y I 2 =20 Y I f f 7w —cf o =0,
gf — fé+ fRewv) =c,

and its general solution is given by

w= Y2402 + BG + Chp).
g = 2A||V||"tcoshr/2) Re((a — a™Y)¢) — 2||V || coshr/2) R(Ch/a)
— 2|Vl f coshz/2)((1 — || V||?) sinh(t/2) — s coshz/2)) Re(B¢%a~2),

with constantsA € R, B,C € C andc = —2A|Y||?/||V]|l. This gives explicit
formulae for Jacobi fields.

The matrix of the operatoQ(¢)|q in the orthonormal basig; = JxV/||V],
e2 = —JxJV/|VIl, e3 = X has the formf (t)=3(V (1)’ Q(1)V (), whereQ(z) is a
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3 x 3 symmetric matrix with entries
011 = (IV)I?tanh(z/2) 4 coth(t/2))/2, Q12=0, Q2 = 2cothr/2),
Q13 = —| V| tanh(z/2)((1 — |V ||?) sinh(t/2) — s cosh/2)),
Qo3 = |IY| IV sinhz/2)/2, Q33 = f(t)((1— |V|?)tanh1/2) + coth(r/2))/2,

and

s sinh(¢/2) — coshz/2) IY || sinh(z /2) 0
V() = —|| Y sinh(z/2) ssinh(z/2) — coshz/2) 0
0 0 1

So the matrix equation (2), with the functierir) = 4 sint?(z/2) sinh(r), has a
continuous family of solutions of the form given above.

4. Proof of Proposition 4

We prove Proposition 4 by explicitly solving the equations (1), the first two Ledger
conditions. First, in Lemma 2, we construct a specific orthonormal basi&%or

in which the algebraic curvature tensBrhas a simple structure. Then, with some
computations, we find thak have the required form (3). Note that the constant
curvature tensor is a particular case of (3), wheg 0.

For an orthonormal basig;} for RS, denoter;jx = (R(e;, ej)ex, e;) the com-
ponents of the algebraic curvature tensor. tet) be the sectional curvature of a
two-planeos, in particular, denot&;; = «;; = R;;;; the sectional curvature of the
two-plane spanned by vectars e;. It will be convenient to set;; = 0.

The equations (1) have the following form [2, equation (6.50)]:

Ricij =, Ripjp =C8ij, 1<i,j<5 (15)
SYMy 11 (X pg Ripjg Riplq) = H SyMyq (8ijéu),  1<1i, j. k1 <5, (16)

wheres;; is the Kronecker delta, all the summations are from 1 to 5, and Sym denotes
the sum by all permutations of the subscriftg, k, [. Expanding the equation (16)
we find

2 _
g R2, = H. (17)
qu Rlplququ = 07 (18)
> pq(RipigRjpjqg + Rizqu + RipjqRjpiq) = H, (19)
qu (Ripiqupkq + RiquRipkq + RiquRkpiq) =0, (20)

Sym; (X g Ripjg Ripig) =0, (21)
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wherei, j, k, [ are pairwise nonequal.
We will use the following index convention throughout this section:

1<i,j,kl,p,g<5 2<a,b,cd, f,g=<5

unless the bounds are explicitly indicated.

The sectional curvature= « (o) is a differentiable function on the Grassmannian
G (2, 5) of two-planes inR>. We call a two-planer € R® critical if it is a critical
point fork. Itis easy to see that = Span(U, V), U, V € R® is critical if and only
if R(U,V,U,W)=R(U,V,V,W)=0foranyWw e o=+.

Lemma 2. There exists an orthonormal basis {¢;} for R® such that every two-plane
Spar(e1, ¢,) iscritical, or equivalently

R1a1p = Riaba =0, b #1,a. (22)

Proof. To construct the required basis we take a critical two-plarend choose an
orthonormal basiss, e» in it. Then the subspack = ¢ is an invariant subspace
of the Jacobi operatak,,. Choosings, e4, es to be orthonormal eigenvectors of the
restriction ofR,, to L we obtain

R1214 = R12s2 = R1a1» =0, 3<a#b =<5 (23)

Then using (15, 16) we show that the basise; in o can be chosen in such a
way that all the remaining componems,», = 0,a # b also vanish, so that (22) is
satisfied.

