Comment. Math. Helv. 80 (2005), 51-61 Commentarii Mathematici Helvetici
© Swiss Mathematical Society

Reidemeister torsion, twisted Alexander polynomial and fibered
knots

Hiroshi Goda, Teruaki Kitarfoand Takayuki Morifuji

Abstract. As a generalization of a classical result on the Alexander polynomial for fibered
knots, we show in this paper that the Reidemeister torsion associated to a certain representation
detects fiberedness of knots in the three sphere.
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1. Introduction

As is well-known, the Alexander polynomial of a fibered knot is monic (see [13], [14],
[16]). That s, the coefficient of the highest degree term of the normalized Alexander
polynomialis aunit le Z. By the symmetry (or duality) of the Alexander polynomial,
its lowest degree term is also one. This criterion is sufficient for alternating knots
[12] and prime knots up to 10 crossings [4] for instance. However, in general, the
converse is nottrue. Infact, there are infinitely many non-fibered knots having monic
Alexander polynomials. If we remember here Milnor’s result [9], we have to remark
that these claims on the Alexander polynomial can be restated by the Reidemeister
torsion.

The purpose of this paper is to give a necessary condition that a ksiisifibered
by virtue of the Reidemeister torsion associated to a certain linear representation.
More precisely, we show that the Reidemeister torsion of a fibered knot defined for a
certain tensor representation is expressed as a rational function of monic polynomials.
This Reidemeister torsion is nothing but Wada's twisted Alexander polynomial (see
[7] for details), so that our result can be regarded as a natural generalization of the
property on the classical Alexander polynomial mentioned above.

This paper is organized as follows. Inthe next section, we review the definition of
Reidemeister torsion over a field Further we describe how to compute itin the case
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of knot exteriors. The point of our method here is that the notion of monic makes sense
for the Reidemeister torsion associated to a tensor representation of a unimodular
representation ovelf and the abelianization homomorphism. In Section 3, we state
and prove the main theorem of this paper. The final section is devoted to compute
some examples.

We should note here that there is a similar work by Cha [1]. The notion of
Alexander polynomials twisted by a representation and its applications have appeared
in several papers (see [2], [6], [8], [18]).

2. Reidemeister torsion

In this section, we review the definition of Reidemeister torsion over a fidkke
[3] and [10] for detalils).

Let V be anrn-dimensional vector space ovEér and leth = (bs, ..., b,) and
¢ = (c1,...,cp) be two bases foV. If we putc¢; = Z’]?:laijbj, we have a
nonsingular matrixA = (a;;) with coefficients inF. Further let[b/c] denote the
determinant ofA.

Now let us consider an acyclic chain complex of finite dimensional vector spaces
over[F:

Om O — pi]
Coi 00— Cp -2 Cpog 298 . 5 C1 -2 Cp—> 0.

We assume that a preferred basjdor C, (C.) is given for anyg. Choose any basis

b, of B,(C,) and take its lift inC, +1(C,), which we denote bitq.
Since the natural inclusion map

By(Cy) — Z4(Cy)
is anisomorphism, the bagig can serve as a basis 6y (C,). Similarly the sequence
0— Z,(Cy) —> Cy(Cy) —> By_1(Cy) — 0O

is exact and the vecto(®,, l~)q,1) form a basis foiC, (C,). Itis easily shown that
[by, Eq,l/cq] is independent of the choices ia,j,l. Hence we may simply denote
it by [by, by—1/c4].

Definition 2.1. The torsion of the chain compleX, is defined by the alternating
product

H[bqa bq—l/cq](_l)q+l
q=0
and we denote it by (C,).
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Remark 2.2. The torsiont (C,) depends only on the bases . . ., ¢.

Now let us apply the above torsion to the following geometric situations XLet
be a finite cell complex and the universal covering ok with the right action of
w1 X as deck transformations. Then the chain comm—:-xf(, 7Z) has a structure of
right freeZ[mr1X]-modules. Let

po:mX — GL(@n, F)

be a linear representation. We may regerds a1 X-module by using and denote
it by V,. Define the chain comple&. (X, V,) by C«(X, Z) ®z(x,x] V, and choose
a preferred basis

{o1®e1,01®e€2,...,01@¢€y,...,0k, Qe1,...,0k @ ey}

of C4(X, V,), wherefey, ..., e,} is a basis oV andoy, .. ., Ok, areg-cells giving
the preferred basis @, (X, Z).

