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Non-existence of homogeneous Einstein metrics
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Abstract. We show that there exist infinitely many simply connected compact prime homo-
geneous spaces/H with infinite second homotopy group which do not adm@iinvariant
Einstein metrics.
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A Riemannian metrig on a closed manifold is called Einstein if it satisfies Einstein’s
equation ri¢ = X - g. Even though there exist many interesting classes of Einstein
metrics, e.g. Ké&hler—Einstein metrics [Yau], [Tia], metrics with small holonomy
group [Jo], Sasakian—Einstein metrics [BoGa] and homogeneous Einstein metrics
[Heb], [BWZ], general existence and non-existence results are hard to obtain (for
many more details and references see, e.g. [Bes], [LW]). For instance, in dimensions
greater or equal than five no obstructions to the existence of Einstein metrics are
known (cf. [LeB] for the four-dimensional case).

In this paper we examine the Einstein equatiordeinvariant metrics on compact
homogeneous spac&y H. On such spaces the Einstein constanf a G-invariant
Einstein metric is non-negative (Bochner’s theorem [Bo]) and zero if and only if the
metric is flat [AIKi]. If the Einstein constant is positive, then the fundamental group
of G/H is finite by the theorem of Bonnet—Myers.

Inwhatfollows letus assume th@y H is a simply connected homogeneous spaces
with G connected simply connected and semisimple. The homogeneousspéce
is called aprime homogeneous space, if the normalizerNg(H) of H in G and H
have the same rank andif/ H is not a product of homogeneous spaces. An arbitrary
simply connected homogeneous space is either a product of prime homogeneous
spaces or the total space of a principal torus bundle over such a product. In both
cases, the factors of this product are calledghme factorsof G/ H.

Theorem ([B62]). Let G/H be a compact simply connected homogeneous space
with G connected simply connected and semisimple. If there existsa field IF such that
the reduced homol ogy with coefficientsin IF of the simplicial complexes of all prime
factors of G/H does not vanish, then G/H admits a G-invariant Einstein metric.
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The simplicial complex of a compact homogeneous spag# is defined by
certain subgroupX with H C K C G (cf. [B62]). This theorem shows that
purely Lie-theoretical properties of the prime factors of a compact homogeneous
space guarantee the existence of a homogeneous Einstein metric. Conversely, we
have the following result:

Theorem A. Thereexistinfinitely many simply connected prime homogeneous spaces
G,/ H,, with infinite second homotopy group, such that compact simply connected
homogeneous spaces G/H, G connected simply connected and semisimple, do not
admit G-invariant Einstein metrics, if G,/ H,, isa primefactor of G/H and if G/H
isG,/Hp-generic.

A homogeneous spade/ H is calledG ,/ H,-generic for a prime factoiG ,/ H,
of G/H, if the irreducible summands of the isotropy representatiol phre acted
onirreducibly byH. Obviously, this condition is satisfied for the homogeneous space
G/H = G,/H,, but, as we will see below, in general this assumption is necessary.
Notice furthermore that it follows from the long homotopy sequence of the fibration
H, - G, — G,/H, that prime homogeneous spacgs/H, have finite second
homotopy group if and only if the isotropy group, is semisimple.

The spaces; ,/ H, = Spin(n) x Spin(n)/A Spin(n — 2) - (Spin(2) x Spin(2)),

n > 8, provide concrete examples for prime homogeneous spaces Theorem A can
be applied to (where Spin) denotes the double cover of §0). The simplest
examples of homogeneous spaces with such a prime factor are given tly=
Spin(n) x Spin(n) /A Spin(n — 2) - Ay 4 SpIN(2), wherek, g are coprime integers and

A4 SpiN(2) is embedded in Spi@) x Spin(2) with slope determined bk, ¢). The
Sl-bundIeG/H overG,/H,isG,/Hy,-genericif(k, q) # £(1, 1), (0, £1), (£1, 0),

and consequently sudt-bundles do not adm@-invariant Einstein metrics by The-
oremA.

For (k, p) = +(1,1) the homogeneous spacg’H does admit aG-invariant
Einstein metric by the Graph Theorem [BWZ]. This shows the existence of singular
torus bundlesG/H over prime homogeneous spaces, which carfynvariant Ein-
stein metrics, even when generic torus bundles do not. The reason for this is that
for singular torus bundles the dimension of the st of G-invariant metrics on
G/ H is strictly larger than that for generic torus bundles.

From Theorem A we deduce also the following

Corollary. For any m € N there exists a simply connected compact non-product
homogeneous space G/H with dimM¢ > m, which does not admit G-invariant
Einstein metrics.

For all previously known non-product homogeneous spétdsd not admitting
G-invariant Einstein metrics we have diM® < 4 [Wz2], [Wa], [PaSa], [BK],
[DiKe].
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To give the reader a feeling for the Einstein equation for homogeneous metrics,
let us consider compact homogeneous sp&ged whose isotropy representation
m can be decomposed into pairwise inequivalent irreducible summand$ <
i < £. In this special case, any-invariant metric is given b)Elexz'le,- where
x1, ..., x¢ > 0 andQ denotes a fixed bi-invariant background metric. The metric is
then Einstein with Einstein constahif and only if

b _1 i[i'k] LI i[i'k] T 1<i<t

2x; 2d; i} / XiXj 4; = / XXk ’ -

whereb; > 0 and[ijk] > 0 are structure constants@f H andd; = dimm; [WZ2],
[PaSa]. In order to show non-existence of homogeneous Einstein metrics one has to
prove that these algebraic equations have no posialesolutions. Let us mention

that no homogeneous space is known where these equations do notauaphéx
solutions.

Next, we describe a conceptual approach to the non-existence problem of homo-
geneous Einstein metrics. For a compact homogeneous &pdédet p1, ..., by,
denote the isotypical summands of the isotropy representatienp; @ - - - @ py,
of the isotropy groupd. Each isotypical summand sums up the irreducible sum-
mands ofm which are equivalent. By Schur’'s Lemma, the traceless Ricci tensor of a
G-invariant metric onG/H respects this splitting. This tensor is precisely the nega-
tive gradient vector of the Hilbert action [Hi] with respect to the naturametric.

Since on closed manifolds the Hilbert action characterizes Einstein metrics variation-
ally, a compact homogeneous spéteH cannot carnG-invariant Einstein metrics,

if the restriction of the traceless Ricci tensor to an isotypical summand is negative
(positive) definite forall G-invariant metrics.

The next two theorems, Theorem B and Theorem C, provide Lie-theoretical prop-
erties of such homogeneous spaces:

Theorem B. Let G/H be a compact homogeneous space with finite fundamental
group. If for all G-invariant metrics on G/H the restriction of the traceless Ricci
tensor to an isotypical summand of the isotropy representation of H is negative defi-
nite, then there exists a compact intermediate Lie group K such that G/K isisotropy
irreducible, dimG/K > 1 and K/H is a virtual product of isotropy irreducible
spaces.

A compact homogeneous spa@g¢Kk is called isotropy irreducible, if the isotropy
representation oK is irreducible. We say that a homogeneous spkg¢él splits
virtually, if this is true on Lie algebra level, that is HhK = ¢ = ¢ & £ and
ThH = b = h1 @ ho with h; < ¥. From the classification of isotropy irreducible
spaces [Wo], [WZz3] it follows that homogeneous spaces obeying the obstruction in
Theorem B are very special. For instance, if b6tland H are connected, then we
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have dimM¢ < 4. Notice that the isotypical summand mentioned in Theorem B is
the orthogonal complement &in g = 71 G.