From (15) Rig, = Ricy, = 0fora = 3,4, 5, and Rigz = 0. Using (23) we find

R1434+ R1535 = R1343+ R1545= R1353+ R1454=0,
R2434+ Ros3s= R2343+ Ros545 = R2353+ Roa54= 0, (24)
R1323+ R1424+ R1525= 0.

Let 11, A2, A3 be the eigenvalues dt,,|; corresponding to the eigenvecters
ey, es, respectively. ThemRy,1p = Aq—28ap, a, b = 3, 4,5, and (18) withi = 1,
Jj =3,4,5, 2 gives, respectively,

A2R14344 A3R1535 = A1R1343+ A3R1545 = A1 R1353+ A2R1454= 0,

(25)
A1R1323+ A2R1424+ A3R1525= 0.

The equations (23, 24, 25) do not yet imply (22): we need to choose a specific
basiser, e ino.

For a fixed orthonormal basig1, E> in o, let X(¢) = CoSpE1 + SingEo,
¢ € [0,27). Since the two-plane is critical, bothX (¢) and X (¢ + 7/2) are
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eigenvectors of the Jacobi operaldf ), with eigenvalues 0 andl(o ), respectively.
Therefore, their span and its orthogonal complemehtare invariant subspaces of
Rx ), for any¢. Hence we can define a symmetric operaibp): L — L, the
restriction ofRx ) to L. It then follows from (1) that for alp € [0, 2r)

TrM(p)=C=C—«k(o), TrM%*@p)=H=H—«(0)> (26)
Explicitly, for U € L

M($)U = co ¢ R, U + Sir? ¢ Ri,U

: (27)
+ cosp Sing (R(E1, U)E2 + R(E2, U)E7).

We have several cases depending on the eigenvaluggdgy.

Casel. Thereexists ¢ suchthat all the eigenvalues of M (¢) areequal. Then by (26),
C? = 3H and so the operata¥ (¢) is scalar: M(¢) = §Cid.. By (27), for all
U € L, R(E1,U,E»,U) = 0, sinceRg, U = M(OU = % CU and Rg,U =
Mz /2)U = % CU. It follows that fore; = E1, e = E» and any orthonormal
vectorses, ea, es € L, R1,0, = 0whena = 3, 4, 5.

Introduce alinearoperatdf: L — LbyNU = R(Y, V)E1,whereY, U,V € L
andU =Y x V, the cross product in the three-dimensional spac@he operator
N is well-defined and symmetric. Indeed, letand Z be two orthonormal vectors
iNnLandU =Y xZ. ThenZ=UxY,Y=ZxUandsoNZ,Y)— (NY, Z) =
RWU,Y,E1,Y)+R(U, Z, E1, Z) = Ric(U, E1) = 0.

Letes, es, e5 € L be orthonormal eigenvectors of the operatorThenR1,p, =
(N(ep x e;),e,) =0forall3<a #b <5.

Combining this with (23) we find that (22) is satisfied, hence all the two-planes
Sparies, ¢,) are critical.

Since the operatoM (¢) is symmetric and analytic, its eigenvalues are ana-
Iytic functions of¢. If A(¢) is an eigenvalue oM (¢), which is simple atp =
¢o, then the corresponding unit eigenvectdéo) is also analytic in a neighbour-
hood ofgo, and1’(¢o) = L (M@ U (), U@)js=go = (M'($0)U ($0), U ($0)) +
2).(¢0)(U"(¢0), U(¢0)) = (M'(¢0)U (¢0), U (¢0))-

We call¢g acritical angleif it is critical for the function detV (¢).

Modulo Case 1, one of the following two cases may occur.

