Comment. Math. Helv. 80 (2005), 75-93 Commentarii Mathematici Helvetici
© Swiss Mathematical Society

The cone of curves associated to a plane configuration

C. Galinddg' and F. Monserrét

1. Introduction

Inthe last decades, cones associated to varieties have been a basic tool to approach the
theory of minimal models. Although this theory works in the case of smooth surfaces

by using Castelnuovo criterion to contraetl)-curves, the higher dimensional case

is much more difficult. For treating it, there exists a minimal model program, where
Kawamata’'s Theorem [5] on the cone of curves associated to a vafietays an
important role. This theorem generalizes a result by Mori [9] and guarantees that the
coneNE(X) is rational polyhedral if the anticanonical bundleXis ample.

On the other hand, the characteristic cdheZ/ X), introduced by Hironaka, is
considered in [3] to study projective birational morphismsZ — X which are an
isomorphism outside ~1(0), for a closed poin0D € X, whereX andZ are normal
algebraic varieties over an algebraically closed field. £gtZ/X) the R-vector
spaceN1(Z/X) ®z R, N1(Z/X) being the commutative group of 1-dimensional
cycles onZ which are mapped t® by = modulo numerical equivalence aid(Z)
the set of real (integer) numbers. ConsiN&r(Z/ X) the (convex) cone i1(Z/X)
spanned by the cosets of effective curveg iwhich are mapped t® by =. Denote
by A1(Z/X) the dual vector space of1(Z/X) and by P(Z/X) the dual cone of
NE(Z/X).

A topological cell of a cone” is defined to be a con® such that either it is
equal toC or it is a maximal cone contained i — interior(E), whereE is some
larger cell ofC and interiofE) denotes the relative interior df. It is proved in
[6] that a one to one correspondence can be given between sandwiched varieties of
n: Z — X and topological cells of (Z/ X). The relation between topological cells
of P(Z/X) and of P(Z/X) shows that if the con®lE(Z/X) is polyhedral, then
the set of sandwiched varieties associated is finite [1]. Recall that sandwiched
varieties are those normal schemes through whifattorizes by birational projective
maps.

Now, assume that diffi = 3. Suppose also thatis given by a constellation of
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infinitely near points ovek, that is, it is given by a configuration of infinitely near
points over the varietX — see the Section 2 for the definition — with a unique point
at X. Denote byB; the exceptional divisor which appears after blowing-up each
infinitely near point of the constellation and Wy its strict transform inZ. Then, it
can be proved [1] that the number of sandwiched varieties associatedstfinite
provided that every condE(E;) is polyhedral NE(E;) being the cone spanned by
the images iM1(E;) of the cosets iV1 (E;) of effective curves oik;, whereN(E;)
denotes the commutative group of 1-cyclesfyrmodulo numerical equivalence and
A1(E;) theR-vector spac&V1(E;) ®z R.

This paper follows the above outlined way, started by Campillo and Gonzalez-
Sprinberg in [1] and recently continued in [2], which consists on studying projective
birational morphisms by means of cones. It motivates the study of the following
problem. SeX = P2 the bidimensional projective space over an algebraically closed
field of characteristic zero ari a configuration of infinitely near points ov&rwhich
gives a projective birational morphism: Z — X, usually called a modification of
X. We are interested in the polyhedrality of the cdite(Z), also called the cone of
curves associated t&. Notice that, in most cases, the anticanonical bundle of the
variety Z is not ample.

There exist other reasons which make interesting the study of the polyhedrality
of NE(Z) as Nikulin says in [10]. Those are that surfaces whose cone of curves is
polyhedral can be considered as Algebraic Geometry analogue of arithmetic groups
generated by reflections in hyperbolic spaces and that it is expected that quantum
cohomology of varieties fibrated by surfacésvith polyhedral cone of curves have
good applications, since the set of exceptional curves oén be considered as the
analogue of a system of simple real roots.

The main goal of this paper is to prove that, roughly speaking,dbrresponds
to a case singular enough, then the chiigZ) is polyhedral.

In the course of this paper, we shall prove tN&t(Z) is a polyhedral cone fif,
and only if, the set of its extremal rays and possibly other on@¢EgiZ) with null
self-intersection has no limit points. These limit points (if they exist) are given by
points which are in the intersection between a half-space associated to the canonical
divisor class orZ and the unit sphere in an ambient space of dimension equal to the
cardinality of the configuratiok. Moreover, we deduce that the cone of curves of a
configuration of cardinal eight or less is always polyhedral (see [8, Theorem 26.2],
for the case when all the blown-up points aréf).