Let us also mention that the homogeneous spaces described in Theorem B have
been used to construct simply connected cohomogeneity one manifolds, which do not
admit cohomogeneity one Einstein metrics [B61] but Riemannian metrics of positive
Ricci curvature [GrZi].

The spaceG/H = SUm + k)/ S(SO(m) U(1) SOk)U()), m + k > 4 and
m, k > 2, is a concrete example for Theorem B due to M. Wang. Non-existence for
k > m2+2 has been established in [WZ2]. In this case we Have S(U(m) U(k)),
henceK /H is the product of two isotropy irreducible spaces.

Theorem C. Let G/H be a compact homogeneous space with finite fundamental
group. If for all G-invariant metrics on G/H the restriction of the traceless Ricci
tensor to an isotypical summand of the isotropy representation is positive definite,
then there exists a compact intermediate Lie group K such that K/H is isotropy
irreducible, dmK/H > 1 and all G-invariant metrics on G/H are submersion
metrics.

A G-invariant metric on a homogeneous spaggH is a submersion metric
with respect to a submersion: G/H — G/K; gH +— gK if it is given by a
K -invariant metric on the fibr&k /H and aG-invariant metric on the basé/K.

Since in the above situatioki/ H is isotropy irreducible, th& -invariant metric on
K/H is uniquely determined up to scaling. Notice that the isotypical summand
mentioned in Theorem C is the orthogonal complemeitiaft.

The spaceG/H = Spin(n) x Spin(n)/A Spin(n — k) - (Spink) x Spin(k)),

n > k?+k + 2 andk > 2, is a concrete example for Theorem C. In this case we
haveK = (Spin(n — k) Spink)) x (Spin(n — k) Spin(k)). Forn = k% + k + 2 there
exists precisely on€-invariant Einstein metric, whereas for< k2 + k + 2 we have

at least two non-isometriG-invariant Einstein metrics.

The non-existence criterion described in Theorem C can be generalized as follows:
For a subsel, of {1, 2, ..., £,} we consider the restriction of the Ricci tensor to the
subspaceb; <, p; of m and the tracefree part of this symmetric bilinear form. If the
restriction of the latter bilinear form to an isotypical summangip € ., is positive
definite for allG-invariant metrics orG/H, thenG/H does not admiG-invariant
Einstein metrics. The following examples indicates already that these more general
obstructions cover many further homogeneous spaces:

Example. LetG/H = SU(m+n1+---+ny)/ S(SOm) U(L) xU(n1) x- - - xU(ng)),
wherem,n1,...,ng > 1. If m > (Zleni)z + 2, thenG/H does not admitG-
invariant Einstein metrics.

Note that dindV(¢ = %k(k + 1) + 1, thatG is simple and that the subgroup
mentioned in Theorem C equalél8m) x U(n1) x - -- x U(ng)). Wheneven; = 1,
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for at least oné, we obtain new examples of prime homogeneous spaces for which
Theorem A is true.

The above obstructions turn out to be extremely flexible. They allow us to prove
glueing theorems for prime homogeneous spaces Theorem A can be applied to. Sup-
pose thatG/H does not admiG -invariant Einstein metrics by means of one of these
obstructions. Pick any homogeneous spa¢é!, such that there exists a simple (or
abelian) Lie groupl with H = H’L and H = LH’. Then, under certain purely
Lie-theoretical assumption a6/ H (made precise in Theorem 4.7) the compact ho-
mogeneous spae/H = G x G/(H'- AL - H') does not admiG-invariant Einstein
metrics. For instance we have:

Proposition. Let G/H = SU(m +n1+ ---+n)/ S(SOm)U(L) x U(ny) X - -+ x
U@ SU(ny)), wherem,n1, ...,nx > L,n1 = Ling > 2, m > (Zleni)z + 2
Furthermore let G/(SU(nx)H’) be a prime homogeneous space. Then Theorem A
holds true for the prime homogeneous space G ,/H, = G x G /(S(SQ(m) U(1) x
U(ny) x - x UQQ) - ASUng) - H)).

Finally, we explain how the previously known non-existence examples [WZ2],
[Wa], [PaSa], [BK], [DiKe] fit into the above framework. Non-existence of homoge-
neous Einstein metrics has been described for the first time in [WZ2]. For most of
these examples the isotropy representation can be decomposed into two irreducible
isotypical summands; if in additioff is simple such spaces have been classified re-
cently [DiKe]. Under this assumption, the Einstein equation can be solved explicitly
and the non-existence criteria given in Theorem B and Theorem C are equivalent and
also necessary.

In [WZ2] also compact homogeneous spaces have been examined whose isotropy
representation can be decomposed into three irreducible isotypical summands. The
subgroup structure of these spaces is as described in Theorem B. However, the
non-existence criterion in [WZ2] is not that given in Theorem B but one of the
above mentioned generalizations. By means of Theorem C the homogeneous spaces
G/H = E7 x E7/Sp(1)A Spin(12) Sp(1) andG/H = Eg x Eg/ SP(H)AE7Sp(1)
do not admitG-invariant Einstein metrics [Wa]. For the remaining two known non-
existence examples [PaSa], [BK] non-existence does not follow from the above de-
scribed obstructions.

Our paper contains 5 sections. In Section 1 we describe obstructions to the
existence of homogeneous Einstein metrics. In Section 2 curvature computations are
carried out. In Section 3, resp. Section 4, we prove Theorem B, resp. Theorem C.
In Section 5 we present new examples of homogeneous spaces which do not admit
homogeneous Einstein metrics, and we give the proof of Theorem A
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1. TheRicci tensor of a homogeneous metric

Let G/H be a connected compact homogeneous space suadi dvad H are com-
pact Lie groups not necessarily connected. Qedenote an AdG)-invariant scalar
product ong. Choosean the Q-orthogonal complement tpin g. As is well-known,
every G-invariant metric onG/H is uniquely determined by an Ad)-invariant
scalar product om. Furthermore, for ang -invariant metricg on G/ H there exists
a decomposition

f=m & - dmy

of m into Ad(H)-irreducible summands, such thais diagonal with respect t@,
that is

§=x1Qmy L -+ L x¢Qlm, (1.1

with x1, ..., x; > 0. Even though the decompositigh=m1 ® - - - ® m; of m is not
determined uniquely in general, this is true for the decompositieap, @ - - - ® pe,
of m into isotypical summands. Moreover, by Schur's Lemma e@einvariant
metricg and also its Ricci tensor rjaespect this splitting.

Next, let us define the Ad{)-equivariantg-selfadjoint endomorphism Ridy

rice(-, ) = g(Ricg -, -).

Let 7. denote any non-empty subset{df 2, ..., ¢,} and letp;, = ®jer,pi. We
consider the restrictioiRic,);, of Ric, to p;, as an endomorphism q@f;,. Let
sa(g) 1, = tr(Ricg);, and let

s

. 0__ i —
((Ricg)7,)” = (Ricg), dimp,,

Pl

denote the tracefree part ORic,);,. We call (((Ric,) 1)%i, negative (positive)
definite, if the symmetric 2-forr@((((Ricg)h)0),~0 -, +) onp;, is negative (positive)
definite.

SinceG-invariant Einstein metrics 06/ H are characterized variationally as the
critical points of the Hilbert action restricted to the spaceé5einvariant metrics of
volume 1 (cf. [Bes]), we obtain the following obstructions to existenag&-arivariant
Einstein metrics.

