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EZ-structures and topological applications

F. T. Farrell∗ and J.-F. Lafont

Abstract. In this paper, we introduce the notion of an EZ-structure on a group, an equivariant
version of the Z-structures introduced by Bestvina [4]. Examples of groups having an EZ-
structure include (1) torsion freeδ-hyperbolic groups, and (2) torsion free CAT(0)-groups.

Our first theorem shows that any group having an EZ-structure has an action by homeomor-
phisms on some(Dn,�), wheren is sufficiently large, and� is a closed subset of∂Dn = Sn−1.
The action has the property that it is proper and cocompact onD

n −�, and that ifK ⊂ D
n −�

is compact, that diam(gK) tends to zero asg → ∞. We call this property(∗�).
Our second theorem uses techniques of Farrell–Hsiang [8] to show that the Novikov con-

jecture holds for any torsion-free discrete group satisfying condition(∗�) (giving a new proof
that torsion-freeδ-hyperbolic and CAT(0) groups satisfy the Novikov conjecture).

Our third theorem gives another application of our main result. We show how, in the case
of a torsion-freeδ-hyperbolic group�, we can obtain a lower bound for the homotopy groups
πn(P (B�)), whereP (·) is the stable topological pseudo-isotopy functor.

1. Introduction

Let � be a discrete group. Bestvina [4] defined the notion of a Z-structure on� as a
pair (X,Z) of spaces satisfying the following four axioms:

• X is a Euclidean retract (ER); i.e. it is locally contractible, contractible and has
finite (covering) dimension.

• Z is a Z-set inX; i.e.Z is a closed subset ofX with the property that, for every
open setU ⊂ X, the inclusionU − Z ↪→ U is a homotopy equivalence.

• X−Z admits a free, properly discontinuous, cocompact action by the group�.
• The collection of translates of a compact set inX − Z forms a null sequence in
X; i.e. for every open coverU ofX, all but finitely many translates areU small.

Let us now introduce an equivariant version of a Z-structure:

Definition 1.1. We say that(X,Z) is an EZ-structure (equivariant Z-structure) on�
provided that(X,Z) is a Z-structure, and in addition, the� action onX−Z extends
to an action onX.

∗This research was supported in part by the National Science Foundation.



104 F. T. Farrell and J.-F. Lafont CMH

Examples of groups with an EZ-structure include torsion-freeδ-hyperbolic groups
[3] and CAT(0)-groups [4]. We note that a special case of a Z-structure on� is the
situation whereX is a diskD

n, andZ = ∂Dn = Sn−1:

Definition 1.2. We say that� satisfies condition(∗) provided that there is an EZ-
structure of the form(Dn, Sn−1).

Farrell–Hsiang introduced this special case in [8] (see also [9], [12], [13]). Their
motivation for the development of condition(∗)was that it provided an abstract setting
under which the Novikov conjecture could be verified for the group�. Observe that
there are groups with an EZ-structure that donot satisfy condition(∗); for example,
the free group on 2-generators. We now introduce a condition(∗�) for torsion-free
groups, generalizing condition(∗). (For non torsion-free groups see Definition 3.1
below)

Definition 1.3. We say that� satisfies condition(∗�) provided that there is an EZ-
structure of the form(Dn,�), where� is a closed subset of∂Dn = Sn−1

We are now ready to state the first two theorems of this paper:

Theorem 1.1. Let � be a discrete group, and assume that � has an EZ-structure.
Then � satisfies condition (∗�).
Theorem 1.2. Let � be a torsion-free discrete group satisfying condition (∗�). Then
the Novikov conjecture holds for the group �.

The proofs of these theorems will be provided in Section 2 and Section 3 respec-
tively. We note that the second theorem is not new, as Carlsson–Pederson [6] have
already proven that groups with an EZ-structure satisfy this form of the Novikov con-
jecture. Nevertheless, the proof provided here is conceptually quite different from
their argument (see Ferry–Weinberger [14] and Hu [16] for related results on the
Novikov conjecture).

Now let us further restrict to groups which are torsion-freeδ-hyperbolic. For such
a group�, Theorem 1.1 above ensures that the group satisfies condition(∗�). In fact,
δ-hyperbolicity ensures that the�-action on the pair(Dn,�) has several additional
properties. In Section 4, we will use these properties to show the following theorem:

Theorem 1.3. Let � be a torsion-free δ-hyperbolic group. Then for each integer
n ≥ 0, the group homomorphism:

⊕

S∈M

πn(φS) :
⊕

S∈M

πn(P (BS)) −→ πn(P (B�))

is monic.
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In the theorem above,M is a maximal collection of maximal infinite cyclic sub-
groups of�, with no two elements inM being conjugate,P (·) is the stable topological
pseudo-isotopy functor, andφS : P (BS) → P (B�) is the functorially defined con-
tinuous map induced byS ≤ � (see Hatcher [15]). We refer the reader to Section 4
for a more complete discussion of this result.

Before starting with the proofs, we make a few comments concerning the results
in this paper.

Remark 1. A natural question to ask is which finitely generated groups have an EZ-
structure? A version of this question was already posed by Bestvina [3], where he
asks whether every group� with a finiteB� has a Z-structure. It is interesting to
construct groups which are neitherδ-hyperbolic, nor CAT(0) groups, but do have an
EZ-structure. Bestvina gives some important examples of such groups in [3]. Do
torsion free subgroups of finite index in SLn(Z) have an EZ-structure?

