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Reidemeister torsion, twisted Alexander polynomial and fibered
knots

Hiroshi Goda, Teruaki Kitano∗ and Takayuki Morifuji∗

Abstract. As a generalization of a classical result on the Alexander polynomial for fibered
knots, we show in this paper that the Reidemeister torsion associated to a certain representation
detects fiberedness of knots in the three sphere.
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1. Introduction

As is well-known, theAlexander polynomial of a fibered knot is monic (see [13], [14],
[16]). That is, the coefficient of the highest degree term of the normalized Alexander
polynomial is a unit 1∈ Z. By the symmetry (or duality) of theAlexander polynomial,
its lowest degree term is also one. This criterion is sufficient for alternating knots
[12] and prime knots up to 10 crossings [4] for instance. However, in general, the
converse is not true. In fact, there are infinitely many non-fibered knots having monic
Alexander polynomials. If we remember here Milnor’s result [9], we have to remark
that these claims on the Alexander polynomial can be restated by the Reidemeister
torsion.

The purpose of this paper is to give a necessary condition that a knot inS3 is fibered
by virtue of the Reidemeister torsion associated to a certain linear representation.
More precisely, we show that the Reidemeister torsion of a fibered knot defined for a
certain tensor representation is expressed as a rational function of monic polynomials.
This Reidemeister torsion is nothing but Wada’s twisted Alexander polynomial (see
[7] for details), so that our result can be regarded as a natural generalization of the
property on the classical Alexander polynomial mentioned above.

This paper is organized as follows. In the next section, we review the definition of
Reidemeister torsion over a fieldF. Further we describe how to compute it in the case
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of knot exteriors. The point of our method here is that the notion of monic makes sense
for the Reidemeister torsion associated to a tensor representation of a unimodular
representation overF and the abelianization homomorphism. In Section 3, we state
and prove the main theorem of this paper. The final section is devoted to compute
some examples.

We should note here that there is a similar work by Cha [1]. The notion of
Alexander polynomials twisted by a representation and its applications have appeared
in several papers (see [2], [6], [8], [18]).

2. Reidemeister torsion

In this section, we review the definition of Reidemeister torsion over a fieldF (see
[3] and [10] for details).

Let V be ann-dimensional vector space overF, and letb = (b1, . . . , bn) and
c = (c1, . . . , cn) be two bases forV . If we put ci = ∑n

j=1 aij bj , we have a
nonsingular matrixA = (aij ) with coefficients inF. Further let[b/c] denote the
determinant ofA.

Now let us consider an acyclic chain complex of finite dimensional vector spaces
overF:

C∗ : 0 −→ Cm
∂m−→ Cm−1

∂m−1−→ · · · −→ C1
∂1−→ C0 −→ 0.

We assume that a preferred basiscq for Cq(C∗) is given for anyq. Choose any basis

bq of Bq(C∗) and take its lift inCq+1(C∗), which we denote bỹbq .
Since the natural inclusion map

Bq(C∗) → Zq(C∗)

is an isomorphism, the basisbq can serve as a basis forZq(C∗). Similarly the sequence

0 −→ Zq(C∗) −→ Cq(C∗) −→ Bq−1(C∗) −→ 0

is exact and the vectors(bq, b̃q−1) form a basis forCq(C∗). It is easily shown that
[bq, b̃q−1/cq ] is independent of the choices ofb̃q−1. Hence we may simply denote
it by [bq, bq−1/cq ].
Definition 2.1. The torsion of the chain complexC∗ is defined by the alternating
product

m∏
q=0

[bq, bq−1/cq ](−1)q+1

and we denote it byτ(C∗).
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Remark 2.2. The torsionτ(C∗) depends only on the basesc0, . . . , cm.

