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An infinite family of non-concor dant knots having the same
Seifert form

Taehee Kim

Abstract. By arecentresult of Livingston, itis known that if a knot has a prime power branched
cyclic cover thatis nota homology sphere, then there is an infinite family of non-concordant knots
having the same Seifert form as the knot. In this paper, we extend this result to the full extent.
We show that if the knot has nontrivial Alexander polynomial, then there exists an infinite family
of non-concordant knots having the same Seifert form as the knot. As a corollary, no nontrivial
Alexander polynomial determines a unique knot concordance class. We use Cochran—Orr—
Teichner’s recent result on the knot concordance group and Cheeger—Gromov’s von Neumann
p-invariants with their universal bound for a 3-manifold.
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1. Introduction

We work in the topologically locally flat category. kot is an embedding of a circle

into the 3-sphere. Aknotis calleticeif it bounds a (locally flat) 2-disk in the 4-ball.

For two knotsK; andK 2, K1 is said to beoncordant to K> if K1#— K2 is slice. Here

the symbol # denotes the connected sum operatior-dhdenotes the mirror image

of K with reversed orientation. This is an equivalence relation. The equivalence
classes (which are calletthe concordance classes) form an abelian group under

the connected sum operation. The group is caltedclassical) knot concordance

group and denoted by. In €, the identity is the class of slice knots. Levine [L]
constructed an epimorphisgn ¢ — G where§ denotes the algebraic concordance
group of Seifert forms modulo a certain equivalence relation. The homomorghism
maps the concordance class represented by a knot to the algebraic concordance class
represented by Seifert forms of the knot. Jiang [J] showed that the kergelsof
infinitely generated. This implies that for each algebraic concordance class there are
infinitely many (mutually) non-concordant knots whose Seifert forms represent that
algebraic concordance class. Buteach algebraic concordance class is also represented
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by infinitely many distinct Seifert forms, and a question arises whether or not for a
given Seifert form there are non-concordant knots hathag Seifert form. In fact,
Jiang’s examples have distinct Seifert forms, hence his result does not give an answer
to this question. Recently Livingston [Li] made progress and gave a partial answer
under a condition on the Alexander polynomials.

Theorem ([Li, Theorem1.1]). If a knot K has Seifert form Vi and its Alexander
polynomial Ak (¢) has an irreducible factor that is not a cyclotomic polynomial ¢,,
with » divisible by three distinct primes, then thereis an infinite family {K;} of non-
concordant knots such that each K; has Seifert form V.

In the above theorem the technical condition on the Alexander polynomial is
necessary since the theorem was proven by using Casson—Gordon invariants. (For
Casson—Gordoninvariants, referto [CG].) More precisely, Casson—Gordon invariants
are defined via characters on the first homology of prime power branched cyclic covers
of knots and if every prime power branched cyclic cover of the knot has the trivial
first homology then all Casson—-Gordon invariants vanish. The following theorem
due to Livingston shows that a knot has a prime power branched cyclic cover with
nontrivial first homology under the given condition on the Alexander polynomial. In
the theoremAk (¢) denotes the Alexander polynomial of a kriot

Theorem ([Li, Theorem1.2]). All prime power branched cyclic covers of a knot K
are homology spheres if and only if all nontrivial irreducible factors of Ak (¢) are
cyclotomic polynomials ¢, (t) with n divisible by three distinct primes. All finite
branched cyclic covers of K are homology spheresif and only if Ax (1) = 1.

In addition to these results the author [K] proved that for eadlvisible by three
distinct primes there exist infinitely many non-concordant krgtsvith Ak, (1) =
(¢ (1))? which have the same Seifert form. (In fact, in [K] the author showed that
the knotskK; are linearly independent in the knot concordance group.)

In this paper we extend the above results to the full extent. The main theorem is
as follows.

