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Non-existence of homogeneous Einstein metrics
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Abstract. We show that there exist infinitely many simply connected compact prime homo-
geneous spacesG/H with infinite second homotopy group which do not admitG-invariant
Einstein metrics.
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A Riemannian metricg on a closed manifold is called Einstein if it satisfies Einstein’s
equation ricg = λ · g. Even though there exist many interesting classes of Einstein
metrics, e.g. Kähler–Einstein metrics [Yau], [Tia], metrics with small holonomy
group [Jo], Sasakian–Einstein metrics [BoGa] and homogeneous Einstein metrics
[Heb], [BWZ], general existence and non-existence results are hard to obtain (for
many more details and references see, e.g. [Bes], [LW]). For instance, in dimensions
greater or equal than five no obstructions to the existence of Einstein metrics are
known (cf. [LeB] for the four-dimensional case).

In this paper we examine the Einstein equation forG-invariant metrics on compact
homogeneous spacesG/H . On such spaces the Einstein constantλ of aG-invariant
Einstein metric is non-negative (Bochner’s theorem [Bo]) and zero if and only if the
metric is flat [AlKi]. If the Einstein constant is positive, then the fundamental group
of G/H is finite by the theorem of Bonnet–Myers.

In what follows let us assume thatG/H is a simply connected homogeneous spaces
with G connected simply connected and semisimple. The homogeneous spaceG/H

is called aprime homogeneous space, if the normalizerNG(H) of H in G andH

have the same rank and ifG/H is not a product of homogeneous spaces. An arbitrary
simply connected homogeneous space is either a product of prime homogeneous
spaces or the total space of a principal torus bundle over such a product. In both
cases, the factors of this product are called theprime factors of G/H .

Theorem ([Bö2]). Let G/H be a compact simply connected homogeneous space
with G connected simply connected and semisimple. If there exists a field F such that
the reduced homology with coefficients in F of the simplicial complexes of all prime
factors of G/H does not vanish, then G/H admits a G-invariant Einstein metric.
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The simplicial complex of a compact homogeneous spaceG/H is defined by
certain subgroupsK with H � K � G (cf. [Bö2]). This theorem shows that
purely Lie-theoretical properties of the prime factors of a compact homogeneous
space guarantee the existence of a homogeneous Einstein metric. Conversely, we
have the following result:

Theorem A. There exist infinitely many simply connected prime homogeneous spaces
Gp/Hp with infinite second homotopy group, such that compact simply connected
homogeneous spaces G/H , G connected simply connected and semisimple, do not
admit G-invariant Einstein metrics, if Gp/Hp is a prime factor of G/H and if G/H

is Gp/Hp-generic.

A homogeneous spaceG/H is calledGp/Hp-generic for a prime factorGp/Hp

of G/H , if the irreducible summands of the isotropy representation ofHp are acted
on irreducibly byH . Obviously, this condition is satisfied for the homogeneous space
G/H = Gp/Hp; but, as we will see below, in general this assumption is necessary.
Notice furthermore that it follows from the long homotopy sequence of the fibration
Hp → Gp → Gp/Hp that prime homogeneous spacesGp/Hp have finite second
homotopy group if and only if the isotropy groupHp is semisimple.

The spacesGp/Hp = Spin(n) × Spin(n)/� Spin(n − 2) · (Spin(2) × Spin(2)),
n > 8, provide concrete examples for prime homogeneous spaces Theorem A can
be applied to (where Spin(n) denotes the double cover of SO(n)). The simplest
examples of homogeneous spaces with such a prime factor are given byG/H =
Spin(n)×Spin(n)/� Spin(n−2) ·�k,q Spin(2), wherek, q are coprime integers and
�k,q Spin(2) is embedded in Spin(2)×Spin(2) with slope determined by(k, q). The
S1-bundleG/H overGp/Hp isGp/Hp-generic if(k, q) �= ±(1, 1), (0, ±1), (±1, 0),
and consequently suchS1-bundles do not admitG-invariant Einstein metrics by The-
orem A.

For (k, p) = ±(1, 1) the homogeneous spaceG/H does admit aG-invariant
Einstein metric by the Graph Theorem [BWZ]. This shows the existence of singular
torus bundlesG/H over prime homogeneous spaces, which carryG-invariant Ein-
stein metrics, even when generic torus bundles do not. The reason for this is that
for singular torus bundles the dimension of the spaceMG of G-invariant metrics on
G/H is strictly larger than that for generic torus bundles.

From Theorem A we deduce also the following

Corollary. For any m ∈ N there exists a simply connected compact non-product
homogeneous space G/H with dimMG ≥ m, which does not admit G-invariant
Einstein metrics.

For all previously known non-product homogeneous spacesG/H not admitting
G-invariant Einstein metrics we have dimMG ≤ 4 [WZ2], [Wa], [PaSa], [BK],
[DiKe].
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To give the reader a feeling for the Einstein equation for homogeneous metrics,
let us consider compact homogeneous spacesG/H whose isotropy representation
m can be decomposed into pairwise inequivalent irreducible summandsmi , 1 ≤
i ≤ �. In this special case, anyG-invariant metric is given by

∑�
i=1 xiQ|mi

where
x1, . . . , x� > 0 andQ denotes a fixed bi-invariant background metric. The metric is
then Einstein with Einstein constantλ if and only if

bi

2xi

− 1

2di

�∑
j,k=1

[ijk] xk

xixj

+ 1

4di

�∑
j,k=1

[ijk] xi

xjxk

= λ, 1 ≤ i ≤ �

wherebi ≥ 0 and[ijk] ≥ 0 are structure constants ofG/H anddi = dimmi [WZ2],
[PaSa]. In order to show non-existence of homogeneous Einstein metrics one has to
prove that these algebraic equations have no positivereal solutions. Let us mention
that no homogeneous space is known where these equations do not admitcomplex
solutions.

Next, we describe a conceptual approach to the non-existence problem of homo-
geneous Einstein metrics. For a compact homogeneous spaceG/H let p1, . . . , p�∗
denote the isotypical summands of the isotropy representationm = p1 ⊕ · · · ⊕ p�∗
of the isotropy groupH . Each isotypical summand sums up the irreducible sum-
mands ofm which are equivalent. By Schur’s Lemma, the traceless Ricci tensor of a
G-invariant metric onG/H respects this splitting. This tensor is precisely the nega-
tive gradient vector of the Hilbert action [Hi] with respect to the naturalL2 metric.
Since on closed manifolds the Hilbert action characterizes Einstein metrics variation-
ally, a compact homogeneous spaceG/H cannot carryG-invariant Einstein metrics,
if the restriction of the traceless Ricci tensor to an isotypical summand is negative
(positive) definite forall G-invariant metrics.

The next two theorems, Theorem B and Theorem C, provide Lie-theoretical prop-
erties of such homogeneous spaces:

Theorem B. Let G/H be a compact homogeneous space with finite fundamental
group. If for all G-invariant metrics on G/H the restriction of the traceless Ricci
tensor to an isotypical summand of the isotropy representation of H is negative defi-
nite, then there exists a compact intermediate Lie group K such that G/K is isotropy
irreducible, dimG/K > 1 and K/H is a virtual product of isotropy irreducible
spaces.

A compact homogeneous spaceG/K is called isotropy irreducible, if the isotropy
representation ofK is irreducible. We say that a homogeneous spaceK/H splits
virtually, if this is true on Lie algebra level, that is ifT1K = k = k1 ⊕ k2 and
T1H = h = h1 ⊕ h2 with hi < ki . From the classification of isotropy irreducible
spaces [Wo], [WZ3] it follows that homogeneous spaces obeying the obstruction in
Theorem B are very special. For instance, if bothG andH are connected, then we
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have dimMG ≤ 4. Notice that the isotypical summand mentioned in Theorem B is
the orthogonal complement ofk in g = T1G.