Remark 2. It would also be of some interest to find applications of Theorem 1.1
to geometric group theory. Indeed, condition(∗�) for torsion free groups yields
an action of the group on disks, which, aside from a “bad limit set” is properly
discontinuous, fixed point free, and cocompact. With the exception of cocompactness,
this is reminiscent of the action of a Kleinian group on (the compactification) of
hyperbolicn-space. In some sense, Theorem 1.1 states that every torsion-freeδ-
hyperbolic group has an action that mimics that of a Kleinian group. One feels that
this should have some strong geometric consequences.

Remark 3. One could also consider the possibility of strengthening condition(∗�)
by also requiring the action of the group� on D

n to besmooth. Work of Benoist–
Foulon–Labourie [2] suggests that amongδ-hyperbolic groups, perhaps only uniform
lattices satisfy this extra property. In any event it would be interesting to determine
which δ-hyperbolic groups satisfy this smooth form of condition(∗�).

2. EZ-structure implies condition (∗�)

Let us fix a discrete group� with an EZ-structure(X,Z). In this section we will
provide a proof of Theorem 1.1. In order to do this, we will use the EZ-structure
(X,Z) to build a new EZ-structure of the form(Dn,�), where� is a closed subset
of ∂Dn = Sn−1. Let us start with a series of lemmas that will allow us to make the
structure ofX − Z more suitable to our purposes.

Lemma 2.1 (Reduction to a complex).Let� be a group with an EZ-structure (X,Z).
Then there is an EZ-structure (K̃ ∪ Z,Z), where K̃ is the universal cover of a finite
simplicial complex.
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Proof. We first observe that the hypotheses for an EZ-structure imply that the group
� is the fundamental group of an aspherical compact ANR, namely(X−Z)/�. By a
result of West [24], any compactANR is homotopy equivalent to a compact polyhedra
K. In particularK is aK(�,1). A result of Bestvina (Lemma 1.4 in [4]) now implies
that(K̃ ∪ Z,Z) is an EZ-structure. �

Our next step is to “fatten”K so that it is a manifold with boundary. In order
to do this, we embed (simplicially)K into a high dimensional (n ≥ 5) copy ofRn,
and letW be a regular neighborhood ofK. Note thatW is a compact manifold with
boundary, and denote byr : W → K a retraction ofW ontoK. Let the retraction
r̃ : W̃ → K̃ be the�-equivariant lift ofr.

Lemma 2.2 (Reduction to a manifold with boundary).The pair (W̃ ∪ Z,Z) is an
EZ-structure for �.

Proof. We follow the argument of Lemma 1.4 in Bestvina [4]. We start by taking the
diagonal embedding of̃W in (W̃ ∪ ∞) × (K̃ ∪ Z). The first factor is the one point
compactification ofW̃ , while the map into the second factor is given byr̃ : W̃ →
K̃ ↪→ K̃ ∪Z. The topology onK̃ ∪Z comes from taking the closure of the image of
this diagonal embedding. Lemma 1.3 in Bestvina [4] shows that this is a Z-structure.
Furthermore, by construction, the action of� on W̃ extends to an action of� on
W̃ ∪ Z. Hence we have an EZ-structure. �

An identical argument can be used to show the following:

Lemma 2.3 (Doubling across the boundary).Let (N ∪Z,Z) be an EZ-structure on
�, and assume that N is a manifold (with or without boundary). Denote by N the
space (N × I )/ ≡, where we collapse each p × I , p ∈ ∂N , to a point (so if N has
no boundary, then N = N × I ). Then (N ∪ Z,Z) is an EZ-structure on �.

Proof. We proceed as in the previous lemma, using the obvious�-equivariant map
ρ : N → N ↪→ N ∪ Z in the place of̃r. That is to say, we embedN into the space
(N ∪∞)× (N ∪Z) using the inclusion map on the first factor, and the mapρ on the
second factor.N ∪Z is then the closure of the image ofN under this map, with the
induced topology. Once again,Z lies as a Z-set, and the mapping is�-equivariant
by construction. �

Note that the spaceN defined in Lemma 2.3 is also a manifold with boundary,
and that the boundary∂N of N is by construction just the double ofN (the two
copies beingN × {0} andN × {1}).

We now return to the situation we are interested in. We have shown that we can
reduce to the case where the EZ-structure is of the form(W̃ ∪ Z,Z), whereW̃ is a
manifold with boundary. This allows us to apply the construction from the previous
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lemma to obtain a new EZ-structure(W ∪ Z,Z). Our next result shows thatW ∪ Z
is in fact a topological manifold. Because we will be referring to this result later in
this section, we prove it in a slightly more general form.

Proposition 2.1. Let (N ∪ Z,Z) be an EZ-structure on �, and assume that N is a
manifold (with or without boundary) of dimension ≥ 5. Let (N ∪ Z,Z) be the EZ-
structure defined in Lemma 2.3. Then the space N ∪Z is a manifold with boundary.

Proof. In order to show that the spaceN ∪Z is a compact manifold with we will use the
celebrated characterization of high dimensional topological manifolds due to Edwards
and Quinn (for a pleasant general survey, we refer to Mio [20]). Recall that this
characterization provides a list of five necessary and sufficient conditions for a locally
compact high dimensional topological space to be a closed topological manifold. The
corresponding characterization for manifolds with boundary requires an additional
condition about the ‘boundary’. We will verify each of these six conditions as a
separate claim.

Claim 1 (Finite dimensional).The space N ∪ Z is finite dimensional.

Claim 2 (Locally contractible).The space N ∪ Z is locally contractible.

