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The cone of curves associated to a plane configuration

C. Galindo∗and F. Monserrat∗∗

1. Introduction

In the last decades, cones associated to varieties have been a basic tool to approach the
theory of minimal models. Although this theory works in the case of smooth surfaces
by using Castelnuovo criterion to contract(−1)-curves, the higher dimensional case
is much more difficult. For treating it, there exists a minimal model program, where
Kawamata’s Theorem [5] on the cone of curves associated to a varietyX plays an
important role. This theorem generalizes a result by Mori [9] and guarantees that the
coneNE(X) is rational polyhedral if the anticanonical bundle ofX is ample.

On the other hand, the characteristic coneP̃ (Z/X), introduced by Hironaka, is
considered in [3] to study projective birational morphismsπ : Z → X which are an
isomorphism outsideπ−1(O), for a closed pointO ∈ X, whereX andZ are normal
algebraic varieties over an algebraically closed field. SetA1(Z/X) the R-vector
spaceN1(Z/X) ⊗Z R, N1(Z/X) being the commutative group of 1-dimensional
cycles onZ which are mapped toO by π modulo numerical equivalence andR (Z)
the set of real (integer) numbers. ConsiderNE(Z/X) the (convex) cone inA1(Z/X)

spanned by the cosets of effective curves inZ which are mapped toO by π . Denote
by A1(Z/X) the dual vector space ofA1(Z/X) and byP(Z/X) the dual cone of
NE(Z/X).

A topological cell of a coneC is defined to be a coneD such that either it is
equal toC or it is a maximal cone contained inE − interior(E), whereE is some
larger cell ofC and interior(E) denotes the relative interior ofE. It is proved in
[6] that a one to one correspondence can be given between sandwiched varieties of
π : Z → X and topological cells of̃P(Z/X). The relation between topological cells
of P̃ (Z/X) and ofP(Z/X) shows that if the coneNE(Z/X) is polyhedral, then
the set of sandwiched varieties associated toπ is finite [1]. Recall that sandwiched
varieties are those normal schemes through whichπ factorizes by birational projective
maps.

Now, assume that dimX = 3. Suppose also thatπ is given by a constellation of
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infinitely near points overX, that is, it is given by a configuration of infinitely near
points over the varietyX – see the Section 2 for the definition – with a unique point
at X. Denote byBi the exceptional divisor which appears after blowing-up each
infinitely near point of the constellation and byEi its strict transform inZ. Then, it
can be proved [1] that the number of sandwiched varieties associated toπ is finite
provided that every coneNE(Ei) is polyhedral,NE(Ei) being the cone spanned by
the images inA1(Ei) of the cosets inN1(Ei) of effective curves onEi , whereN1(Ei)

denotes the commutative group of 1-cycles onEi modulo numerical equivalence and
A1(Ei) theR-vector spaceN1(Ei) ⊗Z R.

This paper follows the above outlined way, started by Campillo and González-
Sprinberg in [1] and recently continued in [2], which consists on studying projective
birational morphisms by means of cones. It motivates the study of the following
problem. SetX = P

2 the bidimensional projective space over an algebraically closed
field of characteristic zero andK a configuration of infinitely near points overX which
gives a projective birational morphismπ : Z → X, usually called a modification of
X. We are interested in the polyhedrality of the coneNE(Z), also called the cone of
curves associated toK. Notice that, in most cases, the anticanonical bundle of the
varietyZ is not ample.

There exist other reasons which make interesting the study of the polyhedrality
of NE(Z) as Nikulin says in [10]. Those are that surfaces whose cone of curves is
polyhedral can be considered as Algebraic Geometry analogue of arithmetic groups
generated by reflections in hyperbolic spaces and that it is expected that quantum
cohomology of varieties fibrated by surfacesZ with polyhedral cone of curves have
good applications, since the set of exceptional curves ofZ can be considered as the
analogue of a system of simple real roots.

The main goal of this paper is to prove that, roughly speaking, ifπ corresponds
to a case singular enough, then the coneNE(Z) is polyhedral.

In the course of this paper, we shall prove thatNE(Z) is a polyhedral cone if,
and only if, the set of its extremal rays and possibly other ones ofNE(Z) with null
self-intersection has no limit points. These limit points (if they exist) are given by
points which are in the intersection between a half-space associated to the canonical
divisor class onZ and the unit sphere in an ambient space of dimension equal to the
cardinality of the configurationK. Moreover, we deduce that the cone of curves of a
configuration of cardinal eight or less is always polyhedral (see [8, Theorem 26.2],
for the case when all the blown-up points are inP

2).
To decide the polyhedrality of the coneNE(Z) for configurations of higher cardi-

nality, we give a geometrical condition in Theorem 1 and an explicit one in Theorem 2.
The statement of the second referred theorem is simple: The cone of curves is poly-
hedral wheneverxGxt > 0 for all vectorx ∈ R

n \ {0} of nonnegative coordinates,
whereG is an explicit and easy to computen-dimensional square matrix, which de-
pends on the singularity of the configuration (of cardinalityn) K. From the study
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of the entries of the matrixG, we can conclude that if the singularity ofK is large
enough, measured in terms of proximity chains among the points inK (see Defini-
tion 4), then the coneNE(Z) is polyhedral. The condition established in Theorem 2
can be strengthened when the configuration is a chain (Proposition 6) and so, we
can guarantee that the coneNE(Z) is polyhedral only by inspecting the sign of the
entry(n, n) in the matrixG. Notice that this fact provides a wide range of examples
whose associated cone of curves is polyhedral. Finally, we derive a consequence to
ensure polyhedrality in the case whenK is the configuration associated to a germ of
analytically irreducible plane curve.

