Comment. Math. Helv. 80 (2005), 123–146 **Commentarii Mathematici Helvetici**

Non-existence of homogeneous Einstein metrics

Christoph Böhm

Abstract. We show that there exist infinitely many simply connected compact prime homogeneous spaces G/H with infinite second homotopy group which do not admit G -invariant Einstein metrics.

Mathematics Subject Classification (2000). 53C25, 53C30.

Keywords. Einstein metric, homogeneous space.

A Riemannian metric g on a closed manifold is called Einstein if it satisfies Einstein's equation ric_g = $\lambda \cdot g$. Even though there exist many interesting classes of Einstein metrics, e.g. Kähler–Einstein metrics [\[Yau\]](#page-23-0), [\[Tia\]](#page-23-0), metrics with small holonomy group [\[Jo\]](#page-23-0), Sasakian–Einstein metrics [\[BoGa\]](#page-22-0) and homogeneous Einstein metrics [\[Heb\]](#page-23-0), [\[BWZ\]](#page-22-0), general existence and non-existence results are hard to obtain (for many more details and references see, e.g. [\[Bes\]](#page-22-0), [\[LW\]](#page-23-0)). For instance, in dimensions greater or equal than five no obstructions to the existence of Einstein metrics are known (cf. [\[LeB\]](#page-23-0) for the four-dimensional case).

In this paper we examine the Einstein equation for G-invariant metrics on compact homogeneous spaces G/H . On such spaces the Einstein constant λ of a G-invariant Einstein metric is non-negative (Bochner's theorem [\[Bo\]](#page-22-0)) and zero if and only if the metric is flat [\[AlKi\]](#page-22-0). If the Einstein constant is positive, then the fundamental group of G/H is finite by the theorem of Bonnet–Myers.

In what follows let us assume that G/H is a simply connected homogeneous spaces with G connected simply connected and semisimple. The homogeneous space G/H is called a *prime homogeneous space*, if the normalizer $N_G(H)$ of H in G and H have the same rank and if G/H is not a product of homogeneous spaces. An arbitrary simply connected homogeneous space is either a product of prime homogeneous spaces or the total space of a principal torus bundle over such a product. In both cases, the factors of this product are called the *prime factors* of G/H.

Theorem ([\[Bö2\]](#page-22-0)). *Let* G/H *be a compact simply connected homogeneous space with* G *connected simply connected and semisimple. If there exists a field* F *such that the reduced homology with coefficients in* F *of the simplicial complexes of all prime factors of* G/H *does not vanish, then* G/H *admits a* G*-invariant Einstein metric.*

The simplicial complex of a compact homogeneous space G/H is defined by certain subgroups K with $H \subseteq K \subseteq G$ (cf. [\[Bö2\]](#page-22-0)). This theorem shows that purely Lie-theoretical properties of the prime factors of a compact homogeneous space guarantee the existence of a homogeneous Einstein metric. Conversely, we have the following result:

Theorem A. *There exist infinitely many simply connected prime homogeneous spaces* G_p/H_p with infinite second homotopy group, such that compact simply connected *homogeneous spaces* G/H*,* G *connected simply connected and semisimple, do not admit* G-invariant Einstein metrics, if G_p/H_p is a prime factor of G/H and if G/H *is* G_p/H_p -generic.

A homogeneous space G/H is called G_p/H_p -generic for a prime factor G_p/H_p of G/H , if the irreducible summands of the isotropy representation of H_p are acted on irreducibly by H . Obviously, this condition is satisfied for the homogeneous space $G/H = G_p/H_p$; but, as we will see below, in general this assumption is necessary. Notice furthermore that it follows from the long homotopy sequence of the fibration $H_p \rightarrow G_p \rightarrow G_p/H_p$ that prime homogeneous spaces G_p/H_p have finite second homotopy group if and only if the isotropy group H_p is semisimple.

The spaces $G_p/H_p = \text{Spin}(n) \times \text{Spin}(n)/\Delta \text{Spin}(n-2) \cdot (\text{Spin}(2) \times \text{Spin}(2)),$ $n > 8$, provide concrete examples for prime homogeneous spaces Theorem A can be applied to (where $Spin(n)$ denotes the double cover of $SO(n)$). The simplest examples of homogeneous spaces with such a prime factor are given by $G/H =$ $Spin(n) \times Spin(n)/\Delta Spin(n-2) \cdot \Delta_{k,q}$ Spin(2), where k, q are coprime integers and $\Delta_{k,q}$ Spin(2) is embedded in Spin(2) × Spin(2) with slope determined by (k, q). The S¹-bundle G/H over G_p/H_p is G_p/H_p -generic if $(k, q) \neq \pm (1, 1), (0, \pm 1), (\pm 1, 0),$ and consequently such S^1 -bundles do not admit G-invariant Einstein metrics by Theorem A.

For $(k, p) = \pm(1, 1)$ the homogeneous space G/H does admit a G-invariant Einstein metric by the Graph Theorem [\[BWZ\]](#page-22-0). This shows the existence of singular torus bundles G/H over prime homogeneous spaces, which carry G -invariant Einstein metrics, even when generic torus bundles do not. The reason for this is that for singular torus bundles the dimension of the space \mathcal{M}^G of G-invariant metrics on G/H is strictly larger than that for generic torus bundles.

From Theorem A we deduce also the following

Corollary. *For any* $m \in \mathbb{N}$ *there exists a simply connected compact non-product homogeneous space* G/H *with* dim \mathcal{M}^G > *m, which does not admit* G-invariant *Einstein metrics.*

For all previously known non-product homogeneous spaces G/H not admitting G-invariant Einstein metrics we have dim $\mathcal{M}^G \leq 4$ [\[WZ2\]](#page-23-0), [\[Wa\]](#page-23-0), [\[PaSa\]](#page-23-0), [\[BK\]](#page-22-0), [\[DiKe\]](#page-23-0).

To give the reader a feeling for the Einstein equation for homogeneous metrics, let us consider compact homogeneous spaces G/H whose isotropy representation m can be decomposed into pairwise inequivalent irreducible summands m_i , $1 \leq$ $i \leq \ell$. In this special case, any G-invariant metric is given by $\sum_{i=1}^{\ell} x_i Q_{\lfloor m_i \rfloor}$ where $x_1, \ldots, x_\ell > 0$ and Q denotes a fixed bi-invariant background metric. The metric is then Einstein with Einstein constant λ if and only if

$$
\frac{b_i}{2x_i} - \frac{1}{2d_i} \sum_{j,k=1}^{\ell} [ijk] \frac{x_k}{x_i x_j} + \frac{1}{4d_i} \sum_{j,k=1}^{\ell} [ijk] \frac{x_i}{x_j x_k} = \lambda, \quad 1 \le i \le \ell
$$

where $b_i \ge 0$ and $[ijk] \ge 0$ are structure constants of G/H and $d_i = \dim \mathfrak{m}_i$ [\[WZ2\]](#page-23-0), [\[PaSa\]](#page-23-0). In order to show non-existence of homogeneous Einstein metrics one has to prove that these algebraic equations have no positive *real* solutions. Let us mention that no homogeneous space is known where these equations do not admit *complex* solutions.

Next, we describe a conceptual approach to the non-existence problem of homogeneous Einstein metrics. For a compact homogeneous space G/H let $\mathfrak{p}_1,\ldots,\mathfrak{p}_{\ell_*}$ denote the isotypical summands of the isotropy representation $\mathfrak{m} = \mathfrak{p}_1 \oplus \cdots \oplus \mathfrak{p}_{\ell_*}$ of the isotropy group H . Each isotypical summand sums up the irreducible summands of m which are equivalent. By Schur's Lemma, the traceless Ricci tensor of a G-invariant metric on G/H respects this splitting. This tensor is precisely the nega-tive gradient vector of the Hilbert action [\[Hi\]](#page-23-0) with respect to the natural L^2 metric. Since on closed manifolds the Hilbert action characterizes Einstein metrics variationally, a compact homogeneous space G/H cannot carry G -invariant Einstein metrics, if the restriction of the traceless Ricci tensor to an isotypical summand is negative (positive) definite for *all* G-invariant metrics.

The next two theorems, Theorem B and Theorem [C,](#page-3-0) provide Lie-theoretical properties of such homogeneous spaces:

Theorem B. *Let* G/H *be a compact homogeneous space with finite fundamental group. If for all* G*-invariant metrics on* G/H *the restriction of the traceless Ricci tensor to an isotypical summand of the isotropy representation of* H *is negative definite, then there exists a compact intermediate Lie group* K *such that* G/K *is isotropy irreducible,* dim $G/K > 1$ *and* K/H *is a virtual product of isotropy irreducible spaces.*

A compact homogeneous space G/K is called isotropy irreducible, if the isotropy representation of K is irreducible. We say that a homogeneous space K/H splits virtually, if this is true on Lie algebra level, that is if $T_1K = \mathfrak{k} = \mathfrak{k}_1 \oplus \mathfrak{k}_2$ and $T_1H = \mathfrak{h} = \mathfrak{h}_1 \oplus \mathfrak{h}_2$ with $\mathfrak{h}_i < \mathfrak{k}_i$. From the classification of isotropy irreducible spaces [\[Wo\]](#page-23-0), [\[WZ3\]](#page-23-0) it follows that homogeneous spaces obeying the obstruction in Theorem B are very special. For instance, if both G and H are connected, then we have dim $\mathcal{M}^G \leq 4$. Notice that the isotypical summand mentioned in Theorem [B](#page-2-0) is the orthogonal complement of $\mathfrak k$ in $\mathfrak g = T_1G$.

Let us also mention that the homogeneous spaces described in Theorem [B](#page-2-0) have been used to construct simply connected cohomogeneity one manifolds, which do not admit cohomogeneity one Einstein metrics [\[Bö1\]](#page-22-0) but Riemannian metrics of positive Ricci curvature [\[GrZi\]](#page-23-0).

The space $G/H = SU(m + k)/S(SO(m)U(1)SO(k)U(1)), m + k > 4$ and $m, k > 2$, is a concrete example for Theorem [B](#page-2-0) due to M. Wang. Non-existence for $k > m^2 + 2$ has been established in [\[WZ2\]](#page-23-0). In this case we have $K = S(U(m) U(k)),$ hence K/H is the product of two isotropy irreducible spaces.

Theorem C. *Let* G/H *be a compact homogeneous space with finite fundamental group. If for all* G*-invariant metrics on* G/H *the restriction of the traceless Ricci tensor to an isotypical summand of the isotropy representation is positive definite, then there exists a compact intermediate Lie group* K *such that* K/H *is isotropy irreducible,* dim K/H > 1 *and all* G*-invariant metrics on* G/H *are submersion metrics.*

A G-invariant metric on a homogeneous space G/H is a submersion metric with respect to a submersion $\pi: G/H \to G/K$; $gH \mapsto gK$ if it is given by a K-invariant metric on the fibre K/H and a G-invariant metric on the base G/K . Since in the above situation K/H is isotropy irreducible, the K-invariant metric on K/H is uniquely determined up to scaling. Notice that the isotypical summand mentioned in Theorem C is the orthogonal complement of h in \mathfrak{k} .

The space $G/H = \text{Spin}(n) \times \text{Spin}(n)/\Delta \text{Spin}(n-k) \cdot (\text{Spin}(k) \times \text{Spin}(k)),$ $n > k^2 + k + 2$ and $k > 2$, is a concrete example for Theorem C. In this case we have $K = (\text{Spin}(n-k) \text{Spin}(k)) \times (\text{Spin}(n-k) \text{Spin}(k))$. For $n = k^2 + k + 2$ there exists precisely one G-invariant Einstein metric, whereas for $n < k^2 + k + 2$ we have at least two non-isometric G-invariant Einstein metrics.

The non-existence criterion described in Theorem C can be generalized as follows: For a subset I_* of $\{1, 2, \ldots, \ell_*\}$ we consider the restriction of the Ricci tensor to the subspace $\bigoplus_{i\in I_*} \mathfrak{p}_i$ of m and the tracefree part of this symmetric bilinear form. If the restriction of the latter bilinear form to an isotypical summand \mathfrak{p}_{i_0} , $i_0 \in I_*,$ is positive definite for all G-invariant metrics on G/H , then G/H does not admit G-invariant Einstein metrics. The following examples indicates already that these more general obstructions cover many further homogeneous spaces:

Example. Let $G/H = SU(m+n_1+\cdots+n_k)/S(SO(m)U(1)\times U(n_1)\times\cdots\times U(n_k)),$ where $m, n_1, \ldots, n_k \geq 1$. If $m > \left(\sum_{i=1}^k n_i\right)^2 + 2$, then G/H does not admit G invariant Einstein metrics.