Proof. These follow from the fact that the pair(N ∪ Z,Z) is a Z-structure. Indeed,
the first condition for a Z-structure forcesN ∪ Z to be an ER, and ER’s are locally
contractible and finite dimensional. �

Claim 3 (Homology manifold). The space N ∪ Z is a homology manifold with
boundary.

Proof. Let n be the dimension of the manifoldN . We need to verify that the local
homology of every point is either that of an(n+1)-dimensional sphere (for “interior”
points) or that of a point (for “boundary” points). In order to do this, we first observe
that the local homology is easy to compute for points inN . Indeed,N is actually a
manifold with boundary, hence the local homology has the correct values.

Now let us focus on a pointp that lies onZ ⊂ N ∪Z. We claim that the (reduced)
local homology atp is trivial. So we need to show thatH∗((N ∪Z), (N ∪Z)−p) = 0.
But this is also an immediate consequence of the fact thatZ is a Z-set inN ∪ Z.
Indeed, an equivalent formulation of the Z-set property states that there is a homotopy
J : (N ∪ Z)× I → N ∪ Z which satisfies the conditions:

• J mapsN × I into N .
• J0 : (N ∪ Z)× {0} → N ∪ Z is the identity map.
• Jt : (N ∪ Z)× {t} → N ∪ Z maps intoN for all t > 0.



108 F. T. Farrell and J.-F. Lafont CMH

In particular, the homotopyJ gives a family of homotopic maps which respect
the pair((N ∪ Z), (N ∪ Z) − p), hence they all induce the same maps on the
level of the homology groupsH∗((N ∪ Z), (N ∪ Z) − p). But the map induced
by J0 is the identity map, while the map induced byJ1 is the trivial map (since
J1(N ∪ Z) ⊂ N ⊂ (N ∪ Z)− p). Hence we have that the identity map coincides
with the zero map, which immediately implies thatH∗((N ∪ Z), (N ∪ Z) − p) is
trivial. We conclude thatN ∪ Z is indeed a homology manifold with boundary.�

Let us now recall the definition of the disjoint disk property. A topological space
X has the disjoint disk property provided that any pair of maps fromD

2 into a space
X can be approximated, to an arbitrary degree of precision, by maps whose images
are disjoint.

Claim 4 (Disjoint disk property).The space N ∪ Z has the disjoint disk property.

Proof. Note that, sinceN ∪ Z is an ER, it is metrizable; we will use this metric to
measure the closeness of maps. Letf, g be arbitrary maps fromD2 into N ∪Z, and
let ε > 0 an arbitrary real number. We need to exhibit a pair of maps which areε

close to the maps we started with, and have disjoint image.
Observe that, sinceZ is a Z-set in the spaceN ∪Z, there is a mapH : N ∪Z → N

with the property thatH is an(ε/2)-approximation of the identity map onN ∪ Z.
Consider the compositionsf ′ := H � f andg′ := H � g, and observe that the maps
f ′ andg′ are(ε/2)-approximations off andg respectively. Furthermore,f ′ andg′
mapD

2 into the subsetN , which we know is a manifold of dimension≥ 6.
But high dimensional manifolds automatically have the disjoint disk property,

so we can find(ε/2)-approximationsf ′′, g′′ to the mapsf ′, g′ whose images are
disjoint. It is immediate from the triangle inequality that thef ′′, g′′ satisfy our
desired properties. Hence the spaceN ∪ Z has the disjoint disk property. �

Claim 5 (Manifold point).The space N ∪ Z has a manifold point.

Proof. By a manifold point, we mean a point with a neighborhood homeomorphic
to someR

n+1. This is clear, sinceN is actually a topological(n + 1)-dimensional
manifold. �

We now remind the reader of the characterization of high dimensional topological
manifolds due to Edwards–Quinn ([7], [22], [23]):

Theorem 2.1 (Characterization of topological manifolds).Let X be a locally com-
pact topological space, n ≥ 5 an integer. Assume that X satisfies the following
properties:

• X has the local homology of an n-dimensional manifold.
• X is locally contractible.
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• X has finite (covering) dimension.
• X satisfies the disjoint disk property.

Then there is a locally defined invariant I (X) ∈ 8Z + 1 with the property that X is
a topological manifold if and only if I (X) = 1.

The corresponding theorem for a manifold with boundary requires an additional
modification of the first condition. Namely, one needs to replace it with the following:

• every pointp ∈ X has either the local homology of ann-dimensional sphere, or
that of a point.

• the subset of points having the local homology of a point, denoted by∂h(X) (the
“homological” boundary), is a topological manifold of dimensionn− 1.

Under these two conditions, the Edwards–Quinn result implies that the spaceX is a
topological manifold with boundary (and the set∂h(X) is the boundary of the manifold
X) if and only if the locally defined invariantI (X) = 1 (see Theorem 3.4.2 in Quinn
[21]).

As such, we have reduced our theorem to showing the following:

Claim 6. The set ∂h(N ∪ Z) is a compact manifold of dimension one lower than the
dimension of N .

Proof. By the proof of claim 3, we know exactly what the set∂h(N ∪Z) is. Namely,
it consists of the set∂N ∪Z. Note that the set∂N is just the double ofN across it’s
boundary. In particular,∂h(N ∪ Z) is obtained by taking two copies ofN ∪ Z, and
identifying the two copies of∂N ∪ Z.

We now claim that∂N ∪ Z is a Z-set in the spaceN ∪ Z. In order to show this
we need to exhibit a mapfε : N ∪Z → N ∪Z that isε-close to the identity, and has
fε(N ∪ Z) ⊂ N − ∂N . Note that sinceZ is a Z-set inN ∪ Z, there is a mapg that
is (ε/2)-close to the identity, and mapsN ∪ Z into N . Next, observe that sinceN
itself is a manifold with boundary,∂N is a Z-set inN , which implies the existence
of a maph : N → N − ∂N which is(ε/2)-close to the identity. Composing the two
maps and using the triangle inequality gives us our desired claim.