To decide the polyhedrality of the cohE(Z) for configurations of higher cardi-
nality, we give a geometrical condition in Theorem 1 and an explicitone in Theorem 2.
The statement of the second referred theorem is simple: The cone of curves is poly-
hedral wheneverGx’ > 0 for all vectorx € R" \ {0} of nonnegative coordinates,
wheregG is an explicit and easy to computedimensional square matrix, which de-
pends on the singularity of the configuration (of cardinatijyK. From the study
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of the entries of the matrix;, we can conclude that if the singularity &F is large
enough, measured in terms of proximity chains among the poirks (gee Defini-

tion 4), then the conBlE(Z) is polyhedral. The condition established in Theorem 2
can be strengthened when the configuration is a chain (Proposition 6) and so, we
can guarantee that the coN&(Z) is polyhedral only by inspecting the sign of the
entry (n, n) in the matrixG. Notice that this fact provides a wide range of examples
whose associated cone of curves is polyhedral. Finally, we derive a consequence to
ensure polyhedrality in the case whEnis the configuration associated to a germ of
analytically irreducible plane curve.

2. Preliminaries

Let X be a smooth variety of dimensieh> 2, we shall consider varieties obtained
from X as follows: Take finitely many closed pointsh Q%, Q%, ..., 0}. Blow-
up X at 01 and the obtained variety @2 and so on. Denote b (1 <i < r)
the exceptional divisor associated to the bIowing—uQ'gt The closed points oBi
(1 <i < r) are called points in the first infinitesimal neighborhoonjj. Now,
pick finitely many closed points at each divisBi and blow-up the last obtained
variety at each new point. We can iterate this method finitely many timesj £00,
define inductively the points in thih infinitesimal neighborhood @) as the points
in the first infinitesimal neighborhood of some point in f5— 1)th infinitesimal
neighborhood. The point® which are in thejth infinitesimal neighborhood of
some pointP appearing in the above described process for spnie 0 are also
called infinitely near points t@ (this will be denoted? < Q). A family of closed
points as we have described is called to be a configuri¢wf infinitely near points
overX) and the obtained variety after the last blowing-up will be called the sky of the
configuration and usually denoted By Notice that the relatior: is a strict partial
ordering inK. The pointsQ"l will be said points of level 0, those a’l of level 1
and so on. Due to the local character of the blowing-up, we do not need to take into
account the order in which the points are blown-up.

We usually denote a configuration & = {Q1, Q», ..., O}, bearing in mind
that if ; < Q; theni < j. K provides a finite sequence of point blowing-ups,
called a modification ok :

Z=Xnt1 -5 Xy —> - —> X2 -5 X1 = X,

m; being the blowing-up a@;. Clearly, apoinQ ; isinfinitely neartoQ; if 7;; (Q;) =
Q;, wherer;; is the composition of the maps associatedrtor;;: X; — X;.
Furthermore, denote hy; the exceptional divisor that we get after blowing-Xipat
Q; and byE; (resp.,E7) the strict (resp., total) transform &; in Z. We shall say
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that Q; is proximate toQ; (denoted byj — i or Q; — Q;) wheneverQ ; belongs
to the strict transform oB; in the variety which containg ;.

SetE = ®1<i<y,ZE;, the group of divisors of with exceptional support. It is
no difficult to see thak; = E} — Zj_”- E;" As a consequence, the 4&t'}1<;<,
is also a basis oE and the matrix relative to the basgs;} and{E;}, called the
proximity matrix of the configuratiork, is given by(p;;)i<; j<n, Wherep;; = 1,
pij = —1wheni — j andp;; = 0, otherwise.

We can associate to each point of a configurakoa nonnegative integer, called
its weight or its virtual multiplicity, giving rise to a weighted configuration. Note that
weighted configurations are usually called clusters.

Assume thatl = 2, X = (K, {vp}pck) iS a weighted configuration and a
curve onX. Then we can define the virtual transform@®@bn X; relative to.X as

i—1
ClsK = (mpomp---omi—1)*(C) — Z UQjEj’
j=1

whenever 2< i < n, C‘f = C. The virtual multiplicity of C at Q; relative toX is
defined to be the multiplicity otﬁ;" at Q;. We shall say that the curve goes virtually
(resp., effectively) through the weighted configuratiginvhen the virtual transform
of C on Z is an effective divisor (resp., it coincides with its strict transformzyn
We usually say thaf' goes through when it goes virtually throughx.

3. Polyhedrality of the cone of curves

As we have mentioned in the introduction, sét= P2 := P2, whereF is an

F1
algebraically closed field of characteristic zero. Consider a configurdfios
{01, Q2, ..., Q,} of infinitely near points ofX and the associated modification

w: Z — X. Denote byN1(Z) the commutative group RiZ)/ =, where= denotes
numerical equivalence and s&€f(Z) = N1(Z) ®zR. Notice that, in our cas&y1(Z)

is isomorphic to the group of 1 cycles @hmodulo numerical equivalence and that
on it, we can consider the intersection form which givesAqiiZ) a bilinear form
also denoted by-".