Let us also mention that the homogeneous spaces described in Theorem B have
been used to construct simply connected cohomogeneity one manifolds, which do not
admit cohomogeneity one Einstein metrics [Bö1] but Riemannian metrics of positive
Ricci curvature [GrZi].

The spaceG/H = SU(m + k)/ S(SO(m) U(1) SO(k) U(1)), m + k > 4 and
m, k ≥ 2, is a concrete example for Theorem B due to M. Wang. Non-existence for
k > m2 +2 has been established in [WZ2]. In this case we haveK = S(U(m) U(k)),
henceK/H is the product of two isotropy irreducible spaces.

Theorem C. Let G/H be a compact homogeneous space with finite fundamental
group. If for all G-invariant metrics on G/H the restriction of the traceless Ricci
tensor to an isotypical summand of the isotropy representation is positive definite,
then there exists a compact intermediate Lie group K such that K/H is isotropy
irreducible, dimK/H > 1 and all G-invariant metrics on G/H are submersion
metrics.

A G-invariant metric on a homogeneous spaceG/H is a submersion metric
with respect to a submersionπ : G/H → G/K; gH �→ gK if it is given by a
K-invariant metric on the fibreK/H and aG-invariant metric on the baseG/K.
Since in the above situationK/H is isotropy irreducible, theK-invariant metric on
K/H is uniquely determined up to scaling. Notice that the isotypical summand
mentioned in Theorem C is the orthogonal complement ofh in k.

The spaceG/H = Spin(n) × Spin(n)/� Spin(n − k) · (Spin(k) × Spin(k)),
n > k2 + k + 2 andk ≥ 2, is a concrete example for Theorem C. In this case we
haveK = (Spin(n − k) Spin(k)) × (Spin(n − k) Spin(k)). Forn = k2 + k + 2 there
exists precisely oneG-invariant Einstein metric, whereas forn < k2 + k +2 we have
at least two non-isometricG-invariant Einstein metrics.

The non-existence criterion described in Theorem C can be generalized as follows:
For a subsetI∗ of {1, 2, . . . , �∗} we consider the restriction of the Ricci tensor to the
subspace⊕i∈I∗pi of m and the tracefree part of this symmetric bilinear form. If the
restriction of the latter bilinear form to an isotypical summandpi0, i0 ∈ I∗, is positive
definite for allG-invariant metrics onG/H , thenG/H does not admitG-invariant
Einstein metrics. The following examples indicates already that these more general
obstructions cover many further homogeneous spaces:

Example. LetG/H = SU(m+n1+· · ·+nk)/ S(SO(m) U(1)×U(n1)×· · ·×U(nk)),
wherem, n1, . . . , nk ≥ 1. If m >

( ∑k
i=1 ni

)2 + 2, thenG/H does not admitG-
invariant Einstein metrics.

Note that dimMG = 1
2k(k + 1) + 1, thatG is simple and that the subgroupK

mentioned in Theorem C equals S(U(m)×U(n1)×· · ·×U(nk)). Wheneverni = 1,
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for at least onei, we obtain new examples of prime homogeneous spaces for which
Theorem A is true.

The above obstructions turn out to be extremely flexible. They allow us to prove
glueing theorems for prime homogeneous spaces Theorem A can be applied to. Sup-
pose thatG/H does not admitG-invariant Einstein metrics by means of one of these
obstructions. Pick any homogeneous spaceG̃/H̃ , such that there exists a simple (or
abelian) Lie groupL with H = H ′L andH̃ = LH̃ ′. Then, under certain purely
Lie-theoretical assumption onG/H (made precise in Theorem 4.7) the compact ho-
mogeneous spacêG/Ĥ = G×G̃/(H ′ ·�L ·H̃ ′) does not admit̂G-invariant Einstein
metrics. For instance we have:

Proposition. Let G/H = SU(m + n1 + · · · + nk)/ S(SO(m) U(1) × U(n1) × · · · ×
U(1) SU(nk)), where m, n1, . . . , nk ≥ 1, n1 = 1, nk ≥ 2, m >

( ∑k
i=1 ni

)2 + 2.

Furthermore let G̃/(SU(nk)H̃
′) be a prime homogeneous space. Then Theorem A

holds true for the prime homogeneous space Gp/Hp = G × G̃/(S(SO(m) U(1) ×
U(n1) × · · · × U(1)) · � SU(nk) · H̃ ′).

Finally, we explain how the previously known non-existence examples [WZ2],
[Wa], [PaSa], [BK], [DiKe] fit into the above framework. Non-existence of homoge-
neous Einstein metrics has been described for the first time in [WZ2]. For most of
these examples the isotropy representation can be decomposed into two irreducible
isotypical summands; if in additionG is simple such spaces have been classified re-
cently [DiKe]. Under this assumption, the Einstein equation can be solved explicitly
and the non-existence criteria given in Theorem B and Theorem C are equivalent and
also necessary.

In [WZ2] also compact homogeneous spaces have been examined whose isotropy
representation can be decomposed into three irreducible isotypical summands. The
subgroup structure of these spaces is as described in Theorem B. However, the
non-existence criterion in [WZ2] is not that given in Theorem B but one of the
above mentioned generalizations. By means of Theorem C the homogeneous spaces
G/H = E7 × E7/ Sp(1)� Spin(12) Sp(1) andG/H = E8 × E8/ Sp(1)�E7 Sp(1)

do not admitG-invariant Einstein metrics [Wa]. For the remaining two known non-
existence examples [PaSa], [BK] non-existence does not follow from the above de-
scribed obstructions.

Our paper contains 5 sections. In Section 1 we describe obstructions to the
existence of homogeneous Einstein metrics. In Section 2 curvature computations are
carried out. In Section 3, resp. Section 4, we prove Theorem B, resp. Theorem C.
In Section 5 we present new examples of homogeneous spaces which do not admit
homogeneous Einstein metrics, and we give the proof of Theorem A
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1. The Ricci tensor of a homogeneous metric

Let G/H be a connected compact homogeneous space such thatG andH are com-
pact Lie groups not necessarily connected. LetQ denote an Ad(G)-invariant scalar
product ong. Choosem theQ-orthogonal complement toh in g. As is well-known,
everyG-invariant metric onG/H is uniquely determined by an Ad(H)-invariant
scalar product onm. Furthermore, for anyG-invariant metricg onG/H there exists
a decomposition

f = m1 ⊕ · · · ⊕ m�

of m into Ad(H)-irreducible summands, such thatg is diagonal with respect toQ,
that is

g = x1Q|m1 ⊥ · · · ⊥ x�Q|m�
(1.1)

with x1, . . . , x� > 0. Even though the decompositionf = m1 ⊕· · ·⊕m� of m is not
determined uniquely in general, this is true for the decompositionm = p1⊕· · ·⊕p�∗
of m into isotypical summands. Moreover, by Schur’s Lemma eachG-invariant
metricg and also its Ricci tensor ricg respect this splitting.

Next, let us define the Ad(H)-equivariant,g-selfadjoint endomorphism Ricg by

ricg( · , ·) = g(Ricg · , ·).
Let I∗ denote any non-empty subset of{1, 2, . . . , �∗} and letpI∗ = ⊕i∈I∗pi . We
consider the restriction(Ricg)I∗ of Ricg to pI∗ as an endomorphism ofpI∗ . Let
sc(g)I∗ = tr(Ricg)I∗ and let

((Ricg)I∗)
0 = (Ricg)I∗ − sc(g)I∗

dimpI∗
· idpI∗

denote the tracefree part of(Ricg)I∗ . We call (((Ricg)I∗)
0)i0 negative (positive)

definite, if the symmetric 2-formg((((Ricg)I∗)
0)i0 · , ·) on pi0 is negative (positive)

definite.
SinceG-invariant Einstein metrics onG/H are characterized variationally as the

critical points of the Hilbert action restricted to the space ofG-invariant metrics of
volume 1 (cf. [Bes]), we obtain the following obstructions to existence ofG-invariant
Einstein metrics.