So we see that∂h(N ∪ Z) is obtained by doubling a Z-compactificationN ∪ Z
of an open manifold Int(N) along it’s Z-boundary∂N ∪ Z. By a result of Ancel–
Guilbault (Theorem 9 in [1]), this is automatically a manifold. The dimension claim
comes from the fact that∂h(N ∪ Z) contains∂N , hence must be a manifold of the
same dimension as∂N , which is one less than the dimension ofN . �

The Edwards–Quinn result now applies, completing our proof of Proposition 2.1.�

Let us summarize what we have so far: if� has an EZ-structure, we have shown
that there is an EZ-structure(W ∪ Z,Z) with the additional property thatW ∪ Z is
a topological manifold, andZ is a closed subset in the boundary of the topological
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manifold. We now want to further improve the EZ-structure so that the space is in
fact a topological disk. In order to do this, we iterate our procedure once more and
define the spaceW = (W × I )/ ≡, where again the equivalence relation is given by
collapsingp × I , p ∈ ∂W to a point. By Lemma 2.3, the pair(W ∪ Z,Z) is again
an EZ-structure for�, and by Proposition 2.1,W ∪Z is a topological manifold with
boundary. We claim thatW ∪ Z is in fact a topological disk.

Proposition 2.2. The space W ∪ Z is a disk.

Proof. We begin by showing that the space∂(W ∪ Z) is simply connected. Notice
that∂(W ∪Z) is the double of the compact manifold with boundaryW ∪Z along its
boundary∂W ∪Z. Furthermore each of the spacesW ∪Z is contractible. Seifert–Van
Kampen now yields that the double∂(W∪Z)must be simply connected. Furthermore,
observe that the spaceW ∪ Z is contractible.

Finally we note that any compact contractible manifold of dimension≥ 6 with
simply connected boundary must be homeomorphic to a disk. This is a well known
consequence of the h-cobordism theorem. A proof in the smooth category can be
found in Chapter 9, Proposition A, of Milnor’s book [19]. The same proof holds
verbatim, replacing the use of Smale’s smooth h-cobordism theorem with the topo-
logical h-cobordism theorem of Kirby–Siebenmann’s [18]. This concludes our proof
of the proposition. �

We have shown how given an arbitrary EZ-structure on a discrete group�, we
can construct an EZ-structure of the form(Dn,�), where� is a closed subset of
∂Dn = Sn−1. In particular, we see that any group which has an EZ-structure auto-
matically satisfies condition(∗�).

3. Condition (∗�) implies the Novikov conjecture

We start this section by giving a reformulation of condition(∗�) which is closer to
the formulation given by Farrell–Hsiang:

Definition 3.1. We say that a group� satisfies condition(∗�) if for some integer
n there is an action of� on (Dn,�), � a closed subset ofSn−1 = ∂Dn with the
following two properties:

• � acts properly discontinuously and cocompactly onD
n −�,

• for each compact subsetK of D
n − �, and eachε > 0, there exists aδ =

δ(K, ε) > 0 such that for eachγ ∈ �, if d(γK,�) < δ, then diam(γK) < ε.

Observe that condition(∗�) generalizes condition(∗) formulated in Farrell–
Hsiang [8] (the reader is also referred to [9] and the survey papers [12], [13]). The
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only difference between the two conditions is that condition(∗) also required the
set� to be∂Dn = Sn−1, and� to be torsion-free. Furthermore, for torsion-free
groups, it is easy to see that condition(∗�) corresponds exactly to the existence of
an EZ-structure of the form(Dn,�), where� is a closed subset ofSn−1.

Note that, by the theorem proved in the previous section, any group which has an
EZ-structure automatically satisfies condition(∗�). In particular, the following two
families of groups satisfy condition(∗�):

• torsion-freeδ-hyperbolic groups.
• torsion-free CAT(0)-groups.

Before starting the proof ofTheorem 1.2, we first state the following useful lemma:

Lemma 3.1. Let (Dm,�) be a �-space satisfying the properties given in condition
(∗�). Then there is a second �-space (Dm+1,�) also satisfying (∗�), and a contin-
uous �-equivariant surjection D

m × I → D
m+1 mapping �× I to � and mapping

(Dm −�)× I homeomorphically to D
m+1 −�.

Proof. Let X = (Dm × I )/ ≡, where the equivalence relation collapses each line
segmentx × I , x ∈ �, to a point. Letφ : D

m × I → X be the quotient map, and
giveX the�-space structure such thatφ is �-equivariant. Clearly,φ|(Dm−�)×I is a
homeomorphism ontoX −�.

Projection onto the first factor ofDm × I induces a�-equivariant map
� : X − � → D

m. The topology onX = (X − �) ∪ � induced, using�, by the
construction in Lemma 2.2 coincides with the one described above, as both topologies
are compact and Hausdorff. Hence(X,�) is an EZ-structure on�.

