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Poincaré series of curves on rational surface singularities

A. Campillg, F. Delgaddand S. M. Gusein-Zadgé

Abstract.  For a reducible curve singularity embedded in a rational surface singularity the
Poincaré series is computed. Here the Poincaré series is defined by the multi-index filtration
on the local ring defined by orders of a function on the branches of the curve. The method of
the computations is based on the notion of the integral with respect to the Euler characteristic
over the projectivization of the ring of functions (notion similar to, and inspired by, the notion
of motivic integration). For the case of tiig surface singularity it appears that the Poincaré
series coincides with the Alexander polynomial of the corresponding link.
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In[3]and [4] there was computed the Poincaré series (in several variables) of the multi-
index filtration on the ring of germs of functions of two variables defined by orders
of a function on the branches of a reducible plane curve singularit9) c (C2,0).

It was shown that this Poincaré series coincides with the Alexander polynomial (in
several variables) of the link of the singularit¢, 0). In [5] there was computed

the Poincaré series of the multi-index filtration on the ring of germs of functions on
a rational surface singularitys, 0) defined by the multiplicities of a function along
components of the exceptional divisor of a resolution of the singulésitP). The
method of the computations is based on the notion of the integral with respect to the
Euler characteristic over the projectivization of the ring of functions. This notion is
similar to (and inspired by) the notion of motivic integration.

The Poincaré series of a plane curve singularity is computed in terms of an embed-
ded resolution of the curve. The answer is tightly connected with the Poincaré series
of the set of divisorial valuations corresponding to the resolution. A generalization
of this approach for a twisted (i.e., non plane) curve would be to consider the curve
being embedded into a surface singularity and to use its embedded resolution. The
Poincaré series of the set of divisorial valuations of a resolution of a surface singular-
ity is well understood only for rational ones. Therefore itis natural to consider curves
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on them. Here we apply the mentioned method of computing the Poincaré series to
a (reducible) curve on a rational surface singularity.

It appears that curves on tlig surface singularity have special properties. The
link of the surface singularitizg is a homology sphere. Therefore, for a curve on the
Eg surface singularity, there is defined the Alexander polynomial (in several variables)
of the corresponding link. We show that it also coincides with the Poincaré series of
the curve singularity.

1. Poincaré series of a curve on a rational surface singularity

Let (C,0) be a (in general, reducible) germ of a curve anddet= U;zl o

be its decomposition into irreducible components (with a fixed numbering). Let
¢;j: (C,00 — (C,0) be an uniformization of the branahy;, j = 1,...,r. Fora
germg € Oco, letw; = w;(g) be the power of the leading term in the power series
decomposition of the gero ¢;: (C,0) — C: gogj(r) = a- "/ + terms of
higher degreda # 0). If g o ¢;j(r) = 0 we assumev;(g) to be equal tot-co.

Let w(g) = (w1(g), ..., w,(g)) (we callw(g) the value of the functiog on the

curveC). Forw = (wy,...,w,) € Z', let J(w) = {g € Oco : wj(g) > wj,
j=1...,r} (J(w) is an ideal inO¢ ), and letc(w) := dimJ(w)/J(w + 1),
wherel= (1,...,1), Lc(t1, ..., 1) = 3 e c(w) -t (herer® = nt.o..n", pay

attention that the sum is over allin Z", not only over positive ones).

The Poincaré series of the multi-index filtration defineduyy) (for short the
Poincaré series of the cur«€, 0)) is the power series (in fact a polynomial for
r>2):

Lc(t1,....t) - l_[;:l(tj -1

t1...t, —1

Pc(ty,....ty) =

Remark. If the curve(C, 0) is embedded into an ambient spaceg, 0), in the
definition of the Poincaré serig%(r1, . .., #,), one can use the ringx o of germs
of functions on(X, 0) instead of®¢ o above.

From now on let the curve singularitg’, 0) be embedded into a rational surface
singularity (4§, 0). In [5] there was defined the notion of the integral with respect to
the Euler characteristic over the projectivizatiB@ s o of the ring of germs of the
functions on the surfagg$, 0) (see also [2], [4]). Just as in [4], [5] one can show that

Pc(ty, ... 1) = / &y,
P@gﬁo

wherer2() is a function oriP@ 5 o with the values in the abelian group (with respect
to the additionfZ[[r1, ..., #,]], t° is assumed to be equal to O.
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Letw: (X, D) — (48,0) be an embedded resolution of the cutveC 4, i.e.,

a resolution of the surface singularity, 0) such thatr ~1(C) is a normal crossing
divisor. LetC; be the strict transform of the componefif of the curveC (j =
1,...,r). LetE;,i = 1,...,s, be the irreducible components of the exceptional
divisor ® = 7~1(0). All the components; are isomorphic to the projective line
CPL. Let —k; be the self intersection numbéi; o E; of the component;. Let

M = —(E;oE,) be minusthe intersection matrix of the components of the exceptional
divisor £. The matrixM has numberg; on the diagonal, other entries &f are
equal to—1 or 0.