2. Preliminaries

Let X be a smooth variety of dimensiond ≥ 2, we shall consider varieties obtained
from X as follows: Take finitely many closed points inX: Q1

1, Q
2
1, . . . , Q

r
1. Blow-

up X at Q1
1 and the obtained variety atQ2

1 and so on. Denote byBi
1 (1 ≤ i ≤ r)

the exceptional divisor associated to the blowing-up atQi
1. The closed points ofBi

1
(1 ≤ i ≤ r) are called points in the first infinitesimal neighborhood ofQi

1. Now,
pick finitely many closed points at each divisorBi

1 and blow-up the last obtained
variety at each new point. We can iterate this method finitely many times. Forj > 0,
define inductively the points in thej th infinitesimal neighborhood ofQi

1 as the points
in the first infinitesimal neighborhood of some point in its(j − 1)th infinitesimal
neighborhood. The pointsQ which are in thej th infinitesimal neighborhood of
some pointP appearing in the above described process for somej > 0 are also
called infinitely near points toP (this will be denotedP < Q). A family of closed
points as we have described is called to be a configurationK (of infinitely near points
overX) and the obtained variety after the last blowing-up will be called the sky of the
configuration and usually denoted byZ. Notice that the relation< is a strict partial
ordering inK. The pointsQi

1 will be said points of level 0, those atBi
1 of level 1

and so on. Due to the local character of the blowing-up, we do not need to take into
account the order in which the points are blown-up.

We usually denote a configuration byK = {Q1, Q2, . . . , Qn}, bearing in mind
that if Qi < Qj then i < j . K provides a finite sequence of point blowing-ups,
called a modification ofX:

Z = Xn+1
πn−→ Xn −→ · · · −→ X2

π1−→ X1 = X,

πi being the blowing-up atQi . Clearly, a pointQj is infinitely near toQi if πij (Qj ) =
Qi , whereπij is the composition of the maps associated toπ , πij : Xj → Xi .
Furthermore, denote byBi the exceptional divisor that we get after blowing-upXi at
Qi and byEi (resp.,E∗

i ) the strict (resp., total) transform ofBi in Z. We shall say
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thatQj is proximate toQi (denoted byj → i or Qj → Qi) wheneverQj belongs
to the strict transform ofBi in the variety which containsQj .

SetE = ⊕1≤i≤nZEi , the group of divisors ofZ with exceptional support. It is
no difficult to see thatEi = E∗

i − ∑
j→i E∗

j . As a consequence, the set{E∗
i }1≤i≤n

is also a basis ofE and the matrix relative to the bases{Ei} and {E∗
i }, called the

proximity matrix of the configurationK, is given by(pij )1≤i,j≤n, wherepii = 1,
pij = −1 wheni → j andpij = 0, otherwise.

We can associate to each point of a configurationK a nonnegative integer, called
its weight or its virtual multiplicity, giving rise to a weighted configuration. Note that
weighted configurations are usually called clusters.

Assume thatd = 2, K = (K, {vQ}Q∈K) is a weighted configuration andC a
curve onX. Then we can define the virtual transform ofC onXi relative toK as

C̆K
i = (π1 � π2 · · · � πi−1)

∗(C) −
i−1∑
j=1

vQj
E∗

j ,

whenever 2≤ i ≤ n, C̆K
1 = C. The virtual multiplicity ofC at Qi relative toK is

defined to be the multiplicity of̆CK
i atQi . We shall say that the curve goes virtually

(resp., effectively) through the weighted configurationK when the virtual transform
of C on Z is an effective divisor (resp., it coincides with its strict transform onZ).
We usually say thatC goes throughK when it goes virtually throughK.

3. Polyhedrality of the cone of curves

As we have mentioned in the introduction, setX = P
2 := P

2
F , whereF is an

algebraically closed field of characteristic zero. Consider a configurationK =
{Q1, Q2, . . . , Qn} of infinitely near points ofX and the associated modification
π : Z → X. Denote byN1(Z) the commutative group Pic(Z)/ ≡, where≡ denotes
numerical equivalence and setA1(Z) = N1(Z)⊗ZR. Notice that, in our case,N1(Z)

is isomorphic to the group of 1 cycles onZ modulo numerical equivalence and that
on it, we can consider the intersection form which gives onA1(Z) a bilinear form
also denoted by “·”.

Definition 1. We shall define the cone of curves associated to a configuration of
infinitely near points ofX, K, denoted byNE(Z), as the convex cone ofA1(Z)

spanned by the images inA1(Z) of the cosets inN1(Z) of effective curves onZ
modulo numerical equivalence.

Throughout this paper, the numerical equivalence coset inN1(Z) of a divisor
D on Z will be denoted by[D] and by an abuse of notation, we usually identify
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an element in Pic(Z) with its numerical equivalence coset, and also elements (and
their intersection form) inN1(Z) with their natural image (and their bilinear form)
in A1(Z).