Note that dim $\mathcal{M}^G = \frac{1}{2}k(k+1) + 1$, that G is simple and that the subgroup K mentioned in Theorem C equals $S(U(m) \times U(n_1) \times \cdots \times U(n_k))$. Whenever $n_i = 1$,

for at least one i , we obtain new examples of prime homogeneous spaces for which Theorem [A](#page-1-0) is true.

The above obstructions turn out to be extremely flexible. They allow us to prove glueing theorems for prime homogeneous spaces Theorem [A](#page-1-0) can be applied to. Suppose that G/H does not admit G-invariant Einstein metrics by means of one of these obstructions. Pick any homogeneous space \tilde{G}/\tilde{H} , such that there exists a simple (or abelian) Lie group L with $H = H'L$ and $\tilde{H} = L\tilde{H'}$. Then, under certain purely Lie-theoretical assumption on G/H (made precise in Theorem [4.7\)](#page-15-0) the compact homogeneous space $\hat G/\hat H=G\times \hat G/(H'\cdot \Delta L\cdot \tilde H')$ does not admit $\hat G$ -invariant Einstein metrics. For instance we have:

Proposition. Let $G/H = SU(m + n_1 + \cdots + n_k)/S(SO(m)U(1) \times U(n_1) \times \cdots \times$ U(1) SU(n_k))*, where* $m, n_1, ..., n_k \ge 1, n_1 = 1, n_k \ge 2, m > (\sum_{i=1}^k n_i)^2 + 2.$ *Furthermore let* $\tilde{G}/(\mathrm{SU}(n_k)\tilde{H}')$ be a prime homogeneous space. Then Theorem [A](#page-1-0) *holds true for the prime homogeneous space* $G_p/H_p = G \times G/(S(SO(m) U(1) \times$ $U(n_1) \times \cdots \times U(1)) \cdot \Delta SU(n_k) \cdot \tilde{H}'$

Finally, we explain how the previously known non-existence examples [\[WZ2\]](#page-23-0), [\[Wa\]](#page-23-0), [\[PaSa\]](#page-23-0), [\[BK\]](#page-22-0), [\[DiKe\]](#page-23-0) fit into the above framework. Non-existence of homogeneous Einstein metrics has been described for the first time in [\[WZ2\]](#page-23-0). For most of these examples the isotropy representation can be decomposed into two irreducible isotypical summands; if in addition G is simple such spaces have been classified recently [\[DiKe\]](#page-23-0). Under this assumption, the Einstein equation can be solved explicitly and the non-existence criteria given in Theorem [B](#page-2-0) and Theorem [C](#page-3-0) are equivalent and also necessary.

In [\[WZ2\]](#page-23-0) also compact homogeneous spaces have been examined whose isotropy representation can be decomposed into three irreducible isotypical summands. The subgroup structure of these spaces is as described in Theorem [B.](#page-2-0) However, the non-existence criterion in [\[WZ2\]](#page-23-0) is not that given in Theorem [B](#page-2-0) but one of the above mentioned generalizations. By means of Theorem [C](#page-3-0) the homogeneous spaces $G/H = E_7 \times E_7 / \operatorname{Sp}(1) \Delta \operatorname{Spin}(12) \operatorname{Sp}(1)$ and $G/H = E_8 \times E_8 / \operatorname{Sp}(1) \Delta E_7 \operatorname{Sp}(1)$ do not admit G-invariant Einstein metrics [\[Wa\]](#page-23-0). For the remaining two known nonexistence examples [\[PaSa\]](#page-23-0), [\[BK\]](#page-22-0) non-existence does not follow from the above described obstructions.

Our paper contains 5 sections. In Section 1 we describe obstructions to the existence of homogeneous Einstein metrics. In Section 2 curvature computations are carried out. In Section 3, resp. Section 4, we prove Theorem [B,](#page-2-0) resp. Theorem [C.](#page-3-0) In Section 5 we present new examples of homogeneous spaces which do not admit homogeneous Einstein metrics, and we give the proof of Theorem A

1. The Ricci tensor of a homogeneous metric

Let G/H be a connected compact homogeneous space such that G and H are compact Lie groups not necessarily connected. Let O denote an $Ad(G)$ -invariant scalar product on g. Choose m the Q-orthogonal complement to h in g. As is well-known, every G-invariant metric on G/H is uniquely determined by an $Ad(H)$ -invariant scalar product on m. Furthermore, for any G -invariant metric g on G/H there exists a decomposition

$$
f=\mathfrak{m}_1\oplus\cdots\oplus\mathfrak{m}_\ell
$$

of m into Ad(H)-irreducible summands, such that g is diagonal with respect to Q , that is

$$
g = x_1 Q|_{\mathfrak{m}_1} \perp \cdots \perp x_\ell Q|_{\mathfrak{m}_\ell} \tag{1.1}
$$

with $x_1, \ldots, x_\ell > 0$. Even though the decomposition $f = \mathfrak{m}_1 \oplus \cdots \oplus \mathfrak{m}_\ell$ of \mathfrak{m} is not determined uniquely in general, this is true for the decomposition $m = \mathfrak{p}_1 \oplus \cdots \oplus \mathfrak{p}_{\ell_*}$ of m into isotypical summands. Moreover, by Schur's Lemma each ^G-invariant metric g and also its Ricci tensor ric g respect this splitting.

Next, let us define the Ad(H)-equivariant, g-selfadjoint endomorphism Ric_g by

$$
\text{ric}_g(\cdot, \cdot) = g(\text{Ric}_g \cdot, \cdot).
$$

Let I_* denote any non-empty subset of $\{1, 2, ..., \ell_*\}$ and let $\mathfrak{p}_{I_*} = \bigoplus_{i \in I_*} \mathfrak{p}_i$. We consider the restriction (Ric_g)_{I^{*}} of Ric_g to \mathfrak{p}_{I*} as an endomorphism of \mathfrak{p}_{I*} . Let $\operatorname{sc}(g)_{I_{*}} = \operatorname{tr}(Ric_{g})_{I_{*}}$ and let

$$
((\text{Ric}_g)_{I_*})^0 = (\text{Ric}_g)_{I_*} - \frac{\text{sc}(g)_{I_*}}{\dim \mathfrak{p}_{I_*}} \cdot \text{id}_{\mathfrak{p}_{I_*}}
$$

denote the tracefree part of $(Ric_g)_{I_*}$. We call $(((Ric_g)_{I_*})⁰)_{i₀}$ negative (positive) definite, if the symmetric 2-form $g(((Ric_g)_{I_*})^0)_{i_0} \cdot, \cdot)$ on \mathfrak{p}_{i_0} is negative (positive) definite.

Since G-invariant Einstein metrics on G/H are characterized variationally as the critical points of the Hilbert action restricted to the space of G-invariant metrics of volume 1 (cf. [\[Bes\]](#page-22-0)), we obtain the following obstructions to existence of G-invariant Einstein metrics.

Lemma 1.2. *Let* G/H *be a compact homogeneous space. Let* $I_* \subset \{1, 2, \ldots, \ell_*\}$ *,* |I∗| ≥ 2 *and* i⁰ ∈ I∗*. If for* all G*-invariant metrics* g *on* G/H *the endomorphism* $(((\text{Ric}_g)_{I_*})^0)_{i_0}$: $\mathfrak{p}_{i_0} \to \mathfrak{p}_{i_0}$ *is negative* (*positive*) *definite, then* G/H *does not admit* G*-invariant Einstein metrics.*

Next, we present a well-known formula for the Ricci tensor of a homogeneous metric on a compact homogeneous space. Let $g \in \mathcal{M}^G$ and let $f = \mathfrak{m}_1 \oplus \cdots \oplus \mathfrak{m}_\ell$ be a decomposition of m , which diagonalizes g. Then by [\[WZ2\]](#page-23-0), [\[PaSa\]](#page-23-0) we have

$$
(\text{Ric}_g)_{mm} \tag{1.3}
$$
\n
$$
= \left(\frac{1}{2}\frac{b_m}{x_m} - \frac{1}{2d_m}\sum_{j,k=1}^{\ell} [jkm]_f \frac{x_k}{x_m x_j} + \frac{1}{4d_m}\sum_{j,k=1}^{\ell} [jkm]_f \frac{x_m}{x_j x_k}\right) \cdot \text{id}_{\mathfrak{m}_m},
$$

where $(\text{Ric}_g)_{mm}$ denotes the restriction of Ric_g to \mathfrak{m}_m , i.e. $g((\text{Ric}_g)_{mm}X, X) =$ ric_g(*X*, *X*) for all $X \in \mathfrak{m}_m$. Here,

$$
-B|_{\mathfrak{m}_m}=b_m Q|_{\mathfrak{m}_m} \quad \text{and} \quad d_m=\dim \mathfrak{m}_m,
$$

where B denotes the Killing form on g. The structure constants $[ijk]_f$ with respect to the decomposition f are defined as follows:

$$
[ijk]_f = \sum Q([\hat{e}_\alpha, \hat{e}_\beta], \hat{e}_\gamma)^2
$$

where the sum is taken over $\{\hat{e}_{\alpha}\}\$, $\{\hat{e}_{\beta}\}\$, and $\{\hat{e}_{\gamma}\}\$, Q-orthonormal bases for \mathfrak{m}_i , \mathfrak{m}_j and m_k , respectively. Notice that $[ijk]_f$ is invariant under permutation of i, j, k.

The only known relations among these structure constants have been described in [\[WZ2\]](#page-23-0):

$$
d_i b_i = 2d_i c_i + \sum_{j,k=1}^{\ell} [ijk]_f, \quad 1 \le i \le \ell.
$$
 (1.4)

The nonnegative constants c_i are given by $C_{m_i, Q|_h} = c_i \cdot id_{m_i}$ where

$$
C_{\mathfrak{m}_i, Q|_{\mathfrak{h}}} = -\sum_i \operatorname{ad} z_i \circ \operatorname{ad} z_i,
$$

 ${z_i}$ Q-orthonormal basis of h, denotes the Casimir operator on m_i .

2. The tracefree part of the Ricci tensor

In this section we will compute the diagonal part of the tracefree part of the Ricci tensor of a homogeneous metric g on a compact homogeneous space G/H and more general the diagonal part of the endomorphisms $(((Ric_g)_{I_*})⁰)_{i₀} : \mathfrak{p}_{i₀} \rightarrow \mathfrak{p}_{i₀}$.

Let $g \in \mathcal{M}^G$ be a G-invariant metric on G/H and let $f = \mathfrak{m}_1 \oplus \cdots \oplus \mathfrak{m}_\ell$ be a decomposition of m, which diagonalizes g. For $I_* \subset \{1, 2, \ldots, \ell_*\}$ let I be the subset of $\{1, 2, \ldots, \ell\}$ with $\mathfrak{m}_I = \bigoplus_{i \in I} \mathfrak{m}_i = \mathfrak{p}_{I_*}.$

130 Ch. Böhm CMH

In order to keep notation as simple as possible let us introduce the following notations: We will write [ijk] instead of [ijk] f and $\sum_{j,k}$ instead of $\sum_{j,k=1}^{\ell}$. If we write $\sum_{i,j,k\neq m}$, then we are summing over all indices i, j, k from 1 to ℓ with *i*, *j*, *k* \neq *m* but the last one. Thus *m* is always fixed. If we write $\sum_{i \neq j \neq k}$, then we are summing over all indices i , j , k which are pairwise distinct.