For a functiong € 050, g # 0, letv;(g) (( =1, ..., s) be the multiplicity of the
lifting g o7 of the functiong along the componer&; (v; (+) is the divisorial valuation
corresponding to the componehf). Letv(g) = (v1(g), ..., vs(g)). The setSy of
points of the latticeZ? , of the formu(g) is a subsemigroup @: , (the semigroup of
divisorial valuations of the resolution). The semigrougs consists of alb € Z2
such thabM > 0 (i.e., such that

kiv; — Z vy >0 1)

CENE;=pt

fori = 1,...,s5; see e.qg [8]). Letn = detM), A = M1 = (a;), and let
a; = (aj1, ..., ais) (note that the determinant does not depend on the resolution
m of (4,0) and thatma;; are integers). The setM > 0 in R* is the simplicial
cone generated by the vectarsi = 1, ..., s. One can show (see [8]) that > O,
i=1...,5s.

Remark. Let n; = n;(v) be the left hand sides of the inequalities (1), i.e.,
n = (ni,...,ns;) = vM (in particularn;(a;) = §;;). One can easily see that,
forv = v(g) € Ss, n;(v) is equal to the intersection number of the strict trans-
form of the curve{g = 0} with the componeng; of the exceptional divisor. Let
v(n) :==nM1L.

Let E; (respectivelyE;) be the “smooth part” of the componeat in the total
transform of the curv& (respectively in the exceptional divis@®), i.e., E; minus
intersection points with all other components of the total transferm(C) of the
curve C (respectively of the exceptional divisép). The divisorial valuations;
define a multi-index filtration on the ring s o of functions on the surface singularity
(8,0). Let Pg (Tx,...,Ty) be the Poincaré series of this filtration defined in the
same way as above (it depends on the surface singuiagtyd on its resolutiomn).

For a fractional power serie®(T1,...,T;) € Z[[Tll/m,...,Tsl/m]], let
Int Q(T1, ..., Ty) be its “integer part”, i.e., the sum of all the monomials from
Q(Ty, ..., Ty) with integer exponents. The main result of [5] (formulated in some-

what different terms) is the following.
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Theorem 1. For arational surfacesingularity (4, 0) andaresolutionn : (X, D) —
(4, 0), one has

s L]
Psn(Ti,..., Ty) = Int[ [(1 — 1%)~*(F0.
i=1

Now we give a formula for the Poincaré series of the cUwg0) C (4, 0).

Theorem 2. One has

s o
Pe(ty, ... 1)) = <Intl_[(1 — Zﬂi)—ﬂEi))
i=1 | LA |
jiéjﬁEi:pt

(in the substitution above [ | ; ; ; is supposed to be equal to 1).

Proof. For a topological spack, let "X = X" /S, be thenth symmetric power of
the spaceX. Let

N N oo

v=UJ (ITs"E) =TT(Us"&)

nezs, i=1 i=1 n=0

and

o= | (]i[s”féi).

neZipgumeZs i=1
Elements ofY and ofYy are represented by coIIectlons of points (finite sets of

points with multiplicities) of the smooth paﬂ) UiZ1 E of the exceptional divisor
D (for elements oftp with an additional condition). For a functighe @5 ¢ such
that the strict transform of its zero level curye = 0} intersects the exceptional

divisor O only at smooth points (i.e., at points 93), the collection of intersection
points counted with multiplicities (intersection numbers) belonggtdMoreover, a
divisor onX which intersects the exceptional divisdronly at smooth points is the
strict transform of the zero level curve of a function if and only if the collection of the
intersection points of this divisor witld (counted with multiplicities) belongs 6.

Let v be a function ort with values inQ¢ ; which is equal t6) ";_; n;a; on the
component ot with the number. The values of the functiomon the spac& C Y
belong toZZ ; and, moreovery—l(Z o) = Yo. One has

s °
/ZvdX — H(l_zgi)—X(Ei)

Y i=1
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(see, e.g., [4]; this follows from the formula-I (X)t4x (S2X)t2+x (S3X) 13+ - - =
(1 —1)~xX) wherey (X) is the Euler characteristic of the spat

S o
/Z”dx = Int] J(@— 1%)~*ED,

Vo i=1

LetamafZl ; — ZL,(QL, — QL,)bedefinedbyvy, ..., v5) = (w1,..., w,)
with w; = v;(;), wherei = i(j) is the number of the componeft of the exceptional
divisor £ which intersects the strict transfor@y of the component’; of the curve

C. One has
/Ew(v)dX :/Zvd)(
Yo Yo FA |

jiajﬂEi:pt
(and the same for the integrals ouér.

For a functiong € 40 such that the strict transform of its zero level curve
{g = 0} intersects the exceptional divis@ only at smooth points (and thus the
collection of them belongs to the spakg the valuew(g) of the functiong on the
curveC is equal tow(v(g)).