Next, we supply two bases of theR-vector spaceA1(Z), which we shall use to
handleNE(Z). LetL be a projective line onX and letL (resp.L∗) be its strict (resp.
total) transform onZ. Then, it is not difficult to show thatB := {[L], [E1], . . . , [En]}
andB∗ := {[L∗], [E∗

1], . . . , [E∗
n]} are bases ofN1(Z) asZ-module and, therefore,

they are bases ofA1(Z) asR-vector space.
We are interested in the polyhedrality of the coneNE(Z). First at all, we study its

extremal rays. In what follows, we shall denote byK either the canonical divisor class
associated to the varietyZ or, by an abuse of notation, its coset modulo numerical
equivalence (or, even, its image inA1(Z)). Moreover, we say that an element in
N1(Z) generates a ray ofNE(Z) when its image inA1(Z) does so. The following
result is an easy consequence of the Riemann–Roch Theorem.

Proposition 1. Let [D] be the coset in N1(Z) of an integral curve D on Z that
generates an extremal ray of the cone NE(Z). Then:

i) The intersection number D · D = D2 satisfies D2 ≤ 0.

ii) It holds that either D2 < 0 or K · [D] ≥ 0, whenever D is the strict transform
on Z of an integral curve C on X and some point in K does not belong to the strict
transform of C on the variety Xi containing it.

Remark. An interesting, but obvious, fact is that ifA is an effective curve onZ, then
there exists finitely many integral curvesC onZ such thatA · C < 0.

Next, we state some straightforward consequences of the above remark:

Remark. Let C be an integral curve onZ such thatC2 < 0. Then:

i) C is the unique integral curve onZ whose coset inN1(Z) generates the ray that
it does.

ii) If, in addition, D is an integral curve onZ different fromC, then the inequality
C · D ≥ 0 holds.

iii) [C] generates an extremal ray of the coneNE(Z).

Furthermore, ifz is an extremal ray of the closure ofNE(Z), NE(Z), such that
z2 < 0, thenz must also be an extremal ray ofNE(Z).

The familyF = {[Ei]}ni=1 is a linearly independent set of theZ-moduleN1(Z).
So, each[Ei] gives rise to an extremal ray of the coneNE(Z) because if[Ei] were
equal to a linear combination (with nonnegative coefficients) of cosets of irreducible
curves onZ, this combination would involve only elements inF .

Since Kawamata’s Cone Theorem (see [5]) asserts that the set of extremal rays
of the coneNE(Z) in the region given byK · z < 0 is discrete, we are interested
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in studying the region ofNE(Z) given byK · z ≥ 0. It is straightforward, from the
remark after Proposition 1, that if there is a curve of degree 3l which goes (virtually)
through the configurationK with multiplicities equal tol, then there are finitely many
images of irreducible curves ofZ in the region given byK · z > 0.

From now on, fix an ample divisorH onZ and assume thatn ≥ 2 (note that when
n = 1, the coneNE(Z) is polyhedral). For any divisorD on Z, setD(1) := {z ∈
A1(Z) | [D] · z = 1} and consider the function

φD : {z ∈ A1(Z) | [D] · z > 0} → D(1),

which mapsz to the intersection point between the hyperplaneD(1) and the line
joining 0 andz. Finally, denote byNE(Z)Y the setNE(Z) ∩ Y , wheneverY be a
subset ofA1(Z).

The following definition gives three sets which will be broadly used along this
paper.

Definition 2. We shall denote byR (R, resp.) the set of extremal rays ofNE(Z)

(NE(Z), resp.). Also set

R0 := {R ∈ R | r2 = 0 for all r ∈ R}.
Remark. SinceNE(Z) is a subset ofRn+1, we can identify each ray ofNE(Z) to
a point in the unit sphereSn in R

n+1. A limit point of R, R or R0 will be the ray
generated by a limit point (inSn) of the set of points inSn that generate rays of the
above cited sets. As a consequence of the compactness ofSn, whichever of the sets
R, R andR0 has a no limit point if, and only if, it is finite.

The following result relates the topology of extremal rays to the polyhedrality of
the coneNE(Z).

Proposition 2. NE(Z) is a polyhedral cone if, and only if, the sets R and R0 are
finite. Furthermore, if this is the case, then R0 is empty.

Proof. It suffices to assume thatR andR0 are finite. Associated to the ample divisor
H , we consider the nonnegative half-cone

V = {z ∈ A1(Z) | [H ] · z ≥ 0 andz2 ≥ 0},
which is contained inNE(Z) (see [4], V.1.8). By Kleiman ampleness criterionNE(Z)

is a strongly convex cone and, thus, a system of representatives which generate the
rays inR constitutes a minimal set of generators ofNE(Z). NE(Z) is spanned by the
elements ofV and the rays inR, and thereforeR ⊆ R ∪V . However,R ∩V = R0

because those elements that generate rays inR have nonpositive self-intersection.
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Hence, above representatives inR form a finite minimal system of generators of
NE(Z).