It remains to show thatX is homeomorphic toDm+1. For this we introduce
a second decomposition spaceY = D

m × [0,2]/ ∼, where∼ collapses each
line segmentx × [0,1], x ∈ �, to a point. SinceY andX are clearly home-
omorphic, it suffices to construct a homeomorphism fromY to D

m × [0,2]. To
do this, letφ : D

m → [0,1] be a continuous function such thatφ−1(0) = �.
Definef : D

m × [0,2] → D
m × [0,2] to bef (x, t) = (x, tφ(x)) if 0 ≤ t ≤ 1, and

f (x, t) = (x, (2−φ(x))t + 2φ(x)− 2) if 1 ≤ t ≤ 2. Observe thatf is a surjection.
Since the point inverses off give the decomposition∼ of D

m×[0,2], f induces
the desired homeomorphism. �

The condition(∗)was introduced by Farrell–Hsiang in order to provide an abstract
setting in which Novikov’s Conjecture could be verified. But the proof given in their
paper carries over almost verbatim to the more general setting of condition(∗�).
Namely the following is true:

Theorem 3.1. Let (Dm,�) be a�-space with the properties given in condition (∗�).
Suppose that � is torsion-free, and let Mm denote the orbit space (Dm − �)/�.
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Observe that Mm is an aspherical compact manifold with boundary. Then the map
in the (simple) surgery exact sequence:

Ss(Mm × D
n, ∂) −→ [Mm × D

n, ∂;G/Top]
is identically zero when n ≥ 1 and n+m ≥ 6.

Proof. For the reader’s convenience, we recall the argument of [8] for the special case
where� satisfies condition(∗), as exposited in the Trieste notes [13], emphasizing
the modifications needed for the more general setting of condition(∗�). So as not to
obscure the argument, we assume thatn = 1 andMm is triangulable. Notice that the
Lemma 3.1 formally reduces the general casen ≥ 1 to the special casen = 1.

Let (Dm+1,�) be the�-space determined by applying Lemma 3.1 to the�-space
(Dm,�), and notice thatMm × D

1 = (Dm+1 −�)/�. Define the space:

E2m+1 = (Dm+1 −�)×� (D
m − Sm−1)

and letp : E2m+1 → Mm × D
1 be the bundle projection induced by the projection

to thefirst factor (the fiber of this projection isDm − Sm−1). Then the following
diagram commutes:

Ss(Mm × D
1, ∂) ��

α

��

[Mm × D
1, ∂;G/Top]
p∗

��
S(E , ∂) �� [E , ∂;G/Top]

whereα is the obviously defined transfer map (see [13], pgs. 246–247). Sincep is
a homotopy equivalence,p∗ is an isomorphism. Hence to prove the theorem, it is
sufficient to verify the following:

Assertion. The map α is identically zero.

To verify this assertion, note first that an arbitrary element inSs(Mm × D
1, ∂)

can be represented by a pair(f, h), wheref : Mm → Mm is a self-homeomorphism
with f |∂Mm = Id∂Mm , andh : Mm × D

1 → Mm × D
1 is a homotopy off to IdMm

relative∂Mm. Define:

E2m = (Dm −�)×� (D
m − Sm−1)

and notice that by Lemma 3.1, we have thatE2m+1 = E2m × I .
Observe that, given such a pair(f, h), there is a well defined liftf̃ : D

m −� →
D
m − �, and thatf̃ |Sm−1−� = IdSm−1−�. Now let h̃ be the unique lift ofh to

(Dm−�)×I = D
m+1−�with the property that̃h is a proper homotopy equivalence

(relativeSm−1 −�) between IdDm−� and the self-homeomorphism̃f .
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Thenk := h̃× IdDm−Sm−1 determines a proper homotopy (relative∂E):

k : E = E × I −→ E × I

between IdE and a self-homeomorphismg : E → E (which is also determined by
f̃ × IdDm−Sm−1). Note thatS(E , ∂) = S(E× I, ∂), sinceE = E× I . Hence the pair
(g, k) represents the image of the pair(f, h) under the transfer map, i.e.(g, k) =
α(f, h). The assertion then claims that the pair(g, k) obtained in this manner is
always zero inS(E , ∂). In particular, the assertion would follow from the following:

Proposition 3.1. g is pseudo-isotopic to IdE (relative ∂E), via a pseudo-isotopy
which is properly homotopic to k (relative ∂).

We will now use the condition(∗�) to construct the pseudo-isotopy posited in
this proposition. Start by defining a new spaceE := D

m×� (D
m−Sm−1). Note that

the projection onto thesecond factor determines a fiber bundle projectionq : E →
Int(Mm) with fiber D

m (recall that Int(Mm) = (Dm − Sm−1)/�). HenceE is a
manifold containingE as an open dense subset, and∂E ⊂ ∂E.

Next observe that the second property of condition(∗�) implies thatf̃ extends
to a �-equivariant homeomorphism̄f : D

m → D
m by settingf̄ |Sm−1 = IdSm−1.

Consequently,f̄ × IdDm−� determines a self-homeomorphism̄g : E → E which
extendsg : E → E and satisfies̄g|

∂E
= Id

∂E
. We now proceed to construct a

pseudo-isotopyφ : E × I → E × I satisfying:
• φ|

E×{0} = ḡ

• φ|
E×{1} = Id

E×{1}
• φ|

(∂E)×I = Id
(∂E)×I .

Once this is done, then the restriction ofφ to the subsetE × I ⊂ E × I will be
the pseudo-isotopy posited in the proposition.

Observe that the three properties stated above defineφ on the entire set∂(E× I ).
We need to extendφ over Int(E × I ). In order to do this, consider the fiber bundle
r : E × I → Int(M) with fiberD

m × I , wherer is the composition of the projection
onto the first factor ofE × I followed by the mapq : E → Int(M). Observe that
if σ is ann-simplex in a triangulation of Int(M), thenr−1(σ ) can be identified with
D
n+m+1.