Now let us apply the above torsion to the following geometric situations. LetX

be a finite cell complex and̃X the universal covering ofX with the right action of
π1X as deck transformations. Then the chain complexC∗(X̃, Z) has a structure of
right freeZ[π1X]-modules. Let

ρ : π1X → GL(n, F)

be a linear representation. We may regardV as aπ1X-module by usingρ and denote
it by Vρ . Define the chain complexC∗(X, Vρ) by C∗(X̃, Z) ⊗Z[π1X] Vρ and choose
a preferred basis

{σ1 ⊗ e1, σ1 ⊗ e2, . . . , σ1 ⊗ en, . . . , σkq ⊗ e1, . . . , σkq ⊗ en}
of Cq(X, Vρ), where{e1, . . . , en} is a basis ofV andσ1, . . . , σkq areq-cells giving

the preferred basis ofCq(X̃, Z).
Now we assume thatC∗(X, Vρ) is acyclic, in other words, all homology groups

H∗(X, Vρ) vanish. In this case, we callρ an acyclic representation.

Definition 2.3. Let ρ : π1X → GL(n, F) be an acyclic representation. Then Rei-
demeister torsion ofX with Vρ-coefficients is defined by the torsion of the chain
complexC∗(X, Vρ). We denote it byτρ(X).

Remark 2.4. It is known thatτρ(X) is well-defined as a PL-invariant, for an acyclic
representationρ : π1X → GL(n, F), up to a factor±d whered ∈ Im(det� ρ) ⊂ F

∗.
As a reference, see [10], Section 8. We can easily make a refinement of the above
argument for our situation.

Here let us consider a knotK in S3 and its exteriorE. For the knot group
πK = π1E we choose and fix a Wirtinger presentation

P(πK) = 〈x1, . . . , xu | r1, . . . , ru−1〉.
Then we can construct a 2-dimensional cell complexX from P(πK) such thatE
collapses toX. The abelianization homomorphism

α : πK → H1(E, Z) ∼= Z = 〈t〉
is given by

α(x1) = · · · = α(xu) = t.

Furthermore, we always suppose that the image of a representationρ : πK →
GL(n, F) is included in SL(n, F).
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These maps naturally induce the ring homomorphismsρ̃ andα̃ from Z[πK] to
M(n, F) andZ[t±1] respectively, whereM(n, F) denotes the matrix algebra of degree
n overF. Thenρ̃ ⊗ α̃ defines a ring homomorphism

Z[πK] → M
(
n, F[t±1]) .

Let Fu denote the free group with generatorsx1, . . . , xu and denote by

� : Z[Fu] → M
(
n, F[t±1])

the composite of the surjectionZ[Fu] → Z[πK] induced by the presentation and the
mapZ[πK] → M(n, F[t±1]) given byρ̃ ⊗ α̃.

Let us consider the(u − 1) × u matrixM whose(i, j)th component is then × n

matrix

�

(
∂ri

∂xj

)
∈ M

(
n, F[t±1]) ,

where ∂
∂x

denotes the free differential calculus. This matrixM is called theAlexander
matrix of the presentationP(πK) associated to the representationρ.

For 1≤ j ≤ u, let us denote byMj the(u − 1) × (u − 1) matrix obtained from
M by removing thej th column. We regardMj as a(u − 1)n × (u − 1)n matrix with
coefficients inF[t±1].

Now let us recall that the tensor representation

ρ ⊗ α : πK → GL(n, F(t))

is defined by(ρ ⊗ α)(x) = ρ(x)α(x) for x ∈ πK. HereF(t) denotes the rational
function field overF and letV be then-dimensional vector space overF(t). Hereafter,
we denote the Reidemeister torsionτρ⊗α(E) by τρ⊗αK.

Theorem 2.5. All homology groups H∗(E, Vρ⊗α) vanish (namely, ρ⊗α is an acyclic
representation) if and only if detMj �= 0 for some j . In this case, we have

τρ⊗αK = detMj

det�(xj − 1)
,

for any j (1 ≤ j ≤ u). Moreover, τρ⊗α is well-defined up to a factor ±tnk (k ∈ Z)

if n is odd and up to only tnk if n is even.

Proof. The first two assertions are nothing but [7], Proposition 3.1. The independence
on j follows from [7], Lemma 1.2.