Definition 1. We shall define the cone of curves associated to a configuration of
infinitely near points ofX, K, denoted byNE(Z), as the convex cone of1(Z)
spanned by the images i (Z) of the cosets inV1(Z) of effective curves orZ
modulo numerical equivalence

Throughout this paper, the numerical equivalence cosefif¥) of a divisor
D on Z will be denoted by D] and by an abuse of notation, we usually identify
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an element in PiZ) with its numerical equivalence coset, and also elements (and
their intersection form) inVy(Z) with their natural image (and their bilinear form)
in A1(Z).

Next, we supply two bases of tievector spacei1(Z), which we shall use to
handleNE(Z). Let L be a projective line o and letL (resp.L*) be its strict (resp.
total) transform orZ. Then, itis not difficult to show tha® := {[L], [E1], ..., [Ex]}
andB* := {[L*], [E7]....,[E,]} are bases oN1(Z) asZ-module and, therefore,
they are bases of1(Z) asR-vector space.

We are interested in the polyhedrality of the cdit&(Z). First at all, we study its
extremal rays. In what follows, we shall denotefither the canonical divisor class
associated to the variety or, by an abuse of notation, its coset modulo numerical
equivalence (or, even, its image #y(Z)). Moreover, we say that an element in
N1(Z) generates a ray MIE(Z) when its image iM1(Z) does so. The following
result is an easy consequence of the Riemann—Roch Theorem.

Proposition 1. Let [D] be the coset in N1(Z) of an integral curve D on Z that
generates an extremal ray of the cone NE(Z). Then:

i) Theintersection number D - D = D? satisfies D? < 0.

i) It holdsthat either D? < 0or K -[D] > 0, whenever D isthestrict transform

on Z of anintegral curve C on X and some point in K does not belong to the strict
transform of C on the variety X; containing it.

Remark. An interesting, but obvious, fact is that4fis an effective curve o, then
there exists finitely many integral curvé€son Z such thatd - C < 0.

Next, we state some straightforward consequences of the above remark:

Remark. Let C be an integral curve off such thaiC? < 0. Then:

i) C is the unique integral curve ohiwhose coset iV1(Z) generates the ray that
it does.

i) If, in addition, D is an integral curve o# different fromC, then the inequality
C - D > 0 holds.

iii) [C] generates an extremal ray of the ciNt&(Z).

Furthermore, if; is an extremal ray of the closure NE(Z), NE(Z), such that
7% < 0, thenz must also be an extremal ray NE(Z).

The family ¥ = {[E;]}}_, is a linearly independent set of tdemoduleN1(Z).
So, eacHE;] gives rise to an extremal ray of the cONE(Z) because ifE;] were
equal to a linear combination (with nonnegative coefficients) of cosets of irreducible
curves onZ, this combination would involve only elementsin.

Since Kawamata’s Cone Theorem (see [5]) asserts that the set of extremal rays
of the coneNE(Z) in the region given byK - z < 0 is discrete, we are interested
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in studying the region oRE(Z) given byK - z > 0. It is straightforward, from the
remark after Proposition 1, that if there is a curve of degiegtich goes (virtually)
through the configuratioR with multiplicities equal td, then there are finitely many
images of irreducible curves &f in the region given by - z > 0.

From now on, fix an ample divisdf on Z and assume that> 2 (note that when
n = 1, the coneNE(Z) is polyhedral). For any divisob on Z, setD(1) := {z €
A1(Z) | [D]-z = 1} and consider the function

¢p: {z € Au(Z) | [D]-z> 0} - D(D),

which maps; to the intersection point between the hyperpldn@) and the line
joining 0 andz. Finally, denote byNE(Z)y the setNE(Z) N Y, wheneverY be a
subset ofA1(Z).

The following definition gives three sets which will be broadly used along this
paper.

Definition 2. We shall denote byR (R, resp.) the set of extremal rays NE(Z)
(NE(Z), resp.). Also set

Ro:={Re R|r>=0forallr € R}.

Remark. SinceNE(Z) is a subset oR"*1, we can identify each ray ofE(Z) to
a point in the unit sphers” in R"*1. A limit point of R, R or Ro will be the ray
generated by a limit point (i§") of the set of points ir§” that generate rays of the
above cited sets. As a consequence of the compactn&8s whichever of the sets

R, R andRg has a no limit point if, and only if, it is finite.

The following result relates the topology of extremal rays to the polyhedrality of
the coneNE(Z2).

Proposition 2. NE(Z) is a polyhedral cone if, and only if, the sets R and R are
finite. Furthermore, if thisis the case, then Rq is empty.

Proof. It suffices to assume th& and.R are finite. Associated to the ample divisor
H, we consider the nonnegative half-cone

V ={z€A1(2)| [H] -z > 0andz? > 0},

which is contained ilNE(Z) (see [4], V.1.8). By Kleiman ampleness criteridB(Z)

is a strongly convex cone and, thus, a system of representatives which generate the
rays inR constitutes a minimal set of generatordNi&(Z). NE(Z) is spanned by the
elements o/ and the rays iR, and thereforeR € RU V. However RNV = Ro
because those elements that generate ray® frave nonpositive self-intersection.