Theorem 1.1 (Main Theorem).If a knot K has Seifert form Vi and its Alexander
polynomial isnot 1, then thereisaninfinite family { K; } of non-concordant knots such
that each K; has Seifert form V.

In fact, in the course of the proof of the main theorem, we show a stronger result
thatfori # j, the knotsK;#— K ; are not(1.5)-solvable. (For the definition @fl.5)-
solvable knots, see Section 2.) Also we note that if the rational Alexander module
of the knotK has a unique self-annihilating submodule with respect to the rational
Blanchfield pairing, then usingationally universal solvable representations of the
fundamental group of zero surgery on a knot in the 3-sphere as used in [K], one can
construct the above knof; such that they are not only mutually non-concordant
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but also linearly independent in the knot concordance group. A proof for this is not
given in this paper, but one can easily prove this using arguments in [COT2, K].

By Freedman’s work i\ g (1) = 1 thenK is topologically slice [F, FQ]. (That s,
the concordance class &ifis the identity inC.) On the other hand, the main theorem
implies that if Ax (¢) is not 1 then there are infinitely many non-concordant knots
having the Alexander polynomi@l  (+). Thus we have the following corollary.

Coroallary 1.2. No nontrivial Alexander polynomial determines a unique concor-
dance classin the knot concordance group.

In the proof of the main theorem we construct the krigtdy performingsatellite
constructionon K. (This construction is also callegnetic modificationin [COT2].)
This construction is briefly reviewed in the next section. To show thatkthare
mutually non-concordant we use Cochran—-Orr—Teichner’s filtration of the knot con-
cordance group in [COT1] and von Neumapninvariants defined by Cheeger and
Gromov [ChG], which were applied as knot concordance invariants first by Cochran,
Orr, and Teichner in [COT1]. In particular, we use the fact that there is a universal
bound for von Neumanp-invariants for a fixed 3-manifold. More precisely, for a
fixed 3-manifoldM, there exists a constay such thatp? (M, v)| < ¢ for every
representationy : m1(M) — T wherel is an arbitrary group [R, Theorem 3.1.1].
We remark that in [CT] Cochran and Teichner used this fact to show that Cochran—
Orr—Teichner's filtration of the knot concordance group is highly nontrivial, that is,
F./F, 5 is nontrivial for alln > 2.

2. Preliminaries

Throughoutthis paper, we use the following convention. Unless mentioned otherwise,
integer coefficients are to be understood for homology groups. The zero surgery on a
knot K in $2 is denoted byM . We use the same notation for a simple closed curve
and the homology (and the homotopy) class represented by the curve. We denote
QIt, t~11, the Laurant polynomial ring with rational coefficients, iy

In this section we briefly review the machinery that will be used in the proof of
the main theorem. In [COT1], Cochran, Orr, and Teichner established a filtration
of the knot concordance groqm}ne%No indexed by half-integers whefg, is the
subgroup of(n)-solvable knots. The definition ofrn)-solvable knotsA € Np) is as
follows. Recall that for a grougs, G™ denoteshe n™ derived group of G which is
defined as follows: Le6©@ = G, and inductivelyG™ = [G"—D, gD,

Definition 2.1. A knot K is called(n)-solvable if Mk bounds a spin 4-manifolé/
such that the inclusion maWx — W induces an isomorphism on the first homology
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and such thav admits an(n)-Lagrangian with(n)-duals. This means that the
intersection form and the self-intersection form & (W; Z[nl(W)/nl(W)(”)]),
which vanish on th€r)-Lagrangian, pair thé:)-Lagrangian and thé:)-duals non-
singularly and that their images together freely genefsi@V). The 4-manifoldW

is called an(n)-solution for K and we say is (n)-solvablevia W.

Similarly, we define(n.5)-solvable knots for € Np. (An (n.5)-solution W is
required to admit arin 4+ 1)-Lagrangian with(rn)-duals.) For more details, refer to
[COT1, Definition 8.5 and Definition 8.7].