Since by [\(1.3\)](#page-6-0)

$$
\mathrm{sc}(g)_{I_{*}} = \frac{1}{2} \sum_{i \in I} \frac{d_{i}b_{i}}{x_{i}} - \frac{1}{2} \sum_{i \in I, j, k} [ijk] \frac{x_{k}}{x_{i}x_{j}} + \frac{1}{4} \sum_{i \in I, j, k} [ijk] \frac{x_{i}}{x_{j}x_{k}},
$$

we obtain for $m \in I$

$$
(((2 \text{ Ric}_{g})_{I_{*}})^{0})_{mm}
$$
\n
$$
= \left(\frac{b_{m}}{x_{m}}\left(1 - \frac{d_{m}}{d_{I}}\right) - \frac{1}{d_{I}} \sum_{i \in I \neq m} \frac{d_{i}b_{i}}{x_{i}} - \frac{1}{d_{m}} \sum_{i,j} [ijm] \frac{x_{j}}{x_{i}x_{m}} + \frac{1}{2d_{m}} \sum_{i,j} [ijm] \frac{x_{m}}{x_{i}x_{j}} + \frac{1}{d_{I}} \sum_{i \in I, j,k} [ijk] \frac{x_{k}}{x_{j}x_{i}} - \frac{1}{2d_{I}} \sum_{i \in I, j,k} [ijk] \frac{x_{i}}{x_{j}x_{k}}\right) \cdot id_{m_{m}}
$$
\n
$$
(2.1)
$$

where $d_I = \sum_{i \in I} d_i$. We are going to extract x_m in this formula. The third and the fourth term of (2.1) can be decomposed as follows:

$$
\sum_{i,j} [ijm] \frac{x_j}{x_i x_m}
$$
\n
$$
= \frac{1}{x_m} \sum_i [iim] + \sum_{i \neq m} [imm] \frac{1}{x_i} + \frac{1}{x_m^2} \sum_{i \neq m} [imm] x_i + \frac{1}{x_m} \sum_{i \neq j \neq m} [ijm] \frac{x_j}{x_i}
$$
\n
$$
\sum_{i,j} [ijm] \frac{x_m}{x_i x_j}
$$
\n
$$
= \frac{1}{x_m} [mmm] + x_m \sum_{i \neq m} [iim] \frac{1}{x_i^2} + 2 \sum_{i \neq m} [imm] \frac{1}{x_i} + x_m \sum_{i \neq j \neq m} [ijm] \frac{1}{x_i x_j}.
$$

In order to treat the fifth term in (2.1) we observe:

$$
\sum_{i \in I, j,k} [ijk] \frac{x_k}{x_i x_j} = \frac{1}{x_m} [mmm] + \sum_{i \in I \neq m} [iii] \frac{1}{x_i} + \frac{1}{x_m} \sum_{k \neq m} [kkm] + \sum_{i \in I \neq m, k \neq i} [ikk] \frac{1}{x_i} + \frac{1}{x_m} \sum_{i \in I \neq m} [im] + \sum_{j \neq m, i \in I \neq j} [iij] \frac{1}{x_j} + \frac{1}{x_m^2} \sum_{k \neq m} [kmm] x_k
$$

$$
+ x_m \sum_{i \in I \neq m} [i im] \frac{1}{x_i^2} + \sum_{i \in I \neq k \neq m} [iik] \frac{x_k}{x_i^2} + \frac{1}{x_m} \sum_{j \neq k \neq m} [jkm] \frac{x_k}{x_j} + \frac{1}{x_m} \sum_{i \in I \neq k \neq m} [ikm] \frac{x_k}{x_i} + x_m \sum_{i \in I \neq j \neq m} [ijm] \frac{1}{x_i x_j} + \sum_{i \in I \neq j \neq k \neq m} [ijk] \frac{x_k}{x_i x_j}.
$$

The last term in [\(2.1\)](#page-7-0) can be written as follows:

$$
\sum_{i \in I, j,k} [ijk] \frac{x_i}{x_j x_k} \n= \frac{1}{x_m} [mmm] + \sum_{i \in I \neq m} [iii] \frac{1}{x_i} + \sum_{k \neq m} [kkm] \frac{x_m}{x_k^2} + \frac{1}{x_m^2} \sum_{i \in I \neq m} [imm]x_i \n+ \sum_{i \in I \neq k \neq m} [ikk] \frac{x_i}{x_k^2} + 2 \sum_{i \in I \neq m} \frac{[im]}{x_m} + 2 \sum_{j \neq m, i \in I \neq j} \frac{[ij]}{x_j} \n+ \sum_{j \neq k \neq m} [jkm] \frac{x_m}{x_j x_k} + 2 \sum_{i \in I \neq k \neq m} [ikm] \frac{x_i}{x_m x_k} + \sum_{i \in I \neq j \neq k \neq m} [ijk] \frac{x_i}{x_j x_k}.
$$

We obtain

$$
(((2 \text{ Ric}_{g})_{I_{*}})^{0})_{mm}
$$
\n
$$
= \frac{1}{d_{I}} \cdot \left(\frac{1}{x_{m}^{2}} \left\{ \left(1 - \frac{d_{I}}{d_{m}} \right) \sum_{i \neq m} [imm]_{x_{i}} - \frac{1}{2} \sum_{i \in I \neq m} [imm]_{x_{i}} \right\}
$$
\n
$$
+ \frac{1}{x_{m}} \left\{ \left(\frac{d_{I}}{d_{m}} - 1 \right) d_{m} b_{m} - \frac{d_{I}}{d_{m}} \sum_{i} [ium] + \frac{1}{2} \left(\frac{d_{I}}{d_{m}} + 1 \right) [mmm] + \sum_{k \neq m} [kkm] \right\}
$$
\n
$$
+ \frac{1}{x_{m}} \left\{ \left(1 - \frac{d_{I}}{d_{m}} \right) \sum_{j \neq k \neq m} [jkm]_{x_{j}} \frac{x_{k}}{x_{j}} + \sum_{i \in I \neq k \neq m} [ikm] \left(\frac{x_{k}}{x_{i}} - \frac{x_{i}}{x_{k}} \right) \right\}
$$
\n
$$
- \sum_{i \in I \neq m} \frac{d_{i}b_{i}}{x_{i}} + \frac{1}{2} \sum_{i \in I \neq m} [iii]_{x_{i}} \frac{1}{x_{i}} + \sum_{i \in I \neq m, k \neq i} [ikk]_{x_{i}} \frac{1}{x_{i}} + \sum_{i \in I \neq k \neq m} [iikk]_{x_{i}} \frac{x_{k}}{x_{i}^{2}}
$$
\n
$$
+ \sum_{i \in I \neq j \neq k \neq m} [ijk] \frac{x_{k}}{x_{i}x_{j}} - \frac{1}{2} \sum_{i \in I \neq k \neq m} [ikk] \frac{x_{i}}{x_{k}^{2}} - \frac{1}{2} \sum_{i \in I \neq j \neq k \neq m} [ijk] \frac{x_{i}}{x_{j}x_{k}}
$$
\n
$$
+ x_{m} \left\{ \frac{1}{2} \left(\frac{d_{I}}{d_{m}} - 1 \right) \sum_{i \neq m} [iim] \frac{1}{x_{i}^{2}} + \frac{1}{2} \left(\
$$

In particular, this yields the following formula for the tracefree part of the Ricci tensor:

$$
((2 \text{ Ric}_{g})^{0})_{mm}
$$
\n
$$
= \frac{1}{n} \cdot \left(\frac{1}{x_{m}^{2}} \left(\frac{1}{2} - \frac{n}{d_{m}} \right) \sum_{i \neq m} [imm]x_{i} - \sum_{i \neq m} \frac{1}{x_{i}} \left\{ d_{i} b_{i} + \frac{1}{2} [iii] - \sum_{k} [ikk] \right\}
$$
\n
$$
+ \frac{1}{x_{m}} \left(\frac{n}{d_{m}} - 1 \right) \left\{ d_{m} b_{m} + \frac{1}{2} [mm] - \sum_{i} [i im] - \sum_{j \neq k \neq m} [j km] \frac{x_{k}}{x_{j}} \right\}
$$
\n
$$
+ \frac{1}{2} \sum_{i \neq k \neq m} [i ik] \frac{x_{k}}{x_{i}^{2}} + \frac{1}{2} \sum_{i \neq j \neq k \neq m} [i j k] \frac{x_{k}}{x_{i} x_{j}}
$$
\n
$$
+ x_{m} \frac{1}{2} \left(\frac{n}{d_{m}} + 1 \right) \sum_{j,k \neq m} [j km] \frac{1}{x_{j} x_{k}} \cdot id_{m_{m}},
$$

where

$$
n = d_{\{1,2,...,\ell\}} = \dim G/H.
$$

From [\(1.4\)](#page-6-0) we deduce the following identity:

$$
d_i b_i + \frac{1}{2} [iii] - \sum_k [ikk] = 2d_i c_i + \frac{1}{2} [iii] + \sum_{j \neq k} [ijk] \ge 0.
$$
 (2.3)

Equality holds if and only if m_i is almost trivial, $[iii] = 0$ and $[m_i, m_j] \subset m_j$ for all $j = 1, 2, \ldots, \ell$. We call an irreducible summand m_i almost trivial, if $[\mathfrak{h}, \mathfrak{m}_i] = 0$, that is if m_i is contained in the normalizer of $\mathfrak h$ in g.

3. The negative definite case

In this section we will assume that $(((Ric_g)_{I_*})⁰)_{i₀}$ is negative definite for all $g \in \mathcal{M}^G$. As above, let f be a fixed decomposition of m and let the G -invariant metric g be given as in [\(1.1\)](#page-5-0). Under this assumption, if $\mathfrak{m}_m \subset \mathfrak{p}_{i_0}$, then $(((Ric_g)_{I_*})^0)_{mm} < 0$ for all $g \in \mathcal{M}^G$.

If we let tend x_m to $+\infty$ while keeping x_i fixed for $i \neq m$, then considering the last term x_m {...} in [\(2.2\)](#page-8-0) yields

$$
[ijm] = 0 \quad \text{for } i, j \neq m. \tag{3.1}
$$

Hence

$$
\mathfrak{l}:=\mathfrak{h}\oplus\bigoplus_{i\neq m}\mathfrak{m}_i
$$

is an H -subalgebra, that is a proper $Ad(H)$ -invariant subalgebra of $\mathfrak g$, which contains h properly. Equation [\(2.2\)](#page-8-0) simplifies to

$$
(((2 \text{ Ric}_{g})_{I_{*}})^{0})_{mm}
$$
\n
$$
= \frac{1}{d_{I}} \cdot \left(\frac{1}{x_{m}^{2}} \left\{ \left(\frac{1}{2} - \frac{d_{I}}{d_{m}}\right) \sum_{i \in I \neq m} [imm]_{X_{i}} + \left(1 - \frac{d_{I}}{d_{m}}\right) \sum_{k \in I^{C}} [kmm]_{X_{k}} \right\}
$$
\n
$$
+ \frac{1}{x_{m}} \left(\frac{d_{I}}{d_{m}} - 1\right) \left(d_{m} b_{m} - \frac{1}{2} [mmm] \right) - \sum_{i \in I \neq m} \frac{1}{x_{i}} \left\{d_{i} b_{i} + \frac{1}{2} [iii] - \sum_{k} [ikk] \right\}
$$
\n
$$
+ \frac{1}{2} \sum_{i \in I \neq k \in I \neq m} [iik]_{X_{i}^{2}}^{\frac{x_{k}}{2}} + \sum_{i \in I \neq m, k \in I^{C}} [iik]_{X_{i}^{2}}^{\frac{x_{k}}{2}} - \frac{1}{2} \sum_{i \in I \neq m, k \in I^{C}} [ikk]_{X_{k}^{2}}^{\frac{x_{i}}{2}}
$$
\n
$$
+ \frac{1}{2} \sum_{i \in I \neq j \in I \neq k \in I \neq m} [ijk]_{X_{i}x_{j}}^{\frac{x_{k}}{2}} + \sum_{i \in I \neq j \in I \neq m, k \in I^{C}} [ijk]_{X_{i}x_{j}}^{\frac{x_{k}}{2}}
$$
\n
$$
+ \sum_{i \in I \neq m, j \in I^{C} \neq k \in I^{C}} [ijk]_{X_{i}x_{j}}^{\frac{x_{k}}{2}} - \frac{1}{2} \sum_{i \in I \neq m, j \in I^{C} \neq k \in I^{C}} [ijk]_{X_{j}x_{k}}^{\frac{x_{i}}{2}} \right) \cdot id_{m_{m}}
$$
\n(3.2)

where $I^C = \{1, ..., \ell\} \backslash I$. Let $k \in I^C$. If we set $x_k = x_m$ and let x_k tend to $+\infty$ while keeping x_i constant for $i \neq k$, m, then we get

$$
[ijk] = 0 \quad \text{for } i, j \in I \setminus \{m\}, \ k \in I^C \tag{3.3}
$$

$$
[ikk'] = 0 \quad \text{for } i \in I \setminus \{m\}, \ k, k' \in I^C, \ k \neq k'. \tag{3.4}
$$