Vol. 80 (2005) The cone of curves associated to a plane configuration 81

Hence, above representativesfform a finite minimal system of generators of
NE(2).

Finally, by Hodge Index Theoren¥ is a half-cone over an Euclidean ball of
dimensionn, which is strictly convex. Therefore:? < 0 for all generators: of
elements ofR, sinceV is a subset oNE(Z). Then, R < R andNE(Z) is a
polyhedral cone. O

As we have seen, limit points of rays iR and R help to decide whether the
cone of curves is polyhedral. Therefore we shall give two conditions which must be
satisfied by the generators of these limit points. Bgthe positive integers.

Proposition 3. Let r € A1(Z) be an element which generates a limit point R of
whichever of the sets R or Rg. Thenr2 =0and K - r > 0.

Proof. The inequalitykK - r > 0 follows from the Kawamata’'s Cone Theorem, since
there is no generator of a limit point of the s&or RKq in the region ofA1(Z) given
by the inequalityk - z < 0.

It only remains to prove that®* = 0 whenR is a limit point of rays inR. Let
{Ci}iez, be asequence of integral curved®f such that the cosets iy (Z) of their

strict transforms orZ, [C;], are distinct and whose corresponding rays belong to

and converge tR. Taking coordinates of theC;]’s in the basisB*, we obtain the
sequence

{[51] =(d;, —er1,—€12, ..., —el,n)} .

l€Z+
After normalizing by the first coordinate, we obtain that the rayill be given by
the direction(1, — lim;_, « egll—*ll, o =limis s eé—[”)

Now, since for each fixed degree there are finitely many classés(in) of strict
transforms of integral curves iB?, it is clear that the sequende;};°, diverges.
Finally, the adjunction formula for the strict transforms of the cu@eproves that

n n
L+ (-3 —3a+ Y ai) =0
i=1 i=1

Dividing by d12 and taking the limit at the infinite, we concludé > 0. Since
Proposition 1 proves th&€;]% < 0, it is clear that? = 0. O

Remark. With notations as in the above proof, it is clear that the coordinates
(er1, €12, --.,e,) are the effective multiplicities at the points of the configuration
K of the curve<; and so, th_ey s_atisfy the pr(_)xim?ty_inequalit_iag > Zﬁi eLj,

i = 1,2 ...,n (see [7]). Dividing byd;, taking limit at the infinite and setting

ri = lim;- i’,—l’ we get that the;’s also satisfy the proximity inequalities, that is

T 22]‘—)1‘”'
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Our next result concerns the case when the cardinality of the configuration is
small.

Corollary 1. Assume that the cardinality of a configuration K which defines the
modification: Z — Xisn < 9.

i) If n < 8, then NE(Z) ispolyhedral.

i) If n = 9, then either NE(Z) is polyhedral or there is a unique limit point of
extremal rays of NE(Z) which is given by —K, K being the canonical divisor class
on the variety Z. Furthermore, if K has, at least, two points proximate to another
third onein K, then the cone NE(Z) is polyhedral.

Proof. SetB := {z € NE(Z) \ {0} | z2 = 0}. i) is a consequence of Propositions 2
and 3 and the fact that, in this cagejs contained in the half-space af(Z) given
by K - z < 0 (see the proof of Lemma 1 in [1]).

To prove ii), assume th&E(Z) is not a polyhedral cone. Taking into account that
B C {z € A1(Z) | [L*]-z > 0}, we can consider the image Bfby ¢+ and saRg
has, at most, one point. This follows from Kawamata’'s Cone Theorem and the fact
that, inR?, the hyperplang_?_, x; = 3 is tangent to the sphele;_; x? = 1 at that
point with all its coordinates equal t¢g/3. We finish the proof of the first statement
by observing that Propositions 2 and 3 show tRatas a unigue limit point given by
the anticanonical divisor.

Finally, if K has two, or more, points proximate to another third on& jrthen
the coneNE(Z) is polyhedral since, otherwise, the coordinates of the unique limit
point of R must satisfy the proximity inequalities, which is false. O

For any subsef C A1(Z), Co(S) stands for the convex cone generatedshy
The following result gives another condition for the caofe(Z) to be polyhedral.

Theorem 1. The cone NE(Z) is polyhedral if the following condition
{zeNE(Z) | K -z>0}n{zeNEZ)|z*=0}\{0}

c |J leAu@la-z<0}
aeNE(Z)

holds.

Proof. Proposition 3 and the remark after Proposition 1 show that th&deds no
limit points. We only need to prove that the @ given at Definition 2 has no limit
points.

Suppose thaR has a limit point and look for a contradiction. Lielbe a generator
of this limit point. Itis clear, by Proposition 3, th&t-r > 0 and, from the hypothesis,
[A] - r < O for some cosdtA] of an effective divisorA on Z.
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Let[A] < 0 ([A] > 0O, resp.) denote the half-space4f(Z) given by[A]-z <O
([A]-z = 0, resp.). LetT be the set of cosets of integral curveq ] < 0. T is
finite by the above mentioned remark.