The construction ofφ proceeds by induction over the skeleta of Int(M) via a
standard obstruction theory argument. And the obstructions encountered in extend-
ing φ from the(n − 1)-skeleton to then-skeleton are precisely those of extending
a self-homeomorphism ofSn+m to a self-homeomorphism ofDn+m+1. But these
obstructions all vanish, because of the Alexander Trick. Recall that this trick asserts
that any self-homeomorphismη of Sn extends to a self-homeomorphism̄η of D

n+1.
In fact, η̄(tx) = tη(x) wherex ∈ Sn andt ∈ I is an explicit extension.
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Now the restrictionψ := φ|E×I is the pseudo-isotopy fromg to IdE asserted
in the proposition. A similar argument, which we omit, shows thatψ is properly
homotopic tok relative∂. This concludes the proof. �

4. Bounding πn(P (B�)) for δ-hyperbolic groups

In this section, we give an application of our main result to obtaining a lower bound
for the homotopy groupsπn(P (B�)) which holds for all torsion-freeδ-hyperbolic
groups�. HereP (·) is the stable topological pseudo-isotopy functor (see Hatcher
[15]). For this we need to first recall some basic facts aboutδ-hyperbolic groups.
Let � be a torsion freeδ-hyperbolic group (we exclude the case� = Z). Then the
following are true:

Fact 1. If S is an infinite cyclic subgroup of �, then there is a maximal infinite cyclic
subgroup containing S. Furthermore this maximal subgroup is unique.

Fact 2. IfC is a maximal infinite cyclic subgroup of �, then its normalizer isC itself.

Fact 3. If S1 and S2 are a pair of maximal infinite cyclic subgroups of �, and
{S±
i } ⊂ ∂∞� are the corresponding pair of points in the boundary at infinity, then

either S1 = S2 or {S±
1 } ∩ {S±

2 } = ∅.

Fact 4. If S is a maximal infinite cyclic subgroup of �, then γ · S− �= S+ for all
γ ∈ �.

We briefly explain why each of these facts holds. The existence part of Fact 1
follows from Proposition 3.16 in Bridson–Haefliger (pg. 465 in [5]), while uniqueness
follows from Fact 3. For a maximal infinite cyclic subgroup, the normalizer coincides
with the centralizer. If the element is not in the group itself, this would yield a pair of
commuting elements, giving aZ2 in �, which is impossible, giving us Fact 2. Fact 3
follows from the proof of Theorem 3.20 in Bridson–Haefliger (pg. 467 in [5]). Fact 4
is an easy consequence of Facts 2 and 3.

Now fix a setM where the elements ofM are maximal infinite cyclic subgroups
of � with each conjugacy class represented exactly once. For eachS ∈ M, let
φS : P (BS) → P (B�) be the functorially defined continuous map (see Hatcher
[15]). Note thatBS = S1 for eachS ∈ M. Theorem 1.3 that we are going to prove
in this section states that, for each integern ≥ 0, the group homomorphism

⊕

S∈M

πn(φS) :
⊕

S∈M

πn(P (BS)) −→ πn(P (B�))

is an injection.
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Note thatπ0(P (S
1)) ∼= Z2⊕Z2⊕· · · , where there are countably infinite number

of Z2’s (see Igusa [17]). Furthermore, the Isomorphism Conjecture forP (B�) for-
mulated by Farrell–Jones [11] is equivalent to the assertion that the homeomorphisms
in Theorem 1.3 are all isomorphisms together with the assertion that the Whitehead
groupsWh(� × Z

n) vanish for alln.
Let us now proceed to prove Theorem 1.3. By Theorem 1.1, we know that we

have a sequence of EZ-structures(Dm, ∂∞�), defined for all sufficiently largem, such
that� acts onDm by orientation preserving homeomorphisms, and(Dm+1, ∂∞�) =
(Dm, ∂∞�) × I (i.e. is D

m × I/ ≡ where each intervalx × I , with x ∈ Sm−1, is
collapsed to a point). Furthermore, eachS ∈ M determines a pair of distinct points
S+, S− ∈ ∂∞�. We start our argument by showing:

Claim 1. (Dm, {S±}) is an EZ-structure for S.

Proof. To see this claim, we first note that a closed subset of a Z-set is still a Z-set,
hence the pair(Dm, S±) satisfies the first two conditions for an EZ-structure. To verify
the remaining properties, we first observe that an easy adaptation of an argument of
Bestvina (Proposition 1.18 in [4]) shows that inD

m, there exists a neighborhood base
{Vi} of the pointS+ which has the following properties:

(1) Vi+1 ⊂ Vi for everyi,

(2) for every compact setK ⊂ D
m − {S±}, there exists ak such thatgk(K) ⊂ V1,

(3) there exists a fixedj such thatgj (Vi) = Vi+1 for everyi.

Hereg denotes the generator ofS whose positive powers tend toS+.
We now explain how proper discontinuity of the action follows. Note that, by

hyperbolicity of the�-action on∂∞�, S restricted to∂∞� − {S±} acts properly
discontinuously. Hence if proper discontinuity fails atp, thenp is an element of
∂∞�, and one can construct sequencesxi ∈ D

m − ∂∞� and ni ∈ Z such that
xi → S+, ni → +∞, andgni (xi) → p. But this immediately contradicts the
existence of the family{Vi} given above. Hence the action ofS on D

m − {S±} is
properly discontinuous. Then the freeness of theS-action is also immediate, since
the� action (and hence theS-action) onD

m − ∂∞� is free, while theS-action on
∂∞� fixes precisely the two pointsS±. The null-sequence property follows from the
fact that theS-action is properly discontinuous onDm − {S±}, and the fact thatDm

is the 2-point compactification ofDm − {S±}.
Finally, to see cocompactness, identifyD

m − {S±} with D
m−1 × R so thatS+

corresponds to+∞. Since theS-action is properly discontinuous, there exists an
integern > 0 such thatgn(Dm−1 × {0}) ⊂ D

m−1 × (0,+∞). LetW be the region
betweenDm−1 × {0} andgn(Dm−1 × {0}); i.e.