Next, if we consider well-definedness up to±tnk (k ∈ Z), we only have to recall
Remark 2.4. The image of

det� (ρ ⊗ α) : πK → GL(n, F(t)) → F(t)∗
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is just {tnk|k ∈ Z}, because Imρ is included in SL(n, F). Therefore the claim
immediately follows. Here if we take an even dimensional unimodular representation,
τρ⊗α is well-defined up totnk (see also [3] for details). �

Remark 2.6. This theorem asserts that the twisted Alexander polynomial [18] of a
knot is the Reidemeister torsion of its knot exterior (see [7] for details). This is a
generalization of Milnor’s theorem in [9]. Recently this framework extended to more
general situations by Kirk–Livingston in [6].

Remark 2.7. Assume thatρ is a homomorphism to SL(n, R) over a unique factor-
ization domainR and the knot groupπK has a presentation which is strongly Tietze
equivalent to a Wirtinger presentation of the knot. Then Wada shows in [18] that
the twisted Alexander polynomial of the knot associated toρ is well-defined up to a
factor±tnk (k ∈ Z) if n is odd and up to onlytnk if n is even.

Remark 2.8. If there is an elementγ of the commutator subgroup ofπK such that 1
is not an eigenvalue ofρ(γ ), thenτρ⊗α becomes a “polynomial” (see [18]). Namely
detMj is divided by det�(xj − 1).

3. Main theorem

In this section, we give a necessary condition that a knotK in S3 is fibered. A
polynomialamtm + · · ·+ a1t + a0 ∈ F[t] is called monic if the coefficientam is one.
We then see from Theorem 2.5 that the notion of monic polynomial makes sense for
the Reidemeister torsion.

Theorem 3.1. For a fibered knot K in S3 and a unimodular representation ρ : πK →
SL(2n, F), the Reidemeister torsion τρ⊗αK is expressed as a rational function of
monic polynomials.

Proof. By using the fiber bundle structure, we can take the following presentation of
πK:

P(πK) = 〈x1, . . . , x2g, h | ri = hxih
−1ϕ∗(xi)

−1, 1 ≤ i ≤ 2g〉,
wherex1, . . . , x2g is a generating system of the fundamental group of the fiber surface
of genusg, h is a generator forS1-direction corresponding to the meridian ofK and
ϕ∗ denotes the automorphism of the surface group induced by the monodromy map
ϕ. Here the abelianization homomorphismα : πK → Z = 〈t〉 is given by

α(x1) = · · · = α(x2g) = 1 and α(h) = t.

This presentation ofπK allows us to define another 2-dimensional cell complex
Y instead of a cell complexX constructed from a Wirtinger presentation ofπK.
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Namely, it has only one vertex, 2g +1 edges, and 2g 2-cells attached by the relations
of P(πK). It is easy to see that there exists a homotopy equivalencef : E → Y .
From the result of Waldhausen [19], the Whitehead group Wh(πK) is trivial for a
knot group in general. Thus the Whitehead torsion off is also the trivial element
in Wh(πK). This implies that the homotopy equivalence mapf induces a simple
homotopy equivalence fromE to Y . Since the Reidemeister torsion is a simple
homotopy invariant, we can compute the Reidemeister torsion ofE as the one ofY
as follows. That is, we may use the previous presentationP(πK) to computeτρ⊗αK

by means of Theorem 2.5.
Let us consider the “big” 2g × 2g matrix M whose(i, j)th component is the

2n × 2n matrix

�

(
∂ri

∂xj

)
∈ M(2n, F[t±1]).

We then see that the diagonal component ofM is

�

(
∂ri

∂xi

)
= �

(
h − ∂ϕ∗(xi)

∂xi

)

= tρ(h) − ρ̃

(
∂ϕ∗(xi)

∂xi

)

and the coefficient of the highest degree term of det�(∂ri/∂xi) is just detρ(h) = 1.
Further other components�(∂ri/∂xj ) (i �= j) do not containt , so that the coefficient
of the highest degree term of detM is also one.