Now we assume that,(X, V,) is acyclic, in other words, all homology groups
H.(X, V,) vanish. In this case, we callan acyclic representation.

Definition 2.3. Let p: 11X — GL(n, F) be an acyclic representation. Then Rei-
demeister torsion ok with V,-coefficients is defined by the torsion of the chain
complexC«(X, V,). We denote it byt, (X).

Remark 2.4. Itis known thatr, (X) is well-defined as a PL-invariant, for an acyclic
representatiop: 71X — GL(n, IF), up to a factoetd whered € Im(deto p) C F*.

As a reference, see [10], Section 8. We can easily make a refinement of the above
argument for our situation.

Here let us consider a kndf in S3 and its exteriorE. For the knot group
7 K = w1 E we choose and fix a Wirtinger presentation

PxK)={(x1,...,xy | "1, ..., y—1).

Then we can construct a 2-dimensional cell comptekom P ( K) such thatE
collapses taX. The abelianization homomorphism

a: K - H(E,Z) = Z = {t)

is given by
a(xy) = - =alx,) =t.

Furthermore, we always suppose that the image of a representatiark —
GL(n, F) is included in Sl(n, ).
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These maps naturally induce the ring homomorphignasnda from Z[z K] to
M (n, F) andZ[r*1] respectively, whera/ (n, F) denotes the matrix algebra of degree
n overF. Thenp ® @ defines a ring homomorphism

ZInK]— M (n, F[t*1]).
Let F,, denote the free group with generateis. . ., x, and denote by
®: Z[F,] — M (n, F[1*Y)

the composite of the surjecti®i F,,] — Z[n K] induced by the presentation and the
mapZ[r K1 — M(n, F[t*1]) given byp ® a.
Let us consider théx — 1) x u matrix M whose(i, j)th componentis the x n

matrix 3
® (—r> M (n, F[t*1) |
0x;j

Where% denotes the free differential calculus. This matixs called the Alexander
matrix of the presentatioR (w K) associated to the representatjman

For 1< j <u, letus denote by/; the (u — 1) x (u — 1) matrix obtained from
M by removing thejth column. We regard/; as a(u — 1)n x (u — 1)n matrix with
coefficients inF[+*1].

Now let us recall that the tensor representation

p®a: 1K — GL(n,F(t))

is defined by(p ® a)(x) = p(x)a(x) for x € 7K. HereF(¢) denotes the rational
function field ovelif® and letV be then-dimensional vector space ovéfr). Hereafter,
we denote the Reidemeister torsigyg, (E) by 7,00 K .

Theorem 2.5. All homology groups H,.(E, V,g¢) Vanish (namely, p ®« isanacyclic
representation) if and only if detM; # O for some j. In this case, we have

deth

ot = Getd(x; — 1)

forany j (1 < j < u). Moreover, 7,5, iswell-defined up to a factor +1"% (k € 7)
if n isodd and up to only % if n is even.

Proof. The firsttwo assertions are nothing but [7], Proposition 3.1. The independence
on j follows from [7], Lemma 1.2.

Next, if we consider well-definedness up40* (k € Z), we only have to recall
Remark 2.4. The image of

deto(p @ ): 1K — GL(n,F(t)) — F()*
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is just {t"*|k e Z}, because Imp is included in Sl(n, F). Therefore the claim
immediately follows. Here if we take an even dimensional unimodular representation,
Tpeq IS Well-defined up ta”X (see also [3] for details). O

Remark 2.6. This theorem asserts that the twisted Alexander polynomial [18] of a
knot is the Reidemeister torsion of its knot exterior (see [7] for details). This is a
generalization of Milnor's theorem in [9]. Recently this framework extended to more
general situations by Kirk—Livingston in [6].

Remark 2.7. Assume thap is a homomorphism to Sk, R) over a unique factor-
ization domaink and the knot group K has a presentation which is strongly Tietze
equivalent to a Wirtinger presentation of the knot. Then Wada shows in [18] that
the twisted Alexander polynomial of the knot associated te well-defined up to a
factor+:"% (k e Z) if n is odd and up to only™* if n is even.

Remark 2.8. Ifthere is an element of the commutator subgroup #fK such that 1
is not an eigenvalue ¢f(y), thent,g, becomes a “polynomial” (see [18]). Namely
detM; is divided by detb (x; — 1).

3. Main theorem

In this section, we give a necessary condition that a Kadh S° is fibered. A
polynomiala,,t™ + - - - + a1t + ag € F[¢] is called monic if the coefficient,, is one.