Finally, by Hodge Index Theorem,V is a half-cone over an Euclidean ball of
dimensionn, which is strictly convex. Therefore,r2 < 0 for all generatorsr of
elements ofR, sinceV is a subset ofNE(Z). Then,R ⊆ R and NE(Z) is a
polyhedral cone. �

As we have seen, limit points of rays inR andR0 help to decide whether the
cone of curves is polyhedral. Therefore we shall give two conditions which must be
satisfied by the generators of these limit points. SetZ+ the positive integers.

Proposition 3. Let r ∈ A1(Z) be an element which generates a limit point R of
whichever of the sets R or R0. Then r2 = 0 and K · r ≥ 0.

Proof. The inequalityK · r ≥ 0 follows from the Kawamata’s Cone Theorem, since
there is no generator of a limit point of the setsR or R0 in the region ofA1(Z) given
by the inequalityK · z < 0.

It only remains to prove thatr2 = 0 whenR is a limit point of rays inR. Let
{Cl}l∈Z+ be a sequence of integral curves inP

2, such that the cosets inN1(Z) of their

strict transforms onZ, [Cl], are distinct and whose corresponding rays belong toR

and converge toR. Taking coordinates of the[Cl]’s in the basisB∗, we obtain the
sequence {

[Cl] = (dl, −el,1, −el,2, . . . , −el,n)
}

l∈Z+
.

After normalizing by the first coordinate, we obtain that the rayr will be given by
the direction

(
1, − lim l→∞ el,1

dl
, . . . , − lim l→∞ el,n

dl

)
.

Now, since for each fixed degree there are finitely many classes inN1(Z) of strict
transforms of integral curves inP2, it is clear that the sequence{dl}∞l=1 diverges.
Finally, the adjunction formula for the strict transforms of the curvesCl proves that

1 + 1

2

(
d2
l −

n∑
i=1

e2
l,i − 3dl +

n∑
i=1

el,i

)
≥ 0.

Dividing by d2
l and taking the limit at the infinite, we concluder2 ≥ 0. Since

Proposition 1 proves that[Cl]2 ≤ 0, it is clear thatr2 = 0. �

Remark. With notations as in the above proof, it is clear that the coordinates
(el,1, el,2, . . . , el,n) are the effective multiplicities at the points of the configuration
K of the curvesCl and so, they satisfy the proximity inequalitiesel,i ≥ ∑

j→i el,j ,
i = 1, 2, . . . , n (see [7]). Dividing bydl , taking limit at the infinite and setting
ri = lim l→∞ el,i

dl
, we get that theri ’s also satisfy the proximity inequalities, that is

ri ≥ ∑
j→i rj .
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Our next result concerns the case when the cardinality of the configuration is
small.

Corollary 1. Assume that the cardinality of a configuration K which defines the
modification π : Z → X is n ≤ 9.

i) If n ≤ 8, then NE(Z) is polyhedral.

ii) If n = 9, then either NE(Z) is polyhedral or there is a unique limit point of
extremal rays of NE(Z) which is given by −K , K being the canonical divisor class
on the variety Z. Furthermore, if K has, at least, two points proximate to another
third one in K , then the cone NE(Z) is polyhedral.

Proof. SetB := {
z ∈ NE(Z) \ {0} | z2 = 0

}
. i) is a consequence of Propositions 2

and 3 and the fact that, in this case,B is contained in the half-space ofA1(Z) given
by K · z < 0 (see the proof of Lemma 1 in [1]).

To prove ii), assume thatNE(Z) is not a polyhedral cone. Taking into account that
B ⊆ {z ∈ A1(Z) | [L∗] · z > 0}, we can consider the image ofB by φL∗ and soR0
has, at most, one point. This follows from Kawamata’s Cone Theorem and the fact
that, inR

9, the hyperplane
∑9

i=1 xi = 3 is tangent to the sphere
∑9

i=1 x2
i = 1 at that

point with all its coordinates equal to 1/3. We finish the proof of the first statement
by observing that Propositions 2 and 3 show thatR has a unique limit point given by
the anticanonical divisor.

Finally, if K has two, or more, points proximate to another third one inK, then
the coneNE(Z) is polyhedral since, otherwise, the coordinates of the unique limit
point ofR must satisfy the proximity inequalities, which is false. �

For any subsetS ⊆ A1(Z), Co(S) stands for the convex cone generated byS.
The following result gives another condition for the coneNE(Z) to be polyhedral.

Theorem 1. The cone NE(Z) is polyhedral if the following condition{
z ∈ NE(Z) | K · z ≥ 0

} ∩ {
z ∈ NE(Z) | z2 = 0

} \ {0}
⊆

⋃
a∈NE(Z)

{z ∈ A1(Z)|a · z < 0}

holds.

Proof. Proposition 3 and the remark after Proposition 1 show that the setR has no
limit points. We only need to prove that the setR0 given at Definition 2 has no limit
points.

Suppose thatR0 has a limit point and look for a contradiction. Letr be a generator
of this limit point. It is clear, by Proposition 3, thatK ·r ≥ 0 and, from the hypothesis,
[A] · r < 0 for some coset[A] of an effective divisorA onZ.
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Let [A] < 0 ([A] ≥ 0, resp.) denote the half-space ofA1(Z) given by[A] · z < 0
([A] · z ≥ 0, resp.). LetT be the set of cosets of integral curves in[A] < 0. T is
finite by the above mentioned remark.

