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EZ-structures and topological applications

F. T. Farrelf and J.-F. Lafont

Abstract. In this paper, we introduce the notion of an EZ-structure on a group, an equivariant
version of the Z-structures introduced by Bestvina [4]. Examples of groups having an EZ-
structure include (1) torsion freehyperbolic groups, and (2) torsion free CAJ-groups.

Our first theorem shows that any group having an EZ-structure has an action by homeomor-
phisms on soméD”, A), wheren is sufficiently large, and\ is a closed subset 60" = sn—1,
The action has the property that it is proper and cocompabBt'on A, and that ifKk ¢ D" — A
is compact, that diaxg K) tends to zero ag — oo. We call this propertyxa).

Our second theorem uses techniques of Farrell-Hsiang [8] to show that the Novikov con-
jecture holds for any torsion-free discrete group satisfying conditian (giving a new proof
that torsion-freg-hyperbolic and CAT0) groups satisfy the Novikov conjecture).

Our third theorem gives another application of our main result. We show how, in the case
of a torsion-frees-hyperbolic groud”, we can obtain a lower bound for the homotopy groups
7, (P (BT)), wheref (-) is the stable topological pseudo-isotopy functor.

1. Introduction

LetT" be a discrete group. Bestvina [4] defined the notion of a Z-structuie ama
pair (X, Z) of spaces satisfying the following four axioms:

« X is a Euclidean retract (ER); i.e. it is locally contractible, contractible and has
finite (covering) dimension.

« ZisaZ-setinX;i.e.Z is a closed subset 6f with the property that, for every
open sel/ C X, the inclusionl/ — Z — U is a homotopy equivalence.

- X — Z admits a free, properly discontinuous, cocompact action by the dgroup

« The collection of translates of a compact sekin- Z forms a null sequence in
X; i.e. for every open covedl of X, all but finitely many translates afg small.

Let us now introduce an equivariant version of a Z-structure:

Definition 1.1. We say thatX, Z) is an EZ-structure (equivariant Z-structure)on
provided tha( X, Z) is a Z-structure, and in addition, tiieaction onX — Z extends
to an action orX.

*This research was supported in part by the National Science Foundation.
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Examples of groups with an EZ-structure include torsion-dregperbolic groups
[3] and CAT(0)-groups [4]. We note that a special case of a Z-structurg anthe
situation whereX is a diskD”, andZ = oD" = " 1:

Definition 1.2. We say thaf" satisfies conditior{x) provided that there is an EZ-
structure of the formiD”, s"~1).

Farrell-Hsiang introduced this special case in [8] (see also [9], [12], [13]). Their
motivation for the development of conditigr) was that it provided an abstract setting
under which the Novikov conjecture could be verified for the grbu®bserve that
there are groups with an EZ-structure thatbsatisfy condition(x); for example,
the free group on 2-generators. We now introduce a condgtian for torsion-free
groups, generalizing conditiof). (For non torsion-free groups see Definition 3.1
below)

Definition 1.3. We say thaf" satisfies conditiorix ) provided that there is an EZ-
structure of the form{D”, A), whereA is a closed subset 6f)” = 571

We are now ready to state the first two theorems of this paper:

Theorem 1.1. Let I' be a discrete group, and assume that I' has an EZ-structure.
Then T satisfies condition (x4).

Theorem 1.2. LetT" beatorsion-free discrete group satisfying condition (x). Then
the Novikov conjecture holds for the group T

The proofs of these theorems will be provided in Section 2 and Section 3 respec-
tively. We note that the second theorem is not new, as Carlsson—Pederson [6] have
already proven that groups with an EZ-structure satisfy this form of the Novikov con-
jecture. Nevertheless, the proof provided here is conceptually quite different from
their argument (see Ferry—Weinberger [14] and Hu [16] for related results on the
Novikov conjecture).

Now let us further restrict to groups which are torsion-idgyperbolic. For such
agroupl’, Theorem 1.1 above ensures that the group satisfies cong@itionin fact,
8-hyperbolicity ensures that tHe-action on the paitD”, A) has several additional
properties. In Section 4, we will use these properties to show the following theorem:

Theorem 1.3. Let I be a torsion-free §-hyperbolic group. Then for each integer
n > 0, the group homomor phism:

P 1 @s): @ 7u(P(BS)) —> m,(P(BT))

SeM SeM

ismonic.
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In the theorem abovep is a maximal collection of maximal infinite cyclic sub-
groups ofl", with no two elements i being conjugate? (-) is the stable topological
pseudo-isotopy functor, angk : 2 (BS) — £ (BT) is the functorially defined con-
tinuous map induced by < I (see Hatcher [15]). We refer the reader to Section 4
for a more complete discussion of this result.

Before starting with the proofs, we make a few comments concerning the results
in this paper.

Remark 1. A natural question to ask is which finitely generated groups have an EZ-
structure? A version of this question was already posed by Bestvina [3], where he
asks whether every group with a finite B[' has a Z-structure. It is interesting to
construct groups which are neithehyperbolic, nor CATO) groups, but do have an
EZ-structure. Bestvina gives some important examples of such groups in [3]. Do
torsion free subgroups of finite index in SZ) have an EZ-structure?