We then see from Theorem 2.5 that the notion of monic polynomial makes sense for
the Reidemeister torsion.

Theorem 3.1. For afiberedknot K in $3 and aunimodular representationp: 7 K —
SL(2n, F), the Reidemeister torsion 7,5, K is expressed as a rational function of
monic polynomials.

Proof. By using the fiber bundle structure, we can take the following presentation of
TK:
P(K) = (x1, ..., %20, h | rj = hxih Ygu(x) ™, 1< i < 2g),

wherexy, . .., x, is a generating system of the fundamental group of the fiber surface
of genusg, / is a generator fos!-direction corresponding to the meridian&fand

@, denotes the automorphism of the surface group induced by the monodromy map
¢. Here the abelianization homomorphismmz K — Z = (t) is given by

alxy) =---=a(xz) =1 and a(h) =t1.

This presentation of K allows us to define another 2-dimensional cell complex
Y instead of a cell compleX constructed from a Wirtinger presentationsok.
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Namely, it has only one vertexg2+ 1 edges, andg2-cells attached by the relations
of P(mK). Itis easy to see that there exists a homotopy equival¢ncé — Y.
From the result of Waldhausen [19], the Whitehead groug Ak is trivial for a
knot group in general. Thus the Whitehead torsiory'dé also the trivial element
in Wh(zr K). This implies that the homotopy equivalence m@ajnduces a simple
homotopy equivalence front' to Y. Since the Reidemeister torsion is a simple
homotopy invariant, we can compute the Reidemeister torsidn as the one of
as follows. Thatis, we may use the previous presentalionk ) to computer, g, K
by means of Theorem 2.5.

Let us consider the “big” 2 x 2¢ matrix M whose(i, j)th component is the
2n x 2n matrix

® (ﬂ) € M(2n, F[r1)).
0x;

We then see that the diagonal componentois

o (a_> o (h ) awi))
8x,- axi

0 EACY)
=i -5 ()

and the coefficient of the highest degree term of®l€tr; /dx;) is just deto(h) = 1.
Further other componends(dr; /dx;) (i # j)do notcontain, so that the coefficient
of the highest degree term of d#ftis also one.

On the other hand, the denominator is given by

detd(h — 1) = det(rp(h) — I)
= (detp(h)1®" — (tr p())r*" * + -+ 1
=1+ + 1

wherel denotes the identity matrix. Moreoverjs an even dimensional representa-
tion, so we see thay,g, K is well-defined up to a facta®® (k € Z). This completes
the proof. O

Remark 3.2. If we can show directly that the presentatiBiyr K) in Theorem 3.1 is
strongly Tietze equivalent to a Wirtinger presentatiokothen Theorem 3.1 follows
without using the result of Waldhausen (see Remark 2.7).

Remark 3.3. If Fis a subfield of the real number field, then the Reidemeister torsion
T, K for any knotk and any representatiogn: 7 K — SL(2, F) is symmetric.
Namely, t,q, K is invariant under the transformation— =1 up to a factort®

(k € Z). Such a duality theorem appears originally in [9]. See also [6], [7] and [11]
for related works.
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4. Examples
Example4.1. LetK be the figure eight knoti4 This is one of the well-known genus

one fibered knots i52. The fundamental group of the exterior has a presentation

7K = (x,y|zxz 7,

1

wherez = xtyxy~Ix~1 Letp: 7K — SL(2, C) be a noncommutative represen-

tation defined by

peo=(g 1) and er=(2, 9).

wherew is a complex number satisfying? + » + 1 = 0. As pointed out by Wada

in [18], it is convenient to use relations instead of relators for the computation of
the Alexander matrix. Thereby applying free differential calculus to the relation
r:zx = yz, We obtain

1 1.-1

or _ _ _ _ _ 1
= —X 1+x 1y+yx —yXx 1y—|—yx ly)cy X .

Fy

Thus we have the matrix

ar —(w+Dt+ow+2—t1t  t+w-—2+11
M2= O — - -11-
ox (w—Dt—w+1 —(w+ Dt +3—1¢

Then the numerator of,g, is given by

detM, =t 2(t* — 613 + 0% + 0?2 + 112 — 6t + 1)
=172t — 1)2(t% — 4t + 1).