NE(Z) € Co(T U E(Z)[A]Zo), becausd” contains the images iA1(Z) of the
integral curves in the half-spa¢d] < 0 andﬁ(Z)[A]zo contains the remaining
generators. However, C6 U W(Z)[Ajzo) is a closed convex cone (it is generated
by a compact set on the hyperplafgl)). Then,NE(Z) = Co(T U NE(Z)[4}>0)-
This implies that the extremal rays BIE(Z) in the half-spacdA] < 0 must be
generated by elements @f and so we are led to a contradiction to the existence
of r. O

Remark. Next, we state an equivalent condition to that given in the above theorem.
It uses the so-calledef cone associated to Z, P(Z). This is the dual cone MME(Z)

with respect to the bilinear form induced by intersection theory. The condition is the
following

P(Z)N{z € A1(Z) | 22 =0} \ {0} C {z € A1(Z) | K -z < O},

and the equivalence to the condition in Theorem 1 is an straightforward consequence
of the above mentioned fact that the half-cdngiven in Proposition 2 is a subset of
NE(2).

Corollary 2. The cone NE(Z) associated to a configuration which contains only
points on the strict transforms of a conic is polyhedral.

Proof. It suffices to apply Theorem 1 after considering the coset associated with the
divisor of the strict transform of the given conic @n O

The next result gives a numerical condition for ensuringtatZ) is polyhedral.
The proof only considers the virtual transform Brof a curveC on X relative to a
weighted configuratiotK and it uses Lagrange multipliers.

Corollary 3. Assume that the cardinality of a configuration K is n larger than 9,
and that a curve C on P? of degree d goes through a weighted configuration X =
(K, {vg, := v;}), such that not all the v;'sare equal. Define

Yot v+ Y v
d Y i vi+nd?p;
where 11 ; (j = 1, 2) arethe roots of the quadratic equation

5; =3 . je{l2),

n

d?(9 — n)nx2+2d(9—n)2n:vix +92n: vl-2 — (Zw)z =0.

i=1 i=1 i=1
Then NE(Z) is polyhedral, whenever min{d1, 62} > 1.
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Example. Let us take homogeneous coordinaigs ¥, Z) on P2, the point

O = (0,0, 1) and the standard affine chart 4% given by Z # 0. We write

x = X/Z,y = Y/Z and consider a configuratioki of ten points such that each

of these points belongs to the last created divisor and it contains the base points of
the ideal(x*, y)Op2 . The quarticY* = 0 goes virtually through the weighted
configuration(K, {2,2,2,2,2,2,1,1, 1, 1}). Applying Corollary 3, we obtain that

the cone of curves associatedKas polyhedral, since mid1, 62} >~ 1.07 > 1.

We desire to give conditions easier to apply which guarantee that the cone of
curves associated to a plane configuralith Z) is polyhedral. To this purpose, we
consider the image d*(Z)N{z € A1(Z) | z2 = 0} \ {0} by certain map with values
in R"” and an explicit cone oR” that contains it. This fact, jointly the inclusion given
in the remark under Theorem 1, will provide the condition asked for.

Let G be a hyperplane iiR" defined by the equatiog(x) = 0, x € R”, we shall
standG™* for the half-space ifR" given byg(x) > 0.

Definition 3. Let K = {Q1, O>, ..., O,} andxw be as above. The convex cone in
R" given by the intersection of the half-spa¢egs_; Hl.+, whereH; = {x e R" |

X — ZM Xj= 0}, x = (x1,x2,...,X,), s called proximity cone associatedkq
PC(Z).

Next, we obtain explicitly the extremalrays of ). Denotel,, := {1, 2, ...,n}.

Proposition 4. The extremal rays of the proximity cone PC(Z) associated to a mod-
ification w: Z — X given by a configuration K are generated by the vectors
er = (e1r, ek, . .., enr) (1 < k < n)suchthat¢;; = 0, whenever i > k,¢; = 1and
Cik = Zjlkﬁj;jzi €ij ifi < k, i,j,k € In.

Proof. For eactk € I,,, denote byl the line onR”", L; = ﬂ#k H;. Itis clear that
the extremal rays of the cone PX) are generated by vectors with positive coordinates
determined by the lines;. Consider thegn — 1) x n matricesA; = (a;;) where

i € I, \{k}andj € I,, given bya;; = 1,a;; = =1 whenj — i anda;; = 0
otherwise.L, is the solution of the linear system of equations

Ax' =0, ()

x = (x1,x2,...,x,) being a variable vector ilR"”. SetAP the submatrix ofA,
gotten by deleting theth columna® in A;. Denote by* the column vector obtained
by deleting thekth coordinate to the vecteraX. Thus, the linear system of equations
(1) can be written

AP (P = xibt, 2)
Wherex,f) is the variable vector iiR”~1 obtained after deleting tothekth coordinate.
Clearly A? is a regular matrix. SatAP)~1 = (sij)i,jes,\ k), then the linear system
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of equations (2) can be expressef)’ = x[(AP)~1b*]. Whence the vector is a
solution of (1) if and only if fori € I, \ {k}, x; ='(Zj|k_>j Sjj)Xk. Therefore, the
equalitiese;; = Zjlk—>j s;j If i # k andey, = 1 give the coordinates of a generator
of the extremal ray relative tby.