Remark 2. It would also be of some interest to find applications of Theorem 1.1
to geometric group theory. Indeed, conditiosn) for torsion free groups yields

an action of the group on disks, which, aside from a “bad limit set” is properly
discontinuous, fixed point free, and cocompact. With the exception of cocompactness,
this is reminiscent of the action of a Kleinian group on (the compactification) of
hyperbolicn-space. In some sense, Theorem 1.1 states that every torsios+-free
hyperbolic group has an action that mimics that of a Kleinian group. One feels that
this should have some strong geometric consequences.

Remark 3. One could also consider the possibility of strengthening conditan

by also requiring the action of the grotipon D" to besmooth. Work of Benoist—
Foulon—Labourie [2] suggests that amdrlgyperbolic groups, perhaps only uniform
lattices satisfy this extra property. In any event it would be interesting to determine
which §-hyperbolic groups satisfy this smooth form of conditien, ).

2. EZ-structureimplies condition (#4)

Let us fix a discrete group with an EZ-structurg€X, Z). In this section we will
provide a proof of Theorem 1.1. In order to do this, we will use the EZ-structure
(X, Z) to build a new EZ-structure of the for", A), whereA is a closed subset

of D" = §"~1. Let us start with a series of lemmas that will allow us to make the
structure ofX — Z more suitable to our purposes.

Lemma 2.1 (Reduction to a complex)Let I" beagroupwithan EZ-structure (X, Z).
Then thereis an EZ-structure (K U Z, Z), where K isthe universal cover of a finite
simplicial complex.
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Proof. We first observe that the hypotheses for an EZ-structure imply that the group
I' is the fundamental group of an aspherical compact ANR, natgly Z)/T". By a
result of West [24], any compact ANR is homotopy equivalent to a compact polyhedra
K. In particularK isaK (T", 1). Aresult of Bestvina (Lemma 1.4 in [4]) now implies
that(K U Z, Z) is an EZ-structure. O

Our next step is to “fattenk so that it is a manifold with boundary. In order
to do this, we embed (simpliciallykX into a high dimensional( > 5) copy ofR”,
and letW be a regular neighborhood &f. Note thatW is a compact manifold with
boundary, and denote by W — K a retraction ofW onto K. Let the retraction
7: W — K be thel'-equivariant lift ofr.

L emma 2.2 (Reduction to a manifold with boundaryYhe pair (W U Z, Z) is an
EZ-structurefor T'.

Proof. We follow the argument of Lemma 1.4 in Bestvina [4]. We start by taking the
diagonal embedding d¥ in (W U c0) x (K U Z). The first factor is the one point
compactification of, while the map into the second factor is givenibyWw —

K < K UZ. The topology ork U Z comes from taking the closure of the image of
this diagonal embedding. Lemma 1.3 in Bestvina [4] shows that this is a Z-structure.
Furthermore, by construction, the actionIofon W extends to an action df on

W U Z. Hence we have an EZ-structure. m)

An identical argument can be used to show the following:

Lemma 2.3 (Doubling across the boundaryl.et (N U Z, Z) be an EZ-structure on
", and assume that N is a manifold (with or without boundary). Denote by N the
space (N x I)/ =, wherewe collapseeach p x I, p € N, toa point (soif N has
no boundary,then &/ = N x I). Then (N U Z, Z) isan EZ-structureon T".

Proof. We proceed as in the previous lemma, using the obvitesguivariant map
p: N —> N — NUZinthe place of. That is to say, we embed into the space
(N Uoo) x (N U Z) using the inclusion map on the first factor, and the mam the
second factor U Z is then the closure of the image #f under this map, with the
induced topology. Once agaif, lies as a Z-set, and the mappinglisequivariant
by construction. a

Note that the space# defined in Lemma 2.3 is also a manifold with boundary,
and that the boundar§N of N is by construction just the double &f (the two
copies beingVv x {0} andN x {1}).

We now return to the situation we are interested in. We have shown that we can
reduce to the case where the EZ-structure is of the gl Z, Z), whereW is a
manifold with boundary. This allows us to apply the construction from the previous



Vol. 80 (2005) EZ-structures and topological applications 107

lemma to obtain a new EZ-structuf® U Z, Z). Our next result shows thay U Z
is in fact a topological manifold. Because we will be referring to this result later in
this section, we prove it in a slightly more general form.

Proposition 2.1. Let (N U Z, Z) be an EZ-structure on T, and assume that N isa
manifold (with or without boundary) of dimension > 5. Let (N U Z, Z) be the EZ-
structure defined in Lemma 2.3. Then the space & U Z isa manifold with boundary.

Proof. Inorderto showthatthe spagéJZ is a compact manifold with we will use the
celebrated characterization of high dimensional topological manifolds due to Edwards
and Quinn (for a pleasant general survey, we refer to Mio [20]). Recall that this
characterization provides a list of five necessary and sufficient conditions for a locally
compact high dimensional topological space to be a closed topological manifold. The
corresponding characterization for manifolds with boundary requires an additional
condition about the ‘boundary’. We will verify each of these six conditions as a
separate claim.