Lemmal.2. Let G/H beacompact homogeneous space. Let I, C {1, 2,..., €},
|I| > 2andig € I,. If for all G-invariant metrics g on G/H the endomorphism
(((Ricg),*)o),-o: pi, — Pi, ISNegative (positive) definite, then G/H does not admit
G-invariant Einstein metrics.
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Next, we present a well-known formula for the Ricci tensor of a homogeneous
metric on a compact homogeneous space.gletM® andletf = m; @ --- ® my
be a decomposition afi, which diagonalizeg. Then by [WZ2], [PaSa] we have

(Ricg)mm (1.3)

_ Z []km]f—> -idm,,,
(me mk=1 Adm jk=1

where (Ric,),.» denotes the restriction of Rido m,,, i.e. g((RiCg)um X, X) =
rce (X, X) for all X € m,,. Here,

—Blm, = bnQlm, and d, =dimm,,

whereB denotes the Killing form omy. The structure constanisik] » with respect
to the decompositiorf are defined as follows:

lijkly =) Qea: ép1, &)

where the sum is taken ovéd, }, {eg}, and{e, }, Q-orthonormal bases fan;, m;
andmy, respectively. Notice thdijk]  is invariant under permutation of j, k.
The only known relations among these structure constants have been described in

[wz2].
4
dibi =2dic; + Y lijkly, 1<i<t. (1.4)
jk=1

The nonnegative constanisare given byCr, g|, = ¢; - idm, Where

Cm,-,Qh, = — Zadz,' o ale’,
i

{z;} Q-orthonormal basis df, denotes the Casimir operator o.

2. Thetracefree part of the Ricci tensor

In this section we will compute the diagonal part of the tracefree part of the Ricci
tensor of a homogeneous metgion a compact homogeneous spége? and more
general the diagonal part of the endomorphi$(ﬂ§icg)1*)0)i0: Pig — Pig-

Let g € MY be aG-invariant metric onG/H and letf = m; @ --- ® m, be
a decomposition ofn, which diagonalizeg. For I, C {1,2,...,¢,} let I be the
subsetofl, 2,..., ¢} withm; = ®;c;m; = piI,.-
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In order to keep notation as simple as possible let us introduce the following
notatiqns: We will write[ijk] instead qf[ijk]f- and .Zj:k instead onf.,k:l. 'If
we write ), ; ¢, then we are summing over all indicésj, k from 1 to ¢ with
i, j, k # m but the last one. Thus is always fixed. If we writezi#i#k, then we
are summing over all indices j, k which are pairwise distinct. ‘

Since by (1.3)

sag)r, = Z——— > [uk]—+—

iel,jk tel j.k
we obtain form € I
((2Rice) 1)) mm (2.1)
b
(B85 3 et
tm zel#m
+ —Z[um]— + Z [l]k]— - — Z lijk ]—) M
l€1 J.k 161 j.k

whered; = ) ;; d;. We are going to extraot, in this formula. The third and the
fourth term of (2.1) can be decomposed as follows:

Z[Um]T

lj l m
= — Z[zzm] + Z[lmm]— + — Z[lmm]xl —I— — Z [l]m]—
i#m m i#m M ititm
> lijm]
— XiXj
l’]
1 1 1 1
= —[mmm] +xp Y _liiml— +2) [imm]= +xn Y _ lijm]—.
Xm ! X! : X; L XiXj
i#m ! i#m i#j#m

In order to treat the fifth term in (2.1) we observe:

> [le]— = —[mmm]+ > [m]—+— Ytk + Y (ikkl =

X
iel,jk iel#m Xi k;ém iel#m ki !

4L D liiml+ Y7 liijl - +—22kmm

X
M iel#m jEmiel#j i Km k#m
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+am ) [um]—+ > [uk]—+— > [ka]—

iel#m i i€l#k#m i ;ék;ém
1 : . o Xk
+= > [ikm] ™ + x,, > [lJm]— + D lijk]—.
Xm i . , Xixj . , XiXj
iel#k#m iel#j#m iel#j#k#m

The last term in (2.1) can be written as follows:

= —[mmm]+ Z [lll]—+ Z[kkm] 2 =z Z [imm]x;

k#m o A iel#m

Yy [zkk12+22[””” y W

X
iel#k#m iel#m JjEmel#j J

+ ) [jkm]x_—m+2 Yo olikml Y [ijk]x)_c—;k.
J

jtkAm JYk el Fktm Xk ek tktm

We obtain
(((2Ric) 1)) mm (2.2)

= % . (%{(l— —) Z[lmm]x, - = Z [lmm]x,}

dm i#m 161;&m

dj
- 1)dmbm Z[ iim] + = (— + 1) [mmm] + Z[kkm]}
1

T {< k#m
! {(1— j— HéZ [ka]_ +,e1§¢m[lkm]<_ - —)}
>

k#£m
[m]—+ > [zkk]—+ > [ztk]—
I#m Li iel#m, k#i i iel#k#m i

dib;

iel#m i te

+ Y [ijk]f—% 3 [ikk]—;—% 3 [ijk])%

icl#jthgm N icl#k#m Tk iel ] #k#m

i) g 3 ) it

l;ém dm JjFk#£m

+ ) [um]—+ > [um]—})-

iel#m i iel#j#m
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In particular, this yields the following formula for the tracefree part of the Riccitensor:
((2Ricg))m

1 /1/1 =n , 1 1. .
= (g(i — E) Z[lmm]x,' — Z ;{dib,- + E[m] — Z[zkk]}

i#m itm ! k

1 1
+ 7(% - 1) {dmbm + Slmmm] - Xi:[iim] _> [jkm]x—k}

itk
N 1 Z [..k]Xk . 1 Z [i7k] Xk
= lK|— + = IJK|—
2 x2 2 / XiXj
i#k#m l i#j#k#m
1 1 .
+ X = L+1 Z [jkm]— | - idp,,,
2\ d,, . XjXk
Jk#m
where
n=dpup,.. ¢ =dmG/H.
From (1.4) we deduce the following identity:
diby + i) > likk] = 2d; ~+1["']+Z["k]>0 (2.3)
iD; 2111 g 1 = 2d;c; > 1 ~ ijk] = 0. .
J

Equality holds if and only ifn; is almost trivial,[iii] = 0 and[m;, m;] C m; for all
j =12 ...,¢. We call an irreducible summangd; almost trivial, if[h, m;] = 0O,
that is ifm; is contained in the normalizer gfin g.

3. The negative definite case

In this section we will assume th(a(t(Ricg)l*)O)i0 is negative definite for af € MC.
As above, letf be a fixed decomposition @fi and let theG-invariant metricg be
given as in (1.1). Under this assumptionmif, C p;,., then(((Ricg)I*)O)mm < O for
all g e MC.