Lemma 1.2. Let G/H be a compact homogeneous space. Let I∗ ⊂ {1, 2, . . . , �∗},
|I∗| ≥ 2 and i0 ∈ I∗. If for all G-invariant metrics g on G/H the endomorphism
(((Ricg)I∗)

0)i0 : pi0 → pi0 is negative ( positive) definite, then G/H does not admit
G-invariant Einstein metrics.
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Next, we present a well-known formula for the Ricci tensor of a homogeneous
metric on a compact homogeneous space. Letg ∈ MG and letf = m1 ⊕ · · · ⊕ m�

be a decomposition ofm, which diagonalizesg. Then by [WZ2], [PaSa] we have

(Ricg)mm (1.3)

=
(

1

2

bm

xm

− 1

2dm

�∑
j,k=1

[jkm]f xk

xmxj

+ 1

4dm

�∑
j,k=1

[jkm]f xm

xjxk

)
· idmm,

where (Ricg)mm denotes the restriction of Ricg to mm, i.e. g((Ricg)mmX, X) =
ricg(X, X) for all X ∈ mm. Here,

−B|mm = bmQ|mm and dm = dimmm,

whereB denotes the Killing form ong. The structure constants[ijk]f with respect
to the decompositionf are defined as follows:

[ijk]f =
∑

Q([êα, êβ ], êγ )2

where the sum is taken over{êα}, {êβ}, and{êγ }, Q-orthonormal bases formi , mj

andmk, respectively. Notice that[ijk]f is invariant under permutation ofi, j , k.
The only known relations among these structure constants have been described in

[WZ2]:

dibi = 2dici +
�∑

j,k=1

[ijk]f , 1 ≤ i ≤ �. (1.4)

The nonnegative constantsci are given byCmi ,Q|h = ci · idmi
where

Cmi ,Q|h = −
∑

i

adzi � adzi,

{zi} Q-orthonormal basis ofh, denotes the Casimir operator onmi .

2. The tracefree part of the Ricci tensor

In this section we will compute the diagonal part of the tracefree part of the Ricci
tensor of a homogeneous metricg on a compact homogeneous spaceG/H and more
general the diagonal part of the endomorphisms(((Ricg)I∗)

0)i0 : pi0 → pi0.
Let g ∈ MG be aG-invariant metric onG/H and letf = m1 ⊕ · · · ⊕ m� be

a decomposition ofm, which diagonalizesg. For I∗ ⊂ {1, 2, . . . , �∗} let I be the
subset of{1, 2, . . . , �} with mI = ⊕i∈I mi = pI∗ .
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In order to keep notation as simple as possible let us introduce the following
notations: We will write[ijk] instead of[ijk]f and

∑
j,k instead of

∑�
j,k=1. If

we write
∑

i,j,k �=m, then we are summing over all indicesi, j, k from 1 to � with
i, j, k �= m but the last one. Thusm is always fixed. If we write

∑
i �=j �=k, then we

are summing over all indicesi, j , k which are pairwise distinct.
Since by (1.3)

sc(g)I∗ = 1

2

∑
i∈I

dibi

xi

− 1

2

∑
i∈I,j,k

[ijk] xk

xixj

+ 1

4

∑
i∈I,j,k

[ijk] xi

xjxk

,

we obtain form ∈ I

(((2 Ricg)I∗)
0)mm (2.1)

=
(

bm

xm

(
1 − dm

dI

)
− 1

dI

∑
i∈I �=m

dibi

xi

− 1

dm

∑
i,j

[ijm] xj

xixm

+ 1

2dm

∑
i,j

[ijm] xm

xixj

+ 1

dI

∑
i∈I,j,k

[ijk] xk

xjxi

− 1

2dI

∑
i∈I,j,k

[ijk] xi

xjxk

)
· idmm

wheredI = ∑
i∈I di . We are going to extractxm in this formula. The third and the

fourth term of (2.1) can be decomposed as follows:

∑
i,j

[ijm] xj

xixm

= 1

xm

∑
i

[iim] +
∑
i �=m

[imm] 1

xi

+ 1

x2
m

∑
i �=m

[imm]xi + 1

xm

∑
i �=j �=m

[ijm]xj

xi∑
i,j

[ijm] xm

xixj

= 1

xm

[mmm] + xm

∑
i �=m

[iim] 1

x2
i

+ 2
∑
i �=m

[imm] 1

xi

+ xm

∑
i �=j �=m

[ijm] 1

xixj

.

In order to treat the fifth term in (2.1) we observe:

∑
i∈I,j,k

[ijk] xk

xixj

= 1

xm

[mmm] +
∑

i∈I �=m

[iii] 1

xi

+ 1

xm

∑
k �=m

[kkm] +
∑

i∈I �=m,k �=i

[ikk] 1

xi

+ 1

xm

∑
i∈I �=m

[iim] +
∑

j �=m,i∈I �=j

[iij ] 1

xj

+ 1

x2
m

∑
k �=m

[kmm]xk
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+ xm

∑
i∈I �=m

[iim] 1

x2
i

+
∑

i∈I �=k �=m

[iik]xk

x2
i

+ 1

xm

∑
j �=k �=m

[jkm]xk

xj

+ 1

xm

∑
i∈I �=k �=m

[ikm]xk

xi

+ xm

∑
i∈I �=j �=m

[ijm] 1

xixj

+
∑

i∈I �=j �=k �=m

[ijk] xk

xixj

.

The last term in (2.1) can be written as follows:∑
i∈I,j,k

[ijk] xi

xjxk

= 1

xm

[mmm] +
∑

i∈I �=m

[iii] 1

xi

+
∑
k �=m

[kkm]xm

x2
k

+ 1

x2
m

∑
i∈I �=m

[imm]xi

+
∑

i∈I �=k �=m

[ikk] xi

x2
k

+ 2
∑

i∈I �=m

[iim]
xm

+ 2
∑

j �=m,i∈I �=j

[iij ]
xj

+
∑

j �=k �=m

[jkm] xm

xjxk

+ 2
∑

i∈I �=k �=m

[ikm] xi

xmxk

+
∑

i∈I �=j �=k �=m

[ijk] xi

xjxk

.

We obtain

(((2 Ricg)I∗)
0)mm (2.2)

= 1

dI

·
(

1

x2
m

{(
1 − dI

dm

) ∑
i �=m

[imm]xi − 1

2

∑
i∈I �=m

[imm]xi

}

+ 1

xm

{(
dI

dm

− 1

)
dmbm − dI

dm

∑
i

[iim] + 1

2

(
dI

dm

+ 1

)
[mmm] +

∑
k �=m

[kkm]
}

+ 1

xm

{(
1 − dI

dm

) ∑
j �=k �=m

[jkm]xk

xj

+
∑

i∈I �=k �=m

[ikm]
(

xk

xi

− xi

xk

)}

−
∑

i∈I �=m

dibi

xi

+ 1

2

∑
i∈I �=m

[iii] 1

xi

+
∑

i∈I �=m,k �=i

[ikk] 1

xi

+
∑

i∈I �=k �=m

[iik]xk

x2
i

+
∑

i∈I �=j �=k �=m

[ijk] xk

xixj

− 1

2

∑
i∈I �=k �=m

[ikk] xi

x2
k

− 1

2

∑
i∈I �=j �=k �=m

[ijk] xi

xjxk

+ xm

{
1

2

(
dI

dm

− 1

) ∑
i �=m

[iim] 1

x2
i

+ 1

2

(
dI

dm

− 1

) ∑
j �=k �=m

[jkm] 1

xjxk

+
∑

i∈I �=m

[iim] 1

x2
i

+
∑

i∈I �=j �=m

[ijm] 1

xixj

})
· idmm .
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In particular, this yields the following formula for the tracefree part of the Ricci tensor:

((2 Ricg)
0)mm

= 1

n
·
(

1

x2
m

(
1

2
− n

dm

) ∑
i �=m

[imm]xi −
∑
i �=m

1

xi

{
dibi + 1

2
[iii] −

∑
k

[ikk]
}

+ 1

xm

(
n

dm

− 1

){
dmbm + 1

2
[mmm] −

∑
i

[iim] −
∑

j �=k �=m

[jkm]xk

xj

}

+ 1

2

∑
i �=k �=m

[iik]xk

x2
i

+ 1

2

∑
i �=j �=k �=m

[ijk] xk

xixj

+ xm

1

2

(
n

dm

+ 1

) ∑
j,k �=m

[jkm] 1

xjxk

)
· idmm,

where
n = d{1,2,...,�} = dimG/H.

From (1.4) we deduce the following identity:

dibi + 1

2
[iii] −

∑
k

[ikk] = 2dici + 1

2
[iii] +

∑
j �=k

[ijk] ≥ 0. (2.3)

Equality holds if and only ifmi is almost trivial,[iii] = 0 and[mi , mj ] ⊂ mj for all
j = 1, 2, . . . , �. We call an irreducible summandmi almost trivial, if [h, mi] = 0,
that is ifmi is contained in the normalizer ofh in g.

3. The negative definite case

In this section we will assume that(((Ricg)I∗)
0)i0 is negative definite for allg ∈ MG.

As above, letf be a fixed decomposition ofm and let theG-invariant metricg be
given as in (1.1). Under this assumption, ifmm ⊂ pi0, then(((Ricg)I∗)

0)mm < 0 for
all g ∈ MG.

If we let tendxm to +∞ while keepingxi fixed for i �= m, then considering the
last termxm{. . . } in (2.2) yields

[ijm] = 0 for i, j �= m. (3.1)

Hence
l := h ⊕

⊕
i �=m

mi
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is anH -subalgebra, that is a proper Ad(H)-invariant subalgebra ofg, which contains
h properly. Equation (2.2) simplifies to

(((2 Ricg)I∗)
0)mm (3.2)

= 1

dI

·
(

1

x2
m

{(
1

2
− dI

dm

) ∑
i∈I �=m

[imm]xi +
(

1 − dI

dm

) ∑
k∈IC

[kmm]xk

}

+ 1

xm

(
dI

dm

− 1

)(
dmbm − 1

2
[mmm]

)
−

∑
i∈I �=m

1

xi

{
dibi + 1

2
[iii] −

∑
k

[ikk]
}

+ 1

2

∑
i∈I �=k∈I �=m

[iik]xk

x2
i

+
∑

i∈I �=m,k∈IC

[iik]xk

x2
i

− 1

2

∑
i∈I �=m,k∈IC

[ikk] xi

x2
k

+ 1

2

∑
i∈I �=j∈I �=k∈I �=m

[ijk] xk

xixj

+
∑

i∈I �=j∈I �=m,k∈IC

[ijk] xk

xixj

+
∑

i∈I �=m,j∈IC �=k∈IC

[ijk] xk

xixj

− 1

2

∑
i∈I �=m,j∈IC �=k∈IC

[ijk] xi

xjxk

)
· idmm

whereIC = {1, . . . , �}\I . Let k ∈ IC . If we setxk = xm and letxk tend to+∞
while keepingxi constant fori �= k, m, then we get

[ijk] = 0 for i, j ∈ I\{m}, k ∈ IC (3.3)

[ikk′] = 0 for i ∈ I\{m}, k, k′ ∈ IC, k �= k′. (3.4)

Since by (3.1)[ijm] = 0 for i, j �= m, (3.3) implies that

k = h ⊕
⊕

i∈I\{m}
mi

is anH -subalgebra. We havek ≤ l andk = l if and only if I∗ = {1, 2, . . . , �∗}.
Let nowwk = xk

xm
for k �= m. By (3.3) and (3.4), equation (3.2) simplifies to

(((2 Ricg)I∗)
0)mm · xm

= 1

dI

·
((

1

2
− dI

dm

) ∑
i∈I �=m

[imm]wi +
(

1 − dI

dm

) ∑
k∈IC

[kmm]wk

+
(

dI

dm

− 1

)(
dmbm − 1

2
[mmm]

)
−

∑
i∈I �=m

1

wi

{
dibi + 1

2
[iii] −

∑
k

[ikk]
}
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+ 1

2

{ ∑
i∈I �=k∈I �=m

[iik]wk

w2
i

−
∑

i∈I �=m,k∈IC

[ikk] wi

w2
k

+
∑

i∈I �=j∈I �=k∈I �=m

[ijk] wk

wiwj

})
· idmm .

Let i ∈ I\{m} and letwi tend to zero while keepingwk constant fork �= i. We get

[ijk] = 0 for i, j, k ∈ I\{m}, i, j �= k. (3.5)

Hence equation (3.2) simplifies further to

(((2 Ricg)I∗)
0)mm · xm

= 1

dI

·
((

1

2
− dI

dm

) ∑
i∈I �=m

[imm]wi −
∑

i∈I �=m

1

wi

(
dibi + 1

2
[iii] −

∑
k

[ikk]
)

+
(

dI

dm

− 1

){
dmbm − 1

2
[mmm] −

∑
k∈IC

[kmm]wk

}

− 1

2

∑
i∈I �=m,k∈IC

[ikk] wi

w2
k

)
· idmm .

Recall that anH -subalgebrak is called toral ifk is an abelian extension ofh, otherwise
non-toral. From (3.5) we deduce that there exists a unique decompositionk = z′(k)⊕⊕r

i=1 ki ⊕ r of k, whereki are non-toralH -subalgebras, and a unique decomposition
h = ⊕r

i=1 hi ⊕ r of h, wherehi < ki , such that theQ-orthogonal complementqi

of hi in ki is an isotypical summand of the Ad(H)-modulek = z′(k) ⊕ ⊕r
i=1 qi (cf.

[WZ2, Theorem 2.1]).
For anH -subalgebrak of g let nowH(k) denote the smallest subgroup ofG with

Lie algebrak containingH . Then it follows thatH(k)/H splits virtually into a product
of isotropy irreducible spaces

H(k)/H = T k ×
r∏

i=1

H(ki )/Hi, (3.6)

and we obtain the following inclusions of intermediate Lie groups:

H < H(k) ≤ H(l) < G ,

whereG/H(l) is virtually isotropy irreducible andH(k)/H is a virtual product of
isotropy irreducible spaces.

Next, we examine the case whenpi0 is not irreducible. Suppose that there exists
m′ ∈ I with m �= m′, such thatmm andmm′ are equivalent. Performing the above
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computation form′, by (3.6) we get[mm, mm] ⊂ mm ⊕ h, hence[imm] = 0 for
i �= m. Therefore,G/H splits virtually asG/H = G̃1/H̃1 × G̃2/H̃2 whereG̃1/H̃1
andG̃2/H̃2 correspond tomm and⊕i �=mmi , respectively. By carrying out the same
computation formm′ we finally obtain[pi0, ⊕�∗

i=1,i �=i0
pi] = 0. ThereforeG/H splits

virtually asG/H = G1/H1×G2/H2 whereG1/H1 andG2/H2 correspond topi0 and
⊕�∗

i=1,i �=i0
pi , respectively. Note thatG1/H1 splits virtually into a product of isotropy

irreducible spaces. It follows that virtuallyG1/H1 = T k for k ≥ 2 (cf. [WZ2,
Theorem 2.1]).