Claim1 (Finite dimensional)The space N U Z isfinite dimensional.

Claim 2 (Locally contractible).The space N U Z islocally contractible.

Proof. These follow from the fact that the paiw U Z, Z) is a Z-structure. Indeed,
the first condition for a Z-structure force$ U Z to be an ER, and ER'’s are locally
contractible and finite dimensional. O

Claim 3 (Homology manifold). The space & U Z is a homology manifold with
boundary.

Proof. Letn be the dimension of the manifold. We need to verify that the local
homology of every pointis either that of &n-+ 1)-dimensional sphere (for “interior”
points) or that of a point (for “boundary” points). In order to do this, we first observe
that the local homology is easy to compute for pointsvin Indeed,V is actually a
manifold with boundary, hence the local homology has the correct values.

Now let us focus on a pointthatlies onZz c & UZ. We claim that the (reduced)
local homology ap is trivial. Sowe need to show that, (N UZ), (NVUZ)—p) = 0.
But this is also an immediate consequence of the factZhista Z-set inV U Z.
Indeed, an equivalent formulation of the Z-set property states that there is a homotopy
J: (NUZ)x I — N UZwhich satisfies the conditions:

o J maps~N x IintoN.
e Jo: (NUZ)x {0} - N U Zis the identity map.
e Ji: (NUZ)x {t} > N UZmaps intoN forall ¢t > 0.
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In particular, the homotopy gives a family of homotopic maps which respect
the pair((N& U Z), (N U Z) — p), hence they all induce the same maps on the
level of the homology group#&/, (N U Z), (N U Z) — p). But the map induced
by Jo is the identity map, while the map induced Wy is the trivial map (since
JINUZ) C N C (N UZ)— p). Hence we have that the identity map coincides
with the zero map, which immediately implies that ((N U Z), (N U Z) — p) is
trivial. We conclude thatv' U Z is indeed a homology manifold with boundary3

Let us now recall the definition of the disjoint disk property. A topological space
X has the disjoint disk property provided that any pair of maps fignnto a space
X can be approximated, to an arbitrary degree of precision, by maps whose images
are disjoint.

Claim 4 (Disjoint disk property).The space & U Z hasthe digoint disk property.

Proof. Note that, sinceV U Z is an ER, it is metrizable; we will use this metric to
measure the closeness of maps. f.ef be arbitrary maps frof»? into & U Z, and
lete > 0 an arbitrary real number. We need to exhibit a pair of maps whichk are
close to the maps we started with, and have disjoint image.

Observe that, sincg is a Z-setinthe spac& UZ, thereisamap/ : NUZ — N
with the property that{ is an(e/2)-approximation of the identity map oN U Z.
Consider the composition§ := H o f andg’ := H o g, and observe that the maps
f/ andg’ are(e/2)-approximations off andg respectively. Furthermorg; andg’
mapD? into the subsetv, which we know is a manifold of dimension 6.

But high dimensional manifolds automatically have the disjoint disk property,
so we can finde/2)-approximationsf”, g’ to the mapsf’, ¢’ whose images are
disjoint. It is immediate from the triangle inequality that tifé, ¢” satisfy our
desired properties. Hence the spaéeJ Z has the disjoint disk property. a

Claim5 (Manifold point). The space & U Z has a manifold point.

Proof. By a manifold point, we mean a point with a neighborhood homeomaorphic
to someR"*+1. This is clear, sinceV is actually a topologicaln + 1)-dimensional
manifold. O

We now remind the reader of the characterization of high dimensional topological
manifolds due to Edwards—Quinn ([7], [22], [23]):

Theorem 2.1 (Characterization of topological manifoldsl.et X be a locally com-
pact topological space, n > 5 an integer. Assume that X satisfies the following
properties:

« X hasthelocal homology of an n-dimensional manifold.

« X islocally contractible.
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« X hasfinite (covering) dimension.

« X satisfiesthe digoint disk property.
Then thereis a locally defined invariant 7 (X) € 8Z + 1 with the property that X is
a topological manifold if and only if 7(X) = 1.

The corresponding theorem for a manifold with boundary requires an additional
moadification of the first condition. Namely, one needs to replace it with the following:

« every pointp € X has either the local homology of ardimensional sphere, or
that of a point.

« the subset of points having the local homology of a point, denoted (%) (the
“homological” boundary), is a topological manifold of dimensior- 1.

Under these two conditions, the Edwards—Quinn result implies that the Xp&ca
topological manifold with boundary (and the 8g€X) is the boundary of the manifold
X) if and only if the locally defined invariant(X) = 1 (see Theorem 3.4.2 in Quinn
[21]).

As such, we have reduced our theorem to showing the following:

Claim6. The set 9, (N U Z) isa compact manifold of dimension one lower than the
dimension of V.

Proof. By the proof of claim 3, we know exactly what the 8gt.V U Z) is. Namely,
it consists of the stV U Z. Note that the sei.V is just the double oN across it’s
boundary. In particulag, (& U Z) is obtained by taking two copies &f U Z, and
identifying the two copies od N U Z.

