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Poincaré series of curves on rational surface singularities

A. Campillo∗, F. Delgado∗and S. M. Gusein-Zade∗∗

Abstract. For a reducible curve singularity embedded in a rational surface singularity the
Poincaré series is computed. Here the Poincaré series is defined by the multi-index filtration
on the local ring defined by orders of a function on the branches of the curve. The method of
the computations is based on the notion of the integral with respect to the Euler characteristic
over the projectivization of the ring of functions (notion similar to, and inspired by, the notion
of motivic integration). For the case of theE8 surface singularity it appears that the Poincaré
series coincides with the Alexander polynomial of the corresponding link.
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In [3] and [4] there was computed the Poincaré series (in several variables) of the multi-
index filtration on the ring of germs of functions of two variables defined by orders
of a function on the branches of a reducible plane curve singularity(C, 0) ⊂ (C2, 0).
It was shown that this Poincaré series coincides with the Alexander polynomial (in
several variables) of the link of the singularity(C, 0). In [5] there was computed
the Poincaré series of the multi-index filtration on the ring of germs of functions on
a rational surface singularity(S, 0) defined by the multiplicities of a function along
components of the exceptional divisor of a resolution of the singularity(S, 0). The
method of the computations is based on the notion of the integral with respect to the
Euler characteristic over the projectivization of the ring of functions. This notion is
similar to (and inspired by) the notion of motivic integration.

The Poincaré series of a plane curve singularity is computed in terms of an embed-
ded resolution of the curve. The answer is tightly connected with the Poincaré series
of the set of divisorial valuations corresponding to the resolution. A generalization
of this approach for a twisted (i.e., non plane) curve would be to consider the curve
being embedded into a surface singularity and to use its embedded resolution. The
Poincaré series of the set of divisorial valuations of a resolution of a surface singular-
ity is well understood only for rational ones. Therefore it is natural to consider curves
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on them. Here we apply the mentioned method of computing the Poincaré series to
a (reducible) curve on a rational surface singularity.

It appears that curves on theE8 surface singularity have special properties. The
link of the surface singularityE8 is a homology sphere. Therefore, for a curve on the
E8 surface singularity, there is defined theAlexander polynomial (in several variables)
of the corresponding link. We show that it also coincides with the Poincaré series of
the curve singularity.

1. Poincaré series of a curve on a rational surface singularity

Let (C, 0) be a (in general, reducible) germ of a curve and letC = ⋃r
j=1 Cj

be its decomposition into irreducible components (with a fixed numbering). Let
ϕj : (C, 0) → (C, 0) be an uniformization of the branchCj , j = 1, . . . , r. For a
germg ∈ OC,0, letwj = wj(g) be the power of the leading term in the power series
decomposition of the germg � ϕj : (C, 0) → C: g � ϕj (τ ) = a · τwj + terms of
higher degree(a �= 0). If g � ϕj (τ ) ≡ 0 we assumewj(g) to be equal to+∞.
Let w(g) := (w1(g), . . . , wr(g)) (we callw(g) the value of the functiong on the
curveC). For w = (w1, . . . , wr) ∈ Zr , let J (w) = {g ∈ OC,0 : wj(g) ≥ wj ,
j = 1, . . . , r} (J (w) is an ideal inOC,0), and letc(w) := dimJ (w)/J (w + 1),
where 1= (1, . . . , 1), LC(t1, . . . , tr ) = ∑

w∈Zr c(w) · tw (heretw = t
w1
1 . . . t

wr
r , pay

attention that the sum is over allw in Zr , not only over positive ones).
The Poincaré series of the multi-index filtration defined byw(•) (for short the

Poincaré series of the curve(C, 0)) is the power series (in fact a polynomial for
r ≥ 2):

PC(t1, . . . , tr ) = LC(t1, . . . , tr ) · ∏r
j=1(tj − 1)

t1 . . . tr − 1
.

Remark. If the curve (C, 0) is embedded into an ambient space(X, 0), in the
definition of the Poincaré seriesPC(t1, . . . , tr ), one can use the ringOX,0 of germs
of functions on(X, 0) instead ofOC,0 above.