Since by [\(3.1\)](#page-9-0) $[ijm] = 0$ for $i, j \neq m$, (3.3) implies that

$$
\mathfrak{k}=\mathfrak{h}\oplus\bigoplus_{i\in I\setminus\{m\}}\mathfrak{m}_i
$$

is an *H*-subalgebra. We have $\ell \leq \ell$ and $\ell = \ell$ if and only if $I_* = \{1, 2, ..., \ell_*\}.$

Let now $w_k = \frac{x_k}{x_m}$ for $k \neq m$. By (3.3) and (3.4), equation (3.2) simplifies to

$$
(((2 \text{ Ric}_{g})_{I_{*}})^{0})_{mm} \cdot x_{m}
$$
\n
$$
= \frac{1}{d_{I}} \cdot \left(\left(\frac{1}{2} - \frac{d_{I}}{d_{m}} \right) \sum_{i \in I \neq m} [imm] w_{i} + \left(1 - \frac{d_{I}}{d_{m}} \right) \sum_{k \in I^{C}} [kmm] w_{k}
$$
\n
$$
+ \left(\frac{d_{I}}{d_{m}} - 1 \right) \left(d_{m} b_{m} - \frac{1}{2} [mm] n \right) - \sum_{i \in I \neq m} \frac{1}{w_{i}} \left\{ d_{i} b_{i} + \frac{1}{2} [iii] - \sum_{k} [ikk] \right\}
$$

134 Ch. Böhm CMH

$$
+\frac{1}{2}\Big\{\sum_{i\in I\neq k\in I\neq m}[iik]\frac{w_k}{w_i^2}-\sum_{i\in I\neq m,k\in I^C}[ikk]\frac{w_i}{w_k^2}+\sum_{i\in I\neq j\in I\neq k\in I\neq m}[ijk]\frac{w_k}{w_iw_j}\Big\}\Bigg)\cdot id_{m_m}.
$$

Let $i \in I \setminus \{m\}$ and let w_i tend to zero while keeping w_k constant for $k \neq i$. We get

$$
[ijk] = 0 \quad \text{for } i, j, k \in I \setminus \{m\}, \ i, j \neq k. \tag{3.5}
$$

Hence equation [\(3.2\)](#page-10-0) simplifies further to

$$
(((2 \text{ Ric}_{g})_{I_{*}})^{0})_{mm} \cdot x_{m}
$$
\n
$$
= \frac{1}{d_{I}} \cdot \left(\left(\frac{1}{2} - \frac{d_{I}}{d_{m}} \right) \sum_{i \in I \neq m} [imm] w_{i} - \sum_{i \in I \neq m} \frac{1}{w_{i}} \left(d_{i} b_{i} + \frac{1}{2} [iii] - \sum_{k} [ikk] \right) + \left(\frac{d_{I}}{d_{m}} - 1 \right) \left\{ d_{m} b_{m} - \frac{1}{2} [mm] m - \sum_{k \in I^{C}} [kmm] w_{k} \right\}
$$
\n
$$
- \frac{1}{2} \sum_{i \in I \neq m, k \in I^{C}} [ikk] \frac{w_{i}}{w_{k}^{2}} \cdot id_{m_{m}}.
$$

Recall that an H-subalgebra $\mathfrak k$ is called toral if $\mathfrak k$ is an abelian extension of h, otherwise non-toral. From (3.5) we deduce that there exists a unique decomposition $\mathfrak{k} = \mathfrak{z}'(\mathfrak{k}) \oplus$
 $\mathfrak{D}^r = \mathfrak{k} \oplus \mathfrak{r}$ of \mathfrak{k} , where \mathfrak{k} , are non-toral *H*-subalgebras, and a unique decomposition $\bigoplus_{i=1}^r \mathfrak{k}_i \oplus \mathfrak{r}$ of \mathfrak{k} , where \mathfrak{k}_i are non-toral H-subalgebras, and a unique decomposition $\mathfrak{h} = \bigoplus_{i=1}^r \mathfrak{h}_i \oplus \mathfrak{r}$ of \mathfrak{h}_i where $\mathfrak{h}_i \leq \mathfrak{k}_i$ such that the *O*-orthog $\mathfrak{h} = \bigoplus_{i=1}^r \mathfrak{h}_i \oplus \mathfrak{r}$ of \mathfrak{h} , where $\mathfrak{h}_i < \mathfrak{k}_i$, such that the Q-orthogonal complement \mathfrak{q}_i
of h, in \mathfrak{k} , is an isotypical summand of the Ad(H)-module $\mathfrak{k} = x'(\mathfrak{k}) \oplus \bigoplus_{i=1}$ of \mathfrak{h}_i in \mathfrak{k}_i is an isotypical summand of the Ad(H)-module $\mathfrak{k} = \mathfrak{z}'(\mathfrak{k}) \oplus \bigoplus_{i=1}^r \mathfrak{q}_i$ (cf.

[WZ2] Theorem 2.11) [\[WZ2,](#page-23-0) Theorem 2.1]).

For an H-subalgebra $\mathfrak k$ of g let now $H(\mathfrak k)$ denote the smallest subgroup of G with Lie algebra $\mathfrak k$ containing H. Then it follows that $H(\mathfrak k)/H$ splits virtually into a product of isotropy irreducible spaces

$$
H(\mathfrak{k})/H = T^k \times \prod_{i=1}^r H(\mathfrak{k}_i)/H_i,
$$
 (3.6)

and we obtain the following inclusions of intermediate Lie groups:

$$
H < H(\mathfrak{k}) \leq H(\mathfrak{l}) < G,
$$

where $G/H(1)$ is virtually isotropy irreducible and $H(\mathfrak{k})/H$ is a virtual product of isotropy irreducible spaces.

Next, we examine the case when \mathfrak{p}_{i_0} is not irreducible. Suppose that there exists $m' \in I$ with $m \neq m'$, such that m_m and $m_{m'}$ are equivalent. Performing the above

computation for m', by [\(3.6\)](#page-11-0) we get $[m_m, m_m] \subset m_m \oplus \mathfrak{h}$, hence $[imm] = 0$ for $i \neq m$. Therefore, G/H splits virtually as $G/H = \tilde{G}/\tilde{H} \times \tilde{G}/\tilde{H}$, where \tilde{G}/\tilde{H} . $i \neq m$. Therefore, G/H splits virtually as $G/H = \tilde{G}_1/\tilde{H}_1 \times \tilde{G}_2/\tilde{H}_2$ where \tilde{G}_1/\tilde{H}_1 and \tilde{G}_2/\tilde{H}_2 correspond to \mathfrak{m}_m and $\bigoplus_{i \neq m} \mathfrak{m}_i$, respectively. By carrying out the same computation for $\mathfrak{m}_{m'}$ we finally obtain $[\mathfrak{p}_{i_0}, \bigoplus_{i=1, i\neq i_0}^{\ell_*} \mathfrak{p}_i] = 0$. Therefore G/H splits
virtually as $G/H = G_1/H_2 \times G_2/H_2$ where G_1/H_2 and G_2/H_2 correspond to negation virtually as $G/H = G_1/H_1 \times G_2/H_2$ where G_1/H_1 and G_2/H_2 correspond to \mathfrak{p}_{i_0} and $\bigoplus_{i=1, i\neq i_0}^{\ell_*} \mathfrak{p}_i$, respectively. Note that G_1/H_1 splits virtually into a product of isotropy irreducible spaces. It follows that virtually $G_1/H_1 = T^k$ for $k \ge 2$ (cf. [\[WZ2,](#page-23-0) Theorem 2.1]).

Proposition 3.7. *Let* G/H *be a compact homogeneous space. Let* $I_* \subset \{1, 2, ..., \ell_*\}$ *and* i_0 ∈ I_* *. Suppose that* $(((\text{Ric}_g)_{I_*})^0)_{i_0}$ *is negative definite for all G*-*invariant metrics* g on G/H *. If* \mathfrak{p}_{i_0} *is not irreducible, then virtually* $G/H = T^k \times G_2/H_2$ *for* $k \geq 2$. Furthermore, if \mathfrak{p}_{i_0} is irreducible and $\mathfrak{h} \oplus \mathfrak{p}_{i_0}$ is a toral H-subalgebra, the *same is true for* $k \geq 1$ *.*

In the remaining part of this section we will assume $|\pi_1(G/H)| < \infty$. In this case it follows from the above proposition that \mathfrak{p}_{i_0} is irreducible and that $\mathfrak{h} \oplus \mathfrak{p}_{i_0}$ is not a toral subalgebra of g. Therefore, the Lie subgroup $L = H(1)$ is compact with dim $G/L > 1$. Since in case $I_* = \{1, 2, \ldots, \ell_*\}$ we have $\ell = \ell$, we obtain the proof of Theorem [B.](#page-2-0)

Next, we will focus on the case $I_* = \{1, 2, ..., \ell_*\}$. Since then $I^C = \emptyset$, equation [\(3.2\)](#page-10-0) simplifies further to

$$
(((2 \text{ Ric}_{g})_{I_{*}})^{0})_{mm} \cdot x_{m} \cdot n
$$

= $(n - d_{m}) \cdot \left(b_{m} - \frac{[mmm]}{2d_{m}}\right)$

$$
- \sum_{i \neq m} \frac{1}{w_{i}} \left\{ \left(\frac{n}{d_{m}} - \frac{1}{2}\right) [imm] w_{i}^{2} + d_{i} b_{i} - \frac{1}{2} [iii] - [imm] \right\}.
$$

By the above discussion, [iii] and [imm], $1 \le i \le \ell$, are the only non-zero structure constants with respect to the decomposition f , fixed in the very beginning.

Finally, we will investigate which of these structure constants can vanish. Since $|\pi_1(G/H)| < \infty$, we have $d_m b_m - \frac{1}{2}[mmm] > 0$ (cf. [\[Bö2,](#page-22-0) Corollary 4.17]). If there exists $i \neq m$ with $[imm] = 0$, then G/H splits virtually. Therefore, we may assume in the following $[imm] > 0$ for all *i*. We have $d_i b_i - \frac{1}{2} [iii] - [imm] = 0$ for $i \neq m$ if and only if $\mathfrak{h} \oplus \mathfrak{m}_i$ is a toral H-subalgebra.

Let $I_{\neq 0}$ denote the set of indices $i \in \{1, 2, ..., \ell\} \setminus \{m\}$, such that $d_i b_i - \frac{1}{2} [iii]$ [*imm*] is positive. If $I_{\neq 0} = \{1, 2, ..., \ell\} \setminus \{m\}$, then the assumption $(((2 \text{Ric}_g)_{I_*})^0)_{i_0}$

being negative definite for all $g \in \mathcal{M}^G$ is equivalent to the following inequality:

$$
\frac{1}{2}\left(b_m - \frac{[mmm]}{2d_m}\right)
$$
\n
$$
\leq \sum_{i \neq m} \sqrt{\left(d_i b_i - \frac{[iii]}{2} - [imm]\right) \cdot \frac{[imm]}{n - d_m} \cdot \left(\frac{1}{2(n - d_m)} + \frac{1}{d_m}\right)}
$$
\n(3.8)

It follows as in the proof of [\[WZ2,](#page-23-0) Theorem 2.1], that this inequality does not depend on the choice of the decomposition f. If $I_{\neq 0}$ is a proper subset of $\{1, 2, ..., \ell\}\$ m $\}$, then the above assumption is equivalent to the fact, that an inequality is satisfied obtained from (3.8) be replacing \lt by \le and summing over $i \in I_{\neq 0}$. Again this inequality does not depend on the choice of the decomposition f .

Remark 3.9. It would be very interesting to understand inequality (3.8) from a qualitative point of view. Notice that for $\ell = m = 2$ inequality (3.8) is nothing by [\(5.1\)](#page-17-0).