Case2. Thereexistsacritical angle ¢g suchthat A1(¢o), A2(¢o), A3(Po) arepairwise
nonequal. From (26) we have

(@) +r2(@)+138) = 02 +13)+238)) = 1@ h2($)A3(8)] gy, = O.

This gives a system of linear equations f9(¢o), which impliesi’ (¢o) = 0, since
Ai(¢o) are pairwise nonequal. ThéM'(¢o)U;, U;) = 0, whereU; is a unit eigen-
vector of M (¢p) corresponding to the eigenvaliigi¢p), i = 1, 2, 3.
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Definee1 = X (¢o), e2 = X (¢o + 7/2) ande; 2 = U;,i =1, 2, 3. Then by (27)
Ria24 = 3(M'($0)eq, e,) = 0 fora = 3,4, 5.

Also, R1434= R1535 = R1545= R1343= R1353= R1454= 0 by (24, 25).

Thus all the equations (22) are satisfied.

Case 3. For any critical angle ¢g, two of the three eigenvalues 1, (¢o) are equal. Let
¢o be a critical angle, and let the eigenvalugs= A, (¢o) be labelled in such a way
thatiy # Ay = As.

Chooser1 = X (¢g), e2 = X (¢po+7/2), andes, e4, es orthonormal eigenvectors
of M (¢o), with e3 corresponding ta.1 (es, es can be chosen up to a rotation in the
A2-eigenspace ot/ (¢o)).

As in Case 2, we find) (¢o) = 0. Then by (27)R1323= 3(M’(¢0)es, e3) = 0.

From the equations (24, 25) we obtaz43 = R1353 = Ri545 = Ri454 = 0.
Combining this with (23) we find that the two-plamé = Sparie, e3) must be
critical, while the two-planes Spé#, e4) and Spares, es) are critical if R1424 =
R1434= 0 andR1s525 = Ris35 = 0, respectively.

From (26),A1 + 242 = C, A2 + 202 = H. So for every critical angley, the
eigenvalues oM (go) are{is, A5, A5}, € = %, whereal = 1(C ¥ V6H — 2C?),
Ay = £(2C £ V6H — 2C?). They correspond to the global extrema of M)
subject to equations (26).

We have two possibilities:

(1) the operatoM (¢) has the same set of eigenvalues (sgyA4 , »J) for all critical
anglesp;
(2) there exist two critical angle#;” and¢~ such that the eigenvalues &f(¢¢) are

A3, A5, A5, € = £, respectively.

Consider them separately.

(1) The only critical values of the function d&t(¢) are /\f(x;)z, the global
maxima. Then deM (¢) is constant and the eigenvaluesMf¢) are also constant:
AT, A4, A5 Itfollows that the operata¥l (¢): L — L defined byM (¢) = M(¢) —
2§ id; has eigenvalues] — 13, 0,0 for all ¢, and in particular, ri7(¢) = 1. By
(27), the matrix ofM (¢) in the basige;} has the form

M@)ap = W] — 13)84383COF ¢
+ (R1a2p + R1p24) COSp SiNg + (Roaz2p — A3 Sab) sir? ¢,

where 3< a,b < 5. Equating the coefficients of c“b$sin¢ in 2 x 2-minors to
zero, we find

R1424= R1425+ R1524= R1525=0. (28)

It remains to show thaR1434 = R1535 = 0. The equations (28) are still true, if we
replace the vectors, es by e4(«) = COSaes + Sinaes, e5(a) = — Sina e4 + COSaes
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lying in the )@L-eigenspace of the operatdf(¢p). ThenR(e1, ea(w), e3, ea(x)) =
COS 2 R1434+ Sin2x (R1435 + R1534)/2, and we can choose in such a way
that R(e1, ea(), e3, ea(@)) = 0. From the first equation of (24) it follows that
R(e1, es(@), e3, es(a)) = 0. Henceey, ez, e3, e4(a), e5(w) is the sought basis.

(2) Since all the other possibilities are already considered, we can assume that for
any initial choice of a critical two-plane, there exist two critical angleg,” andg~
such that the eigenvalues of the operalti, ) arerq, 15, A5, € = %, respectively.