From now on let the curve singularity(C, 0) be embedded into a rational surface
singularity(S, 0). In [5] there was defined the notion of the integral with respect to
the Euler characteristic over the projectivizationPOS,0 of the ring of germs of the
functions on the surface(S, 0) (see also [2], [4]). Just as in [4], [5] one can show that

PC(t1, . . . , tr ) =
∫

POS,0

tw(g)dχ,

wheretw(g) is a function onPOS,0 with the values in the abelian group (with respect
to the addition)Z[[t1, . . . , tr ]], t∞i is assumed to be equal to 0.
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Let π : (X, D) → (S, 0) be an embedded resolution of the curveC ⊂ S, i.e.,
a resolution of the surface singularity(S, 0) such thatπ−1(C) is a normal crossing
divisor. Let C̃j be the strict transform of the componentCj of the curveC (j =
1, . . . , r). Let Ei , i = 1, . . . , s, be the irreducible components of the exceptional
divisor D = π−1(0). All the componentsEi are isomorphic to the projective line
CP1. Let −ki be the self intersection numberEi � Ei of the componentEi . Let
M = −(Ei�E�)be minus the intersection matrix of the components of the exceptional
divisor D . The matrixM has numberski on the diagonal, other entries ofM are
equal to−1 or 0.

For a functiong ∈ OS,0, g �= 0, letvi(g) (i = 1, . . . , s) be the multiplicity of the
lifting g �π of the functiong along the componentEi (vi(•) is the divisorial valuation
corresponding to the componentEi). Let v(g) = (v1(g), . . . , vs(g)). The setSS of
points of the latticeZs≥0 of the formv(g) is a subsemigroup ofZs≥0 (the semigroup of
divisorial valuations of the resolutionπ ). The semigroupSS consists of allv ∈ Zs≥0
such thatvM ≥ 0 (i.e., such that

kivi −
∑

�:Ei∩E�=pt

v� ≥ 0 (1)

for i = 1, . . . , s; see e.g [8]). Letm = det(M), A = M−1 = (aij ), and let
ai = (ai1, . . . , ais) (note that the determinantm does not depend on the resolution
π of (S, 0) and thatmaij are integers). The setvM ≥ 0 in Rs is the simplicial
cone generated by the vectorsai , i = 1, . . . , s. One can show (see [8]) thatai > 0,
i = 1, . . . , s.

Remark. Let ni = ni(v) be the left hand sides of the inequalities (1), i.e.,
n = (n1, . . . , ns) = vM (in particularni(aj ) = δij ). One can easily see that,
for v = v(g) ∈ SS , ni(v) is equal to the intersection number of the strict trans-
form of the curve{g = 0} with the componentEi of the exceptional divisor. Let
v(n) := nM−1.

Let
�

Ei (respectively
•

Ei) be the “smooth part” of the componentEi in the total
transform of the curveC (respectively in the exceptional divisorD), i.e.,Ei minus
intersection points with all other components of the total transformπ−1(C) of the
curveC (respectively of the exceptional divisorD). The divisorial valuationsvi

define a multi-index filtration on the ringOS,0 of functions on the surface singularity
(S, 0). Let PS,π (T1, . . . , Ts) be the Poincaré series of this filtration defined in the
same way as above (it depends on the surface singularityS and on its resolutionπ ).

For a fractional power seriesQ(T1, . . . , Ts) ∈ Z[[T 1/m
1 , . . . , T

1/m
s ]], let

Int Q(T1, . . . , Ts) be its “integer part”, i.e., the sum of all the monomials from
Q(T1, . . . , Ts) with integer exponents. The main result of [5] (formulated in some-
what different terms) is the following.
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Theorem 1. For a rational surface singularity (S, 0) and a resolution π : (X, D) →
(S, 0), one has

PS,π (T1, . . . , Ts) = Int
s∏

i=1

(1 − T ai )−χ(
•

Ei).

Now we give a formula for the Poincaré series of the curve(C, 0) ⊂ (S, 0).

Theorem 2. One has

PC(t1, . . . , tr ) =
(

Int
s∏

i=1

(1 − T ai )−χ(
�

Ei)
) ∣∣

Ti �→ ∏
j : C̃j ∩Ei=pt

tj

(in the substitution above
∏

j∈∅ tj is supposed to be equal to 1).