It is clear thate;; = 0 wheneveli > k. On the other hand, it is straightforward
that the entries of the matr'(xA,lc’)—1 satisfy the following relationss;; = 1,s;; =0
if i > j, ands;; = lej_ﬂ s;; otherwise. S(_), fot < k, ejx = Zj‘k_n. sij =
2 jlk—j 2_1j—1 Sit- Since the last sum of the righthand of the second equality equals
e;j ande;; = 0, wheneverj < i, we conclude the proof. O

The above given generators of the extremal rays qiB®ill be useful to know
whenNE(Z) is polyhedral. Therefore, we give an easy way of computing the data
e;j which depends on a concept given in the following

Definition 4. Let K be a configuration an# and R points inK such thatP < R.
A proximity chain fromR until P is a finite sequence of points K, {Pl-}ﬁzO such
that

R=P—>P_1— - ---— Pp=P.

To understand easily the meaning of each coordigatef the vectore;, we can
consider the chain of points in the configuratikirof the form

Qi=Po<Pr<---< P =0 (3

Itis clear that the number of proximity chainskhfrom Qy until Q; can be computed
as the sum of the number of proximity chains ur@if from those pointsP in the
chain such tha@, — P. Then, proceeding by induction on the lengthf the chain
(3) and taking into account the formula fay, given in Proposition 4, we can state
the following

Proposition 5. Let K = {Q1, Q2, ..., O, } beaconfiguration. Then, the coordinate
e;; Of the generator ¢; of an extremal ray of the proximity cone PC(Z) counts the
number of proximity chainsin K from Qy until Q;.

Finally, we state our announced result which gives a condition for theNBNE)
to be polyhedral.

Theorem 2. Let K be a configuration of infinitely near points over X, which givesa
modification7: Z — X. Let G = (g;5) bethen x n matrix defined by

8is = 92”:3[161'5 - (2”361'1)(2”:@1'&)’
i=1 '

i= i=
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whereex = (e1x, ex, ..., enx) (1 < k < n) arethe coordinate vectors that span the
extremal rays of the cone PC(Z) given in Proposition 4. Then, the cone NE(Z) is
polyhedral if xGx' > 0 for all vector x € R" \ {0}, such that all its coordinates are
nonnegative.

Proof. Consider the set8y = {z € A1(Z) | [L*] -z > 0} and
Y ={z€ A1(2) |[Ei]- 2>0, 1 <i <n},

the homeomorphisrh: L*(1) — R”?, given by(1, x1, ..., x,) = (—x1, ..., —Xp),
and the composition map = h o ¢+, Whereg,« is the function defined after
Proposition 1.

Then, itis clear that N Ug containsP (Z) \ {0} andu(Y N Ug) = PC(Z) (the
proximity cone associated to the configurati&h As a consequence, the following
inclusion

1w (P(Z)N{z € A1(Z) | 2 =0} \ {0}) C PC(Z) N §" 2

holds, "~ being the unit sphere iR". The complement iiR” of the setu({z €
A1(Z)| K-z <0NUp)isthesetk™ = {(x1,...,x,) € R" | > 7 ;x; > 3}. So,
applying the condition given in the remark under Theorem 1, it suffices to check that
the set PCZ) N $"~1 N K+ is empty to prove that the colE(Z) is polyhedral.

Now, each vector = («;)7_; in R" of nonnegative coordinates provides an
elementin PCZ), > ;_; axex, denoted by, . So, the elements i —1NPC(Z) are
of the formry / || ro ||, where| - || denotes the norrh - |2 in R”. ThenNE(Z) is
polyhedral if

n
raf Il o ll€ fx e R | Y i <3}, (4)
i=1
forall « € R" \ {0} of nonnegative coordinates. To end the proof, we shall show that
\ g p

the hypothesis of the theorem guarantees the property (4). Indasta symmetric
matrix and it defines a quadratic forgnwhich can be expressed by

g(x) =xGx' = 92”: (i:eikxky — ( 2”: e,-kxk>

i=1 k=1 i.k=1

2

and the conditiorz (@) > 0 for all vectora # 0 of honnegative coordinates proves
(4) by taking positive square root, which concludes the proof. O

Example. In Figure 1, we depict the proximity graph of a configuratiinthat
satisfies Theorem 2 (see the mat¢ixbelow) and so its associated cONE(Z) is
polyhedral. The vertices of the graph represent the poinks ddges join proximate
points. An edge joining® andR (P > R) is a continuous straight line whenever
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Figure 1. The proximity graph o

is in the first infinitesimal neighborhood &, otherwise it is a dotted curved line.