Fromthe above, we know that is a unit eigenvector o (¢¢) corresponding to
the eigenvalue.{, then both two-planes€ = SpanX (¢), e5), € = =, are critical.
Moreover, from (26)5 + 215 = C, (35)? +2(25)2 = H and sonf + ] = 3C =
2(C — k(0)). SIncer = (M (¢©)e§, e§) = R(X (¢°), €5, X (¢), €5) = k (o), we
find that for every critical two-plane there exist two critical two-planes,™, o~
crossings by a line and such that(c*) + k(c7) = %(C — k(0)).

We say that two critical two-plangg1, o2), with sectional curvatures(oy) =
x, k(o2) =y, form acritical pair, if they intersect by a line, and for a unit vector
on that line, the eigenvalues of the operat®k ), x. arex, y, z, z.

For any critical two-plane, the pairs(o, o) and(o, o ~) are critical with sec-
tional curvaturesgk (o), Af) and(x (o), A7), respectively. Moreover, for any critical
pair (01, o2) with sectional curvatureé, y), there exists another critical pair with
sectional curvaturege, y), wherey = %(C — x) — y. Indeed, choose an orthonor-
mal basis forR® in such a way that; = Sparie1, ¢2), o2 = Sparier, e3). De-
notex = «(o1), y = «(02), z, z the eigenvalues of the operatoﬁel)‘ell. For

every ¢, the subspacé = o is an invariant subspace of the Jacobi operator
Rx ), With X (¢) = cosge; + singer. Define the operatoM (¢): L — L by
M(¢) = (Rx(¢))|L- Since TrM (¢) and TrM2(¢) are constant and the eigenvalues
of M(0) = (R,,)|L arey, z, z, the function ded (¢) has a global extremum at= 0,

and so the angl¢ = 0 must be critical for de# (¢). Then there exists another crit-
ical angleg such that the eigenvalues &f(¢) are, z, Z, with y + § = 4(C — x).
Moreover, for a unit eigenvect@g of M (¢) corresponding to the eigenvaldiethe
two-planes = Span(X (¢), é3) is critical. This gives another critical paie, ),
with sectional curvatureg, %(C —Xx)—y).

If (o1, 02) is a critical pair with sectional curvaturés, y), then the paitos, o1) is
also critical, with sectional curvaturés, x). Itfollows that starting with a critical pair
with sectional curvature&, y) we can successively construct a critical pair with sec-
tional curvaturesgx, y),y = %(C—x)—y, then a critical pair with sectional curvatures

(y, x), then a critical pair with sectional curvaturgs x), x = %(C —y) —x, and fi-
nally a critical pair with sectional curvatureg, j) = (—2x+3y+2C, 2C—2%x—y).

If (01, 02) is a critical pair andX is a unit vector ino1 N o2, then the numbers,
¥, 2, z, the eigenvalues ofRx) x., must satisfy the equations+ y + 2z = C,
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x? + y? 4 272 = H by (1). So the pointx, y) lies on the ellipse
3x2 +3y2 4+ 2xy — 2C(x + y) + (C?> — 2H) = 0, (29)
in thexy-plane, and for some anglie we have
x = @(cosw +V2siny)+ G, y= @(cosw —V/2siny) + §.

The transformatioix, y) — (%, 7) = (—3x + 3y + 5C, 3C — %x — y) corresponds

to the shifty — ¥ + a, with ¢/* = —g + 4*—9@1'. This number is not a root of 1.
Indeed, for anyn € N, "% = 9" (—a,, + /2b,,i), with a,, = b, = 1 (mod 3,
which can be easily proved by induction. So the set of pairy), the sectional
curvatures of critical pairs of two-planes, is dense on the ellipse (29). Then by
compactness, for any two numbeins y) satisfying (29) there exists a critical pair
having sectional curvaturegs, y). In particular, there exists a critical pdtr1, o2)

with x = k(01) = C + 3+/12H — 3C2. Then, for a unit vectoX € o1 N o2, the
operator(RX)l(,ll has an eigenvalue with multiplicity three, and we come to Case 1
with o = o7. O