Proof. For a topological spaceX, let SnX = Xn/Sn be thenth symmetric power of
the spaceX. Let

Y =
⋃

n∈Zs≥0

( s∏
i=1

Sni
�

Ei

)
=

s∏
i=1

( ∞⋃
n=0

Sn
�

Ei

)

and

Y0 =
⋃

n∈Zs≥0:v(n)∈Zs

( s∏
i=1

Sni
�

Ei

)
.

Elements ofY and ofY0 are represented by collections of points (finite sets of

points with multiplicities) of the smooth part
�

D= ⋃s
i=1

�
Ei of the exceptional divisor

D (for elements ofY0 with an additional condition). For a functiong ∈ OS,0 such
that the strict transform of its zero level curve{g = 0} intersects the exceptional

divisor D only at smooth points (i.e., at points of
�

D), the collection of intersection
points counted with multiplicities (intersection numbers) belongs toY0. Moreover, a
divisor onX which intersects the exceptional divisorD only at smooth points is the
strict transform of the zero level curve of a function if and only if the collection of the
intersection points of this divisor withD (counted with multiplicities) belongs toY0.

Let v be a function onY with values inQs≥0 which is equal to
∑s

i=1 niai on the
component ofY with the numbern. The values of the functionv on the spaceY0 ⊂ Y

belong toZs≥0 and, moreover,v−1(Zs≥0) = Y0. One has

∫
Y

T vdχ =
s∏

i=1

(1 − T ai )−χ(
�

Ei)
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(see, e.g., [4]; this follows from the formula 1+χ(X)t+χ(S2X)t2+χ(S3X)t3+· · · =
(1 − t)−χ(X), whereχ(X) is the Euler characteristic of the spaceX),

∫
Y0

T vdχ = Int
s∏

i=1

(1 − T ai )−χ(
�

Ei).

Let a mapZs≥0 → Zr≥0 (Qs≥0 → Qr≥0) be defined by(v1, . . . , vs) �→ (w1, . . . , wr)

with wj = vi(j), wherei = i(j) is the number of the componentEi of the exceptional
divisorD which intersects the strict transform̃Cj of the componentCj of the curve
C. One has ∫

Y0

tw(v)dχ =
∫
Y0

T vdχ | Ti �→ ∏
j :C̃j ∩Ei=pt

tj

(and the same for the integrals overY ).
For a functiong ∈ OS,0 such that the strict transform of its zero level curve

{g = 0} intersects the exceptional divisorD only at smooth points (and thus the
collection of them belongs to the spaceY0) the valuew(g) of the functiong on the
curveC is equal tow(v(g)).

Let V ∈ Zr≥0. Making as many additional blow-ups of intersection points of
components of the total transform of the curveC as it is necessary, we can suppose
that, for anyg ∈ OS,0 with w(g) ≤ V , the strict transform of the curve{g = 0}
intersects the exceptional divisorD only at smooth points. LetPOS,0(V ) be the set
{g ∈ POS,0 : w(g) ≤ V }. The setPOS,0(V ) is cylindric (see, e.g., [5], Proposition 1).
Let I be the map fromPOS,0(V ) to the spaceY0 which sends a classg ∈ POS,0(V )

with w(g) ≤ V to the collection of intersection points of the strict transform of the
curve{g = 0} with the exceptional divisorD (counted with multiplicities). One can
easily see thatw(I (g)) = w(g) (in fact alsov(I (g)) = v(g)). Moreover, the image
Im I of the mapI coincides with the unionYV

0 of all the components of the space

Y0 with w ≤ V . Preimages of points of the spaceY
V

0 under the mapI are complex
affine spaces (see, e.g., [5] Proposition 2). Since the Euler characteristic of a complex
affine space is equal to 1, the Fubini formula (applied to the mapI : POS,0(V ) → Y

V

0 )
implies that ∫

Y
V

0

twdχ =
∫

POS,0(V )

twdχ.