NE(Z) ⊆ Co(T ∪ NE(Z)[A]≥0), becauseT contains the images inA1(Z) of the
integral curves in the half-space[A] < 0 andNE(Z)[A]≥0 contains the remaining
generators. However, Co(T ∪ NE(Z)[A]≥0) is a closed convex cone (it is generated
by a compact set on the hyperplaneH(1)). Then,NE(Z) = Co(T ∪ NE(Z)[A]≥0).
This implies that the extremal rays ofNE(Z) in the half-space[A] < 0 must be
generated by elements ofT and so we are led to a contradiction to the existence
of r. �

Remark. Next, we state an equivalent condition to that given in the above theorem.
It uses the so-callednef cone associated to Z, P(Z). This is the dual cone ofNE(Z)

with respect to the bilinear form induced by intersection theory. The condition is the
following

P(Z) ∩ {
z ∈ A1(Z) | z2 = 0

} \ {0} ⊆ {z ∈ A1(Z) | K · z < 0} ,

and the equivalence to the condition in Theorem 1 is an straightforward consequence
of the above mentioned fact that the half-coneV given in Proposition 2 is a subset of
NE(Z).

Corollary 2. The cone NE(Z) associated to a configuration which contains only
points on the strict transforms of a conic is polyhedral.

Proof. It suffices to apply Theorem 1 after considering the coset associated with the
divisor of the strict transform of the given conic onZ. �

The next result gives a numerical condition for ensuring thatNE(Z) is polyhedral.
The proof only considers the virtual transform onZ of a curveC on X relative to a
weighted configurationK and it uses Lagrange multipliers.

Corollary 3. Assume that the cardinality of a configuration K is n larger than 9,
and that a curve C on P

2 of degree d goes through a weighted configuration K =
(K, {vQi

:= vi}), such that not all the vi’s are equal. Define

δj := 3

∑n
i=1 v2

i + µjd
∑n

i=1 vi

d
∑n

i=1 vi + nd2µj

, j ∈ {1, 2},

where µj (j = 1, 2) are the roots of the quadratic equation

d2(9 − n)nx2 + 2d(9 − n)

n∑
i=1

vix + 9
n∑

i=1

v2
i −

( n∑
i=1

vi

)2 = 0.

Then NE(Z) is polyhedral, whenever min{δ1, δ2} > 1.
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Example. Let us take homogeneous coordinates(X, Y, Z) on P
2, the point

O = (0, 0, 1) and the standard affine chart ofA
2 given by Z �= 0. We write

x = X/Z, y = Y/Z and consider a configurationK of ten points such that each
of these points belongs to the last created divisor and it contains the base points of
the ideal(x4, y)OP2,O . The quarticY 4 = 0 goes virtually through the weighted
configuration(K, {2, 2, 2, 2, 2, 2, 1, 1, 1, 1}). Applying Corollary 3, we obtain that
the cone of curves associated toK is polyhedral, since min{δ1, δ2} � 1.07 > 1.

We desire to give conditions easier to apply which guarantee that the cone of
curves associated to a plane configurationNE(Z) is polyhedral. To this purpose, we
consider the image ofP(Z)∩{z ∈ A1(Z) | z2 = 0} \{0} by certain map with values
in R

n and an explicit cone onRn that contains it. This fact, jointly the inclusion given
in the remark under Theorem 1, will provide the condition asked for.

Let G be a hyperplane inRn defined by the equationg(x) = 0, x ∈ R
n, we shall

standG+ for the half-space inRn given byg(x) ≥ 0.

Definition 3. Let K = {Q1, Q2, . . . , Qn} andπ be as above. The convex cone in
R

n given by the intersection of the half-spaces
⋂n

i=1 H+
i , whereHi = {

x ∈ R
n |

xi − ∑
j→i xj = 0

}
, x = (x1, x2, . . . , xn), is called proximity cone associated toK,

PC(Z).

Next, we obtain explicitly the extremal rays of PC(Z). DenoteIn := {1, 2, . . . , n}.
Proposition 4. The extremal rays of the proximity cone PC(Z) associated to a mod-
ification π : Z → X given by a configuration K are generated by the vectors
ek = (e1k, e2k, . . . , enk) (1 ≤ k ≤ n) such that eik = 0, whenever i > k, eii = 1 and
eik = ∑

j |k→j ;j≥i eij if i < k, i, j, k ∈ In.

Proof. For eachk ∈ In, denote byLk the line onR
n, Lk = ⋂

j �=k Hj . It is clear that
the extremal rays of the cone PC(Z) are generated by vectors with positive coordinates
determined by the linesLk. Consider the(n − 1) × n matricesAk = (aij ) where
i ∈ In \ {k} andj ∈ In, given byaii = 1, aij = −1 whenj → i andaij = 0
otherwise.Lk is the solution of the linear system of equations

Akx
t = 0, (1)

x = (x1, x2, . . . , xn) being a variable vector inRn. SetAD
k the submatrix ofAk

gotten by deleting thekth columnak in Ak. Denote bybk the column vector obtained
by deleting thekth coordinate to the vector−ak. Thus, the linear system of equations
(1) can be written

AD
k (xD

k )t = xkb
k, (2)

wherexD
k is the variable vector inRn−1 obtained after deleting tox thekth coordinate.