We now claim thad N U Z is a Z-set in the spack¥ U Z. In order to show this
we need to exhibitamapfi: NUZ — N U Z that ise-close to the identity, and has
fe(NUZ) C N —09dN. Note that sinceZ is a Z-set inN U Z, there is a mapg that
is (¢/2)-close to the identity, and mapé U Z into N. Next, observe that sinc¥
itself is a manifold with boundangd N is a Z-set inN, which implies the existence
ofamaph: N - N — dN which is(e/2)-close to the identity. Composing the two
maps and using the triangle inequality gives us our desired claim.

So we see thal, (N U Z) is obtained by doubling a Z-compactificatiohU Z
of an open manifold IntV) along it's Z-boundan®N U Z. By a result of Ancel-
Guilbault (Theorem 9 in [1]), this is automatically a manifold. The dimension claim
comes from the fact tha, (& U Z) containsd.A, hence must be a manifold of the
same dimension asV, which is one less than the dimension st O

The Edwards—Quinn result now applies, completing our proof of Propositidn 2.1.

Let us summarize what we have so farl"ihas an EZ-structure, we have shown
that there is an EZ-structuév U Z, Z) with the additional property thaW U Z is
a topological manifold, and is a closed subset in the boundary of the topological
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manifold. We now want to further improve the EZ-structure so that the space is in
fact a topological disk. In order to do this, we iterate our procedure once more and
define the spac®&/ = (W x I)/ =, where again the equivalence relation is given by
collapsingp x I, p € 3'W to a point. By Lemma 2.3, the paiWw U Z, Z) is again

an EZ-structure fof', and by Proposition 2.3V U Z is a topological manifold with
boundary. We claim thaty U Z is in fact a topological disk.

Proposition 2.2. The space W U Z isadisk.

Proof. We begin by showing that the spa@€éW U Z) is simply connected. Notice
thata (W U Z) is the double of the compact manifold with bounda¥yJ Z along its
boundan®wu Z. Furthermore each of the spad#sJ Z is contractible. Seifert—Van
Kampen nowyields that the doutdléWu Z) must be simply connected. Furthermore,
observe that the spa®® U Z is contractible.

Finally we note that any compact contractible manifold of dimensioé with
simply connected boundary must be homeomorphic to a disk. This is a well known
consequence of the h-cobordism theorem. A proof in the smooth category can be
found in Chapter 9, Proposition A, of Milnor's book [19]. The same proof holds
verbatim, replacing the use of Smale’s smooth h-cobordism theorem with the topo-
logical h-cobordism theorem of Kirby—Siebenmann’s [18]. This concludes our proof
of the proposition. O

We have shown how given an arbitrary EZ-structure on a discrete growe
can construct an EZ-structure of the fof"”, A), whereA is a closed subset of
D" = s"~1. In particular, we see that any group which has an EZ-structure auto-
matically satisfies conditiofi ).

3. Condition (%) impliesthe Novikov conjecture

We start this section by giving a reformulation of conditign,) which is closer to
the formulation given by Farrell-Hsiang:

Definition 3.1. We say that a group' satisfies conditior(x,) if for some integer
n there is an action of on (D", A), A a closed subset &f"~1 = dD" with the
following two properties:

« T acts properly discontinuously and cocompactlylin— A,

« for each compact subsét of D" — A, and eack > O, there exists @ =
3(K,¢e) > 0suchthatforeach e ', if d(y K, A) < §, thendianfy K) < e.

Observe that conditionixa) generalizes conditiorix) formulated in Farrell-
Hsiang [8] (the reader is also referred to [9] and the survey papers [12], [13]). The
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only difference between the two conditions is that conditi@nalso required the
setA to bedD” = §"~1, andT to be torsion-free. Furthermore, for torsion-free
groups, it is easy to see that conditiGrn ) corresponds exactly to the existence of
an EZ-structure of the forrD”, A), whereA is a closed subset ¢f' 1.

Note that, by the theorem proved in the previous section, any group which has an
EZ-structure automatically satisfies conditigrn, ). In particular, the following two
families of groups satisfy conditiofx ):

« torsion-frees-hyperbolic groups.
« torsion-free CATO0)-groups.

Before starting the proof of Theorem 1.2, we first state the following useful lemma:

Lemma3.1l. Let (D™, A) be a I'-space satisfying the properties given in condition
(xa). Then thereis a second I'-space (D11, A) also satisfying (x), and a contin-
uous I"-equivariant surjection D" x I — D™+1 mapping A x I to A and mapping
(D™ — A) x I homeomorphically to D"+1 — A,

Proof. Let X = (D™ x I)/ =, where the equivalence relation collapses each line
segmentt x I, x € A, to a point. Letp: D" x I — X be the quotient map, and
give X the'-space structure such thatis I-equivariant. Clearlyg|mm_a)x; is @
homeomorphism ont& — A.

Projection onto the first factor o)™ x I induces arl'-equivariant map
W: X — A — D" The topology onX = (X — A) U A induced, using¥, by the
construction in Lemma 2.2 coincides with the one described above, as both topologies
are compact and Hausdorff. Hence, A) is an EZ-structure off.