On the other hand, the denominator is given by

det�(h − 1) = det(tρ(h) − I )

= (detρ(h))t2n − (tr ρ(h))t2n−1 + · · · + 1

= t2n + · · · + 1,

whereI denotes the identity matrix. Moreover,ρ is an even dimensional representa-
tion, so we see thatτρ⊗αK is well-defined up to a factort2nk (k ∈ Z). This completes
the proof. �

Remark 3.2. If we can show directly that the presentationP(πK) in Theorem 3.1 is
strongly Tietze equivalent to a Wirtinger presentation ofK, then Theorem 3.1 follows
without using the result of Waldhausen (see Remark 2.7).

Remark 3.3. If F is a subfield of the real number field, then the Reidemeister torsion
τρ⊗αK for any knotK and any representationρ : πK → SL(2, F) is symmetric.
Namely, τρ⊗αK is invariant under the transformationt �→ t−1 up to a factortk

(k ∈ Z). Such a duality theorem appears originally in [9]. See also [6], [7] and [11]
for related works.
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4. Examples

Example 4.1. LetK be the figure eight knot 41. This is one of the well-known genus
one fibered knots inS3. The fundamental group of the exterior has a presentation

πK = 〈x, y | zxz−1y−1〉,
wherez = x−1yxy−1x−1. Let ρ : πK → SL(2, C) be a noncommutative represen-
tation defined by

ρ(x) =
(

1 1
0 1

)
and ρ(y) =

(
1 0

−ω 1

)
,

whereω is a complex number satisfyingω2 + ω + 1 = 0. As pointed out by Wada
in [18], it is convenient to use relations instead of relators for the computation of
the Alexander matrix. Thereby applying free differential calculus to the relation
r : zx = yz, we obtain

∂r

∂x
= −x−1 + x−1y + yx−1 − yx−1y + yx−1yxy−1x−1.

Thus we have the matrix

M2 =
(

�

(
∂r

∂x

))
=

(−(ω + 1)t + ω + 2 − t−1 t + ω − 2 + t−1

(ω − 1)t − ω + 1 −(ω + 1)t + 3 − t−1

)
.

Then the numerator ofτρ⊗α is given by

detM2 = t−2(t4 − 6t3 + ω4t2 + ω2t2 + 11t2 − 6t + 1)

= t−2(t − 1)2(t2 − 4t + 1).

On the other hand, the denominator ofτρ⊗α is given by

det�(y − 1) = det(tρ(y) − I )

= det

(
t − 1 0
−ωt t − 1

)

= (t − 1)2.

Therefore the Reidemeister torsion of the figure eight knotK is

τρ⊗αK = t2 − 4t + 1,

and this is in fact a monic polynomial.
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Example 4.2. Let KT be the Kinoshita–Terasaka knot [5]. It is well-known that
KT is one of the classical examples of knots with the trivial Alexander polynomial.
The knot groupπKT has a presentation with four generatorsx1, . . . , x4 and three
relations [18]:

r1 : x1x2x
−1
1 = x4x2x4x

−1
2 x−1

4 ,

r2 : x4x2x
−1
4 = x−1

2 x3x1x
−1
3 x2x1x

−1
2 x3x

−1
1 x−1

3 x2,

r3 : x1x3x
−1
1 = x4x3x4x

−1
3 x−1

4 .

Applying free differential calculus, we have

∂r1

∂x1
= 1 − x1x2x

−1
1 ,

∂r1

∂x2
= x1 − x4 + x4x2x4x

−1
2 ,

∂r1

∂x3
= 0,

∂r2

∂x1
= −x−1

2 x3 − x−1
2 x3x1x

−1
3 x2 + x−1

2 x3x1x
−1
3 x2x1x

−1
2 x3x

−1
1 ,

∂r2

∂x2
= x4 + x−1

2 − x−1
2 x3x1x

−1
3 + x−1

2 x3x1x
−1
3 x2x1x

−1
2

− x−1
2 x3x1x

−1
3 x2x1x

−1
2 x3x

−1
1 x−1

3 ,

∂r2

∂x3
= −x−1

2 + x−1
2 x3x1x

−1
3 − x−1

2 x3x1x
−1
3 x2x1x

−1
2

+ x−1
2 x3x1x

−1
3 x2x1x

−1
2 x3x

−1
1 x−1

3 ,

∂r3

∂x1
= 1 − x1x3x

−1
1 ,

∂r3

∂x2
= 0,

∂r3

∂x3
= x1 − x4 + x4x3x4x

−1
3 .