If we let tendx,, to 400 while keepingy; fixed fori # m, then considering the
last termx,,{. ..} in (2.2) yields

[ijm]=0 fori,j # m. (3.1)

Hence

[:=b®@mi

i#m
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is anH-subalgebra, that is a proper &d)-invariant subalgebra @f, which contains
h properly. Equation (2.2) simplifies to

((2RiCg) 1,)%)mm (3.2)
1 1 1 4 ) dr
3 (R1(2) g o) g
iel#m kel€
1 /d; 1 1 1. . ;
+ a(—m — 1) (dmbm — E[mmm]) — .6127; x—i{dib,- + é[lll] — Xk:[zkk]}

1 Xk o Xk 1 g4 Xi
+3 > liik] = + > ikl = 5 > [ikk)
iel#kel#m i jel#mkelC i iel#m,kelC k

X, X,
o Lk Y ik
icl#jel £kel#m " ier#jel#mkelC =
Xk 1

D DU~ S [ijk];—;k).idmm

XiXj
icl#m,jel€#kel€ ’ iel#m,jel€#kel€

+

NI -

wherel€ = {1,...,¢}\I. Letk € I€. If we setx; = x,, and letx; tend to+oo
while keepingy; constant foi # k, m, then we get
(3.3)

[ijk] =0 fori, je I\{m}, keI®
(3.4)

likk'1=0 fori e I\{m}, k,k' € I€, k £k .

Since by (3.1)ijm] = 0 fori, j # m, (3.3) implies that

t=beo P m

iel\{m}

is an H-subalgebra. We hawe< [andt = [ifand only if I, = {1, 2, ..., £,}.
Let nowwy = jT’; for k # m. By (3.3) and (3.4), equation (3.2) simplifies to

(2RI 1)) mm - Xm
1 ((1 - ﬂ) > limmlw; + (1— j—’) > lkmmwy

di 2 dn) b M/ kelC

+ (ﬂ - 1) <dmbm - %[mmm]) -y wii{dibi + Sliii] - ;[ikk]}

A iel#m
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+%{ otk Y Lkl

icl+kel#m Wit ielgmkelC Wk

Y ks }) id,

iel#jel#kel#m

Leti € I\{m} and letw; tend to zero while keeping; constant fok # i. We get
lijk] =0 fori,j ke I\{m}, i,j #k. (3.5)
Hence equation (3.2) simplifies further to

((2Ric) 1)) mm - Xm

1 ((1 d,) Z _ 1 ( 1. . )
=—.((=== [imm]w; — Z — | dib; + <[iii] — Z[lkk]
dp 2 dn) 52, icizm i 2 k

+ (j_’ - ){dmbm - %[mmm] -y [kmm]wk}

" kel€

1 i .
-5 X [ikk]w—2>-|dmm.

w
iel#m,kel€ k

Recall that arf-subalgebrdis called toral ift is an abelian extension f otherwise
non-toral. From (3.5) we deduce that there exists a uniqgue decompdsitigh(t) ®
P;_1 ¢ @ v of ¢, wheret; are non-toralH -subalgebras, and a unique decomposition
h = P;_1h: & of h, whereh; < ¢, such that theD-orthogonal complemen;
of h; in ¢ is an isotypical summand of the A )-modulet = 3'(¢) & B’_; q; (cf.
[Wz2, Theorem 2.1]).

For anH-subalgebrd of g let now H (¢) denote the smallest subgroup@fwith
Lie algebra containingH . Thenitfollows thatH (¢)/ H splits virtually into a product
of isotropy irreducible spaces

H®)/H =T x [[H®)/H;, (3.6)
i=1

and we obtain the following inclusions of intermediate Lie groups:
H<H®<H <G,

whereG/H (1) is virtually isotropy irreducible andf (¢)/H is a virtual product of
isotropy irreducible spaces.

Next, we examine the case whgg is not irreducible. Suppose that there exists
m’ € I with m # w', such thatn,, andm,, are equivalent. Performing the above
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computation form’, by (3.6) we gefm,,, m,,] C m,, ® h, hencelimm] = 0 for

i # m. ThereforeG/H splits virtually asG/H = G1/Hy x G/ H> whereG1/Hy
and G2/ H; correspond tam,, and®; +,m;, respectively. By carrying out the same
computation forn,,, we finally obtain[p;,, Gafil,i;éiopi] = 0. ThereforeG/H splits
virtuallyasG/H = G1/H1x G2/H>whereG1/Hy, andG2/ H» correspond t@;, and
@f*zl’i LigPis respectively. Note thak1/H splits virtually into a product of isotropy
irreducible spaces. It follows that virtuallg,/Hy, = T* for k > 2 (cf. [WZ2,
Theorem 2.1]).

Proposition 3.7. Let G/ H beacompact homogeneousspace. Let I, C {1,2, ..., ¢}
and ig € I,. Supposethat (((Ricg)l*)o)i0 is negative definite for all G-invariant met-
ricsg on G/H. If p;, is not irreducible, then virtually G/H = T* x G/ H, for
k > 2. Furthermore, if p;, isirreducible and h & p,, is a toral H-subalgebra, the
sameistruefor k > 1.

In the remaining part of this section we will assuime(G/H)| < oo. In this
case it follows from the above proposition thpgf is irreducible and thal & p;, is
not a toral subalgebra @f Therefore, the Lie subgroup = H (1) is compact with
dimG/L > 1. Since in casé, = {1, 2, ..., £,} we havet = [, we obtain the proof
of Theorem B.

Next, we will focus onthe cask = {1, 2, ..., £,}. Since then ¢ = ¢, equation
(3.2) simplifies further to

((QRic) 1)) mm - Xm -1

=(n—d )-<b = [mmm]>
= m 'm 2d,,
-y i{ (i - }>[imm]wi2 - diby — i) [imm]}.
i w; (\dn, 2 2

By the above discussiofiii] and[imm], 1 < i < ¢, are the only non-zero structure
constants with respect to the decompositfariixed in the very beginning.

Finally, we will investigate which of these structure constants can vanish. Since
|71(G/H)| < oo, we haved,,b,, — %[mmm] > 0 (cf. [B62, Corollary 4.17]). If there
existsi # m with [imm] = 0, thenG/H splits virtually. Therefore, we may assume
in the following[imm] > O for all i. We haved;b; — %[iii] — [imm] =0fori #m
if and only if h & m; is a toral H-subalgebra.

Let 7.0 denote the set of indicése {1, 2, ..., £}\{m}, such thatl;b; — 3[iii] —
[imm]is positive. IfI.o = {1, 2, ..., £}\{m}, then the assumptioft(2 Ricg)l*)o),-0
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being negative definite for af € MY is equivalent to the following inequality:

1 [mmm]
E(b’"_ 2d,, )

[iii] . [imm] 1 1
= l;:n (dibi 2 [lmm]) n —dpy . <Z(n —dy) + a)

(3.8)

It follows as in the proof of [WZ2, Theorem 2.1], that this inequality does not depend
on the choice of the decompositigh If 1o is a proper subset ¢fl, 2, ..., £}\{m},

then the above assumption is equivalent to the fact, that an inequality is satisfied
obtained from (3.8) be replacing by < and summing ovei € I.o. Again this
inequality does not depend on the choice of the decomposftion

Remark 3.9. Itwould be very interesting to understand inequality (3.8) from a qual-
itative point of view. Notice that fof = m = 2 inequality (3.8) is nothing by (5.1).

4. The positive definite case

In this section we will assume th(s(i(Ric[,,)I*)O),-0 is positive definite for alg € M°.
As above, letf be a fixed decomposition ef which diagonalizeg (cf. (1.1)). Under
this assumption, ifn,, C pio, then(((Ricg)7,)%)mm > 0 for all g € MC.