4. The positive definite case

In this section we will assume that $(((Ric_g)_{I_∗})⁰)_{i₀}$ is positive definite for all $g \in \mathcal{M}^G$. As above, let f be a fixed decomposition of m which diagonalizes g (cf. [\(1.1\)](#page-5-0)). Under this assumption, if $\mathfrak{m}_m \subset \mathfrak{p}_{i_0}$, then $(((\text{Ric}_g)_{I_*})^0)_{mm} > 0$ for all $g \in \mathcal{M}^G$.

If we let tend x_m to 0 while keeping x_i fixed for $i \neq m$, then considering the first term $\frac{1}{x_m^2}$ {...} in [\(2.2\)](#page-8-0) yields $[imm] = 0$ for $i \neq m$. Hence

$$
\mathfrak{k}=\mathfrak{h}\oplus\mathfrak{m}_m
$$

is an H -subalgebra. Moreover, we claim

$$
[jkm] = 0 \quad \text{for } j \neq k. \tag{4.1}
$$

To see this, we consider the third term $\frac{1}{x_m} \{ \dots \}$ in [\(2.2\)](#page-8-0). We have

$$
\left(1 - \frac{d_I}{d_m}\right) \sum_{j \neq k \neq m} [jkm] \frac{x_k}{x_j} + \sum_{i \in I \neq k \neq m} [ikm] \left(\frac{x_k}{x_i} - \frac{x_i}{x_k}\right)
$$
\n
$$
= -\frac{d_I}{d_m} \left\{ \sum_{j \in I^C \neq k \in I^C} [jkm] \frac{x_k}{x_j} + \sum_{i \in I \neq m, k \in I^C} [ikm] \left(\frac{x_k}{x_i} + \frac{x_i}{x_k}\right) + \sum_{i \in I \neq j \in I \neq m} [ijm] \frac{x_i}{x_j} \right\}
$$
\n
$$
+ \sum_{j \in I^C \neq k \in I^C} [jkm] \frac{x_k}{x_j} + 2 \sum_{i \in I \neq m, k \in I^C} [ikm] \frac{x_k}{x_i} + \sum_{i \in I \neq j \in I \neq m} [ijm] \frac{x_i}{x_j}.
$$

First of all, $[jkm] = 0$ for $j, k \in I^C, j \neq k$, since if we let x_k tend to $+\infty$, while keeping x_j fixed for $j \in I^C$, $j \neq k$, and if we set $x_i = x_k$ for $i \in I \setminus \{m\}$, the above term gets as negative as we wish. Now, if we let x_m tend to zero, then we obtain a contradiction. Next, $[ikm] = 0$ for $i \in I \setminus \{m\}$ and $k \in I^C$, since if we let tend x_k to zero while keeping x_i fixed the above term gets again as negative as we wish. Finally we obtain (4.1) .

Let
$$
w_k = \frac{x_k}{x_m}
$$
 for $k \neq m$. By (4.1), equation (2.2) simplifies to
\n
$$
(((2 \text{ Ric}_g)_{I_*})^0)_{mm} \cdot x_m \cdot d_I
$$
\n
$$
= \left(\frac{d_I}{d_m} - 1\right) \left(d_m b_m + \frac{1}{2} [mmm] - \sum_k [kkm]\right)
$$
\n
$$
- \sum_{i \in I \neq m} \frac{1}{w_i} \left\{d_i b_i + \frac{1}{2} [iii] - \sum_k [ikk] + \frac{1}{2} \left(\frac{d_I}{d_m} + 1\right) \sum_{i \in I \neq m} [iim] \frac{1}{w_i^2} + \frac{1}{2} \left(\frac{d_I}{d_m} - 1\right) \sum_{k \in I^c} [kkm] \frac{1}{w_k^2} + \sum_{i \in I \neq k \neq m} [iik] \frac{w_k}{w_i^2} - \frac{1}{2} \sum_{i \in I \neq k \neq m} [iik] \frac{w_i}{w_k^2} + \sum_{i \in I \neq j \neq k \neq m} [ijk] \frac{w_k}{w_i w_j} - \frac{1}{2} \sum_{i \in I \neq j \neq k \neq m} [ijk] \frac{w_i}{w_j w_k}.
$$
\n(4.2)

For all j, $k \in I^C$ we set $w_i = w_k$. Let w_i be fixed for all $i \in I \setminus \{m\}$ but large enough. Now let w_k tend to zero. We get

$$
[ijk] = 0 \quad \text{for } i \in I \setminus \{m\}, \ j, k \in I^C. \tag{4.3}
$$

Hence, by [\(4.1\)](#page-13-0) and (4.3) $l = \mathfrak{h} \oplus \mathfrak{m}_m \oplus \bigoplus_{k \in I^C} \mathfrak{m}_k$ is an *H*-subalgebra.
By (4.3) equation (4.2) simplifies to

By (4.3) equation (4.2) simplifies to

$$
(((4 \text{Ric}_{g})_{I_{*}})^{0})_{mm} \cdot x_{m} \cdot d_{I} = 2\left(\frac{d_{I}}{d_{m}} - 1\right)\left(d_{m}b_{m} + \frac{1}{2}[mmm] - \sum_{i}[iim]\right)
$$

$$
-2\sum_{i \in I \neq m} \frac{1}{w_{i}} \left\{d_{i}b_{i} + \frac{1}{2}[iii] - \sum_{k \in I} [ikk] \right\} + \left(\frac{d_{I}}{d_{m}} + 1\right) \sum_{i \in I \neq m} [iim]\frac{1}{w_{i}^{2}}
$$

$$
+ \sum_{i \in I \neq j \in I \neq m} [iij]\frac{w_{j}}{w_{i}^{2}} + \sum_{i \in I \neq j \in I \neq k \in I \neq m} [ijk]\frac{w_{k}}{w_{i}w_{j}}
$$

$$
+ \left(\frac{d_{I}}{d_{m}} - 1\right) \sum_{k \in I^{C}} [kkm]\frac{1}{w_{k}^{2}} + 2 \sum_{i \in I \neq m, k \in I^{C}} [iik]\frac{w_{k}}{w_{i}^{2}}
$$

$$
+ 2 \sum_{i \in I \neq j \in I \neq m, k \in I^{C}} [ijk]\frac{w_{k}}{w_{i}w_{j}}
$$

and we obtain the following counterpart to Proposition [3.7.](#page-12-0)

Proposition 4.4. *Let* G/H *be a compact homogeneous space. Let* $I_* \subset \{1, 2, ..., \ell_*\}$ *and* i_0 ∈ I_* *. Suppose that* $(((\text{Ric}_g)_{I_*})^0)_{i_0}$ *is positive definite for all G*-*invariant metrics* g on G/H *. If* \mathfrak{p}_{i_0} *is not irreducible, then virtually* $G/H = T^k \times G_2/H_2$ *for* $k \geq 2$. Furthermore, if \mathfrak{p}_{i_0} is irreducible and $\mathfrak{h} \oplus \mathfrak{p}_{i_0}$ is a toral H-subalgebra, the *same is true for* $k \geq 1$ *.*

Proof. If \mathfrak{p}_{i_0} is not irreducible, then we conclude as above that \mathfrak{p}_{i_0} is an abelian subalgebra of g. Consequently, we obtain from [\(1.4\)](#page-6-0) and [\(4.1\)](#page-13-0) $d_m b_m + \frac{1}{2} [mmm] \sum_i[iim] = 2d_m c_m + \frac{1}{2}[mmm] + \sum_{i \neq j}[ijm] = 0$. Next, we set $w_i = x$ for $i \in I \setminus \{m\}$ and $w_k = x^{\frac{2}{3}}$ for $k \in I^C$ and let x tend to $+\infty$. Since by assumption $(((2 \text{ Ric}_g)_{I_*})^0)_{mm}$ is positive and since by [\(4.3\)](#page-14-0) $d_i b_i + \frac{1}{2} [iii] - \sum_{k \in I} [ikk] = 2d_i c_i +$ $\frac{1}{2}[iii] + \sum_{j \neq k} [ijk]$ for all $i \in I \setminus \{m\}$ we conclude $c_i = [iii] = \sum_{j \neq k} [ijk] = 0$ for $i \in I \setminus \{m\}$. It follows that $\bigoplus_{i \in I \neq m} \mathfrak{m}_i$ is an abelian subalgebra of $\mathfrak g$ which commutes with $I - \mathfrak{h} \oplus \mathfrak{m} \oplus \mathfrak{S}$. with $\mathfrak{l} = \mathfrak{h} \oplus \mathfrak{m}_m \oplus \bigoplus_{k \in I^C} \mathfrak{m}_k$. $k \in I^C$ m_k. \square

In the remaining part of this section we will assume $|\pi_1(G/H)| < \infty$. In this case it follows from the above proposition that \mathfrak{p}_{i_0} is irreducible and that $\mathfrak{h} \oplus \mathfrak{p}_{i_0}$ is not a toral subalgebra of g. Therefore, the Lie subgroup $K = H(\mathfrak{h} \oplus \mathfrak{p}_{i_0})$ is compact with dim $K/H > 1$. By [\(4.1\)](#page-13-0) the Ad(H)-irreducible summands m_i , $i \neq m$, are also $Ad(K)$ -invariant. Thus, all G-invariant metrics on G/H are Riemannian submersion $Ad(K)$ -invariant. Thus, all G-invariant metrics on G/H are Riemannian submersion metrics with respect to the submersion $\pi: G/H \to G/K$; $gK \mapsto gH$ with fibre K/H . We obtain the proof of Theorem [C.](#page-3-0)

Let us turn to compact homogeneous spaces where not only (4.3) is fulfilled but

$$
[ijk] = 0 \quad \text{for } i \in I, \ j, k \in I^C. \tag{4.5}
$$

Then both $\mathfrak{h} \oplus \bigoplus_{k \in I^C} \mathfrak{m}_k$ and $\mathfrak{h} \oplus \mathfrak{m}_m$ are subalgebras of \mathfrak{g} . Under this assumption, we do not only ask $(((\text{Ric}) \cdot)^0)$. to be positive definite for all $a \in \mathcal{M}^G$ but require we do not only ask $(((Ric_g)_{I_*})⁰)_{i₀}$ to be positive definite for all $g \in \mathcal{M}^G$ but require in addition that the following inequality is fulfilled:

$$
0 < 2\left(\frac{d_I}{d_m} - 1\right) \left(d_m b_m + \frac{1}{2} [m m m] - \sum_{i \in I} [i i m] \right) \tag{4.6}
$$
\n
$$
- \sum_{i \in I \neq m} \frac{2}{w_i} \left\{ d_i b_i + \frac{1}{2} [i i i] - \sum_{k \in I} [i k k] \right\} + \left(\frac{d_I}{d_m} + 1\right) \sum_{i \in I \neq m} [i i m] \frac{1}{w_i^2} + \sum_{i \in I \neq j \in I \neq k} [i j k] \frac{w_k}{w_i w_j}.
$$

Notice that this inequality is only a slightly stronger assumption than requiring $(((\text{Ric}_g)_{I_*})^0)_{i_0}$ to be positive definite.

Now we can state the glueing result for homogeneous spaces mentioned in the introduction.