It remains to show thaX is homeomorphic td”+1, For this we introduce
a second decomposition spage = D™ x [0, 2]/ ~, where~ collapses each
line segmentx x [0,1], x € A, to a point. Since¥ and X are clearly home-
omorphic, it suffices to construct a homeomorphism frbno D™ x [0, 2]. To
do this, let¢: D™ — [0, 1] be a continuous function such that1(0) = A.
Definef: D™ x [0,2] — D™ x [0, 2]to be f(x,t) = (x,t¢p(x))if0O <t < 1,and
f,t)=(@x, 2—¢px)t+2¢(x) —2)ifl <t < 2. Observe thaf is a surjection.

Since the point inverses gf give the decompositiorr of D™ x [0, 2], f induces
the desired homeomorphism. O

The condition(x) was introduced by Farrell-Hsiang in order to provide an abstract
setting in which Novikov’s Conjecture could be verified. But the proof given in their
paper carries over almost verbatim to the more general setting of congiion
Namely the following is true:

Theorem 3.1. Let (D™, A) beaT-spacewiththe propertiesgivenin condition (x4).
Suppose that T is torsion-free, and let M™ denote the orbit space (D™ — A)/T.
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Observe that M™ is an aspherical compact manifold with boundary. Then the map
in the (ssmple) surgery exact sequence:

S85(M™ x D", 3) — [M™ x D", 9; G/ Top]
isidentically zezrowhenn > 1andn + m > 6.

Proof. Forthe reader’s convenience, we recall the argument of [8] for the special case
wherel satisfies conditiorix), as exposited in the Trieste notes [13], emphasizing
the modifications needed for the more general setting of conditigh So as not to
obscure the argument, we assume that 1 andM™ is triangulable. Notice that the
Lemma 3.1 formally reduces the general case 1 to the special case= 1.

Let (D"*1, A) be thel'-space determined by applying Lemma 3.1 toltkspace
(D™, A), and notice thaM™ x D! = (D"*+1 — A)/T". Define the space:

and letp: €27+t . M™ x D! be the bundle projection induced by the projection
to thefirst factor (the fiber of this projection i®” — $™~1). Then the following
diagram commutes:

$5(M™ x DY, 9) —— [M™ x D', 8; G/ Top]

al ;

(€, 0) [&,0; G/ Top]

whereq is the obviously defined transfer map (see [13], pgs. 246-247). iice
a homotopy equivalencey* is an isomorphism. Hence to prove the theorem, it is
sufficient to verify the following:

Assertion. The map « isidentically zero.

To verify this assertion, note first that an arbitrary elemengsioM™ x D1, 9)
can be represented by a péft #), wheref: M™ — M™ is a self-homeomorphism
with flaym = Idgpm, andh: M™ x D — M™ x D! is a homotopy off to Idym
relativeo M™. Define:

and notice that by Lemma 3.1, we have tB&t+1 = E2" x .

Observe that, given such a paif, 1), there is a well defined liff : D" — A —
D" — A, and thatf|gm-1_, = ldgn-1_,. Now letk be the unique lift ofs to
(D™ — A) x I = D"™+1— A with the property thak is a proper homotopy equivalence
(relatives™~1 — A) between Ig»_» and the self-homeomorphisyh
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Thenk := i x Idpm_gn-1 determines a proper homotopy (relative):
k:8=ExI— ExI

between Ig: and a self-homeomorphisgx E — E (which is also determined by
fx ldpm_gn-1). Note that§ (€, 9) = $(E x I, 9), since€ = E x I. Hence the pair
(g, k) represents the image of the paif, #) under the transfer map, i.€g, k) =
a(f, h). The assertion then claims that the p&jr k) obtained in this manner is
always zero in§(&, 9). In particular, the assertion would follow from the following:

Proposition 3.1. g is pseudo-isotopic to Idg (relative dE), via a pseudo-isotopy
which is properly homotopic to k (relative 3).

We will now use the conditiorix) to construct the pseudo-isotopy posited in
this proposition. Start by defining a new spate= D™ x (D" — §”1). Note that
the projection onto theecond factor determines a fiber bundle projectipn E —
Int(M™) with fiber D™ (recall that IntM™) = (D" — §™~1)/T'). HenceE is a
manifold containingk as an open dense subset, altiC JE.

Next observe that the second property of conditier) implies thatf extends
to a I'-equivariant homeomorphisrfi: D" — D" by setting f|gn-1 = ldgn-1.
Consequentlyf x ldp»_, determines a self-homeomorphigm E — E which
extendsg: £ — E and satisfieg|,= = Id,z. We now proceed to construct a

pseudo-isotopy: E x I — E x I satisfying:

* Plgg =8
* ¢|Ex{1} = IdEx{l}
* Pl =905

Once this is done, then the restrictiongofo the subseE x I ¢ E x I will be
the pseudo-isotopy posited in the proposition.

Observe that the three properties stated above dgfimethe entire sei(E x I).

We need to exteng over Int E x I). In order to do this, consider the fiber bundle
r: E x I — Int(M) with fiberD™ x I, wherer is the composition of the projection
onto the first factor of£ x I followed by the mag;: E — Int(M). Observe that
if o is ann-simplex in a triangulation of Ifi/), thenr—1(o) can be identified with
D"+m+l.