Since this equation holds for anyV ∈ Zr≥0, one has∫
Y0

twdχ =
∫

POS,0

twdχ = PC(t). �
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2. Curves on the surface singularity E8

Let (S, 0) be the rational double point of the typeE8 ({x2+y3+z5 = 0} ⊂ (C3, 0)).
In this case the determinantm of the intersection matrixM is equal to 1. This implies
that all the vectorsai are integer and therefore any curve on(S, 0) is the zero level
curve of a function (i.e., each Weil divisor is a Cartier one). Therefore, for a curve
C = ⋃r

i=1 Ci ⊂ (S, 0), one has

PC(t1, . . . , tr ) =
s∏

i=1

(1 − T ai )−χ(
�

Ei) ∣∣
Ti �→ ∏

j : C̃j ∩Ei=pt

tj

. (2)

The link L = S ∩ S5
ε (whereS5

ε is the sphere of small radiusε centered at the
origin of C3) is a homology 3-sphere (see, e.g., [7]). For the curveC, letK = S5

ε ∩C

be the corresponding link. The manifoldK is the union ofr circles in the homology
sphereL. Therefore there is defined the Alexander polynomial of(L, K) which is a
polynomial inr variables (see, e.g., [6]). Let�S,C(t1, . . . , tr ) denote the Alexander
polynomial of the pair(L, K).

Let π : (X, D) → (S, 0) be an embedded resolution of the curveC ⊂ S. For
a componentEi of the exceptional divisorD = π−1(0), let L̃ be a germ of a
smooth curve transversal to the componentEi at a smooth point. Let the curve
L = π(L̃) ⊂ (S, 0) be defined by an equation{g = 0}. From the remark on page 3
the following statement follows.

Lemma 1. One has v(g) = ai .

From [6] it follows that

�S,C(t1, . . . , tr ) =
s∏

i=1

(1 − T ai )−χ(
�

Ei) ∣∣
Ti �→ ∏

j : C̃j ∩Ei=pt

tj

(3)

whenr > 1 and, forr = 1,

�S,C(t1)/(1 − t1) =
s∏

i=1

(1 − T ai )−χ(
�

Ei) ∣∣
Ti �→ ∏

j : C̃j ∩Ei=pt

tj

. (4)

Note that the substitution in the last formula means thatTi �→ 1 if C̃1 ∩ Ei = ∅ and
Ti �→ t1 otherwise.

Remark. According to the general definition (see, e.g., [6]), the Alexander polyno-
mial �S,C(t1, . . . , tr ) of a link is well defined only up to multiplication by mono-
mials ±tm = ±t

m1
1 . . . t

mr
r with m = (m1, . . . , mr) ∈ Zr . For the link(L, K) =
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(S, C) ∩ S5
ε , the formulae (3) and (4) fixes the choice of the Alexander polynomial

in such a way that it is really a polynomial (i.e., does not contain monomials with
negative exponents) and its value at the origin (t = 0) is equal to 1.

Comparing (3) and (4) with (2) we have the following statement.

Theorem 3. Let C = ⋃r
i=1 Ci be a curve on the E8 surface singularity (S, 0). Then,

if r > 1, one has
PC(t1, . . . , tr ) = �S,C(t1, . . . , tr ),

and for the case r = 1,
PC(t1) = �S,C(t1)/(1 − t1).

Corollary. On the E8 surface singularity, there are only curves the Poincaré series
of which are products/ratios of cyclotomic polynomials.

As an example, the curve given byt �→ (t3, t4, t5) does not lie on anE8 surface
singularity.

Remark. LetS be an arbitrary rational surface singularity and letP̃S,C(T1, . . . , Ts) =∏s
i=1(1 − T ai )−χ(

�
Ei) be the fractional power series corresponding to an embedded

resolutionπ : (X, D) → (S, 0) of the curveC ⊂ (S, 0). Suppose that the curve
C is a Cartier divisor, i.e., it is the zero level curve of a functionf ∈ OS,0. Let
ζf (t) be the zeta-function of the classical monodromy transformation of the germ
f : (S, 0) → (C, 0) (see, e.g., [1]). Then one can see that

ζf (t) = P̃S,C(T1, . . . , Ts) | Ti �→ tmi

wheremi is the intersection number of the strict transform of the curveC with the
componentEi of the exceptional divisorD , in other wordsmi is the number of
components of the strict transform of the curveC which intersects the componentEi .
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