If we let tendx,, to O while keeping; fixed fori # m, then considering the first
term xiz{. ..}in (2.2) yields[imm] = 0 fori # m. Hence

t= h D my,
is an H-subalgebra. Moreover, we claim
[jkm] =0 forj # k. (4.2)

To see this, we consider the third teg—éﬂq{. ..}in (2.2). We have

dy : Xk . Xk X
(2-50) X it 3 (2 7)

j#kEm I iel#k#m Yi
d X, X, X; X;
- ——’{ > Ukm= 4+ Y [ikm](—" + —’) + Y [ijm]—’}
dm | Xj Xi Xk . £ Xj
jelC+#kel€ iel#m. kelC icl#jel#m

> [ka]f%+2 Yoo kmE e > qijm

- x
jelC#kelC J iel#m kelC Y iel#jel#m /
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First of all, [ jkm] = O for j, k € I€, j # k, since if we letx; tend to+oo, while
keepingx; fixed for j 1€, j # k, and if we sety; = x; fori € I\{m}, the above
term gets as negative as we wish. Now, if wedgttend to zero, then we obtain a
contradiction. Next[ikm] = 0 fori € I\{m} andk € I, since if we let tendy to

zero while keeping; fixed the above term gets again as negative as we wish. Finally
we obtain (4.1).

Letwy = f—"; for k # m. By (4.1), equation (2.2) simplifies to

((2Ricg) 1)) mm - xm - di (4.2)

_ (4 _ 1 _
= (d 1) (dmbm + 2[mmm] Z[kkm])

mn k

= Idb —|——[llz]—Z[lkk]} (Z’ +1> 3 [llm]_

l€1;ém iel#m wl
. wi
—<— —l> Z[kkm] + ) k]— -3 Z [zkk]w—’2
keI€ k iel#k#m i teI;ﬁk;ﬁm k
1
ik s ik ‘
+. Z [ij ]wiwj 3 Z [ij ]ijk
iel#j#k#m iel#j#k#m

Forallj, k € I¢ we setw; = wy. Letw; be fixed foralli e 7\{m} butlarge enough.
Now letw; tend to zero. We get

lijk]=0 forieI\{m}, j kelIC. (4.3)
Hence, by (4.1) and (4.3)=h @ m,, ® P,..;c Mk is anH-subalgebra.
By (4.3) equation (4.2) simplifies to

(4Ric) 1) mm - xm - df = 2(2’—’ - 1) (dmbm + %[mmm] - Z[iim])

m

-2} {db + 2 [zzz]—Z[zkk]} (d—+1) 3 [um]i2

lelqém kel iel#m

+ Y e Y qijki—

iel#jel#m Wi ier#jel#kel#m v

d 1
+ (ﬁ - 1) Do lkkml— 2 37 ikl

W
kel€ k iel#mkelC i

+2 > lijk—

iel#jel#m,kel€

and we obtain the following counterpart to Proposition 3.7.
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Proposition 4.4. Let G/ H beacompact homogeneousspace. Letl, C {1, 2,..., £}
and ig € I,. Suppose that (((Ricg)l*)o)io is positive definite for all G-invariant met-
ricsg on G/H. If p;, is not irreducible, then virtually G/H = T* x G/ H, for
k > 2. Furthermore, if p;, isirreducible and h & p,, is a toral H-subalgebra, the
sameistruefor k > 1.

Proof. If p;, is not irreducible, then we conclude as above thgtis an abelian
subalgebra of. Consequently, we obtain from (1.4) and (44} ., + %[mmm] —

Yo iliim] = 2dycm + %[mmm] + Zi#j[ijm] = 0. Next, we setw; = x for

i € I\{m} andwy = x5 for k e 1€ and letx tend to+oo. Since by assumption
(((2Ricg) 1,)%)mm is positive and since by (4.2)b; + 3[iii]— Y e, likk] = 2d;c; +
%[iii] + Zj#k[ijk] foralli € I\{m} we conclude; = [iii] = Zj#k[ijk] = 0 for
i € I\{m}. Itfollows that(P,,.,, m; is an abelian subalgebragtvhich commutes
with [ = b ® m,, ® Pyc;c M. O

In the remaining part of this section we will assuime(G/H)| < oo. In this
case it follows from the above proposition thpgf is irreducible and thaly @ p;, is
not a toral subalgebra gf Therefore, the Lie subgrouf = H (h @ p;,) is compact
with dimK/H > 1. By (4.1) the AdH )-irreducible summands;, i # m, are also
Ad(K)-invariant. Thus, alG-invariant metrics otz / H are Riemannian submersion
metrics with respect to the submersion G/H — G/K ; gK — gH with fibre
K /H. We obtain the proof of Theorem C.

Let us turn to compact homogeneous spaces where not only (4.3) is fulfilled but
lijk]=0 foriel, jkelC. (4.5)

Then bothh & @ ;c mr andh @ m,, are subalgebras @f Under this assumption,
we do not only as.l(((Ricg)h)O),-O to be positive definite for af € M but require
in addition that the following inequality is fulfilled:

dI )( 1 i )
0<2(\— —1)\dnby + =[mmm] — [iim] 4.6
(dm o 2 iel ( )
2 1 d 1
= 2 {dibi+ Sl = Y likk | + (d—’ +1> Y liiml—
ielZm Wi kel m iel£m Wi
W Co Wk
+ E liijl— + E [ijk] :
. - ws ) wiw;
iel#jel#m ! iel#jel#kel#m

Notice that this inequality is only a slightly stronger assumption than requiring
(((Ricg)1,)%);, to be positive definite.

Now we can state the glueing result for homogeneous spaces mentioned in the
introduction.
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Theorem 4.7. Let G/H, G/H be compact homogeneous spaces with finite

fundamental group. Suppose that there exists a simple Lie algebra [ such that

hH=hH=bHaI andTlH_b— ea[) LetG_GxGandIetHdenote

a (possibly disconnected) subgroup of H x H with Lie algebrah =hDAIDE.

Letm = @f*zl p; denote the isotypical decomposition of the isotropy representation

mof H. Let I, c {1,2,..., ¢} andig € L. If

(1) (((Ricg)l*)o)i0 is positive definite and (4.6)is fulfilled for all g € M,

(2) for i € I, the Ad(H)-isotypical summands p; are Ad(H)-isotypical summands
of m,

(3) the Ad(H)-irreducible summands of @ie,* pi areAd(IfI)-irreduci ble,

(4) b @ Dicqr. e, Pi isasubalgebraof g and [p;y, [ =0

then G/H does not admit G-invariant Einstein metrics.

Proof. For the same choice df andio C 1, we have to prove that (4.1), (4.5) and
(4.6) are fulfilled for allG-invariant metrlcg onG/H.
The isotropy representatiaih of H can be decomposed as follows:

n=neoteioane (D)o (PDn)

iEI*C i€l

wherem denotes the isotropy representationdbfandI¢ = {1, 2, ..., £,)\I,. By
(2), fori € I, the summands; are still isotypical summands .

Let f = @D, ¢ i ® @, mi be an arbitrary decomposition éfinto Ad(H)-
irreducible summands, wheté = {1,2,..., {)\I and@,;.,; m; = Dicy, bis mi
Ad(H)-irreducible fori € I (cf. (3)). As above letn, € p;,.

First, we ShOV\[jkm]f = 0forj # k. Forj, k € I thisis certainly true by (4.1).