From now on, we fix the basi;} constructed in Lemma 2. In this basis, the
equations (22) hold, and we also have a symmetry with respect to permutations of
{627 637 647 65}'

Introduce two 4x 4-matrices] = (t;) and P = (P,p) with entries

taa = 0, tg = Ricpd + Ridbe, Py = 0, Pup = Racad,
where{a, b, ¢, d} = {2, 3, 4, 5}. We have, for any,
Y5 t4=0 (30)

from the symmetries of the curvature tensor. Moreo¥gs,+ P», = Ric.q = 0 by
(15), soP is skew-symmetric.

Lemma3. If T = 0, then the sectional curvature is constant.

Proof. LetT = 0. ThenRy,,. = 0 for alla, b, c > 2. Indeed, ifa = ¢ this follows
from (22). Fora, b, c pairwise nonequal, we havy,,. = %(tg’ —t4) by the first
Bianchi identity.

From R4 = 0,a, b, c > 2 and (22) we find that the equations (17) with: 1
and (19) withi = 1, j = a have the form

5
Zf:ZKff =H, Y jiakifKaf +K]2.a =H,

respectively. Summing up the second equatiom lfsom 2 to 5 and using the first
equation and the fact that>_; k;j = Ric;; = C we obtainC? = 4H.
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It follows from (1) that for anyX € R®, (Tr Rx)? = 4 Tr(R%). Hence(Ry) y1 =
SIX12idy1, thatis,R(X, U)X = $11X|2U whenU L X, and so the sectional
curvature is constant. o

Lemmad4. R2345= R2453= R2s534= 0.

Proof. Using (22) we obtain from (18) with = 1,i = a > 1:
Y55 Pastd =0. (31)
The equation (20) with = 1,i = a, k = b takes the form
Paptf = Poaty — Poct +1, (Racha + Raane) =0, {a, b, c,d} = {2,3,4,5). (32)
Introduce the numbers; as follows:

1o = Ro3s4+ Roas3 1 = R3ps4+ Raasy, 2 = Razsp+ Rapss

We haveR,.pq + Rudbe = Hia+b—7| with {a, b, c,d} = {2, 3,4, 5}, anduo + u1 +
w2 = 0. SincePy, = t¢ = 0, both (31) and (32) can be written in the form

2?22 Pyst] = Paptf + Wiarp-7tl, a,b>2. (33)

Taking the sum by: from 2 to 5 and applying (30) on the left hand side and (31) on
the right hand side we come Ei:g p,‘a+b_7|t5 = 0, forallb > 2. Using (30) and
the fact that¢ = 0, we solve for” getting

2 = 4P (Wpra—71 — mipre—71) = 3¢° Rpaca (34)

for some numberg?, 43, ¢*, ¢°, where the permutatioth, a, ¢, d) — (2, 3,4, 5) is
even (the last equation follows from,+4—7| = Rpadc + Ricda and the first Bianchi
identity).

Interchange: andb in (33) and subtract (31). Sina§ = 0 and the matrixP is
skew-symmetric, we geR, (1, — 1) + Pad(t;f - tj) = Watb-7)ty , With the indices
¢, d chosen in such a way that the permutatiéna, c,d) — (2, 3,4,5) is even.
SUbStiIUting (34) we ObtainEézc'qc(Rcbad — Reaan) + 3Padqd(Rdbca — Raape) =
Wla+b—7t - BUt Repad — Reaab = —Rpcad — Rbdac = —Mja+b—7)» Rabca — Raabe =
Rucba + Radbe = [ja+b—7), and so