ClearlyAD
k is a regular matrix. Set(AD

k )−1 = (sij )i,j∈In\{k}, then the linear system
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of equations (2) can be expressed(xD
k )t = xk[(AD

k )−1bk]. Whence the vectorx is a
solution of (1) if and only if fori ∈ In \ {k}, xi = ( ∑

j |k→j sij
)
xk. Therefore, the

equalitieseik = ∑
j |k→j sij if i �= k andekk = 1 give the coordinates of a generator

of the extremal ray relative toLk.
It is clear thateik = 0 wheneveri > k. On the other hand, it is straightforward

that the entries of the matrix(AD
k )−1 satisfy the following relations:sii = 1, sij = 0

if i > j , and sij = ∑
l|j→l sil otherwise. So, fori < k, eik = ∑

j |k→j sij =∑
j |k→j

∑
l|j→l sil . Since the last sum of the righthand of the second equality equals

eij andeij = 0, wheneverj < i, we conclude the proof. �

The above given generators of the extremal rays of PC(Z) will be useful to know
whenNE(Z) is polyhedral. Therefore, we give an easy way of computing the data
eij which depends on a concept given in the following

Definition 4. Let K be a configuration andP andR points inK such thatP < R.
A proximity chain fromR until P is a finite sequence of points inK, {Pi}li=0 such
that

R = Pl → Pl−1 → · · · → P0 = P.

To understand easily the meaning of each coordinateeik of the vectorek, we can
consider the chain of points in the configurationK of the form

Qi = P0 < P1 < · · · < Pl = Qk. (3)

It is clear that the number of proximity chains inK fromQk until Qi can be computed
as the sum of the number of proximity chains untilQi from those pointsP in the
chain such thatQk → P . Then, proceeding by induction on the lengthl of the chain
(3) and taking into account the formula foreik given in Proposition 4, we can state
the following

Proposition 5. Let K = {Q1, Q2, . . . , Qn} be a configuration. Then, the coordinate
eik of the generator ek of an extremal ray of the proximity cone PC(Z) counts the
number of proximity chains in K from Qk until Qi .

Finally, we state our announced result which gives a condition for the coneNE(Z)

to be polyhedral.

Theorem 2. Let K be a configuration of infinitely near points over X, which gives a
modification π : Z → X. Let G = (gls) be the n × n matrix defined by

gls = 9
n∑

i=1

eileis −
( n∑

i=1

eil

)( n∑
i=1

eis

)
,
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where ek = (e1k, e2k, . . . , enk) (1 ≤ k ≤ n) are the coordinate vectors that span the
extremal rays of the cone PC(Z) given in Proposition 4. Then, the cone NE(Z) is
polyhedral if xGxt > 0 for all vector x ∈ R

n \ {0}, such that all its coordinates are
nonnegative.

Proof. Consider the setsU0 = {z ∈ A1(Z) | [L∗] · z > 0} and

Y = {z ∈ A1(Z) | [Ei] · z ≥ 0, 1 ≤ i ≤ n},
the homeomorphismh : L∗(1) → R

n, given by(1, x1, . . . , xn) �→ (−x1, . . . , −xn),
and the composition mapµ = h � φL∗ , whereφL∗ is the function defined after
Proposition 1.

Then, it is clear thatY ∩ U0 containsP(Z) \ {0} andµ(Y ∩ U0) = PC(Z) (the
proximity cone associated to the configurationK). As a consequence, the following
inclusion

µ
(
P(Z) ∩ {

z ∈ A1(Z) | z2 = 0
} \ {0}) ⊆ PC(Z) ∩ Sn−1

holds,Sn−1 being the unit sphere inRn. The complement inRn of the setµ({z ∈
A1(Z) | K · z < 0} ∩ U0) is the setK+ = {(x1, . . . , xn) ∈ R

n | ∑n
i=1 xi ≥ 3}. So,

applying the condition given in the remark under Theorem 1, it suffices to check that
the set PC(Z) ∩ Sn−1 ∩ K+ is empty to prove that the coneNE(Z) is polyhedral.

Now, each vectorα = (αi)
n
i=1 in R

n of nonnegative coordinates provides an
element in PC(Z),

∑n
k=1 αkek, denoted byrα. So, the elements inSn−1 ∩ PC(Z) are

of the formrα / ‖ rα ‖, where‖ · ‖ denotes the norm‖ · ‖2 in R
n. ThenNE(Z) is

polyhedral if

rα/ ‖ rα ‖∈
{
x ∈ R

n |
n∑

i=1

xi < 3
}
, (4)

for all α ∈ R
n \ {0} of nonnegative coordinates. To end the proof, we shall show that

the hypothesis of the theorem guarantees the property (4). In fact,G is a symmetric
matrix and it defines a quadratic formg which can be expressed by

g(x) = xGxt = 9
n∑

i=1

( n∑
k=1

eikxk

)2 −
( n∑

i,k=1

eikxk

)2

and the conditiong(α) > 0 for all vectorα �= 0 of nonnegative coordinates proves
(4) by taking positive square root, which concludes the proof. �

Example. In Figure 1, we depict the proximity graph of a configurationK that
satisfies Theorem 2 (see the matrixG below) and so its associated coneNE(Z) is
polyhedral. The vertices of the graph represent the points ofK. Edges join proximate
points. An edge joiningP andR (P > R) is a continuous straight line wheneverP
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Figure 1. The proximity graph ofK

is in the first infinitesimal neighborhood ofR, otherwise it is a dotted curved line.