In order to treat the other cases notice fmatm] C g, [[® (O AL DO Al] C 6
[Dicrc pis Dicic pil CHBED, ¢ pi by (4).[m, D, ;e pil = 0,[IBISALM] C ™m
and[l ® [© AL ;¢ pil C B, ¢ pi- Henceljkm] ; = O for j, k ¢ I. Finally,
if j € I butk € I we obtain agalr[ka] = 0, smce[@ ci€ Pis m,] = 0,
[m, m,] =0and[l® 6 Al, m,,] =0 by (4).

As a further consequence we obtgijk] = 0 fori € I andj, k € 1€. Since by
(2) and (3) the structure constan[vtﬁk]f with i, j, k € I did not change we conclude
that (4.6) is still satisfied. O

Remark 4.8. The above theorem can also be proved for abelian subalgebhas
this case we requirg = b’ @ o’ andh = &@ @ ' wherea’ andd’ denote the centers of
h andy’, respectively. Then we consider compact Lie subalgepras) & Aa & §’
of h @ b/, where nowAa denotes any compact subalgebra’o a’.
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5. New non-existence examples

In this section we describe many new compact homogeneous spagewith finite
fundamental group, which do not adnditinvariant Einstein metrics. Certain com-
binations of the Einstein equations are considered, which can be written as a sum of
squares in an obvious manner. This yields the desired non-existence examples.

Let G/H be a compact homogeneous space with finite fundamental group. If
the isotropy representation of the isotropy grouH is irreducible, then by Schur’s
Lemma, up to scaling, there exists only one symmetrimvariant bilinear form on
G/H. Consequently, eadfi-invariant metric is Einstein.

If the isotropy representatian can be decomposed into two irreducible inequiv-
alent summandsi; andmsy, then the Einstein equation is given as follows:

1/b1 [111 [122 [112] x» [122 «x1
Z(E‘ Ay 2d1>_ 20, x2 ' ad 27
1/by [2220 [112 [122] x1 [112 «x»
g(?‘ ady 2d2>_ 2, 2 4y 2

For the definition of the (non-negative) structure constgiifs andb1, bo we refer
to Section 2. Recall thadtjk] is invariant under permutation of j, k.

If [112], [221] > O, thenh is a maximal subalgebra gf hence by [WZ2] there
exists a positive real solution. Therefore, we may assumeltkiain; is the Lie
algebra of an intermediate Lie group K, thaf142] = 0. If [122] = 0 as well, then
there exists a positive real solution sinee(G/H)| < co. Hence we may assume
that[112] = 0 and[122] > 0. As was already proved in [WZ2], in this case the
above system does not admit real solutions if and only if

117 [122 1 1 1 [222]\2
(-G ) e (g ) = (e 5 ) - 6

If G is simple andG/K and K/H are symmetric spaces, thén= b1 = b, and
[1171] = [222] = 0, hence non-existence is guaranteed if and only if

(122 1 1 b2
b— 122 [ =—+ =) > —.
( dl)[ 2]<2d1+d2>>4
In [WZ2] many examples;/ H of this kind have been described withsimple. This
work has been completed in the recent classification of all theses spaces [DiKe]. For
instance the homogeneous sp&ydd = SU(m +n)/ S(SO(m) U(1) U(n)) does not
admitG-invariant Einstein metrics fon > n2 + 2. If m = n?2+ 2, thenG/ H admits

precisely oneG-invariant Einstein metric, whereas for < n? + 2 there are two
non-isometriaG-invariant Einstein metrics.
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In order to describe further non-existence examples, we consider compact irre-
ducible symmetric space$/(Hy H>), such that; is simple andHs is either simple
or 1-dimensional (cf. [Bes, Table 7.102]). We examine the homogeneous spaces

G/H =G x G/ (AH, - (Ho x Hy))

where the subgroup H; denotes the diagonal embeddingff in Hy x H.

The isotropy representatian of H consists of three pairwise inequivalent sum-
mands givenbyn; = §1©(h1®9h2)1, m2 = §20(h1®h2)2andmz = (h1@h1)OAb;.
We havel; = dy = dimmy = dim G —dim H1—dim H, andds = dimms = dim H.

It is easy to see that the only non-vanishing structure constan{d B8eand[223].
By choosing an AdG)-invariant scalar product ogpwhose restriction to both sim-
ple factors agrees, we gbt= b1 = bo = b3 > 0 and[113] = [223]. A routine
computation using (1.3) shows that the Einstein equation is given as follows:

b (113 x3
= .2 5.2
le 2d1 x% ( )

b (113 x3
—_——— . = = 5.3
2x2 21 x5 &3

1/b [113]) [113] x3 [113 x3
—|=- + S+ LS = 5.4
x3 (2 d3 4d3  x?  Ad3  x3 4

In order to examine the non-existence criterion described in Theorem C let us com-
pute the restriction of the tracefree part of the Ricci tensor restricted; tithat is

we choosel, = {1,2, 3} andip = 3). Up to a factor we consider the equation
x3-(2(5.4 — (5.2 — (5.3)) = 0 given by

11 1 2[11
113 @2+ B — -(a+,3)+ p- 23 o s
2 d1 ds
wherea = fc—i andg = jc‘—g It follows that if
2113 1 1 b?
b— —— 113 - | — + — — 5.6

( ds)[ a(dl+d3>>4, 56

then the system (5.2), (5.3), (5.4) does not admit real solutions.

Example5.7. The space&/H = SO(n) x SOn)/A SOn — k) - (SO(k) x SO(k))
do not admitG-invariant Einstein metrics for > k% + k + 2 andk > 2.

Proof. We choose the A@y)-invariant scalar produg® (X, Y) = —% tr(X-Y)ong.
Thenb = 2(n — 2) (see [WZ1, p. 583]). Furthermowd = d> = k(n — k) and
d3 = %(n —k)(n — k — 1). A computation show$l13] = kds and we obtain the
claim from (5.6). O



142 Ch. Béhm CMH

Itis not hard to see, that/ H admitsG-invariant Einstein metrics if the obstruc-
tion (5.6) is violated; fom = k2 + k + 2 there exists a uniqué-invariant Einstein
metric and fom < k2 + k + 2 there exist at least two non-isometric Einstein metrics.

In the next step we specialize to symmetric spaGgeH SO(2)), whereH is a
simple Lie group (cf. [Bes, Table 7.102]). For coprime integersg with (p, g) #
+(1, 1), we consider the homogeneous spaces

G/H =G x G/ (AH - SO, ,(2))

where SQ ,(2) is embedded diagonally in §&) x SO(2) with slope determined by
(p,q).

Sincep # g the isotropy representatian consists of four pairwise inequivalent
summands given by = §1 © (s0(2)1 ® h1), m2 = §2 © (50(2 @ b2), m3 =
(h@h)o Ahandm, = (50(2)16950(2)2)650,, ¢(2). We havel; = d, = dimmy =
dimG —dimH — 1, d3 = dimmg = dim H andds = dimmg = 1. ltis easy to
see that the only non-vanishing structure constantglarg, [114], [223] and[224].
By choosing an AJG)-invariant scalar product anwhose restriction to both simple
factors agrees, we gét= by = by, = b3z = bg > 0 and[113] = [223]. Since the
Casimir constant, of the irreducible summang, equals zero, by (1.4) we obtain

A computation shows that the Einstein equation is given as follows:
b [113] x3 [114] x4

2 R o 5.8
2¢1 2y x2 24y x? (-8)
b 11 22
b M9 x5 [224 m_, (5.9)
2x2 21 x5 2dy x5
1/b [113]) [113] x3 [113] x3
(2= + By B 5.10
x3 (2 d3 4d3 xf 4dz  x3 (5.10)
1
([114] = (224 ) _y (5.11)
x2

We consider the equationdxs(% (5.8) + d—21(5.9) +da(5.1) — (d1 +da)(5.10) = 0
given by

11 411
% (d1+d3+ds) - (@®+ B —dib- (@4 B) + (d1+ da) - (217— [d33]> =0,
where agaimn = jc‘—i andg = ng It follows that if
2[113] (di+d3+da)di +da) _ b?
b— -[11 —, 5.12
( d3 ) [113- d2ds 4 (5-12)
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then the system (5.8), (5.9), (5.10), (5.11) does not admit real solutions.
This non-existence criterion is obtained by combining two non-existence criteria
described in Lemma 1.2. In the above equation we consider a weighted sum of

((Ricg1,2,3)%3 and((Ricz,4))%)3.