Proposition 3.7. LetG/H be a compact homogeneous space. Let I∗ ⊂ {1, 2, . . . , �∗}
and i0 ∈ I∗. Suppose that (((Ricg)I∗)

0)i0 is negative definite for all G-invariant met-
rics g on G/H . If pi0 is not irreducible, then virtually G/H = T k × G2/H2 for
k ≥ 2. Furthermore, if pi0 is irreducible and h ⊕ pi0 is a toral H -subalgebra, the
same is true for k ≥ 1.

In the remaining part of this section we will assume|π1(G/H)| < ∞. In this
case it follows from the above proposition thatpi0 is irreducible and thath ⊕ pi0 is
not a toral subalgebra ofg. Therefore, the Lie subgroupL = H(l) is compact with
dimG/L > 1. Since in caseI∗ = {1, 2, . . . , �∗} we havek = l, we obtain the proof
of Theorem B.

Next, we will focus on the caseI∗ = {1, 2, . . . , �∗}. Since thenIC = ∅, equation
(3.2) simplifies further to

(((2 Ricg)I∗)
0)mm · xm · n

= (n − dm) ·
(

bm − [mmm]
2dm

)

−
∑
i �=m

1

wi

{(
n

dm

− 1

2

)
[imm]w2

i + dibi − 1

2
[iii] − [imm]

}
.

By the above discussion,[iii] and[imm], 1 ≤ i ≤ �, are the only non-zero structure
constants with respect to the decompositionf , fixed in the very beginning.

Finally, we will investigate which of these structure constants can vanish. Since
|π1(G/H)| < ∞, we havedmbm − 1

2[mmm] > 0 (cf. [Bö2, Corollary 4.17]). If there
existsi �= m with [imm] = 0, thenG/H splits virtually. Therefore, we may assume
in the following[imm] > 0 for all i. We havedibi − 1

2[iii] − [imm] = 0 for i �= m

if and only if h ⊕ mi is a toralH -subalgebra.
Let I�=0 denote the set of indicesi ∈ {1, 2, . . . , �}\{m}, such thatdibi − 1

2[iii] −
[imm] is positive. IfI�=0 = {1, 2, . . . , �}\{m}, then the assumption(((2 Ricg)I∗)

0)i0
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being negative definite for allg ∈ MG is equivalent to the following inequality:

1

2

(
bm − [mmm]

2dm

)

<
∑
i �=m

√(
dibi − [iii]

2
− [imm]

)
· [imm]
n − dm

·
(

1

2(n − dm)
+ 1

dm

) (3.8)

It follows as in the proof of [WZ2, Theorem 2.1], that this inequality does not depend
on the choice of the decompositionf . If I�=0 is a proper subset of{1, 2, . . . , �}\{m},
then the above assumption is equivalent to the fact, that an inequality is satisfied
obtained from (3.8) be replacing< by ≤ and summing overi ∈ I �=0. Again this
inequality does not depend on the choice of the decompositionf .

Remark 3.9. It would be very interesting to understand inequality (3.8) from a qual-
itative point of view. Notice that for� = m = 2 inequality (3.8) is nothing by (5.1).

4. The positive definite case

In this section we will assume that(((Ricg)I∗)
0)i0 is positive definite for allg ∈ MG.

As above, letf be a fixed decomposition ofm which diagonalizesg (cf. (1.1)). Under
this assumption, ifmm ⊂ pi0, then(((Ricg)I∗)

0)mm > 0 for all g ∈ MG.
If we let tendxm to 0 while keepingxi fixed for i �= m, then considering the first

term 1
x2
m
{. . . } in (2.2) yields[imm] = 0 for i �= m. Hence

k = h ⊕ mm

is anH -subalgebra. Moreover, we claim

[jkm] = 0 forj �= k. (4.1)

To see this, we consider the third term1
xm

{. . . } in (2.2). We have

(
1 − dI

dm

) ∑
j �=k �=m

[jkm]xk

xj

+
∑

i∈I �=k �=m

[ikm]
(

xk

xi

− xi

xk

)

= − dI

dm

{ ∑
j∈IC �=k∈IC

[jkm]xk

xj

+
∑

i∈I �=m,k∈IC

[ikm]
(

xk

xi

+ xi

xk

)
+

∑
i∈I �=j∈I �=m

[ijm] xi

xj

}

+
∑

j∈IC �=k∈IC

[jkm]xk

xj

+ 2
∑

i∈I �=m,k∈IC

[ikm]xk

xi

+
∑

i∈I �=j∈I �=m

[ijm] xi

xj

.
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First of all, [jkm] = 0 for j, k ∈ IC, j �= k, since if we letxk tend to+∞, while
keepingxj fixed for j ∈ IC , j �= k, and if we setxi = xk for i ∈ I\{m}, the above
term gets as negative as we wish. Now, if we letxm tend to zero, then we obtain a
contradiction. Next,[ikm] = 0 for i ∈ I\{m} andk ∈ IC , since if we let tendxk to
zero while keepingxi fixed the above term gets again as negative as we wish. Finally
we obtain (4.1).

Let wk = xk

xm
for k �= m. By (4.1), equation (2.2) simplifies to

(((2 Ricg)I∗)
0)mm · xm · dI (4.2)

=
(

dI

dm

− 1

)(
dmbm + 1

2
[mmm] −

∑
k

[kkm]
)

−
∑

i∈I �=m

1

wi

{
dibi + 1

2
[iii] −

∑
k

[ikk]
}

+ 1

2

(
dI

dm

+ 1

) ∑
i∈I �=m

[iim] 1

w2
i

+ 1

2

(
dI

dm

− 1

) ∑
k∈IC

[kkm] 1

w2
k

+
∑

i∈I �=k �=m

[iik]wk

w2
i

− 1

2

∑
i∈I �=k �=m

[ikk] wi

w2
k

+
∑

i∈I �=j �=k �=m

[ijk] wk

wiwj

− 1

2

∑
i∈I �=j �=k �=m

[ijk] wi

wjwk

.

For allj, k ∈ IC we setwj = wk. Letwi be fixed for alli ∈ I\{m} but large enough.
Now letwk tend to zero. We get

[ijk] = 0 for i ∈ I\{m}, j, k ∈ IC. (4.3)

Hence, by (4.1) and (4.3)l = h ⊕ mm ⊕ ⊕
k∈IC mk is anH -subalgebra.

By (4.3) equation (4.2) simplifies to

(((4 Ricg)I∗)
0)mm · xm · dI = 2

(
dI

dm

− 1

)(
dmbm + 1

2
[mmm] −

∑
i

[iim]
)

− 2
∑

i∈I �=m

1

wi

{
dibi + 1

2
[iii] −

∑
k∈I

[ikk]
}

+
(

dI

dm

+ 1

) ∑
i∈I �=m

[iim] 1

w2
i

+
∑

i∈I �=j∈I �=m

[iij ]wj

w2
i

+
∑

i∈I �=j∈I �=k∈I �=m

[ijk] wk

wiwj

+
(

dI

dm

− 1

) ∑
k∈IC

[kkm] 1

w2
k

+ 2
∑

i∈I �=m,k∈IC

[iik]wk

w2
i

+ 2
∑

i∈I �=j∈I �=m,k∈IC

[ijk] wk

wiwj

and we obtain the following counterpart to Proposition 3.7.
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Proposition 4.4. LetG/H be a compact homogeneous space. Let I∗ ⊂ {1, 2, . . . , �∗}
and i0 ∈ I∗. Suppose that (((Ricg)I∗)

0)i0 is positive definite for all G-invariant met-
rics g on G/H . If pi0 is not irreducible, then virtually G/H = T k × G2/H2 for
k ≥ 2. Furthermore, if pi0 is irreducible and h ⊕ pi0 is a toral H -subalgebra, the
same is true for k ≥ 1.