G =




8 7 14 13 12 11 10 9 9 12 11
7 14 19 17 15 13 11 9 9 15 13

14 19 38 34 30 26 22 18 18 30 26
13 17 34 38 33 28 23 18 18 33 28
12 15 30 33 36 30 24 18 18 27 21
11 13 26 28 30 32 25 18 18 21 14
10 11 22 23 24 25 26 18 18 15 7
9 9 18 18 18 18 18 18 9 9 0
9 9 18 18 18 18 18 9 18 9 0

12 15 30 33 27 21 15 9 9 36 30
11 13 26 28 21 14 7 0 0 30 32




.

Remark. Theorem 2 gives a condition, depending on proximity, that ensures the
polyhedrality of the cone of curves associated with a configurationK, and this also
happens when the cardinality ofK is smaller than 9. So, it would be interesting
to give an answer, improving that of Theorem 2, to the following question: Given
r ≤ 8 and proximity graphs�1, �2, . . . , �r of local configurations, when is it true that
NE(Z) is polyhedral for any configurationK with points of level 0,P1, P2, . . . , Pr

and proximity graphs�1, �2, . . . , �r respectively atP1, P2, . . . , Pr?
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Next, we shall assume that the configurationK is a chain configuration, that
is, each pointQi in K belongs to the divisor created after blowing-upQi−1 for all
indicesi. In this case, we shall show that Theorem 2 provides an easy condition
to decide whether the coneNE(Z) is polyhedral. Firstly, we state two supporting
results. The first one does not need the configuration to be a chain.

Lemma 1. With notations as in Theorem 2, the elements of the matrix G = (gls) are
related by the following equalities,

gls =
∑

j |l→j

gjs + 9els −
n∑

i=1

eis .

Proof. If follows from the following chain of equalities

gls = 9
l−1∑
i=1

eileis + 9els −
( l−1∑

i=1

eil + 1
)( n∑

i=1

eis

)

= 9
l−1∑
i=1

∑
j |l→j

eij eis −
( l−1∑

i=1

∑
j |l→j

eij

)( n∑
i=1

eis

)
+ 9els −

n∑
i=1

eis

=
∑

j |l→j

[
9

l−1∑
i=1

eij eis −
( l−1∑

i=1

eij

)( n∑
i=1

eis

)]
+ 9els −

n∑
i=1

eis

=
∑

j |l→j

gjs + 9els −
n∑

i=1

eis,

where the second equality holds by applying Proposition 4 and the last one is true
sincel → j impliesj < l. �

Lemma 2. Let K be a chain configuration and G = (gls) the matrix associated to
K given in Theorem 2. If gnn > 0, then all the entries of the matrix G are positive.

Proof. We shall reason by contradiction. For each indexs (1 ≤ s ≤ n), define
�s = {i ∈ {1, . . . , n} | gis ≤ 0} and assume that�s �= ∅ for some fixed indexs.
Consideri0 the minimum element in�s . In the proof, we shall use the following
two properties which are easily deduced from the formula that Lemma 1 gives for the
elementgi0s (which, we know that it is not positive).

• Property 1. If the pointQi0 is proximate toQk then,

gks + 9ei0s −
n∑

i=1

eis ≤ 0.
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• Property 2. 9ejs − ∑n
i=1 eis ≤ 0 for all j ≥ i0.

Notice that Property 2 holds since it is true forj = i0 by Lemma 1 and moreover
ejs ≤ eis if j ≥ i.

Now, we shall prove thatgjs ≤ 0 for all j ≥ i0. It shows thatgns ≤ 0 and this
will conclude the proof since ifs = n we are led to a contradiction and otherwise
gsn ≤ 0 becauseG is a symmetric matrix and thus the same procedure forn instead
s provesgnn ≤ 0 which is a contradiction.

We can assume thati0 < n and, for proving the above inequalities, we shall
use the following inductive procedure: First, we shall prove the basic step, that is
gi0+1,s ≤ 0, and after the inductive step, where we shall showgl+1,s ≤ 0 whenever
gl,s ≤ 0 for all positive integerj such thati0 + 1 ≤ j ≤ l.

To do the basic step, we distinguish two cases: Case 1 which occurs when there
exists an indexk (1 ≤ k < i0 < n) such that the pointQi0+1 is proximate toQk (and
obviously,Qi0 is also proximate toQk) and the complementary of Case 1, which we
shall refer as Case 2.

In Case 1 we get,

gi0+1,s = gks + gi0s + 9ei0+1,s −
n∑

i=1

eis ≤ gks + gi0s + 9ei0,s −
n∑

i=1

eis ≤ 0.

And in Case 2,

gi0+1,s = gi0s + 9ei0+1,s −
n∑

i=1

eis ≤ 0.

In both cases the equality is given by Lemma 1. In Case 1, the first inequality holds
sinceK is a chain configuration. Finally, the factgi0s ≤ 0 and the above given
Property 1 (resp., 2) for the Case 1 (resp., 2) conclude the proof of the basic step.