Example5.13 ([BK]). Let » > 3 and letp, ¢ be coprime integers witlp, g) #
£(1,1). Then the spac&/H = SU(n) x SU(n)/(A SU(n — 1) - U, ,(1)) does not
admit G-invariant Einstein metrics.

Proof. The embedding off into G is given as follows: Consider the maximal sub-
group Un —1) in SU(r). Then the semisimple part &f is embedded diagonally and
U, (1) is embedded into the center ofdJ— 1) x U(n — 1) with slope determined
by (p. 9).

We choose the A@5)-invariant scalar produc@ (X, Y) = —%tr(X -Y)ong.
Thenb = 4n (see [WZ1, p. 583]). Furthermot® = do = 2(n — 1), d3 = n(n — 2)
andds = 1. A computation showgl13] = 243 and the claim follows from (5.12[1]

Forn = 3 this example has been examined in [BK] as one of the 12-dimensional
homogeneous spaces which do not admit homogeneous Einstein metrics. It is inter-
esting to note that fo¢p, ¢) = +(1,1) G/H carries aG-invariant Einstein metric
by the Graph Theorem [BWZ]. In this case the irreducible summandmdm, are
equivalent and therefore, the spacefinvariant metrics is 6-dimensional. Since
the above non-existence proof does not rely on the particular valugs gj, we
conclude that this Einstein metric is not contained in the 4-dimensional family of
G-invariant metrics described above.

Next, we describe a second non-existence criterion for real solutions of the system
(5.8), (5.9), (5.10), (5.11). Asin (5.5) we consider the equatip1i2(5.10 — (5.8) —

(5.9) = 0, which up to a factor is nothing b(J([Ric{l,z,g})O)g. We obtain
(113 1 1 5 o b
5 -<d1+d3>‘(a + B9 2‘(a+ﬁ)
4 (b B 2[113]) 4 (114  x3xq n [224 _X3xa
d3 2d, x% 2dq x%

where as above = jj—i andg = % Since[114], [224] > 0,[114] +[224] > 0 and
x1,...,x4 > 0, for the homogeneous spa6ex G/ (AH - (SO2) x SO(2))) the
equations (5.8), (5.9), (5.10), (5.11) do not have real solutions, if the non-existence
criterion (5.6) is satisfied. Notice that this criterion in weaker than that described in
(5.12); for instance non-existence for Example 5.13 does not follow from (5.6).

07

Example5.14. Letn > 7 andletp, ¢ be coprime integers wittp, ¢) # (1, 1). Then
the compact homogeneous spagai = SO(n) x SO(n)/ (A SO(n —2)-S0O, 4(2))
does not admiG-invariant Einstein metrics.
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Proof. The embedding off into G is as described in Example 5.13. As in Exam-
ple 5.7 we choose the A@)-invariant scalar produa® (X, Y) = —% tr(X-Y)ong,
henceb = 2(n — 2). Furthermorely = do = 2(n — 2), d3 = 3(n — 2)(n — 3) and

ds = 1. Inthe proof of Example 5.7 we sgWl3] = [223] = 2d3. Non-existence of
G-invariant Einstein metrics follows now from (5.6) far> 8. Forn = 8 we have
equality in (5.6), which still implies non-existence@finvariant Einstein metrics on
G/H. Forn = 7 we need to invoke (5.12) and the claim follows. O

Next, letus give the proof of TheoremA. L&Y H be acompact simply connected
homogeneous space with a prime fadioy/ H, = G x G/(AH - (SO2) x SO(2))).
Then either

G/H=G,/H,x G/TH, or G/H=G xG xG/(AH - AT - Hy)

whereG /T H; is a product of prime homogeneous spadeslenotes the center of
T H, (on Lie algebra level), and T is a proper subtorus g8O(2) x SO(2)) x T.

In the first caseG/H does not admiG-invariant Einstein metrics, since the
isotropy representation @,/ H, does not contain trivial summands.

In the second case, under the genericity assumption the summands and
mg of the isotropy representation &f, are still irreducible isotypical summands of
the isotropy representation = m; ® mp ® m3 ® @fz4 m; of H. Notice that the
decompositior@f:4 m; of m © (m1 @ my @ m3z) may not be uniquely determined.
Still the Einstein equations, which correspond to (5.8), (5.9) and (5.10), are given by

L) x

ST ik B N et LAY 5.15

2x1 2d1 x% ; 2d1 x% ( )
¢ )

by  [223] x3 [22] x;

2 e s o leal X 5.16

2x2 2d1 x% ; 2d1 x% ( )

1 /b3 [113’]) [113] x3 [223] =x3
AN+t =+ —— = =A 5.17
x3< 2 ds 4d3 xf 4d3 x% ( )
By choosing an AJG)-invariant scalar product apwhich extends that described in
the proof of Example 5.14, we conclude= b1 = bo = b3. Furthermore, we still
have[113] = [223] = 2d3. As above we conclude, that if the non-existence criterion
(5.6) is fulfilled, then the Einstein equations 6/ H do not admit real solutions.

This completes the proof of Theorem A.

Remark 5.18. Observe that the above non-existence criterion is nothing but asking
(((Ricg),*)o)gz mg — mgz to be positive for allG-invariant metricsg on G/H for
I, = {1, 2, 3} andig = 3. Notice that we also could have applied Theorem 4.7.
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Finally, we describe one more elaborate non-existence exagyfe

Example5.19. Let G/H = SU@m + n1 + --- + ng)/ S(SO(m) U(1) x U(ny) x
.- x U(ny)), wherem, nq1,...,nxy > 1. lf m > (Zf.‘zlni)z + 2, thenG/H does
not admitG-invariant Einstein metrics.

Proof. The isotropy representatian of H can be decomposed as follows:

m=Plon®su,l, @ Son—1d)e P luy ©u s

1<i<k 1<i<j<k

Al £ =k+1+ %k(k — 1) summands o are irreducible and pairwise inequivalent,
hencel = ¢,. Let the firstk + 1 summands be denoted by, . .., my, m,,, for
m=k+1 Wesetl, =1=1{1,...,k+ 1} andip = m. Note that (4.1) and (4.5)
are satisfied. It remains to show that (4.6) is fulfilled as well.