Theorem 4.7. Let G/H , \tilde{G}/\tilde{H} be compact homogeneous spaces with finite *fundamental group. Suppose that there exists a simple Lie algebra* l *such that* $T_1H = \mathfrak{h} = \mathfrak{h}' \oplus \mathfrak{l}$ and $T_1\tilde{H} = \tilde{\mathfrak{h}} = \mathfrak{l} \oplus \tilde{\mathfrak{h}}'$. Let $\hat{G} = G \times \tilde{G}$ and let \hat{H} denote *a* (possibly disconnected) subgroup of $H \times \tilde{H}$ with Lie algebra $\hat{\mathfrak{h}} = \mathfrak{h}' \oplus \Delta \mathfrak{l} \oplus \tilde{\mathfrak{h}}'.$
Let $\mathfrak{m} = \bigoplus_{k=1}^{\ell_{*}} \mathfrak{h}$, denote the isotypical decomposition of the isotropy representation Let $\mathfrak{m} = \bigoplus_{i=1}^{\ell_*} \mathfrak{p}_i$ denote the isotypical decomposition of the isotropy representation
 \mathfrak{m} of H, Let $I \subseteq \{1, 2, \ldots, \ell\}$ and $i_0 \in I$, If m *of H. Let* $I_* \subset \{1, 2, ..., \ell_*\}$ *and* $i_0 \in I_*$ *. If*

- (1) $(((\text{Ric}_g)_{I_*})^0)_{i_0}$ *is positive definite and* [\(4.6\)](#page-15-0) *is fulfilled for all* $g \in \mathcal{M}^G$,
- (2) *for* $i \in I^*$ *the* Ad(*H*)*-isotypical summands* \mathfrak{p}_i *are* Ad(\hat{H})*-isotypical summands* of $\hat{\mathfrak{m}}$,
- (3) *the* Ad(*H*)*-irreducible summands of* $\bigoplus_{i \in I_*} \mathfrak{p}_i$ *are* Ad(\hat{H})*-irreducible*,
(4) $\mathfrak{h} \oplus \mathfrak{O}$ \mathfrak{h} *is a subalgebra of* \mathfrak{g} *and* \mathfrak{h} *n* $\mathfrak{h} = 0$
- (4) $\mathfrak{h} \oplus \bigoplus_{i \in \{1, ..., \ell_*\}\setminus I_*} \mathfrak{p}_i$ *is a subalgebra of* \mathfrak{g} *and* $[\mathfrak{p}_{i_0}, \mathfrak{l}] = 0$ *,*

then \hat{G}/\hat{H} *does not admit* \hat{G} *-invariant Einstein metrics.*

Proof. For the same choice of I_* and $i_0 \,\subset I_*$ we have to prove that [\(4.1\)](#page-13-0), [\(4.5\)](#page-15-0) and [\(4.6\)](#page-15-0) are fulfilled for all \hat{G} -invariant metrics g on \hat{G}/\hat{H} .

The isotropy representation \hat{m} of \hat{H} can be decomposed as follows:

$$
\hat{\mathfrak{m}} = \tilde{\mathfrak{m}} \oplus (\mathfrak{l} \oplus \mathfrak{l} \ominus \Delta \mathfrak{l}) \oplus \Big(\bigoplus_{i \in I_*^C} \mathfrak{p}_i\Big) \oplus \Big(\bigoplus_{i \in I_*} \mathfrak{p}_i\Big),
$$

where \tilde{m} denotes the isotropy representation of \tilde{H} and $I_*^C = \{1, 2, ..., \ell_*\} \setminus I_*$. By (2) for $i \in I$, the summands n, are still isotypical summands of \hat{m} (2), for $i \in I_*$ the summands \mathfrak{p}_i are still isotypical summands of $\hat{\mathfrak{m}}$.

Let $\hat{f} = \bigoplus_{i \in I} \hat{m}_i \oplus \bigoplus_{i \in I} m_i$ be an arbitrary decomposition of \hat{m} into Ad(\hat{H})irreducible summands, where $I^{\hat{C}} = \{1, 2, ..., \hat{\ell}\}\setminus I$ and $\bigoplus_{i \in I} \mathfrak{m}_i = \bigoplus_{i \in I_*} \mathfrak{p}_i$, \mathfrak{m}_i
Ad(*H*)-irreducible for $i \in I$ (cf. (3)). As above let $\mathfrak{m} \subset \mathfrak{m}$. Ad(H)-irreducible for $i \in I$ (cf. (3)). As above let $\mathfrak{m}_m \in \mathfrak{p}_{i_0}$.

First, we show $[jkm]_{\hat{f}} = 0$ for $j \neq k$. For $j, k \in I$ this is certainly true by [\(4.1\)](#page-13-0). In order to treat the other cases notice that [m˜ , m˜] ⊂ g˜, [l [⊕] l -l, l [⊕] l -l] ⊂ hˆ, $[\bigoplus_{i\in I_s^C} \mathfrak{p}_i, \bigoplus_{i\in I_s^C} \mathfrak{p}_i] \subset \mathfrak{h} \oplus \bigoplus_{i\in I_s^C} \mathfrak{p}_i$ by (4), $[\tilde{\mathfrak{m}}, \bigoplus_{i\in I_s^C} \mathfrak{p}_i] = 0$, $[\{\oplus \cup \Delta \}, \tilde{\mathfrak{m}}] \subset \tilde{\mathfrak{m}}$ and $[\mathfrak{l} \oplus \mathfrak{l} \ominus \Delta \mathfrak{l}, \bigoplus_{i \in I_{\mathfrak{s}}^c} \mathfrak{p}_i] \subset \bigoplus_{i \in I_{\mathfrak{s}}^c} \mathfrak{p}_i$. Hence $[jkm]_f = 0$ for $j, k \notin I$. Finally, if $j \notin I$ but $k \in I$ we obtain again $[jkm]_{\hat{f}} = 0$, since $[\bigoplus_{i \in I_{\hat{\tau}}} \mathfrak{p}_i, \mathfrak{m}_m] = 0$,
 $[\mathfrak{m} \mod I \cap I \cap I] = 0$ by (4) $[\tilde{\mathfrak{m}}, \mathfrak{m}_m] = 0$ and $[\mathfrak{l} \oplus \mathfrak{l} \ominus \Delta \mathfrak{l}, \mathfrak{m}_m] = 0$ by (4).

As a further consequence we obtain $[ijk] = 0$ for $i \in I$ and $j, k \in I^{\hat{C}}$. Since by (2) and (3) the structure constants $[ijk]$ with i, j, $k \in I$ did not change we conclude that [\(4.6\)](#page-15-0) is still satisfied. \Box

Remark 4.8. The above theorem can also be proved for abelian subalgebras i: In this case we require $\mathfrak{h} = \mathfrak{h}' \oplus \mathfrak{a}'$ and $\mathfrak{h} = \mathfrak{a}' \oplus \mathfrak{h}'$ where \mathfrak{a}' and \mathfrak{a}' denote the centers of h and h', respectively. Then we consider compact Lie subalgebras $\hat{\mathfrak{h}} = \mathfrak{h}' \oplus \Delta \mathfrak{a} \oplus \tilde{\mathfrak{h}}'$
of $\mathfrak{h} \oplus \mathfrak{h}'$, where now $\Delta \mathfrak{a}$ denotes any compact subalgebra of $\mathfrak{a}' \oplus \tilde{\mathfrak{a}}'$ of $\mathfrak{h} \oplus \mathfrak{h}'$, where now $\Delta \mathfrak{a}$ denotes any compact subalgebra of $\mathfrak{a}' \oplus \tilde{\mathfrak{a}}'$.

5. New non-existence examples

In this section we describe many new compact homogeneous spaces G/H with finite fundamental group, which do not admit G-invariant Einstein metrics. Certain combinations of the Einstein equations are considered, which can be written as a sum of squares in an obvious manner. This yields the desired non-existence examples.

Let G/H be a compact homogeneous space with finite fundamental group. If the isotropy representation m of the isotropy group H is irreducible, then by Schur's Lemma, up to scaling, there exists only one symmetric G -invariant bilinear form on G/H . Consequently, each G -invariant metric is Einstein.

If the isotropy representation m can be decomposed into two irreducible inequivalent summands m_1 and m_2 , then the Einstein equation is given as follows:

$$
\frac{1}{x_1} \left(\frac{b_1}{2} - \frac{[111]}{4d_1} - \frac{[122]}{2d_1} \right) - \frac{[112]}{2d_1} \cdot \frac{x_2}{x_1^2} + \frac{[122]}{4d_1} \cdot \frac{x_1}{x_2^2} = \lambda
$$

$$
\frac{1}{x_2} \left(\frac{b_2}{2} - \frac{[222]}{4d_2} - \frac{[112]}{2d_2} \right) - \frac{[122]}{2d_2} \cdot \frac{x_1}{x_2^2} + \frac{[112]}{4d_2} \cdot \frac{x_2}{x_1^2} = \lambda.
$$

For the definition of the (non-negative) structure constants [i jk] and b_1 , b_2 we refer to Section [2.](#page-6-0) Recall that $[ijk]$ is invariant under permutation of i, j, k.

If [112], $[221] > 0$, then h is a maximal subalgebra of g, hence by [\[WZ2\]](#page-23-0) there exists a positive real solution. Therefore, we may assume that $\mathfrak{h} \oplus \mathfrak{m}_1$ is the Lie algebra of an intermediate Lie group K, that is $[112] = 0$. If $[122] = 0$ as well, then there exists a positive real solution since $|\pi_1(G/H)| < \infty$. Hence we may assume that $[112] = 0$ and $[122] > 0$. As was already proved in [\[WZ2\]](#page-23-0), in this case the above system does not admit real solutions if and only if

$$
\left(b_1 - \frac{[111]}{2d_1} - \frac{[122]}{d_1}\right) \cdot [122] \cdot \left(\frac{1}{2d_1} + \frac{1}{d_2}\right) > \frac{1}{4} \cdot \left(b_2 - \frac{[222]}{2d_2}\right)^2. \tag{5.1}
$$

If G is simple and G/K and K/H are symmetric spaces, then $b = b_1 = b_2$ and $[111] = [222] = 0$, hence non-existence is guaranteed if and only if

$$
\left(b - \frac{[122]}{d_1}\right) \cdot [122] \cdot \left(\frac{1}{2d_1} + \frac{1}{d_2}\right) > \frac{b^2}{4}.
$$

In [\[WZ2\]](#page-23-0) many examples G/H of this kind have been described with G simple. This work has been completed in the recent classification of all theses spaces [\[DiKe\]](#page-23-0). For instance the homogeneous space $G/H = SU(m+n)/S(SO(m) U(1) U(n))$ does not admit G-invariant Einstein metrics for $m>n^2+2$. If $m=n^2+2$, then G/H admits precisely one G-invariant Einstein metric, whereas for $m < n^2 + 2$ there are two non-isometric G-invariant Einstein metrics.

In order to describe further non-existence examples, we consider compact irreducible symmetric spaces $\tilde{G}/(\tilde{H}_1\tilde{H}_2)$, such that \tilde{H}_1 is simple and \tilde{H}_2 is either simple or 1-dimensional (cf. [\[Bes,](#page-22-0) Table 7.102]). We examine the homogeneous spaces

$$
G/H = \tilde{G} \times \tilde{G} / \left(\Delta \tilde{H}_1 \cdot (\tilde{H}_2 \times \tilde{H}_2)\right)
$$

where the subgroup $\Delta \tilde{H}_1$ denotes the diagonal embedding of \tilde{H}_1 in $\tilde{H}_1 \times \tilde{H}_1$.

The isotropy representation m of H consists of three pairwise inequivalent summands given by $m_1 = \tilde{g}_1 \ominus (\tilde{h}_1 \oplus \tilde{h}_2)_1$, $m_2 = \tilde{g}_2 \ominus (\tilde{h}_1 \oplus \tilde{h}_2)_2$ and $m_3 = (\tilde{h}_1 \oplus \tilde{h}_1) \ominus \Delta \tilde{h}_1$.
We have $d_1 = d_1 = \dim m_1 = \dim \tilde{G}$, $\dim \tilde{H}$, $\dim \tilde{H}$ and $d_2 = \dim m_2 = \dim \tilde{H}$. We have $d_1 = d_2 = \dim \mathfrak{m}_1 = \dim \tilde{G} - \dim \tilde{H}_1 - \dim \tilde{H}_2$ and $d_3 = \dim \mathfrak{m}_3 = \dim \tilde{H}$. It is easy to see that the only non-vanishing structure constants are [113] and [223]. By choosing an $Ad(G)$ -invariant scalar product on g whose restriction to both simple factors agrees, we get $b = b_1 = b_2 = b_3 > 0$ and $[113] = [223]$. A routine computation using [\(1.3\)](#page-6-0) shows that the Einstein equation is given as follows:

$$
\frac{b}{2x_1} - \frac{[113]}{2d_1} \cdot \frac{x_3}{x_1^2} = \lambda \tag{5.2}
$$

$$
\frac{b}{2x_2} - \frac{[113]}{2d_1} \cdot \frac{x_3}{x_2^2} = \lambda \tag{5.3}
$$

$$
\frac{1}{x_3} \left(\frac{b}{2} - \frac{[113]}{d_3} \right) + \frac{[113]}{4d_3} \cdot \frac{x_3}{x_1^2} + \frac{[113]}{4d_3} \cdot \frac{x_3}{x_2^2} = \lambda. \tag{5.4}
$$

In order to examine the non-existence criterion described in Theorem [C](#page-3-0) let us compute the restriction of the tracefree part of the Ricci tensor restricted to m_3 (that is we choose $I_* = \{1, 2, 3\}$ and $i_0 = 3$). Up to a factor we consider the equation $x_3 \cdot (2(5.4) - (5.2) - (5.3)) = 0$ given by

$$
\frac{[113]}{2} \cdot \left(\frac{1}{d_1} + \frac{1}{d_3}\right) \cdot (\alpha^2 + \beta^2) - \frac{b}{2} \cdot (\alpha + \beta) + \left(b - \frac{2[113]}{d_3}\right) = 0 \tag{5.5}
$$

where $\alpha = \frac{x_3}{x_1}$ and $\beta = \frac{x_3}{x_2}$. It follows that if

$$
\left(b - \frac{2[113]}{d_3}\right) \cdot [113] \cdot \left(\frac{1}{d_1} + \frac{1}{d_3}\right) > \frac{b^2}{4},\tag{5.6}
$$

then the system (5.2) , (5.3) , (5.4) does not admit real solutions.