(3Pucq€ — 3Pauq? + t)ja+v—-71 =0, (b, a,c,d) an even permutation.
Now if wjg15-7/(= Kjcta—7) # O, then

tg :3Padqd —3Pach, tf :3Pbcqc _3Pbdqd’
t§:3Pcbqb_3Pcaqa7 tf :3Pa’aqa—3deqb,
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with the last three equations obtained by replacing the (aaib) by (b, a), (c, d),
(d, ¢), respectively, and taking into account the evenness,af, ¢, d). Multiplying
these equations by, ¢°, ¢¢, ¢¢, respectively, and adding up, we gét + ¢°r% +
q°t5 + q?td = 0, sinceP is skew-symmetric. By (34) this implies

(g% + @)%+ @) + @D Roaea = 0.
If Rpaca # 0, thenT = 0 by (34) and the claim follows from Lemma 3. Assuming
T # 0 we get that for any pain # b from {2, 3, 4, 5} either Rycpq + Rugpe =

Wia+b—7 = 0, Or Rpaeq = 0. From this and the first Bianchi identity we obtain
R2345= R2453= R2534= 0. O

Using the result of Lemma 4, the equations (22) and the definition af thand
P,»’'s we can simplify some of the equations (17)—(21): the equations (17) with,
A7) withi = a, (19) withi = 1, j = a, (19) withi = a4, j = b, (18) withi = ¢,
Jj = b, and (20) withi = 1, j = a, k = b have the following form, respectively:

>, ki, = H, (35)

pKey +23 PZ = H, (36)

Y, kipkap + k2, + Y (12 = H, (37)

> p KapKbp + K2y + Y feg P]%g +3(P% — PE)+ (tH?+ (t)*=H,  (38)
Pad(Kae — Kcd) — Ped Poa — PeaPra = 0, (39)

Pea(k1c — k14) + 112 = 0, (40)

wherel{a, b, c,d} = {2, 3, 4, 5}.
Lemmab. If P = 0, then the sectional curvature is constant.

Proof. From (40) we getgtfj =0 foralla, b > 2. This, together with (30), implies
that at least for one value af 7; = 0 for all b. Without loss of generality, assume
thattd =12 =12 = 0.

Summing up (38) by # a and adding (37) we obtain

Yo Kapkip + X g ()P + Y 2o (2 + (1) = 4H,

where{c, d} = {2, 3, 4, 5} \ {a, b}. Now by (15)) ", x;; = C, so the first term on the
left hand side equal€?. The sum of the two remaining termsys, > s, (tg)2 =
Zf’g(tg)2 — Zg(tg)z. Therefore we obtain

Y (192 =Y, (t])? + C? — 4H.

The right hand side does not dependaonHowever, fora = 2, the left hand side
vanishes. Henc& = 0 and it remains to apply Lemma 3. O
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From now on we assume that at least one ofRlgs is nonzero.
Using (22) and Lemma 4 we simplify (18) with= b, j = 1 and (20) withi = a,
Jj =1,k = btothe form
Poat{ + Ppetf + Ppatf =0, (41)
Paptf — Ppetl — Ppat? =0, (42)

respectively, wher¢u, b, ¢, d} = {2, 3, 4, 5}. Adding (41) and (42) we obtain
Py (tS — 1) + Pap(t? — 1) = 0. (43)
Interchanging: < b, (a, b) < (¢, d) and(a, b) < (d, ¢) we get, respectively:

Peg(t —15) + Paa (¢ — 1) =0,
Pag(t® —19) + Ppa(t? —15) =0,
Pac(t® —19) + Ppe(t? — 12 = 0.

S0 eitherPe Pag — Pea Pap = 0, 0rtS = t£, 14 =1, 18 = 14,10 =15,

Up to a sign, there are three minors of the foPg;;Pda — P., P;p in the matrix
P, depending on the choice of the péir, b} C {2, 3, 4, 5}.

If at least two of them are nonzero, theh= 1, = ¢S for all {a,b,c,d} =
{2, 3,4, 5} and sol' = 0 by (30). The proof is then completed with Lemma 3.