Proof. If pi0 is not irreducible, then we conclude as above thatpi0 is an abelian
subalgebra ofg. Consequently, we obtain from (1.4) and (4.1)dmbm + 1

2[mmm] −∑
i[iim] = 2dmcm + 1

2[mmm] + ∑
i �=j [ijm] = 0. Next, we setwi = x for

i ∈ I\{m} andwk = x
2
3 for k ∈ IC and letx tend to+∞. Since by assumption

(((2 Ricg)I∗)
0)mm is positive and since by (4.3)dibi + 1

2[iii]−∑
k∈I [ikk] = 2dici +

1
2[iii] + ∑

j �=k[ijk] for all i ∈ I\{m} we concludeci = [iii] = ∑
j �=k[ijk] = 0 for

i ∈ I\{m}. It follows that
⊕

i∈I �=m mi is an abelian subalgebra ofg which commutes
with l = h ⊕ mm ⊕ ⊕

k∈IC mk. �

In the remaining part of this section we will assume|π1(G/H)| < ∞. In this
case it follows from the above proposition thatpi0 is irreducible and thath ⊕ pi0 is
not a toral subalgebra ofg. Therefore, the Lie subgroupK = H(h ⊕ pi0) is compact
with dimK/H > 1. By (4.1) the Ad(H)-irreducible summandsmi , i �= m, are also
Ad(K)-invariant. Thus, allG-invariant metrics onG/H are Riemannian submersion
metrics with respect to the submersionπ : G/H → G/K ; gK �→ gH with fibre
K/H . We obtain the proof of Theorem C.

Let us turn to compact homogeneous spaces where not only (4.3) is fulfilled but

[ijk] = 0 for i ∈ I, j, k ∈ IC. (4.5)

Then bothh ⊕ ⊕
k∈IC mk andh ⊕ mm are subalgebras ofg. Under this assumption,

we do not only ask(((Ricg)I∗)
0)i0 to be positive definite for allg ∈ MG but require

in addition that the following inequality is fulfilled:

0 < 2

(
dI

dm

− 1

)(
dmbm + 1

2
[mmm] −

∑
i∈I

[iim]
)

(4.6)

−
∑

i∈I �=m

2

wi

{
dibi + 1

2
[iii] −

∑
k∈I

[ikk]
}

+
(

dI

dm

+ 1

) ∑
i∈I �=m

[iim] 1

w2
i

+
∑

i∈I �=j∈I �=m

[iij ]wj

w2
i

+
∑

i∈I �=j∈I �=k∈I �=m

[ijk] wk

wiwj

.

Notice that this inequality is only a slightly stronger assumption than requiring
(((Ricg)I∗)

0)i0 to be positive definite.
Now we can state the glueing result for homogeneous spaces mentioned in the

introduction.
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Theorem 4.7. Let G/H , G̃/H̃ be compact homogeneous spaces with finite
fundamental group. Suppose that there exists a simple Lie algebra l such that
T1H = h = h′ ⊕ l and T1H̃ = h̃ = l ⊕ h̃′. Let Ĝ = G × G̃ and let Ĥ denote
a (possibly disconnected) subgroup of H × H̃ with Lie algebra ĥ = h′ ⊕ �l ⊕ h̃′.
Let m = ⊕�∗

i=1 pi denote the isotypical decomposition of the isotropy representation
m of H . Let I∗ ⊂ {1, 2, . . . , �∗} and i0 ∈ I∗. If

(1) (((Ricg)I∗)
0)i0 is positive definite and (4.6) is fulfilled for all g ∈ MG,

(2) for i ∈ I∗ the Ad(H)-isotypical summands pi are Ad(Ĥ )-isotypical summands
of m̂,

(3) the Ad(H)-irreducible summands of
⊕

i∈I∗ pi are Ad(Ĥ )-irreducible,
(4) h ⊕ ⊕

i∈{1,...,�∗}\I∗ pi is a subalgebra of g and [pi0, l] = 0,

then Ĝ/Ĥ does not admit Ĝ-invariant Einstein metrics.

Proof. For the same choice ofI∗ andi0 ⊂ I∗ we have to prove that (4.1), (4.5) and
(4.6) are fulfilled for allĜ-invariant metricsg on Ĝ/Ĥ .

The isotropy representation̂m of Ĥ can be decomposed as follows:

m̂ = m̃ ⊕ (l ⊕ l � �l) ⊕
( ⊕

i∈IC∗

pi

)
⊕

( ⊕
i∈I∗

pi

)
,

wherem̃ denotes the isotropy representation ofH̃ andIC∗ = {1, 2, . . . , �∗}\I∗. By
(2), for i ∈ I∗ the summandspi are still isotypical summands of̂m.

Let f̂ = ⊕
i∈I Ĉ m̂i ⊕ ⊕

i∈I mi be an arbitrary decomposition ofm̂ into Ad(Ĥ )-

irreducible summands, whereI Ĉ = {1, 2, . . . , �̂}\I and
⊕

i∈I mi = ⊕
i∈I∗ pi , mi

Ad(H)-irreducible fori ∈ I (cf. (3)). As above letmm ∈ pi0.
First, we show[jkm]

f̂
= 0 for j �= k. Forj, k ∈ I this is certainly true by (4.1).

In order to treat the other cases notice that[m̃, m̃] ⊂ g̃, [l ⊕ l � �l, l ⊕ l � �l] ⊂ ĥ,
[⊕i∈IC∗ pi ,

⊕
i∈IC∗ pi] ⊂ h⊕⊕

i∈IC∗ pi by (4),[m̃,
⊕

i∈IC∗ pi] = 0,[l⊕l��l, m̃] ⊂ m̃

and[l ⊕ l � �l,
⊕

i∈IC∗ pi] ⊂ ⊕
i∈IC∗ pi . Hence[jkm]

f̂
= 0 for j, k �∈ I . Finally,

if j �∈ I but k ∈ I we obtain again[jkm]
f̂

= 0, since[⊕i∈IC∗ pi , mm] = 0,
[m̃, mm] = 0 and[l ⊕ l � �l, mm] = 0 by (4).

As a further consequence we obtain[ijk] = 0 for i ∈ I andj, k ∈ I Ĉ . Since by
(2) and (3) the structure constants[ijk]

f̂
with i, j, k ∈ I did not change we conclude

that (4.6) is still satisfied. �

Remark 4.8. The above theorem can also be proved for abelian subalgebrasl: In
this case we requireh = h′ ⊕ a′ andh̃ = ã′ ⊕ h̃′ wherea′ andã′ denote the centers of
h andh′, respectively. Then we consider compact Lie subalgebrasĥ = h′ ⊕ �a ⊕ h̃′
of h ⊕ h′, where now�a denotes any compact subalgebra ofa′ ⊕ ã′.
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5. New non-existence examples

In this section we describe many new compact homogeneous spacesG/H with finite
fundamental group, which do not admitG-invariant Einstein metrics. Certain com-
binations of the Einstein equations are considered, which can be written as a sum of
squares in an obvious manner. This yields the desired non-existence examples.

Let G/H be a compact homogeneous space with finite fundamental group. If
the isotropy representationm of the isotropy groupH is irreducible, then by Schur’s
Lemma, up to scaling, there exists only one symmetricG-invariant bilinear form on
G/H . Consequently, eachG-invariant metric is Einstein.