8 7 14 13 12 11 10 9 9 12 1§
7 14 19 17 15 13 11 9 9 15 1
14 19 38 34 30 26 22 18 18 30 2
13 17 34 38 33 28 23 18 18 33 2§
12 15 30 33 36 30 24 18 18 27 2]
G=| 11 13 26 28 30 32 25 18 18 21 14.
10 11 22 23 24 25 26 18 18 15 1
9 9 18 18 18 18 18 18 9 9 O
9 9 18 18 18 18 18 9 18 9 O
12 15 30 33 27 21 15 9 9 36 30
11 13 26 28 21 14 7 0 0 30 37

Remark. Theorem 2 gives a condition, depending on proximity, that ensures the
polyhedrality of the cone of curves associated with a configura&ipand this also
happens when the cardinality & is smaller than 9. So, it would be interesting
to give an answer, improving that of Theorem 2, to the following question: Given
r < 8and proximity graphE1, I', . .., I, of local configurations, when s it true that
NE(Z) is polyhedral for any configuratioR with points of level 0,P1, P>, ..., P,

and proximity graph#$’q, I'2, ..., ', respectively atPy, Po, ..., P,.?
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Next, we shall assume that the configuratikinis a chain configuration, that
is, each pointQ; in K belongs to the divisor created after blowing-@p_; for all
indicesi. In this case, we shall show that Theorem 2 provides an easy condition
to decide whether the cordE(Z) is polyhedral. Firstly, we state two supporting
results. The first one does not need the configuration to be a chain.

Lemma 1. With notations asin Theorem 2, the elements of the matrix G = (g;;) are
related by the following equalities,

n

8ls = Z 8js + 9ej5 — Zeis-

Jli—j i=1
Proof. If follows from the following chain of equalities

n

-1 1-1
8ls = 92 eireis + 9ers — (Z eil + 1) < Z eis)
i=1 i=1

i=1

=9§ Z eijeis_(li]j Z €ij>(2n:€is)+9€1s—2n;€is

i=1 j|l—j i=1 jll—j i=1 i=
-1 -1 n n
= Z [9Zeij€is - (Zﬂj)( eis)] + 9ejs — Zeis
jil—j i=1 i=1 i=1 i=1
n
= Z g]S +9els - Zeisa
jli—j i=1

where the second equality holds by applying Proposition 4 and the last one is true
sincel — j impliesj < [. O

Lemma?2. Let K be a chain configuration and G = (g;) the matrix associated to
K givenin Theorem 2. If g,,, > 0, then all the entries of the matrix G are positive.

Proof. We shall reason by contradiction. For each indel < s < n), define

ANy =i €e{l,...,n}| gis <0} and assume thak, # @ for some fixed index.
Considerig the minimum element in\;. In the proof, we shall use the following
two properties which are easily deduced from the formula that Lemma 1 gives for the
elementg;,, (which, we know that it is not positive).

« Property 1. If the poinQ;, is proximate toQy then,

n
8ks + 9€i0s — Z eis < 0.
i=1
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« Property 2. 9;, — > 7 ; eis < Oforall j > io.

Notice that Property 2 holds since it is true fpr= ip by Lemma 1 and moreover
Cjs = € if J > 1.

Now, we shall prove thag;; < 0 for all j > ip. It shows thafg,, < 0 and this
will conclude the proof since if = n we are led to a contradiction and otherwise
gsn < 0 becausé&; is a symmetric matrix and thus the same procedure fostead
s provesg,, < 0 which is a contradiction.

We can assume thag < n and, for proving the above inequalities, we shall
use the following inductive procedure: First, we shall prove the basic step, that is
gio+1s < 0, and after the inductive step, where we shall slgpwy ; < 0 whenever
g1.s < 0 for all positive integerj such thatp +1 < j <.

To do the basic step, we distinguish two cases: Case 1 which occurs when there
exists an index (1 < k < ig < n) such that the poin®;, 1 is proximate toQ; (and
obviously, Q;, is also proximate t@;) and the complementary of Case 1, which we
shall refer as Case 2.

In Case 1 we get,

n n
8io+1,s = 8ks + &ips + 9€i0+l,s - Zeis < 8ks + &ips T 9eio,s - Zeis <0.
i=1 i=1

And in Case 2,

n
Zio+1ls = &ios T 9€i0+1,s - Zeis <0.
i=1

In both cases the equality is given by Lemma 1. In Case 1, the first inequality holds
sinceK is a chain configuration. Finally, the fagt,, < 0 and the above given
Property 1 (resp., 2) for the Case 1 (resp., 2) conclude the proof of the basic step.