Let precisely one of the three minoB., Py, — P.,Ps» be nonzero, say
P23P54 — PoaPs3 = Py3Pss — PrsPa3 = 0 and P34P25 — P4P35 # 0. Then

3_ .3 4 5_ 5 2 3_ .3 4 5_ 5
12 = 12, t5 = t4, t3 =15,13 = t2 Denotlngt =12, 3 =131 = 13,15 = 15
we getrd = —22, 13 = =213, 12 = —214, 17 = —2¢° from (30). From (43) with

a=4,b=3,c=1,d = 2, Po3t?> = Ps3t°. Then from (41) withb> = 3 we get
P32t2 = Pgqt*, and soP23t2 = Paat* = Ps3r®. Similar arguments show tha,, ¢
does not depend an# b. In particular,Psat® — P4at* = Pspt® — Paot* = 0 and so
14 = 15 = 0 sincePs4Pos — P24 P35 # 0. Similarly,s2 = 3 = 0, thatis,T = 0, and
it remains to apply Lemma 3.

Finally, assume that all the minoFs, Py, — P.. Psp vanish. Itis easy to see that
P., Py, = 0forall{a,b,c, d} ={2,3,4,5}, and so the matrixP,, is of one of the
following forms, up to relabelling the subscripts:

0 Pz Pu Poxs 0 P23 P O
—P3 0 0 0 —Po3 0 P3s O
—Pyy O 0 ol —Py —P3y 0 O (441, 442)
—Pxs O 0 0 0 0 0 O

and at least one of thB,;’s is nonzero.
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Lemma6. If the matrix P has the form (441), then at most one of the Po,, a > 2
can be nonzero.

Proof. Takinga = 2 in (39) we obtain
PZd(KZC - ch) = PZCPZb’ {b’ c, d} = {37 47 5} (45)

First assume none db3, Poa, Pys vanishes.

Thenwe geto.—kgqc = k2p—kgp fOranytriple{b, c, d} = {3, 4, 5}. Introduce the
numberss, va, vs by vy = ko0 — Kge, ¢ # 2, d. We havecy. = koe — Vg = kog — Ve
and saco. + ve, ¢ # 2 does not depend an Denotet = k. + v.. Then

Koe =& — Ve, Kge=E&—ve—vy, c,d#2, c#d. (46)

Then by (15),C = >, koi = k12+ 36 — ) ;vpandfora # 2,C =} ks =
Kiq + 36 — 2v, — Zf vy. It follows thatky, = k12 + 2v,, and so by (15)C =
Yo ki =4k12+ 32.,» vr. Then

Ki2=§&—3 ;vp, Kua=§—) ;vi+2v, a#2

Substituting this and (46, 4% to (35, 36) we obtain B, + 452 — 46 ,vs +
2 Vi + 207 =462 —4EY vy +4Y vi = H,and so

P2 =vE+v2 {a,b,c}={3,45)
On the other hand, (45, 46) imply
Pogvg = Poc Py, {d,b,c} ={3,4,5}.

It follows that P2, = (222)? + (£2P2)? and so(£)? + (£2)? = 1. Since the

left hand side must be greater than or equal to 2, we come to the contradiction.
So at least one aP23, Poa, Pos vanishes, and the claim follows from (45). O

Lemma7. If thematrix P hasthe form (442), then either the sectional curvatureis
constant, or at most one of the Py, a > 2 ishonzero.

Proof. Assume that all three number®s, P24, P34 are nonzero (otherwise, rela-
belling the subscripts we come to a subcase of Y44

The equation (43) witld = 5 givesP.(t; —t;) = 0,{a, b, c} = {2, 3,4}, and
soti =1,. Denoter =15 =1;,{a, b, c} = {2, 3,4}

Takingd = 5 in (40) we findz5t¢ = 0. Therefore?s = 0 for alla, b # 5, and
so at least two of the three numbefsz3, 14 vanish. Let say® = 1 = 0. Then also
t? = 0 by (41) witha = 2,b = 3,c = 4,d = 5. Hencer? = 1> = 4 = O for all a.
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The equation (40) witle, d # 5 givesk12 = k13 = k14. Denote their common
value byx. From (35) and (36) witlt = 5 we get 3% = k2 + k2 + k25. But
from (15)C = ) k1 = ) ;ks5i, hence 8 = ko5 + k35 + k4s5. It follows that
ko5 = k35 = ka5 = k. Applying (15) again we find thatp3 = k24 = x34. Denote
their common value by.