Finally, we show the inductive step. Supposegjs ≤ 0 for i0 < j ≤ l < n, we
shall see thatgl+1,s ≤ 0. Here, we need to distinguish three cases:

i) There exists an indexk (1 ≤ k < i0 < n) such that the pointQl+1 is proximate
to Qk (in such case the pointQi0 is also proximate toQk). Then,

gl+1,s = gks + gls + 9el+1,s −
n∑

i=1

eis ≤ gls + gks + 9ei0s −
n∑

i=1

eis ≤ 0.

ii) There exists an indexk (1 ≤ i0 ≤ k < l) such that the pointQl+1 is proximate
to Qk. Then,

gl+1,s = gks + gls + 9el+1,s −
n∑

i=1

eis ≤ 0.
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iii) The pointQl+1 is only proximate toQl . Then,

gl+1,s = gls + 9el+1,s −
n∑

i=1

eis ≤ 0.

This ends the proof by noticing that we have applied Lemma 1 in all cases,
Property 1 in case i) and Property 2 in cases ii) and iii), and the inductive hypothesis
in all cases which asserts thatgls ≤ 0 in cases i) and iii), and thatgks ≤ 0 andgls ≤ 0
in case ii). �

We have obtained an interesting consequence for the associated matrix to chain
configurationsK: The conditionxGxt > 0 for all vectorx ∈ R

n \ {0}, with non-
negative coordinates, is equivalent to the factgnn > 0. Thus, we have proved the
following

Proposition 6. Let K be a chain configuration whose associated date gnn given in
Theorem 2 is strictly positive. Then, the cone of curves NE(Z) relative to K is
polyhedral.

Finally, we state some consequences of Proposition 6, which allow to conclude
that the statement on this proposition is not trivial.

Corollary 4. Let K = {Q1, . . . , Qn} be a chain configuration and let B be a germ
of analytically irreducible plane curve which goes through the points in K with effec-
tive multiplicities m1, . . . , mn satisfying the proximity equalities and 9

∑n
i=1 m2

i −(∑n
i=1 mi

)2
> 0. Then, the cone of curves associated to K is polyhedral.

Proof. It follows from the fact that the vector of effective multiplicities ofB is a
multiple of the vectoren in Theorem 2, because it determines the only direction
satisfying the proximity equalities. So, the condition given in the statement of the
corollary on the multiplicitiesmi impliesgnn > 0 and the result. �

Corollary 5. Let O be a closed point of P
2, {x, y} local coordinates at O and

K = {Q1 = O, Q2, . . . , Qn} the chain configuration corresponding to the mini-
mal embedded resolution of an analytically irreducible germ of plane curve at O

with a unique characteristic pair (β0, β1). Then, the cone of curves associated to
the configuration K is polyhedral if the pair (β0, β1) satisfies one of the following
conditions:

(1) β1 ≡ 1 (mod β0), β0 ≤ 8 and β1 < 8β0.
(2) β1 ≡ 1 (mod β0), β0 ≥ 9 and β1 < 7β0.

(3) β1 �≡ 1 (mod β0) and β1 < 1 + 7
2β0 + 3

2

√
4β0 + 5β2

0 .
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Proof. Let (
k1 times︷ ︸︸ ︷

w1, . . . , w1,

k2 times︷ ︸︸ ︷
w2, . . . , w2, . . . ,

ks times︷ ︸︸ ︷
ws, . . . , ws) be the sequence of multiplic-

ities of the germ at the points of the configurationK. Then,

w1 = β0, k1 =
⌊

β1

β0

⌋
, w2 = β1 −

⌊
β1

β0

⌋
β0, ws = 1, (5)

where�·� means the floor (or the integer part) function, and clearly one gets the
following recurrence relations:

ws−1 = ks, wi = ki+1wi+1 + wi+2 (1 ≤ i ≤ s − 2). (6)

By Corollary 4, for the cone of curves associated toK to be polyhedral, we only need
to check when

9
s∑

i=1

kiw
2
i −

( s∑
i=1

kiwi

)2
> 0. (7)

To do it, we distinguish two cases:
i) β1 ≡ 1 (mod β0). Here, s = 2, k2 = β0 and, then, the condition (7) is

equivalent to the following one:

−β0

⌊
β1

β0

⌋2

+ 7β0

⌊
β1

β0

⌋
+ 9 − β0 > 0,

which is true if, and only if,β0 andβ1 satisfy the formulae in 1 or 2 of the statement.
ii) β1 �≡ 1 (mod β0). By using the conditions (6), one gets that (7) is equivalent

to the following inequality:

9(w1w2 + k1w
2
1) − (w1 + w2 + k1w1 − 1)2 > 0,

and by means of the equalities (5), this inequality is true if, and only if,

9β0β1 − (β0 + β1 − 1)2 > 0,

which happens only when the formula in 3 of the statement holds. �

Corollary 6. Let K = {Q1, . . . , Qn} a chain configuration whose proximity graph
is that of the following figure with g ≥ 1 dotted curved lines (its Dynkin diagram has
g stars). Then, the cone of curves associated to K is polyhedral.

Proof. It follows from Proposition 6 since the vector(e1n, . . . , enn) corresponding
to this configuration is(2g, 2g−1, 2g−1, . . . , 2, 2, 1, 1), whereg = (n − 1)/2. �
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Figure 2. Proximity graph of Corollary 6
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