The construction ofp proceeds by induction over the skeleta of(ld) via a
standard obstruction theory argument. And the obstructions encountered in extend-
ing ¢ from the (n — 1)-skeleton to the:-skeleton are precisely those of extending
a self-homeomorphism of**™ to a self-homeomorphism @”+”+1. But these
obstructions all vanish, because of the Alexander Trick. Recall that this trick asserts
that any self-nomeomorphismof " extends to a self-homeomorphispof D"+,

In fact, 7(zx) = tn(x) wherex € S" andt € I is an explicit extension.
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Now the restrictiony := ¢|r«; is the pseudo-isotopy from to |dg asserted
in the proposition. A similar argument, which we omit, shows tiais properly
homotopic tak relatived. This concludes the proof. O

4. Bounding &, (# (BT')) for §-hyperbolic groups

In this section, we give an application of our main result to obtaining a lower bound
for the homotopy groups, (£ (BT")) which holds for all torsion-freé-hyperbolic
groupsI”. HereX(:) is the stable topological pseudo-isotopy functor (see Hatcher
[15]). For this we need to first recall some basic facts aldelyperbolic groups.
LetI" be a torsion freé-hyperbolic group (we exclude the caBe= Z). Then the
following are true:

Fact 1. If Sisaninfinitecyclic subgroup of T, then thereisamaximal infinite cyclic
subgroup containing S. Furthermore this maximal subgroup is unique.

Fact 2. If C isamaximal infinite cyclic subgroup of T, thenitsnormalizer is C itself.

Fact 3. If §1 and S> are a pair of maximal infinite cyclic subgroups of I, and
{Sl.i} C 9%°T are the corresponding pair of points in the boundary at infinity, then
either Sy = Sy or (ST} N (S5} = 7.

Fact 4. If S isa maximal infinite cyclic subgroup of T, then y - S~ # S™ for all
yel.

We briefly explain why each of these facts holds. The existence part of Fact 1
follows from Proposition 3.16 in Bridson—Haefliger (pg. 465 in[5]), while uniqueness
follows from Fact 3. For a maximal infinite cyclic subgroup, the normalizer coincides
with the centralizer. If the element is not in the group itself, this would yield a pair of
commuting elements, givingZ? in T, which is impossible, giving us Fact 2. Fact 3
follows from the proof of Theorem 3.20 in Bridson—Haefliger (pg. 467 in [5]). Fact4
is an easy consequence of Facts 2 and 3.

Now fix a setM where the elements oft are maximal infinite cyclic subgroups
of I' with each conjugacy class represented exactly once. For achM, let
¢s: P(BS) — P(BT) be the functorially defined continuous map (see Hatcher
[15]). Note thatBS = S* for eachS € M. Theorem 1.3 that we are going to prove
in this section states that, for each integer 0, the group homomorphism

P 7.(85): @ 7 (P(BS)) —> 7, (P(BT))

SeM SeM

is an injection.
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Note thatro(P (S1) = Zo®Zo @ - - -, where there are countably infinite number
of Zy's (see Igusa [17]). Furthermore, the Isomorphism Conjecture?i@T) for-
mulated by Farrell-Jones [11] is equivalent to the assertion that the homeomorphisms
in Theorem 1.3 are all isomorphisms together with the assertion that the Whitehead
groupsWh(T" x Z™) vanish for alln.

Let us now proceed to prove Theorem 1.3. By Theorem 1.1, we know that we
have a sequence of EZ-structu(®g’, 9°°T"), defined for all sufficiently large:, such
thatI" acts onD™ by orientation preserving homeomorphisms, @ati+1, 9°T) =
(D™, 3°°T) x I (i.e. isD™ x I/ = where each intervat x I, with x € §”" 1, is
collapsed to a point). Furthermore, e&le M determines a pair of distinct points
St, S~ € 9%°TI". We start our argument by showing:

Claim 1. (D™, {S*}) isan EZ-structure for S.

Proof. To see this claim, we first note that a closed subset of a Z-set is still a Z-set,
hence the paifD™, S*) satisfies the first two conditions for an EZ-structure. To verify

the remaining properties, we first observe that an easy adaptation of an argument of
Bestvina (Proposition 1.18 in [4]) shows thaflif, there exists a neighborhood base
{V;} of the pointS™ which has the following properties:

(1) Viq1 C V; for everyi,
(2) for every compact se&t c D™ — {S*}, there exists & such thag*(K) c Vi,
(3) there exists a fixed such thaig/ (V;) = V;1 for everyi.

Hereg denotes the generator 8fwhose positive powers tend &' .

We now explain how proper discontinuity of the action follows. Note that, by
hyperbolicity of thel'-action ond>T, S restricted t0d>®°T" — {S*} acts properly
discontinuously. Hence if proper discontinuity fails atthen p is an element of
9°°T", and one can construct sequenggse D™ — 9°°I" andn; € Z such that
x; — ST, n; - 400, andg" (x;) — p. But this immediately contradicts the
existence of the familyV;} given above. Hence the action §fon D" — {S*} is
properly discontinuous. Then the freeness of $haction is also immediate, since
theI" action (and hence th&-action) onD™ — 9°°T" is free, while theS-action on
d°°T fixes precisely the two points™. The null-sequence property follows from the
fact that theS-action is properly discontinuous @ — {S*}, and the fact thaD"™
is the 2-point compactification @ — {S*}.