We haved,, = 3(m + 2)(m — 1) andd; = 2mn; fori = 1, ..., k. This time we
chooseQ = —B thatisb; = 1 for all i. After rescaling the Killing form ofG/H
a computation showgim] = d,n;/(m + Zle n;) fori = 1,...,k (cf. [WZ2],
Example 2). All the other structure constaftgk] with i, j, k € I vanish. Now
another computation involving the first three term in (4.6) shows that (4.6) is fulfilled

form > (Zleni)z—i—Z. O

References

[AIKi] D. V. Alekseevsky, B. N. Kimel'fel'd, Structure of homogeneous Riemann spaces
with zero Ricci curvatureFunct. Anal. Appl. 9 (1975), 97-102Zbl 0316.53041
MR 0402650

[Bes] A.L.BesseFEinstein Manifolds. Ergeb. Math. Grenzgeb. 10, Springer-Verlag, Berlin
1987.Zbl 0613.53001 MR 0867684

[Bo] S. Bochner, Curvature and Betti numbeksan. of Math. 49 (1948), 379-390.
Zbl 0038.34401 MR 0025238

[Bo1] C. Bohm, Non-existence of cohomogeneity one Einstein methitzth. Ann. 314
(1999), 109-1252bl 0959.53020 MR 1689265

[Bo2] C. Bohm, Homogeneous Einstein metrics and simplicial complekeBifferential
Geom. 67 (2004), 79-165.

[BK] C.Bohm, M. Kerr, Low-dimensional homogeneous Einstein manifolds. To appear in
Trans. Amer. Math. Soc.

[BWZz] C. Bohm, M. Y. Wang, W. Ziller, A variational approach for compact homogeneous
Einstein manifoldsGeom. Funct. Anal. 14 (2004), 681-733.

[BoGa] C. P. Boyer, K. Galicki, On Sasakian-Einstein geométigrnat. J. Math. 11 (2000),
873-909Zbl 1022.53038 MR 1792957


http://www.emis.de/MATH-item?0316.53041
http://www.ams.org/mathscinet-getitem?mr=0402650
http://www.emis.de/MATH-item?0613.53001
http://www.ams.org/mathscinet-getitem?mr=0867684
http://www.emis.de/MATH-item?0038.34401
http://www.ams.org/mathscinet-getitem?mr=0025238
http://www.emis.de/MATH-item?0959.53020
http://www.ams.org/mathscinet-getitem?mr=1689265
http://www.emis.de/MATH-item?1022.53038
http://www.ams.org/mathscinet-getitem?mr=1792957

146
[DiKe]
[GrZi]
[Heb]
[Hi]
[Jo]
[LeB]
[LW]
[On]
[PasSal
[Tia]
[We]
[WZ1]
(Wz2]
WZ3]
[Wo]

[Yau]

Ch. Béhm CMH

W. Dickinson, M. Kerr, The geometry of compact homogeneous spaces with two
isotropy summands. Preprint 2004.

K. Grove, W. Ziller, Cohomogeneity one manifolds with positive Ricci curvatume.
vent. Math. 149 (2002), 619-646Zbl 1038.53034 MR 1923478

J. Heber, Noncompact homogeneous Einstein spdoeant. Math. 133 (1998),
279-352Zbl 0906.53032 MR 1632782

D. Hilbert, Die Grundlagen der Physilachr. Akad. Wiss. Gott. (1915), 395-407.
JFM 45.1111.01

D. Joyce Compact manifolds with special holonomy. Oxford Math. Monogr., Oxford
University Press, Oxford 200@bl 1027.53052 MR 1787733

C. LeBrun, Ricci curvature, minimal volumes, and Seiberg-Witten theéovent. Math.
145 (2001), 279-316Zbl 0999.53027 MR 1872548

C. LeBrun, M. Y. Wang (eds.)Surveysin Differential Geometry VI: Essayson Einstein
Manifolds. International Press, Cambridge, MA, 199%! 0961.00021 MR 1798603

A. L. Onishchik, Topology of Transitive Transformation Groups. Johann Ambrosius
Barth Verlag GmbH, Leipzig 1994bl 0796.57001 MR 1266842

J.-S. Park, Y. Sakane, Invariant Einstein metrics on certain homogeneousEpgoes.
J. Math. 20 (1997), 51-61Zbl 0884.53039 MR 1451858

G. Tian, Kahler-Einstein metrics with positive scalar curvature. Invent. Math. 130
(1997), 1-37Zbl 0892.53027 MR 1471884

M.Y. Wang, Einstein metrics and quaternionic Kahler manifolath. Z. 210 (1992),
305-325Zbl 0765.53037 MR 1166528

M. Y. Wang, W. Ziller, On normal homogeneous Einstein manifolds. Sci. Ecole
Norm. Sup. (4) 18 (1985), 563—-63%bl 0598.53049 MR 0839687

M. Y. Wang, W. Ziller, Existence and non-existence of homogeneous Einstein metrics.
Invent. Math. 84 (1986), 177-194Zbl 0596.53040 MR 0830044

M. Y. Wang, W. Ziller, On isotropy irreducible Riemannian manifoldsta Math. 199
(1991), 223-2617bl 0732.53040 MR 1097024

J. A. Wolf, The geometry and structure of isotropy irreducible homogeneous spaces.
Acta. Math. 120 (1968), 59-148; correctiomicta. Math. 152 (1984), 141-142.
Zbl 0157.52102 Zbl 0539.53037 MR 0223501 MR 0736216

S. T. Yau, On the Ricci curvature of a compact Kahler manifold and the complex
Monge-Ampere equation Comm. Pure Appl. Math. 31 (1978), 339-411.
Zbl 0369.53059 MR 0480350

Received July 28, 2003

Christoph Béhm, Mathematisches Institut, Universitat Minster, Einsteinstrasse 62,
48149 Munster, Germany

E-mail: choehm@math.uni-muenster.de


http://www.emis.de/MATH-item?1038.53034
http://www.ams.org/mathscinet-getitem?mr=1923478
http://www.emis.de/MATH-item?0906.53032
http://www.ams.org/mathscinet-getitem?mr=1632782
http://www.emis.de/MATH-item?45.1111.01
http://www.emis.de/MATH-item?1027.53052
http://www.ams.org/mathscinet-getitem?mr=1787733
http://www.emis.de/MATH-item?0999.53027
http://www.ams.org/mathscinet-getitem?mr=1872548
http://www.emis.de/MATH-item?0961.00021
http://www.ams.org/mathscinet-getitem?mr=1798603
http://www.emis.de/MATH-item?0796.57001
http://www.ams.org/mathscinet-getitem?mr=1266842
http://www.emis.de/MATH-item?0884.53039
http://www.ams.org/mathscinet-getitem?mr=1451858
http://www.emis.de/MATH-item?0892.53027
http://www.ams.org/mathscinet-getitem?mr=1471884
http://www.emis.de/MATH-item?0765.53037
http://www.ams.org/mathscinet-getitem?mr=1166528
http://www.emis.de/MATH-item?0598.53049
http://www.ams.org/mathscinet-getitem?mr=0839687
http://www.emis.de/MATH-item?0596.53040
http://www.ams.org/mathscinet-getitem?mr=0830044
http://www.emis.de/MATH-item?0732.53040
http://www.ams.org/mathscinet-getitem?mr=1097024
http://www.emis.de/MATH-item?0157.52102
http://www.emis.de/MATH-item?0539.53037
http://www.ams.org/mathscinet-getitem?mr=0223501
http://www.ams.org/mathscinet-getitem?mr=0736216
http://www.emis.de/MATH-item?0369.53059
http://www.ams.org/mathscinet-getitem?mr=0480350

	The Ricci tensor of a homogeneous metric
	The tracefree part of the Ricci tensor
	The negative definite case
	The positive definite case
	New non-existence examples