W = gn(Dm−1 × (−∞,0]) ∩ D
m−1 × [0,∞).
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W is clearly compact, and it is not difficult to see that∪i∈Z[gin(W)] = D
m−1 × R,

which establishes thatS acts cocompactly onDm − {S±}.
We now have that the pair(Dm, S±) satisfies all the conditions for an EZ-structure,

concluding the proof of Claim 1. �

We now continue the proof of Theorem 1.3. Note that

(Dm+1, {S±}) = (Dm, {S±})× I.

Arguing as in the paper by Farrell–Jones (see pgs. 462–467 in [10]), it suffices to
construct, for each sufficiently large integerm, a pair of continuous maps:

gS : P(Mm
S ) −→ P(Mm)

gS : P(Mm) −→ P(Mm
S )

whereMm = (Dm − ∂∞�)/�, Mm
S = (Dm − {S±})/S, andP(·) denotes the (un-

stable) topological pseudo-isotopy space, and where the mapsgS andgS satisfy the
following:

Assertion. gS �gS is homotopic to the identity, and gS
′ �gS is homotopic to a constant

map whenever S �= S′.
We first discuss the construction of the mapsgS , gS , and will then discuss why the

pair of maps we constructed satisfy the assertion. Start by observing that bothMm

andMm
S are compactm-dimensional manifolds with boundary (we will henceforth

suppress the superscript indicating dimension unless it is explicitly relevant to the
argument being presented). Now letp = pS : Int(MS) → Int(M) be the covering
space corresponding to the subgroupS ⊂ � = π1(Int(M)). Using the s-cobordism
theorem (and assumingm ≥ 6), one easily constructs an isotopyφt = φSt : MS → MS

such thatφ0 = IdMS
, andp � φ1 : MS → M is an embedding. To definegS , let

f : MS × I → MS × I be a pseudo-isotopy (i.e. an element ofP(MS)). Recall that
f is an automorphism (i.e. an onto homeomorphism) with the property that:

f |MS×{0}∪(∂MS)×I = Id |MS×{0}∪(∂MS)×I .

We can now definef∗ = gS(f ) ∈ P(M) by settingf∗(x, t) to be:
• (x, t) if x ∈ M − Image(p � φ1)
• p � φ1(f (x̄, t)) if x = p � φ1(x̄)

wherex ∈ M andt ∈ I . This gives us the mapgS .
On the other hand, to definegS(f ), wheref ∈ P(M), let f̃ : (Dm−∂∞�)×I →

(Dm − ∂∞�) × I be the lift off such thatf̃ (x, t) = (x, t) if either x ∈ Sm−1 =
∂Dm or if t = 0. Now f̃ induces an automorphism̄f of (Dm+1, ∂∞�), since
(Dm+1, ∂∞�) = (Dm, ∂∞�)× I . Note thatf̄ is�-equivariant and that̄f |∂−Dm+1 =
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Id∂−Dm+1, where∂−D
m+1 is the image ofDm×{0}∪Sm−1×I under the quotient map

D
m×I → D

m+1. Since∂∞� ⊂ ∂−D
m+1, f̄ induces anS-equivariant automorphism

of D
m+1 − {S±} which then descends to an automorphismfS of (Dm+1 − {S±})/S.

After “appropriately identifying”

MS = (Dm+1 − {S±})/S
with Mm

S × I , gS(f ) is defined bygS(f ) = fS .
To do this identification, first note thatMS is the quotient space ofMm

S × I where
each intervalx × I , x ∈ ∂Mm

S is collapsed to a point. SoMm
S × {0} is canonically

identified with a codimension zero submanifold∂−MS of ∂MS . By equating∂Mm
S ×I

with a short collar of∂(∂−MS) in ∂−MS , an identification ofMS × I to MS can be
constructed such that the composition

P(MS) −→ Aut(MS, ∂−(MS)) −→ P(MS)

is homotopic to the identity (here the two maps above are the naturally defined continu-
ous maps; in fact, the second map is the homeomorphism induced by the identification
while the first is determined by the fact thatMS is a quotient space ofMS × I ). This
is the “appropriate identification” mentioned above.

This gives us the two maps for which we claim the assertion holds. Before
continuing our proof, we note that, whenm ≥ 6, the spacesMm

S are all homeomorphic
toS1×D

m−1. Indeed, this follows by the s-cobordism theorem, and the fact thatS acts
via orientation preserving homeomorphisms onD

m − {S±}; thus the closed tubular
neighborhood of any embedded circleS1 in Int(Mm

S ), which induces a homotopy
equivalence, is homeomorphic toS1 × D

m−1.
Now theAssertion, made above, can be verified in the same way that properties

(i) and (ii) in Lemma 2.1 of Farrell–Jones [10] were proven. We merely point out that
they follow directly from the following two claims which we proceed to formulate
and then to verify. LetTS denote the image ofpS �φS1 . Note thatTS is a codimension
zero submanifold of Int(Mm

S ) and thatTS is homeomorphic toS1 × D
m−1. Recall

that
pS : Int(MS) −→ Int(M)

is the covering projection corresponding toS ⊂ �. And thatφS1 : MS → Int(MS) is
an embedding isotopic to IdMS

. Recall that we assumed that� is not cyclic.
Now let {Ci} denote the connected components ofp−1

S (TS), and note thatp−1
S =∐

i Ci . LetCi denote the closure ofCi in MS . It is an elementary observation that
eachCi is a codimension zero submanifold of Int(MS) as well as an open subset of
p−1
S (TS). Furthermore, observe that Image(φS1 ) is a codimension zero submanifold

of Int(MS) which is homeomorphic toS1 × D
m+1.