Finally, we show the inductive step. Suppgse < O forip < j <1 < n, we
shall see thag;+1,; < 0. Here, we need to distinguish three cases:

i) There exists anindek (1 < k < ip < n) such that the poin®,1 is proximate
to Qy (in such case the poi@;, is also proximate t@y). Then,

n n
8i+1,s = 8ks 1+ 8ls + 9€1+1,s - Zeis < 8is + ks + geios - Zeis <0.
i=1 i=1

i) There exists an indek (1 < ip < k < I) such that the poin@; .1 is proximate
to Q. Then,

n
8i+1s = &ks + &Is + gel-‘rl,s - Zeis <O0.
i=1
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i) The point Q;41 is only proximate taQ;. Then,

n

gi+ls = 8Is + gel-‘rl,s - Zeis <O0.
i=1

This ends the proof by noticing that we have applied Lemma 1 in all cases,
Property 1 in case i) and Property 2 in cases ii) and iii), and the inductive hypothesis
in all cases which asserts thgt < 0in cases i) and iii), and thgf, < 0 andg;; <0
in case ii). O

We have obtained an interesting consequence for the associated matrix to chain
configurationsK: The conditiontGx’ > 0 for all vectorx € R" \ {0}, with non-
negative coordinates, is equivalent to the fggt > 0. Thus, we have proved the
following

Proposition 6. Let K be a chain configuration whose associated date g,,, given in
Theorem 2 is strictly positive. Then, the cone of curves NE(Z) relative to K is
polyhedral.

Finally, we state some consequences of Proposition 6, which allow to conclude
that the statement on this proposition is not trivial.

Corollary 4. Let K = {Q1, ..., Q,} bea chain configuration and let B be a germ
of analytically irreducible plane curve which goesthrough the pointsin K with effec-
tive multiplicities my, . .., m, satisfying the proximity equalitiesand 93 ""_; ml2 —
(>Xr, m,~)2 > 0. Then, the cone of curves associated to K is polyhedral.

Proof. It follows from the fact that the vector of effective multiplicities #fis a
multiple of the vectore, in Theorem 2, because it determines the only direction
satisfying the proximity equalities. So, the condition given in the statement of the
corollary on the multiplicitiesn; impliesg,, > 0 and the result. O

Corollary 5. Let O be a closed point of P2, {x, y} local coordinates at O and
K = {01 = 0, 0>, ..., Q0,} the chain configuration corresponding to the mini-
mal embedded resolution of an analytically irreducible germ of plane curve at O
with a unique characteristic pair (8o, f1). Then, the cone of curves associated to
the configuration K is polyhedral if the pair (8o, B1) satisfies one of the following
conditions:

(1) B1=1 (mod Bo), fo < 8and B1 < 8po.
(2) p1 =1 (mod Bo), fo = 9and B1 < 7Po.

(3) p1# 1 (mod Bo) and B1 < 1+ 4B0 + 3,/4B0 + 5832
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k1 times ko times kg times
Proof. Let(wsy,..., w1, w2, ..., w2,...,ws, ..., ws) bethe sequence of multiplic-
ities of the germ at the points of the configuratikn Then,
B1 B1
w1 = Po, k1= L— , wp=P1—| = |Po, wy=1, (5)
Bo Bo

where | -] means the floor (or the integer part) function, and clearly one gets the
following recurrence relations:

ws—1=ks, w =kipqwit1+wi2 (1<i<s-—2). (6)

By Corollary 4, for the cone of curves associate&tto be polyhedral, we only need

to check when s )
QZkiwiZ—(Zkiwi)2>0. (7)
i=1 i=1

To do it, we distinguish two cases:
i) B1 = 1 (mod Bo). Here,s = 2, ko = Bo and, then, the condition (7) is
equivalent to the following one:
B1 B1

2
- 78+ | F1 _
ﬁo{ﬂoJ + ﬁo\ngJ—i-Q Bo > 0,

which is true if, and only if 8o and g1 satisfy the formulae in 1 or 2 of the statement.
i) B1 1 (mod Bo). By using the conditions (6), one gets that (7) is equivalent
to the following inequality:

A(wiw2 + klw%) — (w1 + w2 + kqwy — 1)2 > 0,
and by means of the equalities (5), this inequality is true if, and only if,
98081 — (Bo+ B1— 1? > 0,

which happens only when the formula in 3 of the statement holds. O

Corollary 6. Let K = {Q1, ..., Q,} achain configuration whose proximity graph
isthat of the following figure with ¢ > 1 dotted curved lines (its Dynkin diagram has
g stars). Then, the cone of curves associated to K is polyhedral.

Proof. It follows from Proposition 6 since the vect@sy,, ..., e,,;) corresponding
to this configuration i§2¢, 281, 2¢=1 2,2 1, 1), whereg = (n —1)/2. O

Acknowledgment. The authors express their appreciation for a very careful and
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Figure 2. Proximity graph of Corollary 6
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