If the isotropy representationm can be decomposed into two irreducible inequiv-
alent summandsm1 andm2, then the Einstein equation is given as follows:

1

x1

(
b1

2
− [111]

4d1
− [122]

2d1

)
− [112]

2d1
· x2

x2
1

+ [122]
4d1

· x1

x2
2

= λ

1

x2

(
b2

2
− [222]

4d2
− [112]

2d2

)
− [122]

2d2
· x1

x2
2

+ [112]
4d2

· x2

x2
1

= λ.

For the definition of the (non-negative) structure constants[ijk] andb1, b2 we refer
to Section 2. Recall that[ijk] is invariant under permutation ofi, j , k.

If [112], [221] > 0, thenh is a maximal subalgebra ofg, hence by [WZ2] there
exists a positive real solution. Therefore, we may assume thath ⊕ m1 is the Lie
algebra of an intermediate Lie group K, that is[112] = 0. If [122] = 0 as well, then
there exists a positive real solution since|π1(G/H)| < ∞. Hence we may assume
that [112] = 0 and[122] > 0. As was already proved in [WZ2], in this case the
above system does not admit real solutions if and only if

(
b1 − [111]

2d1
− [122]

d1

)
· [122] ·

(
1

2d1
+ 1

d2

)
>

1

4
·
(

b2 − [222]
2d2

)2

. (5.1)

If G is simple andG/K andK/H are symmetric spaces, thenb = b1 = b2 and
[111] = [222] = 0, hence non-existence is guaranteed if and only if(

b − [122]
d1

)
· [122] ·

(
1

2d1
+ 1

d2

)
>

b2

4
.

In [WZ2] many examplesG/H of this kind have been described withG simple. This
work has been completed in the recent classification of all theses spaces [DiKe]. For
instance the homogeneous spaceG/H = SU(m+n)/ S(SO(m) U(1) U(n)) does not
admitG-invariant Einstein metrics form > n2 + 2. If m = n2 +2, thenG/H admits
precisely oneG-invariant Einstein metric, whereas form < n2 + 2 there are two
non-isometricG-invariant Einstein metrics.
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In order to describe further non-existence examples, we consider compact irre-
ducible symmetric spaces̃G/(H̃1H̃2), such thatH̃1 is simple andH̃2 is either simple
or 1-dimensional (cf. [Bes, Table 7.102]). We examine the homogeneous spaces

G/H = G̃ × G̃/ (�H̃1 · (H̃2 × H̃2))

where the subgroup�H̃1 denotes the diagonal embedding ofH̃1 in H̃1 × H̃1.
The isotropy representationm of H consists of three pairwise inequivalent sum-

mands given bym1 = g̃1�(h̃1⊕h̃2)1,m2 = g̃2�(h̃1⊕h̃2)2 andm3 = (h̃1⊕h̃1)��h̃1.
We haved1 = d2 = dimm1 = dim G̃−dim H̃1−dim H̃2 andd3 = dimm3 = dim H̃ .
It is easy to see that the only non-vanishing structure constants are[113] and[223].
By choosing an Ad(G)-invariant scalar product ong whose restriction to both sim-
ple factors agrees, we getb = b1 = b2 = b3 > 0 and[113] = [223]. A routine
computation using (1.3) shows that the Einstein equation is given as follows:

b

2x1
− [113]

2d1
· x3

x2
1

= λ (5.2)

b

2x2
− [113]

2d1
· x3

x2
2

= λ (5.3)

1

x3

(
b

2
− [113]

d3

)
+ [113]

4d3
· x3

x2
1

+ [113]
4d3

· x3

x2
2

= λ. (5.4)

In order to examine the non-existence criterion described in Theorem C let us com-
pute the restriction of the tracefree part of the Ricci tensor restricted tom3 (that is
we chooseI∗ = {1, 2, 3} and i0 = 3). Up to a factor we consider the equation
x3 · (2(5.4) − (5.2) − (5.3)) = 0 given by

[113]
2

·
(

1

d1
+ 1

d3

)
· (α2 + β2) − b

2
· (α + β) +

(
b − 2[113]

d3

)
= 0 (5.5)

whereα = x3
x1

andβ = x3
x2

. It follows that if(
b − 2[113]

d3

)
· [113] ·

(
1

d1
+ 1

d3

)
>

b2

4
, (5.6)

then the system (5.2), (5.3), (5.4) does not admit real solutions.

Example 5.7. The spacesG/H = SO(n)× SO(n)/� SO(n− k) · (SO(k)× SO(k))

do not admitG-invariant Einstein metrics forn > k2 + k + 2 andk ≥ 2.

Proof. We choose the Ad(G)-invariant scalar productQ(X, Y ) = −1
2 tr(X ·Y ) ong.

Thenb = 2(n − 2) (see [WZ1, p. 583]). Furthermored1 = d2 = k(n − k) and
d3 = 1

2(n − k)(n − k − 1). A computation shows[113] = kd3 and we obtain the
claim from (5.6). �
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It is not hard to see, thatG/H admitsG-invariant Einstein metrics if the obstruc-
tion (5.6) is violated; forn = k2 + k + 2 there exists a uniqueG-invariant Einstein
metric and forn < k2 + k + 2 there exist at least two non-isometric Einstein metrics.

In the next step we specialize to symmetric spacesG̃/(H̃ SO(2)), whereH̃ is a
simple Lie group (cf. [Bes, Table 7.102]). For coprime integersp, q with (p, q) �=
±(1, 1), we consider the homogeneous spaces

G/H = G̃ × G̃/ (�H̃ · SOp,q(2))

where SOp,q(2) is embedded diagonally in SO(2)×SO(2) with slope determined by
(p, q).

Sincep �= q the isotropy representationm consists of four pairwise inequivalent
summands given bym1 = g̃1 � (so(2)1 ⊕ h̃1), m2 = g̃2 � (so(2)2 ⊕ h̃2), m3 =
(h̃⊕ h̃)��h̃ andm4 = (so(2)1⊕so(2)2)�sop,q(2). We haved1 = d2 = dimm1 =
dim G̃ − dim H̃ − 1, d3 = dimm3 = dim H̃ andd4 = dimm4 = 1. It is easy to
see that the only non-vanishing structure constants are[113], [114], [223] and[224].
By choosing an Ad(G)-invariant scalar product ong whose restriction to both simple
factors agrees, we getb = b1 = b2 = b3 = b4 > 0 and[113] = [223]. Since the
Casimir constantc4 of the irreducible summandm4 equals zero, by (1.4) we obtain

b = b4 = [411] + [422] .

A computation shows that the Einstein equation is given as follows:

b

2x1
− [113]

2d1
· x3

x2
1

− [114]
2d1

· x4

x2
1

= λ (5.8)

b

2x2
− [113]

2d1
· x3

x2
2

− [224]
2d1

· x4

x2
2

= λ (5.9)

1

x3

(
b

2
− [113]

d3

)
+ [113]

4d3
· x3

x2
1

+ [113]
4d3

· x3

x2
2

= λ (5.10)

x4

4d4

(
[114] · 1

x2
1

+ [224] · 1

x2
2

)
= λ. (5.11)

We consider the equation−4x3
(

d1
2 (5.8)+ d1

2 (5.9)+d4(5.11)− (d1+d4)(5.10)
) = 0

given by

[113]
d3

· (d1 + d3 + d4) · (α2 +β2)− d1b · (α +β)+ (d1 + d4) ·
(

2b − 4[113]
d3

)
= 0,

where againα = x3
x1

andβ = x3
x2

. It follows that if(
b − 2[113]

d3

)
· [113] · (d1 + d3 + d4)(d1 + d4)

d2
1d3

>
b2

4
, (5.12)
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then the system (5.8), (5.9), (5.10), (5.11) does not admit real solutions.
This non-existence criterion is obtained by combining two non-existence criteria

described in Lemma 1.2. In the above equation we consider a weighted sum of
((Ric{1,2,3})0)3 and((Ric{3,4})0)3.