Let ρ : πKT → SL(2, F5) be a noncommutative representation over the finite
field F5 defined as follows:

ρ(x1) =
(

0 1
4 1

)
, ρ(x2) =

(
0 4
1 1

)
, ρ(x3) =

(
0 1
4 1

)
and ρ(x4) =

(
4 4
3 2

)
.

Then we obtain

M4 =




3t + 1 t t t2 + 2t 0 0
2t t + 1 4t2 + t 4t 0 0
1 4t + 3 t + 2 + t−1 t + t−1 3t + 3 + 4t−1 3t + 4t−1

4t 2t + 1 t + 1 + 4t−1 3t + 4 2t + 4 + t−1 4t + 1
1 4t 0 0 3t2 + t 2t2 + 2t

t 4t + 1 0 0 4t2 + t 3t2 + 4t




.
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Therefore the Reidemeister torsion of KT is given by

τρ⊗αKT = detM4

det�(x4 − 1)

= t2(4t8 + t7 + t6 + 4t5 + 3t4 + 4t3 + t2 + t + 4)

t2 + 4t + 1
= 4t6 + 2t4 + t3 + 2t2 + 4.

This is well-defined up to a factort2k (k ∈ Z), so that we may conclude that the
Kinoshita–Terasaka knot KT is not fibered.

Example 4.3. Let K be the knot illustrated in Figure 1. The normalized Alexander
polynomial ofK is equal to the monic polynomialt4 − t3 + t2 − t + 1. The knot
groupπK has a presentation with seven generatorsx1, . . . , x7 and six relations:

r1 : x2x1 = x3x2x1x2x
−1
1 x−1

2 ,

r2 : x6x5x
−1
6 = x4x3x

−1
1 x3x

−1
1 x3x1x

−1
3 x1x

−1
3 x1x

−1
3 x−1

4 ,

r3 : x6x7x
−1
6 = x4x3x

−1
1 x3x

−1
1 x3x1x

−1
3 x1x

−1
3 x−1

4 ,

r4 : x5x6x
−1
5 = x7x2x

−1
7 ,

r5 : x2x6x
−1
2 = x3x2x1x2x

−1
1 x−1

2 x−1
3 x7x3x2x1x

−1
2 x−1

1 x−1
2 x−1

3 ,

r6 : x5x4x
−1
5 x7 = x7x3x2x1x2x

−1
1 x−1

2 x−1
3 .

x1

x6

x4

x2

x5

x7
x3

Figure 1

Let ρ : πK → SL(2, F5) be a noncommutative representation overF5 defined as
follows:

ρ(x1) =
(

1 1
0 1

)
, ρ(x2) =

(
1 0
4 1

)
, ρ(x3) =

(
1 0
4 1

)
, ρ(x4) =

(
2 1
4 0

)
,
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ρ(x5) =
(

2 4
1 0

)
, ρ(x6) =

(
3 1
1 4

)
and ρ(x7) =

(
1 4
0 1

)
.

By the same method as in previous examples, we have the following Reidemeister
torsion ofK:

τρ⊗αK = detM7

det�(x7 − 1)

= t12(3t4 + 4t3 + t2 + 4t + 3)

t2 + 3t + 1
= 3t2 + 3.

Hence this knotK is not fibered.

We use Kodama’s program “KNOT” and Wada’s program to compute these ex-
amples. The former is to obtainN-data (see [17]) from a knot projection, which serve
as necessary input data for Wada’s program. The latter one is to compute unimod-
ular representations over finite fields of knot groups fromN -data. Here we should
remark that Kodama’s program works on Linux while the program of Wada works
on Macintosh.
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