LetV e Z,. Making as many additional blow-ups of intersection points of
components of the total transform of the cuvas it is necessary, we can suppose
that, for anyg € 95,0 with w(g) < V, the strict transform of the curvig = 0}
intersects the exceptional divis@ only at smooth points. L& o(V) be the set
{g e POso: w(g) <V} ThesePOg4 o(V)iscylindric (see, e.g., [5], Proposition 1).
Let 7 be the map fronPO 4 o(V) to the spacé which sends a clagse POso(V)
with w(g) < V to the collection of intersection points of the strict transform of the
curve{g = 0} with the exceptional divisa® (counted with multiplicities). One can
easily see thab (1 (g)) = w(g) (in fact alsov(I(g)) = v(g)). Moreover, the image
Im I of the mapI coincides with the union’oK of all the components of the space

Yo with w < V. Preimages of points of the spaK§ under the mag are complex
affine spaces (see, e.g., [5] Proposition 2). Since the Euler characteristic of a complex

affine spaceis equal to 1, the Fubini formula (applied to the map9 5 o(V) — YOZ)

implies that
/L“’dx = / tdy.
vy POs0(V)

Since this equation holds for any € Z,, one has

/z“’dx = f t*dy = Pc(t). O

Yo POs0
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2. Curves on the surface singularity kg

Let (8, 0) be the rational double point of the type ({x2+ y3+z° = 0} C (C3, 0)).

In this case the determinamtof the intersection matri¥ is equal to 1. This implies
that all the vectorg; are integer and therefore any curve @ 0) is the zero level
curve of a function (i.e., each Weil divisor is a Cartier one). Therefore, for a curve
C =J;_1Ci C (4,0), one has

s o
Pe(ty, ... t) = [ J(1— 1%) %D : ()
i=1 ’Tt = | B
j:ijEl-:pr

The link L = 8 N S2 (whereS? is the sphere of small radiuscentered at the
origin of C3) is a homology 3-sphere (see, e.g., [7]). For the c@tviet K = soncC
be the corresponding link. The manifaldis the union of- circles in the homology
sphereL. Therefore there is defined the Alexander polynomiallofK) which is a
polynomial inr variables (see, e.g., [6]). Let®C(r, ..., ) denote the Alexander
polynomial of the pailL, K).

Letr: (X, D) — (4,0) be an embedded resolution of the cutveC §. For
a componentE; of the exceptional divisotD = 7~1(0), let L be a germ of a
smooth curve transversal to the componéhtat a smooth point. Let the curve
L = (L) C (8, 0) be defined by an equatidg = 0}. From the remark on page 3
the following statement follows.

Lemma 1. Onehasv(g) = g;.

From [6] it follows that

s [}
AC, . ) = 1_[(1 — T X(ED 3)
i=1 T I 1
j:CjﬁEl-:pr

whenr > 1 and, forr =1,

MY/ — 1) = [ [ — Ty xED | . @)

i=1 > I 4
j:CjﬁEl-:pz

Note that the substitution in the last formula means that> 1 if 51 NE; =@and
T; — 11 otherwise.

Remark. According to the general definition (see, e.g., [6]), the Alexander polyno-
mial A%C (1, ..., 1) of a link is well defined only up to multiplication by mono-
mials £/ = +1,"* ..., withm = (my,...,m,) € Z". For the link(L, K) =
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(8, C) N 83, the formulae (3) and (4) fixes the choice of the Alexander polynomial
in such a way that it is really a polynomial (i.e., does not contain monomials with
negative exponents) and its value at the origia:=(0) is equal to 1.

Comparing (3) and (4) with (2) we have the following statement.

Theorem 3. Let C = | J;_; C; beacurveontheEg surfacesingularity (8, 0). Then,
ifr > 1, onehas
Pc(tlv L] tr) = A/S’C(Zlv . '7t}")7

and for thecaser = 1,
Pc(ty) = A*C (1) /(1 —1).

Corollary. On the Eg surface singularity, there are only curves the Poincaré series
of which are products/ratios of cyclotomic polynomials.

As an example, the curve given by (3, 14, °) does not lie on aftg surface
singularity.

Remark. Let 8 be an arbitrary rational surface singularity and%t(Tl, Ty =

[T_;(1 — 14%)=xED be the fractional power series corresponding to an embedded
resolutions: (X, D) — (4, 0) of the curveC C (4,0). Suppose that the curve

C is a Cartier divisor, i.e., it is the zero level curve of a functipre @so. Let

¢r(t) be the zeta-function of the classical monodromy transformation of the germ
f:(8,00 — (C,0) (see, e.g., [1]). Then one can see that

(t) = Ps.c(T, ..., T,
Cr () s.c(Th, ..., “)|T,-»—>z'"i
wherem; is the intersection number of the strict transform of the cudweith the
componentE; of the exceptional divisoD, in other wordsm; is the number of
components of the strict transform of the cu@gvhich intersects the componefit.
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