Example 5.13 ([BK]). Let n ≥ 3 and letp, q be coprime integers with(p, q) �=
±(1, 1). Then the spaceG/H = SU(n) × SU(n)/(� SU(n − 1) · Up,q(1)) does not
admitG-invariant Einstein metrics.

Proof. The embedding ofH into G is given as follows: Consider the maximal sub-
group U(n−1) in SU(n). Then the semisimple part ofH is embedded diagonally and
Up,q(1) is embedded into the center of U(n − 1) × U(n − 1) with slope determined
by (p, q).

We choose the Ad(G)-invariant scalar productQ(X, Y ) = −1
2 tr(X · Y ) on g.

Thenb = 4n (see [WZ1, p. 583]). Furthermored1 = d2 = 2(n − 1), d3 = n(n − 2)

andd4 = 1. A computation shows[113] = 2d3 and the claim follows from (5.12).�

Forn = 3 this example has been examined in [BK] as one of the 12-dimensional
homogeneous spaces which do not admit homogeneous Einstein metrics. It is inter-
esting to note that for(p, q) = ±(1, 1) G/H carries aG-invariant Einstein metric
by the Graph Theorem [BWZ]. In this case the irreducible summandsm1 andm2 are
equivalent and therefore, the space ofG-invariant metrics is 6-dimensional. Since
the above non-existence proof does not rely on the particular values of(p, q), we
conclude that this Einstein metric is not contained in the 4-dimensional family of
G-invariant metrics described above.

Next, we describe a second non-existence criterion for real solutions of the system
(5.8), (5.9), (5.10), (5.11). As in (5.5) we consider the equationx3 ·(2(5.10)−(5.8)−
(5.9)) = 0, which up to a factor is nothing but((Ric{1,2,3})0)3. We obtain

[113]
2

·
(

1

d1
+ 1

d3

)
· (α2 + β2) − b

2
· (α + β)

+
(

b − 2[113]
d3

)
+ [114]

2d1
· x3x4

x2
1

+ [224]
2d1

· x3x4

x2
2

= 0,

where as aboveα = x3
x1

andβ = x3
x2

. Since[114], [224] ≥ 0, [114] + [224] > 0 and

x1, . . . , x4 > 0, for the homogeneous spaceG̃ × G̃/ (�H̃ · (SO(2) × SO(2))) the
equations (5.8), (5.9), (5.10), (5.11) do not have real solutions, if the non-existence
criterion (5.6) is satisfied. Notice that this criterion in weaker than that described in
(5.12); for instance non-existence for Example 5.13 does not follow from (5.6).

Example 5.14. Letn ≥ 7 and letp,q be coprime integers with(p, q) �= (1, 1). Then
the compact homogeneous spaceG/H = SO(n)×SO(n)/ (� SO(n−2) ·SOp,q(2))

does not admitG-invariant Einstein metrics.
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Proof. The embedding ofH into G is as described in Example 5.13. As in Exam-
ple 5.7 we choose the Ad(G)-invariant scalar productQ(X, Y ) = −1

2 tr(X · Y ) ong,
henceb = 2(n − 2). Furthermored1 = d2 = 2(n − 2), d3 = 1

2(n − 2)(n − 3) and
d4 = 1. In the proof of Example 5.7 we saw[113] = [223] = 2d3. Non-existence of
G-invariant Einstein metrics follows now from (5.6) forn > 8. Forn = 8 we have
equality in (5.6), which still implies non-existence ofG-invariant Einstein metrics on
G/H . Forn = 7 we need to invoke (5.12) and the claim follows. �

Next, let us give the proof of TheoremA. LetG/H be a compact simply connected
homogeneous space with a prime factorGp/Hp = G̃× G̃/(�H̃ · (SO(2)×SO(2))).
Then either

G/H = Gp/Hp × Ĝ/T̂ Ĥs or G/H = G̃ × G̃ × Ĝ/(�H̃ · �T · Ĥs)

whereĜ/T̂ Ĥs is a product of prime homogeneous spaces,T̂ denotes the center of
T̂ Ĥs (on Lie algebra level), and�T is a proper subtorus of(SO(2) × SO(2)) × T̂ .

In the first caseG/H does not admitG-invariant Einstein metrics, since the
isotropy representation ofGp/Hp does not contain trivial summands.

In the second case, under the genericity assumption the summandsm1, m2 and
m3 of the isotropy representation ofHp are still irreducible isotypical summands of
the isotropy representationm = m1 ⊕ m2 ⊕ m3 ⊕ ⊕�

i=4 mi of H . Notice that the
decomposition

⊕�
i=4 mi of m � (m1 ⊕ m2 ⊕ m3) may not be uniquely determined.

Still the Einstein equations, which correspond to (5.8), (5.9) and (5.10), are given by

b1

2x1
− [113]

2d1
· x3

x2
1

−
�∑

i=4

[11i]
2d1

· xi

x2
1

= λ (5.15)

b2

2x2
− [223]

2d1
· x3

x2
2

−
�∑

i=4

[22i]
2d1

· xi

x2
2

= λ (5.16)

1

x3

(
b3

2
− [113]

d3

)
+ [113]

4d3
· x3

x2
1

+ [223]
4d3

· x3

x2
2

= λ. (5.17)

By choosing an Ad(G)-invariant scalar product ong which extends that described in
the proof of Example 5.14, we concludeb = b1 = b2 = b3. Furthermore, we still
have[113] = [223] = 2d3. As above we conclude, that if the non-existence criterion
(5.6) is fulfilled, then the Einstein equations forG/H do not admit real solutions.
This completes the proof of Theorem A.

Remark 5.18. Observe that the above non-existence criterion is nothing but asking
(((Ricg)I∗)

0)3 : m3 → m3 to be positive for allG-invariant metricsg on G/H for
I∗ = {1, 2, 3} andi0 = 3. Notice that we also could have applied Theorem 4.7.
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Finally, we describe one more elaborate non-existence exampleG/H .

Example 5.19. Let G/H = SU(m + n1 + · · · + nk)/ S(SO(m) U(1) × U(n1) ×
· · · × U(nk)), wherem, n1, . . . , nk ≥ 1. If m >

( ∑k
i=1 ni

)2 + 2, thenG/H does
not admitG-invariant Einstein metrics.

Proof. The isotropy representationm of H can be decomposed as follows:

m =
⊕

1≤i≤k

[ρm ⊗ φ ⊗ µ∗
ni

]
R

⊕ (S2ρm − Id) ⊕
⊕

1≤i<j≤k

[µni
⊗ µ∗

nj
]
R
.

All � = k + 1+ 1
2k(k − 1) summands ofm are irreducible and pairwise inequivalent,

hence� = �∗. Let the firstk + 1 summands be denoted bym1, . . . , mk, mm, for
m = k + 1. We setI∗ = I = {1, . . . , k + 1} andi0 = m. Note that (4.1) and (4.5)
are satisfied. It remains to show that (4.6) is fulfilled as well.

We havedm = 1
2(m + 2)(m − 1) anddi = 2mni for i = 1, . . . , k. This time we

chooseQ = −B that isbi = 1 for all i. After rescaling the Killing form ofG/H

a computation shows[iim] = dmni/(m + ∑k
i=1 ni) for i = 1, . . . , k (cf. [WZ2],

Example 2). All the other structure constants[ijk] with i, j, k ∈ I vanish. Now
another computation involving the first three term in (4.6) shows that (4.6) is fulfilled
for m >

( ∑k
i=1 ni

)2 + 2. �
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