Finally, to see cocompactness, idenfif{f — {S*} with D”~1 x R so thatS*
corresponds terco. Since theS-action is properly discontinuous, there exists an
integern > 0 such thag”(]]])’”‘l x {0})) c D"~1 x (0, +00). Let W be the region
betweerD™ 1 x {0} andg” (D"~ x {0}); i.e.

W =g"([D" ! x (—00,0) ND" 1 x [0, c0).
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W is clearly compact, and it is not difficult to see thatz[g""(W)] = D" 1 x R,
which establishes that acts cocompactly ob™ — {S*}.

We now have that the pai®™, S*) satisfies all the conditions for an EZ-structure,
concluding the proof of Claim 1. O

We now continue the proof of Theorem 1.3. Note that
D" {S*) = ", {S*) x 1.

Arguing as in the paper by Farrell-Jones (see pgs. 462—467 in [10]), it suffices to
construct, for each sufficiently large integer a pair of continuous maps:

gs: P(M{) — P(M™)
gS: P(M™) — P(MY)

whereM™ = (D™ — 9°°T")/T", Mg = (D™ — {S*})/S, and P(-) denotes the (un-
stable) topological pseudo-isotopy space, and where the piaqsd g5 satisfy the
following:

Assertion. g5 o g ishomotopic to theidentity, and g5’ o g5 ishomotopic to a constant
map whenever S # §'.

We first discuss the construction of the mggsg®, and will then discuss why the
pair of maps we constructed satisfy the assertion. Start by observing thaufoth
andM¢' are compaciz-dimensional manifolds with boundary (we will henceforth
suppress the superscript indicating dimension unless it is explicitly relevant to the
argument being presented). Now Jet= ps: Int(Ms) — Int(M) be the covering
space corresponding to the subgrdug I' = 71(Int(M)). Using the s-cobordism
theorem (and assuming > 6), one easily constructs anisotafly= ¢>: Mg — My
such thatpg = Idyy, andp o ¢1: Mg — M is an embedding. To defings, let
f: Mg xI— Mg x I be apseudo-isotopy (i.e. an elemenirgiMs)). Recall that
f is an automorphism (i.e. an onto homeomorphism) with the property that:

Flmsxoyuamsx1 = 1d | pygxoyu@mg)xi-

We can now defing, = gs(f) € P(M) by setting fi(x, ) to be:

o (x,0)if x € M — Imagdp o ¢1)
s podr(f(x,1)if x = pogr(x)
wherex € M andt € I. This gives us the mags.

On the other hand, to defié ( f), wheref € P(M), Ietf: M —0*°T)x I —
(D™ — 9°°T") x I be the lift of f such thatf(x, 1) = (x,1) if eitherx e §"~1 =
aD™ or if r = 0. Now f induces an automorphisni of (D11, 3°°T"), since
D™+, 5%°T) = (D™, 9*°T) x 1. Note thatf is I'-equivariant and thaf |, pm+1 =
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Idy pm+1, whered_D"+1is the image oD x {0}U S~ x I under the quotient map
D" x I — D"+ Sinced>*T" ¢ _D™*1, finduces ars-equivariant automorphism
of D+1 — {$*} which then descends to an automorphiggof (D1 — {$+})/5.
After “appropriately identifying”

Ms = (D" — (sF})/s

with M% x I, g5(f) is defined bygS(f) = fs.

To do this identification, first note thal s is the quotient space afg' x I where
each intervak x I, x € 9M{' is collapsed to a point. SMg' x {0} is canonically
identified with a codimension zero submaniféldM s of 0.Ms. By equating Mg’ x I
with a short collar ob (9_My) in 9_Mg, an identification of\fg x I to Mg can be
constructed such that the composition

P(Ms) — AUt(MS, 8_(M5)) — P(Ms)

is homotopic to the identity (here the two maps above are the naturally defined continu-
ous maps; in fact, the second map is the homeomorphism induced by the identification
while the first is determined by the fact théts is a quotient space @ffg x I). This
is the “appropriate identification” mentioned above.

This gives us the two maps for which we claim the assertion holds. Before
continuing our proof, we note that, when> 6, the space&/' are allhomeomorphic
to S x D" ~1. Indeed, this follows by the s-cobordism theorem, and the facsthetts
via orientation preserving homeomorphismslish — {S*}; thus the closed tubular
neighborhood of any embedded circdé in Int(M§"), which induces a homotopy
equivalence, is homeomorphic §6 x D"~1.

Now theAssertion, made above, can be verified in the same way that properties
(i) and (i) in Lemma 2.1 of Farrell-Jones [10] were proven. We merely point out that
they follow directly from the following two claims which we proceed to formulate
and then to verify. LeTs denote the image gfs o qbf. Note thatTs is a codimension
zero submanifold of /') and thatTs is homeomorphic ts! x D", Recall
that

ps: Int(Ms) —> Int(M)

is the covering projection correspondingsac I'. And thatqbf: Mg — Int(My) is
an embedding isotopic to lg. Recall that we assumed thais not cyclic.