Claim 2. We can index the set {Ci} so thatC0 = Image(φ1
S) andCi is homeomorphic

to D
m when i �= 0.
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Now let S′ ∈ M with S′ �= S, and denote by{C′
i} the connected components of

p−1
S′ (TS) and byC′

i the closure ofC′
i in MS′ . It is again elementary that eachC′

i is a

codimension zero submanifold of Int(MS′) as well as an open subset ofp−1
S′ (TS).

Claim 3. Each C′
i is homeomorphic to D

m.

We now proceed with the proofs of the two claims. The Facts 1δ–4δ used in the
proofs below refer to the facts aboutδ-hyperbolic groups discussed at the beginning
of this section.

Proof of Claim 2. One easily sees that eachpi : Ci → TS is a covering projection
wherepi = pS |Ci . Hence Image(φS1 ) must be one of the componentsCi since
p : Image(φSi ) → TS is a homeomorphism. Thus we may index the components

starting withC0 = Image(φS1 ). Therefore it remains to show thatCi is homeomorphic
to D

m wheni �= 0. To do this, define
• q : D

m − ∂∞� −→ M = (Dm − ∂∞�)/�
• r = rS : D

m − {S±} −→ MS = (Dm − {S±})/S
to be the universal covering maps whose groups of deck transformations are� andS
respectively. Then we have the following commutative triangle of covering spaces:

Int(Dm) r ��

q ������������ Int(Ms)

p�����������

Int(M)

Note thatq−1(TS) = ∐
i Di where eachDi is a connected component ofq−1(TS).

And letDi be the closure ofDi in D
m. One easily sees the following ten points:

(1) EachDi is open inq−1(TS).
(2) EachDi is a codimension zero submanifold of Int(Dm).
(3) qi : Di → TS is a universal covering space (whereqi = q|Di ) whose group of

deck transformationsSi consists of allγ ∈ � such thatγ (Di) = Di . Conse-
quently,Di is homeomorphic toDm−1 × R.

(4) The componentsDi are permuted transitively by�. Consequently, the groups
Si are all conjugate cyclic subgroups of�.

(5) At least one of the groupsSi isS. Hence all theSi are maximal cyclic subgroups
of �. And we can rearrange the indexing so thatS0 = S.

(6) If the cardinality|Si ∩ Sj | > 1, theni = j . This follows from points (4) and
(5) by using Fact 1δ and Fact 2δ.

(7) Let φ̃t : D
m − {S±} → D

m − {S±} be the lift of the isotopyφt with respect
to the covering projectionr such thatφ̃0 = Id. ThenD0 = Image(φ̃1), and
consequentlyD0 = D0 ∪ {S±}, which forcesD0 to be homeomorphic toDm.
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(8) Because of points (4) and (7),Di = Di∪{S±
i } and is homeomorphic toDm. Also

because of point (6) and Fact 3δ,Di ⊂ D
m − {S±} if i �= 0, and consequently

Di is also the closure ofDi in D
m − {S±}.

(9) If γ (Di) ∩ Di �= ∅, whereγ ∈ �, thenγ ∈ Si . This results from points (4),
(6), (8), along with Facts 3δ and 4δ. Consequently, ifi �= 0, thenr|

Di
: Di →

r(Di) = r(Di) is a homeomorphism sinceSi ∩ S0 = 1, because of point (6)
(Herer(Di) denotes the closure ofr(Di) in MS).

(10) There is a surjection of indexing setsi �→ α(i), with α(0) = 0, such that
ri : Di → Cα(i) is a covering space (hereri denotesr|Di ). This follows from
the above commutative triangle in whichp, q, andr are open maps.

It now follows immediately from points (8), (9), and (10), thatCi is homeomorphic
to D

m wheni �= 0; thus completing the proof of Claim 2. �

Proof of Claim 3. This proof closely parallels the one just given for Claim 2. Note
that the above points (1)–(9) continue to hold. And by replacingS by S′ in the above
commutative triangle, the following analogue (10)′ of point (10) is similarly verified
using thatpS′ , q, andrS′ are open maps: there is a surjectioni �→ β(i) of indexing
sets such thatr ′i : Di → C′

β(i) is a covering space wherer ′i = rS′ |Di .
Then Fact 3δ yields that:

{S±
i } ⊆ (Dm − ∂∞S′) = Domain(rS′)

which together with point (8) shows that

Di ⊆ Domain(rS′).

Therefore point (9) yields that:

rS′ |
Di

: Di −→ rS′(Di) = rS′(Di) = C′
β(i)

is a homeomorphism. ButDi is homeomorphic toDm by point (8), andβ is a
surjection by point (10)′. This concludes the proof of Claim 3. �

Finally, we point out that, from these two claims, it is easy to show theAssertion.
Indeed, the pseudo-isotopiesgS � gS(f ) andgS

′ � gS(f ) are supported over
⋃
i Ci

and
⋃
i C

′
i respectively. Because of claims 2 and 3, the Alexander trick can be used to

verify theAssertion. We refer the reader to Section 2 of Farrell–Jones [10] for more
details.
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