On the other hand, the denominatorrgg, is given by
det®(y — 1) = dettp(y) — 1)
= det <t—_a);[ 1 B 1)
= (t — 1>
Therefore the Reidemeister torsion of the figure eight kKaas
ToouK =12 — 41 + 1,

and this is in fact a monic polynomial.
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Example4.2. Let KT be the Kinoshita—Terasaka knot [5]. It is well-known that
KT is one of the classical examples of knots with the trivial Alexander polynomial.
The knot grouprKT has a presentation with four generatats. . ., x4 and three
relations [18]:

ri: xlxle_l = x4x2x4x2_1x4_1,
F2: X4x2X, 1_ Xy 1X3x1x3_ 1xzx1x2_ 1x3x1_ 1x§ 1x2,
F3: X1X3X1 1 X4X3X4X3 1x4_ L

Applying free differential calculus, we have

ory 1 ory or1

— =1-xixox;", —=x1—x4+ X4X2X4x2_1, — =0,
0x1 d0x2 0x3
aro
-1 -1 -1 -1 -1 -1 -1
8_x1 = —X5 X3 — X, "X3X1X3 X2 + X5 TX3X1X3 “X2X1Xp X3Xq T,
ar2 11 1, o 1 1
8_ = X4+ Xy T — Xo TXBX1Xg T+ Xy TX3X1X3 TX2X1X,
X2
-1 -1 -1 -1 -1
— X5 TX3X1X3 X2X1XH TX3X{ X3,
aro _ _ _ . . _
8_x3, =X 1 + x5 lX3x1x3 1 Xy 1X3x1x3 1x2x1x2 1
-1 -1 -1 -1 -1
+ X, TX3X1X3 TX2X1X, X3Xq X3,
ors3 _ ors or3 _
— =1-—x1x3x; 1, — =0, — =x1— x4+ x4x3x4%3 1
0x1 0x2 0Xx3

Let p: KT — SL(2, Fs5) be a noncommutative representation over the finite
field F5 defined as follows:

p(xl):<2 i) p(xz):(i ‘11) p(x3)=<2 1) and p(x4>:<§ ‘2‘)

Then we obtain

F+1 ¢ ¢ 242t 0 0
2t t+1 42 4t 4t 0 0
1 44+3 1424+t 41 434471 4471
4  2t+1 r+14+41 33 +4 2a4+44+1 441
1 4 0 0 3241 2024+ 2
t 4r+1 0 0 42 +¢ 32 + 4

My =
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Therefore the Reidemeister torsion of KT is given by

detMy
detd(xg — 1)

OB+ T+ 5+ 4P+ 3+ 43+ 2+ 1+ 4
- 244+ 1
=4+ 2 + 3+ 2% 4

‘L'p®a KT =

This is well-defined up to a facta’* (k € Z), so that we may conclude that the
Kinoshita—Terasaka knot KT is not fibered.

Example 4.3. Let K be the knot illustrated in Figure 1. The normalized Alexander
polynomial of K is equal to the monic polynomiaf — 73 + 2 — r + 1. The knot
groupn K has a presentation with seven generatgrs. ., x7 and six relations:

ri: Xox1 = x3x2x1xzx1_1x2_1,

r2: XeXs5Xg 1_ X4X3X1 1x3x1_ lX3x1x§ lx1x3_ lxlxg 1x4_ 1,

r3: XgX7Xg 1o X4X3X1 1x3x1_ 1X3x1x3_ 1x1x3_ 1x4_1,
. -1 -1
r4: XsXgXg & = X7X2X7 ",

r5: X2XgXy 1_ X3X2X1X2X{ lxz_ lxg lchgxlexz_ 1xl_ lxz_ 1x§ l,

r6: x5x4x71X7 = x7x3x2x1x2x71x71x71.
5 1 %2 73

Figure 1

Letp: 7K — SL(2, F5) be a noncommutative representation dvedefined as
follows:

0 2 1
p<xﬂ=(é 1) p(xz)=<}1 2) p(xe,)=<f1 1), ,O(x4)=<4 0),
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p<x5>=<i g) p(xe)=<f i) and p(x7>=(é ‘11)

By the same method as in previous examples, we have the following Reidemeister
torsion ofK:
detM7
~ detd(x7 — 1)
2@+ 43+ 1% 4 4+ 3)
B 2+3t+1
=32+3

TrQua

Hence this knoK is not fibered.

We use Kodama’s program “KNOT” and Wada’s program to compute these ex-
amples. The former is to obtaivi-data (see [17]) from a knot projection, which serve
as necessary input data for Wada’s program. The latter one is to compute unimod-
ular representations over finite fields of knot groups frvadata. Here we should
remark that Kodama’s program works on Linux while the program of Wada works
on Macintosh.
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