The equation (37) wittu # 5 now yields 2% + k2 + kk15 4+ (t2)2 = H. It
follows that+s3 = ££3 = ¢ and sy = 13 = t; = 0 by (30). ThusT = 0 and
the claim follows from Lemma 3. O

As Lemma 6 and Lemma 7 show, it remains to consider the case when only one
of the P,;'s is nonzero. After relabelling we can assume tBas # 0, and all the
other P,;’s vanish.

The equation (39) withb, ¢) = (4, 5), (5, 4) yields

K34 = k24, Kk35= K25, K12 = K13, (47)

the latter equation follows from (15 = ) ", k2; = ), «3i.

From (42) we get? = > = O for all ¢, and from (40) withu = 4,b = 5 and (47)
t2t3 = 0. Without loss of generality assump = 0. Then (21) withi = 1, j = 2,
k = 3,1 = 4 takes the form

1[’23(13‘,1 —13) + 13 (k12 + ke3a) + tg“?(K13 + k24) = 0.

But 3 = —13 by (30), so (47) impliess = 5.
From the equations (36) with = 2 and (38) withu = 2, b = 3 we find

Kfo+ K5y + K34+ ko5 + 2P = Y kaikai + k23— 2P + (15)° = H,

and so #Z; = (12)2 by (47). Then 22, = %2 and we can take the minus sign on
the right hand side replacing the vectarby —e1, if necessary. It now follows from
(30) that the only nonzero entries of the matriéeandT can be

té:tﬁ:/x, té:—2pc, t35:v, t25:—v, Px3=pu #0. (48)
Then from (35), (36) witlu = 4, and (37) withu = 4 we get
Kot ki3t kigtits = kgt 5yt K5+ kis = K12koa+K13K34+ Ky +K15Kas5 = H,

so the vectorsiio, k13, k14, k15) and (k24, k34, k14, k45) are equal. Combining this
with (47) we find:

K12 = K13 = k24 = K34, K35 = K25, K15 = K45. (49)

Now from (15),C = Zi Kai = Zi Kksi, Which givesci14+ 2x24 = 15+ 2k 25, and
from (36) witha = 4,a =5,H = Y, k2 = ¥, k2 and sac2, + 2«2, = k2. + 23
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Hence eithek1a = k15, k24 = K25 O k4 = %K14 + %Kls, K25 = %K14 + %K15.
But the first case is not possible, since otherwise (37) wita 5 and (49) imply
K2y + k23 + k%4 + k% + 41?2 = H, and sorf = 0 by (35). This contradicts to
u # 0 from (48). In the second case, we solve (15) getting

K12 =K13=K23 =K24 = K34 =Q — V, (50)
Kos=k3s=a — 3y, Ki5=Kk45=0a, Ki4=0a —4y,
whereC = 4a — 6y.

Substituting (50) and (48) to (21) with= 1, j = 2,k = 3,/ = 5wefindv = 3y.
From (50, 35, 36) we get# — 120y +18y2 = 4o® — 120y +12y°+ 22 = H, and
sou = ++/3y. Replacing the vectass by —es, if necessary, we can take= +/3y .

Using (48) and the fact thdy,,. = 3 (1 — 1<), which follows from the definition
of ther;’s we find that the nonzero components of the algebraic curvature t&nsor
are those listed in (50) and

Rizaa=7y, Rizzs=+3y, Rizza=—y, Rizs=+3y,

(51)

Ris2s= -2y, Roazs=+3y, Razs=—+/3y.

It can be checked directly that the algebraic curvature tensor with components
given by (50, 51) satisfies the first two Ledger formulae (1). O
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