Cochran—-Orr—Teichner showed that every slice knotissolvable for alln
[COT1, Remark 1.3.1]. They detegi.5)-solvable knotsp € Ny, using von Neu-
mannp-invariants as follows.

Theorem 2.2 ([COT1, Theorem 4.2]).Suppose that T' is an (n)-solvable poly-
torsion-free-abelian group. Let ¢: m1(Mg) — T be a homomorphism. If K
is (n.5)-solvable via a 4-manifold W over which the coefficient system ¢ extends,
then o2 (M., ¢) = 0.

We explain the terminologies in the theorem. A gragljs called(n)-solvable if
G™tD = 1. A groupG is defined to b@oly-torsion-free-abelian (henceforth PTFA)
if it admits a normal series & Gg < G1 < --- < G, = G such that the factors
G;+1/G; are torsion-free abelian. For the von-Neuman'rmvariant,oliz)(MK, ),
refer to [COTL1, Section 5] and [COT2, Section 2].

In fact, the target group” which we will use for the proof of the main the-
orem is a quotient grou /G where G™ is the n" rational derived group
of G defined by Harvey [H] as follows. LeGﬁO) = G. Forn > 1, define
G = [Gﬁ”_l), Gﬁ”_l)]Pn_l where

Pio1={ge Gl ¢k e[V, G V] for somek € Z — {0}}.

The quotientGY/GI™ is isomorphic to(Gfi)/[Gﬁi), Gﬁ”])/{Z—torsion} for
all i > 0 [H, Lemma 3.5]. Harvey showed the quotie(ﬁyGﬁ"“) is PTFA [H,
Corollary 3.6], and one easily sees thaztGS”“) is (n)-solvable.

To construct the knotK; in the main theorem we usatellite construction (or
genetic modification) explained as follows. LeK be a knot and; be an unknot
in % which is disjoint fromK. Let J be another knot. Take the union of the
exterior of in S% and the exterior off in $° along the common boundary (which
is homeomorphic to a torus) such that a meridian & identified with a longitude
of J and a longitude ofy with a meridian of/. The resulting ambient manifold is
homeomorphic té3. The image ofk under this construction is denoted Ky, J)
and we sayK (n, J) is obtained by performing satellite construction &nvia n
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andJ. If we let D be an embedded disk §? bounded by, then this construction

is equivalent to tying all the strands &f transversally passing through into J.

For more details, refer to [COTZ2]. This construction can be generalized to the case
when we have a trivial linkn1, . . ., n,} which is disjoint fromK and auxiliary knots

{J1, ..., Ju} by iterating the above process. In this case the resulting knot is denoted

byK({nl’ ] nn}v {J17 AR ] Jn})

3. Proof of Theorem 1.1

Let F be a Seifert surface of a kn&t with Ak (1) # 1 andVg an associated Seifert
form. The Seifert surfac& can be thought of as a disk witly Dands wherg is the
genus ofF. Letn”, 1 < n < 2g, be atrivial link inS® which is disjoint fromF such
that then™ component;” links then™ band of F once and does not link the other
bands. It is known that”, 1 < n < 2g, generate the rational Alexander module
Hi(Mg; A). (For example, see [Ro].)

By [R, Theorem 3.1.1], there exists a constaatich thadplﬁz)(MK#_K, P <c
for every representatiop: m1(Mg#_x) — I wherel is an arbitrary group. Let
J1 be a knot with vanishing Arf invariant such th/ag)(Jl) > c. Herepg)(h)
denotes the von Neumamainvariant,o(zz)(Mjl, ¢) where¢: w1(M;,) — Zis the

abelianization. Note thadig)(Jl) is equal to the integral of the Levine—Tristram
signatures of/1, integrated over the circle normalized to length one [COT2, Propo-
sition 5.1]. Inductively, we defind;,1 to be a knot with vanishing Arf invariant
such thato(ZZ)(JiH) >c+2g- pg)(Ji). TheseJ; can be easily found by taking the
connected sum of suitably many even copies of a left-handed trefoil. Fo¥ eabh

let "' be a copy of/; for 1 <n < 2g. Thatis,J/" = J;, 1 <n < 2g.