Now let{C;} denote the connected componentqsa@f(Tg), and note thaps‘1 =
LI; Ci. Let C; denote the closure a; in Ms. It is an elementary observation that
eachc; is a codimension zero submanifold of (Ms) as well as an open subset of
pgl(TS). Furthermore, observe that Ima(@é) is a codimension zero submanifold
of Int(Ms) which is homeomorphic t§1 x D" +1,

Claim 2. Wecanindextheset {C;} sothat Co = Image¢;) and C; ishomeomorphic
to D™ wheni # 0.
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Now letS” € M with §” # S, and denote byC!} the connected components of
pE/l(TS) and byE; the closure of”; in My . Itis again elementary that eaclj is a
codimension zero submanifold of [t s) as well as an open subsetﬁ)gf,l(TS).

Claim 3. Each C/ is homeomorphic to D".

We now proceed with the proofs of the two claims. The Fagtglllused in the
proofs below refer to the facts abaishyperbolic groups discussed at the beginning
of this section.

Proof of Claim 2. One easily sees that eaph: C; — Ty is a covering projection
wherep; = pslc;. Hence Image;&f) must be one of the components since
p: Image(qbl.s) — Ts is a homeomorphism. Thus we may index the components
starting withCo = Image(¢f). Therefore it remains to show th@tis homeomorphic
to D™ wheni # 0. To do this, define

e q: D" — 3T — M = (D" —0%°I")/T

o r=rg: D" — (St} — Mg = (D" — {St})/S
to be the universal covering maps whose groups of deck transformationissacs
respectively. Then we have the following commutative triangle of covering spaces:

Int(D™) L Int(M)

R

Int(M)

Note thaty ~1(Ts) = | [; D: where eaclb; is a connected componentgf(Ts).
And let D; be the closure ob; in D™. One easily sees the following ten points:

(1) EachD; is open ing~1(Ty).

(2) EachD; is a codimension zero submanifold of (Bt"*).

(3) ¢i: Di — Ts is a universal covering space (whegfe= ¢|p,) whose group of
deck transformations; consists of ally € I" such thaty(D;) = D;. Conse-
quently, D; is homeomorphic t®” 1 x R.

(4) The component®; are permuted transitively by. Consequently, the groups
S; are all conjugate cyclic subgroups of

(5) Atleastone ofthe group is S. Hence all thes; are maximal cyclic subgroups
of I'. And we can rearrange the indexing so thgt= S.

(6) If the cardinality|S; N S;| > 1, theni = j. This follows from points (4) and
(5) by using Fact dand Fact 2.

(7) Letg,: D" — (St} — D™ — {S*} be the lift of the isotopyp, with respect
to the covering projection such thaipg = Id. ThenDy = Image1), and
consequentlyDy = Do U {S*}, which forcesDg to be homeomorphic tH"™.
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(8) Because of points (4) and (7); = Dl-U{Sii}and ishomeomorphic ™. Also
because of point (6) and Fagt,®D; c D™ — {S*}if i # 0, and consequently
D; is also the closure ab; in D™ — {S*}.

(9) If y(D;) N D; # @, wherey € T, theny € S;. This results from points (4),
(6), (8), along with Factss3and 4. Consequently, if # O, thenr|5i : Dj —

r(D;) = r(D;) is a homeomorphism sincg N Sg = 1, because of point (6)
(Herer(D;) denotes the closure ofD;) in My).

(10) There is a surjection of indexing séts— «(i), with «(0) = 0, such that
ri: Di — Cq(;) is a covering space (hergdenotes:|p,). This follows from
the above commutative triangle in whigh ¢, andr are open maps.

It now follows immediately from points (8), (9), and (10), th@tis homeomorphic
to D™ wheni # 0; thus completing the proof of Claim 2. O

Proof of Claim 3. This proof closely parallels the one just given for Claim 2. Note
that the above points (1)—(9) continue to hold. And by replaéibhg S’ in the above
commutative triangle, the following analogue (16§ point (10) is similarly verified
using thatpg, ¢, andrg are open maps: there is a surjection> B(i) of indexing
sets such that': D; — Cj ;) is a covering space where= rg|p,.

Then Fact gyields that:

{SF} € (D™ — 8™S’) = Domain(ry’)
which together with point (8) shows that
D; € Domain(rg).
Therefore point (9) yields that:
rslp,: D; — rg(Di) = ’S/(—Dl):%

is a homeomorphism. Bub; is homeomorphic td™ by point (8), andg is a
surjection by point (10) This concludes the proof of Claim 3. O

Finally, we point out that, from these two claims, it is easy to showAisertion.
Indeed, the pseudo-isotopig$ o gs(f) andg" o gs(f) are supported over); C;

and( J; 5; respectively. Because of claims 2 and 3, the Alexander trick can be used to
verify the Assertion. We refer the reader to Section 2 of Farrell-Jones [10] for more
details.
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