Example 5.7. The spaces $G/H = SO(n) \times SO(n)/\Delta SO(n-k) \cdot (SO(k) \times SO(k))$ do not admit G-invariant Einstein metrics for $n > k^2 + k + 2$ and $k \ge 2$.

Proof. We choose the Ad(G)-invariant scalar product $Q(X, Y) = -\frac{1}{2}$ tr(X · Y) on g.
Then $h = 2(n-2)$ (see [WZ1, p. 5831). Furthermore $d_1 = d_2 = k(n-k)$ and Then $b = 2(n - 2)$ (see [\[WZ1,](#page-23-0) p. 583]). Furthermore $d_1 = d_2 = k(n - k)$ and $d_3 = \frac{1}{2}(n-k)(n-k-1)$. A computation shows [113] = kd_3 and we obtain the claim from (5.6) . \Box

It is not hard to see, that G/H admits G -invariant Einstein metrics if the obstruc-tion [\(5.6\)](#page-18-0) is violated; for $n = k^2 + k + 2$ there exists a unique G-invariant Einstein metric and for $n < k^2 + k + 2$ there exist at least two non-isometric Einstein metrics.

In the next step we specialize to symmetric spaces $\tilde{G}/(\tilde{H} SO(2))$, where \tilde{H} is a simple Lie group (cf. [\[Bes,](#page-22-0) Table 7.102]). For coprime integers p, q with $(p, q) \neq$ \pm (1, 1), we consider the homogeneous spaces

$$
G/H = \tilde{G} \times \tilde{G} / \left(\Delta \tilde{H} \cdot \text{SO}_{p,q}(2)\right)
$$

where $SO_{p,q}(2)$ is embedded diagonally in $SO(2) \times SO(2)$ with slope determined by (p, q) .

Since $p \neq q$ the isotropy representation m consists of four pairwise inequivalent
numeros given by $m_1 = \tilde{a}_1 \oplus (\epsilon_0(2), \oplus \tilde{b}_1)$, $m_2 = \tilde{a}_2 \oplus (\epsilon_0(2), \oplus \tilde{b}_2)$, $m_3 =$ summands given by $m_1 = \tilde{g}_1 \oplus (\mathfrak{so}(2)_1 \oplus \tilde{\mathfrak{h}}_1)$, $m_2 = \tilde{g}_2 \oplus (\mathfrak{so}(2)_2 \oplus \tilde{\mathfrak{h}}_2)$, $m_3 =$ $(\tilde{\mathfrak{h}} \oplus \tilde{\mathfrak{h}}) \ominus \Delta \tilde{\tilde{\mathfrak{h}}}$ and $\mathfrak{m}_4 = (\mathfrak{so}(2)_1 \oplus \mathfrak{so}(2)_2) \ominus \mathfrak{so}_{p,q}(2)$. We have $d_1 = d_2 = \dim \mathfrak{m}_1 =$
dim \tilde{G} dim \tilde{H} and $d_1 = \dim \mathfrak{m}_1 = 1$. It is easy to $\dim \tilde{G} - \dim \tilde{H} - 1$, $d_3 = \dim \mathfrak{m}_3 = \dim \tilde{H}$ and $d_4 = \dim \mathfrak{m}_4 = 1$. It is easy to see that the only non-vanishing structure constants are [113], [114], [223] and [224]. By choosing an $Ad(G)$ -invariant scalar product on g whose restriction to both simple factors agrees, we get $b = b_1 = b_2 = b_3 = b_4 > 0$ and [113] = [223]. Since the Casimir constant c_4 of the irreducible summand m_4 equals zero, by [\(1.4\)](#page-6-0) we obtain

$$
b = b_4 = [411] + [422].
$$

A computation shows that the Einstein equation is given as follows:

$$
\frac{b}{2x_1} - \frac{[113]}{2d_1} \cdot \frac{x_3}{x_1^2} - \frac{[114]}{2d_1} \cdot \frac{x_4}{x_1^2} = \lambda
$$
 (5.8)

$$
\frac{b}{2x_2} - \frac{[113]}{2d_1} \cdot \frac{x_3}{x_2^2} - \frac{[224]}{2d_1} \cdot \frac{x_4}{x_2^2} = \lambda
$$
 (5.9)

$$
\frac{1}{x_3} \left(\frac{b}{2} - \frac{[113]}{d_3} \right) + \frac{[113]}{4d_3} \cdot \frac{x_3}{x_1^2} + \frac{[113]}{4d_3} \cdot \frac{x_3}{x_2^2} = \lambda \tag{5.10}
$$

$$
\frac{x_4}{4d_4} \left([114] \cdot \frac{1}{x_1^2} + [224] \cdot \frac{1}{x_2^2} \right) = \lambda.
$$
 (5.11)

We consider the equation $-4x_3(\frac{d_1}{2}(5.8) + \frac{d_1}{2}(5.9) + d_4(5.11) - (d_1 + d_4)(5.10)) = 0$ given by

$$
\frac{[113]}{d_3} \cdot (d_1 + d_3 + d_4) \cdot (\alpha^2 + \beta^2) - d_1 b \cdot (\alpha + \beta) + (d_1 + d_4) \cdot \left(2b - \frac{4[113]}{d_3}\right) = 0,
$$

where again $\alpha = \frac{x_3}{x_1}$ and $\beta = \frac{x_3}{x_2}$. It follows that if

$$
\left(b - \frac{2[113]}{d_3}\right) \cdot [113] \cdot \frac{(d_1 + d_3 + d_4)(d_1 + d_4)}{d_1^2 d_3} > \frac{b^2}{4},\tag{5.12}
$$

then the system (5.8) , (5.9) , (5.10) , (5.11) does not admit real solutions.

This non-existence criterion is obtained by combining two non-existence criteria described in Lemma [1.2.](#page-5-0) In the above equation we consider a weighted sum of $((Ric_{\{1,2,3\}})^0)$ ₃ and $((Ric_{\{3,4\}})^0)$ ₃.

Example 5.13 ([\[BK\]](#page-22-0)). Let $n \ge 3$ and let p, q be coprime integers with $(p, q) \ne$ $\pm(1, 1)$. Then the space $G/H = SU(n) \times SU(n)/(\Delta SU(n-1) \cdot U_{p,q}(1))$ does not admit G-invariant Einstein metrics.

Proof. The embedding of H into G is given as follows: Consider the maximal subgroup $U(n-1)$ in SU(n). Then the semisimple part of H is embedded diagonally and $U_{p,q}(1)$ is embedded into the center of $U(n - 1) \times U(n - 1)$ with slope determined by (p, q) .

We choose the Ad(G)-invariant scalar product $Q(X, Y) = -\frac{1}{2}$ tr(X · Y) on g. Then $b = 4n$ (see [\[WZ1,](#page-23-0) p. 583]). Furthermore $d_1 = d_2 = 2(n - 1), d_3 = n(n - 2)$ and $d_4 = 1$. A computation shows [113] = $2d_3$ and the claim follows from [\(5.12\)](#page-19-0). \Box

For $n = 3$ this example has been examined in [\[BK\]](#page-22-0) as one of the 12-dimensional homogeneous spaces which do not admit homogeneous Einstein metrics. It is interesting to note that for $(p, q) = \pm(1, 1)$ G/H carries a G-invariant Einstein metric by the Graph Theorem [\[BWZ\]](#page-22-0). In this case the irreducible summands m_1 and m_2 are equivalent and therefore, the space of G-invariant metrics is 6-dimensional. Since the above non-existence proof does not rely on the particular values of (p, q) , we conclude that this Einstein metric is not contained in the 4-dimensional family of G-invariant metrics described above.

Next, we describe a second non-existence criterion for real solutions of the system [\(5.8\)](#page-19-0), [\(5.9\)](#page-19-0), [\(5.10\)](#page-19-0), [\(5.11\)](#page-19-0). As in [\(5.5\)](#page-18-0) we consider the equation $x_3 \cdot (2(5.10) - (5.8) x_3 \cdot (2(5.10) - (5.8) (5.9) = 0$ $(5.9) = 0$ $(5.9) = 0$, which up to a factor is nothing but $((Ric_{\{1,2,3\}})^0)_3$. We obtain

$$
\frac{[113]}{2} \cdot \left(\frac{1}{d_1} + \frac{1}{d_3}\right) \cdot (\alpha^2 + \beta^2) - \frac{b}{2} \cdot (\alpha + \beta) + \left(b - \frac{2[113]}{d_3}\right) + \frac{[114]}{2d_1} \cdot \frac{x_3x_4}{x_1^2} + \frac{[224]}{2d_1} \cdot \frac{x_3x_4}{x_2^2} = 0,
$$

where as above $\alpha = \frac{x_3}{x_1}$ and $\beta = \frac{x_3}{x_2}$. Since [114], [224] ≥ 0 , [114] + [224] > 0 and $x_1, \ldots, x_4 > 0$, for the homogeneous space $\tilde{G} \times \tilde{G} / (\Delta \tilde{H} \cdot (\text{SO}(2) \times \text{SO}(2)))$ the equations (5.8) , (5.9) , (5.10) , (5.11) do not have real solutions, if the non-existence criterion [\(5.6\)](#page-18-0) is satisfied. Notice that this criterion in weaker than that described in [\(5.12\)](#page-19-0); for instance non-existence for Example 5.13 does not follow from [\(5.6\)](#page-18-0).

Example 5.14. Let $n \ge 7$ and let p, q be coprime integers with $(p, q) \ne (1, 1)$. Then the compact homogeneous space $G/H = SO(n) \times SO(n) / (\Delta SO(n-2) \cdot SO_{p,q}(2))$ does not admit G-invariant Einstein metrics.

144 Ch. Böhm CMH

Proof. The embedding of H into G is as described in Example [5.13.](#page-20-0) As in Exam-ple [5.7](#page-18-0) we choose the Ad(G)-invariant scalar product $Q(X, Y) = -\frac{1}{2} \text{tr}(X \cdot Y)$ on g,
hence $h = 2(n-2)$. Eurthermore, $d = 2(n-2)$, $d = \frac{1}{2}(n-2)(n-2)$ and hence $b = 2(n-2)$. Furthermore $d_1 = d_2 = 2(n-2)$, $d_3 = \frac{1}{2}(n-2)(n-3)$ and $d_4 = 1$. In the proof of Example [5.7](#page-18-0) we saw $[113] = [223] = 2d_3$. Non-existence of G-invariant Einstein metrics follows now from [\(5.6\)](#page-18-0) for $n > 8$. For $n = 8$ we have equality in [\(5.6\)](#page-18-0), which still implies non-existence of G-invariant Einstein metrics on G/H . For $n = 7$ we need to invoke [\(5.12\)](#page-19-0) and the claim follows.

Next, let us give the proof of Theorem [A.](#page-1-0) Let G/H be a compact simply connected homogeneous space with a prime factor $G_p/H_p = \tilde{G} \times \tilde{G}/(\Delta \tilde{H} \cdot (\text{SO}(2) \times \text{SO}(2)))$. Then either

$$
G/H = G_p/H_p \times \hat{G}/\hat{T}\hat{H}_s \quad \text{or} \quad G/H = \tilde{G} \times \tilde{G} \times \hat{G}/(\Delta \tilde{H} \cdot \Delta T \cdot \hat{H}_s)
$$

where $\hat{G}/\hat{T} \hat{H}_s$ is a product of prime homogeneous spaces, \hat{T} denotes the center of $\hat{T}\hat{H}_s$ (on Lie algebra level), and ΔT is a proper subtorus of (SO(2) \times SO(2)) $\times \hat{T}$.

In the first case G/H does not admit G-invariant Einstein metrics, since the isotropy representation of G_p/H_p does not contain trivial summands.

In the second case, under the genericity assumption the summands m_1 , m_2 and m_3 of the isotropy representation of H_p are still irreducible isotypical summands of the isotropy representation $\mathfrak{m} = \mathfrak{m}_1 \oplus \mathfrak{m}_2 \oplus \mathfrak{m}_3 \oplus \bigoplus_{i=4}^{\ell} \mathfrak{m}_i$ of H. Notice that the decomposition $\bigoplus_{i=4}^{\ell} \mathfrak{m}_i$ of $\mathfrak{m} \ominus (\mathfrak{m}_1 \oplus \mathfrak{m}_2 \oplus \mathfrak{m}_3)$ may not be uniquely determined.
Still the Einstein equations, which correspond to (5.8), (5.9) and (5.10), are given by Still the Einstein equations, which correspond to [\(5.8\)](#page-19-0), [\(5.9\)](#page-19-0) and [\(5.10\)](#page-19-0), are given by

$$
\frac{b_1}{2x_1} - \frac{[113]}{2d_1} \cdot \frac{x_3}{x_1^2} - \sum_{i=4}^{\ell} \frac{[11i]}{2d_1} \cdot \frac{x_i}{x_1^2} = \lambda
$$
 (5.15)

$$
\frac{b_2}{2x_2} - \frac{[223]}{2d_1} \cdot \frac{x_3}{x_2^2} - \sum_{i=4}^{\ell} \frac{[22i]}{2d_1} \cdot \frac{x_i}{x_2^2} = \lambda
$$
 (5.16)

$$
\frac{1}{x_3} \left(\frac{b_3}{2} - \frac{[113]}{d_3} \right) + \frac{[113]}{4d_3} \cdot \frac{x_3}{x_1^2} + \frac{[223]}{4d_3} \cdot \frac{x_3}{x_2^2} = \lambda. \tag{5.17}
$$

By choosing an $Ad(G)$ -invariant scalar product on g which extends that described in the proof of Example [5.14,](#page-20-0) we conclude $b = b_1 = b_2 = b_3$. Furthermore, we still have $[113] = [223] = 2d_3$. As above we conclude, that if the non-existence criterion [\(5.6\)](#page-18-0) is fulfilled, then the Einstein equations for G/H do not admit real solutions. This completes the proof of Theorem [A.](#page-1-0)

Remark 5.18. Observe that the above non-existence criterion is nothing but asking $(((Ric_g)_{I_∗})⁰)₃: m₃ \rightarrow m₃$ to be positive for all G-invariant metrics g on G/H for $I_* = \{1, 2, 3\}$ and $i_0 = 3$. Notice that we also could have applied Theorem [4.7.](#page-15-0)

Finally, we describe one more elaborate non-existence example G/H .

Example 5.19. Let $G/H = SU(m + n_1 + \cdots + n_k)/S(SO(m)U(1) \times U(n_1) \times$ $\cdots \times U(n_k)$, where m, $n_1, \ldots, n_k \ge 1$. If $m > (\sum_{i=1}^k n_i)^2 + 2$, then G/H does not admit G-invariant Einstein metrics.

Proof. The isotropy representation m of H can be decomposed as follows:

$$
\mathfrak{m}=\bigoplus_{1\leq i\leq k}[\rho_m\otimes\phi\otimes\mu_{n_i}^*]_{\mathbb{R}}\oplus(\mathrm{S}^2\rho_m-\mathrm{Id})\oplus\bigoplus_{1\leq i
$$

All $\ell = k + 1 + \frac{1}{2}k(k-1)$ summands of m are irreducible and pairwise inequivalent,
hence $\ell = \ell$ Let the first $k + 1$ summands be denoted by m. m. m. for hence $\ell = \ell_*$. Let the first $k + 1$ summands be denoted by m_1, \ldots, m_k, m_m , for $m = k + 1$. We set $I_* = I = \{1, ..., k + 1\}$ and $i_0 = m$. Note that [\(4.1\)](#page-13-0) and [\(4.5\)](#page-15-0) are satisfied. It remains to show that [\(4.6\)](#page-15-0) is fulfilled as well.

We have $d_m = \frac{1}{2}(m + 2)(m - 1)$ and $d_i = 2mn_i$ for $i = 1, ..., k$. This time we choose $Q = -B$ that is $b_i = 1$ for all i. After rescaling the Killing form of G/H a computation shows $[iim] = d_m n_i/(m + \sum_{i=1}^k n_i)$ for $i = 1, ..., k$ (cf. [\[WZ2\]](#page-23-0), Example 2). All the other structure constants $[ijk]$ with $i, j, k \in I$ vanish. Now another computation involving the first three term in [\(4.6\)](#page-15-0) shows that [\(4.6\)](#page-15-0) is fulfilled for $m > (\sum_{i=1}^{k} n_i)^2 + 2$.

References

- [AlKi] D. V. Alekseevsky, B. N. Kimel'fel'd, Structure of homogeneous Riemann spaces with zero Ricci curvature. *Funct. Anal. Appl.* **9** (1975), 97–102. [Zbl 0316.53041](http://www.emis.de/MATH-item?0316.53041) [MR 0402650](http://www.ams.org/mathscinet-getitem?mr=0402650)
- [Bes] A. L. Besse, *Einstein Manifolds*. Ergeb. Math. Grenzgeb. 10, Springer-Verlag, Berlin 1987. [Zbl 0613.53001](http://www.emis.de/MATH-item?0613.53001) [MR 0867684](http://www.ams.org/mathscinet-getitem?mr=0867684)
- [Bo] S. Bochner, Curvature and Betti numbers. *Ann. of Math.* **49** (1948), 379–390. [Zbl 0038.34401](http://www.emis.de/MATH-item?0038.34401) [MR 0025238](http://www.ams.org/mathscinet-getitem?mr=0025238)
- [Bö1] C. Böhm, Non-existence of cohomogeneity one Einstein metrics. *Math. Ann.* **314** (1999), 109–125. [Zbl 0959.53020](http://www.emis.de/MATH-item?0959.53020) [MR 1689265](http://www.ams.org/mathscinet-getitem?mr=1689265)
- [Bö2] C. Böhm, Homogeneous Einstein metrics and simplicial complexes. *J. Differential Geom*. **67** (2004), 79–165.
- [BK] C. Böhm, M. Kerr, Low-dimensional homogeneous Einstein manifolds. To appear in *Trans. Amer. Math. Soc*.
- [BWZ] C. Böhm, M. Y. Wang, W. Ziller, A variational approach for compact homogeneous Einstein manifolds. *Geom. Funct. Anal.* **14** (2004), 681–733.
- [BoGa] C. P. Boyer, K. Galicki, On Sasakian-Einstein geometry. *Internat. J. Math.* **11** (2000), 873–909. [Zbl 1022.53038](http://www.emis.de/MATH-item?1022.53038) [MR 1792957](http://www.ams.org/mathscinet-getitem?mr=1792957)
- [DiKe] W. Dickinson, M. Kerr, The geometry of compact homogeneous spaces with two isotropy summands. Preprint 2004.
- [GrZi] K. Grove, W. Ziller, Cohomogeneity one manifolds with positive Ricci curvature. *Invent. Math.* **149** (2002), 619–646. [Zbl 1038.53034](http://www.emis.de/MATH-item?1038.53034) [MR 1923478](http://www.ams.org/mathscinet-getitem?mr=1923478)
- [Heb] J. Heber, Noncompact homogeneous Einstein spaces. *Invent. Math.* **133** (1998), 279–352. [Zbl 0906.53032](http://www.emis.de/MATH-item?0906.53032) [MR 1632782](http://www.ams.org/mathscinet-getitem?mr=1632782)
- [Hi] D. Hilbert, Die Grundlagen der Physik. *Nachr. Akad. Wiss. Gött.* (1915), 395–407. [JFM 45.1111.01](http://www.emis.de/MATH-item?45.1111.01)
- [Jo] D. Joyce, *Compact manifolds with special holonomy*. Oxford Math. Monogr., Oxford University Press, Oxford 2000. [Zbl 1027.53052](http://www.emis.de/MATH-item?1027.53052) [MR 1787733](http://www.ams.org/mathscinet-getitem?mr=1787733)
- [LeB] C. LeBrun, Ricci curvature, minimal volumes, and Seiberg-Witten theory.*Invent. Math.* **145** (2001), 279–316. [Zbl 0999.53027](http://www.emis.de/MATH-item?0999.53027) [MR 1872548](http://www.ams.org/mathscinet-getitem?mr=1872548)
- [LW] C. LeBrun, M.Y. Wang (eds.), *Surveys in Differential Geometry VI: Essays on Einstein Manifolds*. International Press, Cambridge, MA, 1999. [Zbl 0961.00021](http://www.emis.de/MATH-item?0961.00021) [MR 1798603](http://www.ams.org/mathscinet-getitem?mr=1798603)
- [On] A. L. Onishchik, Topology of Transitive Transformation Groups. Johann Ambrosius Barth Verlag GmbH, Leipzig 1994. [Zbl 0796.57001](http://www.emis.de/MATH-item?0796.57001) [MR 1266842](http://www.ams.org/mathscinet-getitem?mr=1266842)
- [PaSa] J.-S. Park,Y. Sakane, Invariant Einstein metrics on certain homogeneous spaces. *Tokyo J. Math.* **20** (1997), 51–61. [Zbl 0884.53039](http://www.emis.de/MATH-item?0884.53039) [MR 1451858](http://www.ams.org/mathscinet-getitem?mr=1451858)
- [Tia] G. Tian, *Kähler-Einstein metrics with positive scalar curvature*. *Invent. Math.* **130** (1997), 1–37. [Zbl 0892.53027](http://www.emis.de/MATH-item?0892.53027) [MR 1471884](http://www.ams.org/mathscinet-getitem?mr=1471884)
- [Wa] M. Y. Wang, Einstein metrics and quaternionic Kähler manifolds. *Math. Z.* **210** (1992), 305–325. [Zbl 0765.53037](http://www.emis.de/MATH-item?0765.53037) [MR 1166528](http://www.ams.org/mathscinet-getitem?mr=1166528)
- [WZ1] M. Y. Wang, W. Ziller, On normal homogeneous Einstein manifolds. *Ann. Sci. École Norm. Sup.* (4) 18 (1985), 563–633. [Zbl 0598.53049](http://www.emis.de/MATH-item?0598.53049) [MR 0839687](http://www.ams.org/mathscinet-getitem?mr=0839687)
- [WZ2] M. Y. Wang, W. Ziller, Existence and non-existence of homogeneous Einstein metrics. *Invent. Math.* **84** (1986), 177–194. [Zbl 0596.53040](http://www.emis.de/MATH-item?0596.53040) [MR 0830044](http://www.ams.org/mathscinet-getitem?mr=0830044)
- [WZ3] M. Y. Wang, W. Ziller, On isotropy irreducible Riemannian manifolds. *Acta Math.* **199** (1991), 223–261. [Zbl 0732.53040](http://www.emis.de/MATH-item?0732.53040) [MR 1097024](http://www.ams.org/mathscinet-getitem?mr=1097024)
- [Wo] J. A. Wolf, The geometry and structure of isotropy irreducible homogeneous spaces. *Acta. Math.* **120** (1968), 59–148; correction: *Acta. Math.* **152** (1984), 141–142. [Zbl 0157.52102](http://www.emis.de/MATH-item?0157.52102) [Zbl 0539.53037](http://www.emis.de/MATH-item?0539.53037) [MR 0223501](http://www.ams.org/mathscinet-getitem?mr=0223501) [MR 0736216](http://www.ams.org/mathscinet-getitem?mr=0736216)
- [Yau] S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I. *Comm. Pure Appl. Math.* **31** (1978), 339–411. [Zbl 0369.53059](http://www.emis.de/MATH-item?0369.53059) [MR 0480350](http://www.ams.org/mathscinet-getitem?mr=0480350)

Received July 28, 2003

Christoph Böhm, Mathematisches Institut, Universität Münster, Einsteinstrasse 62, 48149 Münster, Germany E-mail: cboehm@math.uni-muenster.de