Now letK; = K ({n, ..., n%8}, {J31, ..., Jl.zg}), the knot resulting from satellite
construction. Since”, 1 < n < 2g, lie in the complement of " in $3, K; have the
same Seifert fornVx asK. We provek; are mutually non-concordant.

Fixiandj (i < j), andsuppose th#&; andK ; are concordant. Thati&;#—K;
is slice. Observe that

_ - 2 2
Kii—Kj = (K#=K)({n'. ... 0% it . i) (0 T =T =T,

Heren" denote the mirror images gf, 1 <n < 2g.

Let M = Mgus_x andM’' = Mgk We construct a cobordisi@ between
M andM’ as follows. Choose €0)-solutionW; for J;. (SinceJ; has vanishing Arf
invariant, it is(0)-solvable. See [COT1, Remark 1.3.2].) By doing surgery along
71(W) D, we may assume taty(W;) = Z. Similarly, we choose &0)-solution
V;for —J;. LetW! = W; and Vf = V;forl <n < 2g. TakeM x [0, 1] and

the disjoint union( [ %, W) 11 (LI1%, V#'). To form C, for each: identify the
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solid torusSt x D2in dW" = (S3\ N(J/)) U ST x D? (whereN (J!") denotes an
open tubular nelghborhood of in $3) with a tubular neighborhood of* x {1}
in M x {1} such that a meridian of" is identified with a longitude ofy" and a
longitude of J* with a meridian ofn , and identify the solid torus? x D? in
V] = (S3\N( JiINHu S x D? with a tubular neighborhood gf* x {1} in M x {1}
simllarly One sees th#_C = M andda,C = M’. Moreover one sees thétis
spin.

SinceK;# — K is slice,K;# — K ; is (1.5)-solvable by [COTl, Remark 1.3.1].
Let W be a(1.5)- solutlon forK;# — K In particular,0W’ = M’. Let W be the
union of C andW’ along their common boundaM HenceW is a 4 manifold with
oW =M.

Lemma 3.1. The4-manifold W, which is constructed as above, isa (1)-solution for
K#— K.

The proof of the above lemma is postponed. Ce& nl(W)/yrl(W)(Z). Note
thatT" is a(1)-solvable PTFA group by [H, Corollary 3.6]. Lét: 71(W) — T be
the projection homomorphism. Note that, M, M_Jjn, and W’ are subspaces
of W, henceg can be restricted to the corresponding fundamental groupse¢:Let
(respectlvelyp”) denotep restricted tar1 (M ) (respectivelyr (M _ Jn)) l<n<
2g. By [COT2 Proposition 3.2],

28
2 2 2 2
P2 (M. §) = p (M. §layary) + Y o1 (Myn. ¢ + Z (Mg, ¢
n=1

In the above equatlorp(z)(M’, ®lzymy) = 0 by Theorem 2.2 sincé |, m)
extends overl.5)-solutionW’. Note thaty! factors throughry(W/") which is iso-

morphic toZ for eachn. If ¢ (n") = e, the identity element i, then,o(z)(M,n) =0.

If #(n") # e, then the image o' is isomorphic taZ andp(z)(MJn) = ,O(Z)(Ji"),
which is defined in the previous section, by [COT1, Proposmon 5.13]. We obtain
similar results fonolﬁz)(M,jn). Now lete! = 0if ¢ (") = e ande! = 1 otherwise,
l<n<2g. Definee;?, 1 fjn < 2g, similarly. Then we have the following equation.

28
2 2 2

We claim thate!’ # O for somen or € ;A 0 for somen. One sees that”"
together withi", 1 < n < 2g, generate the rational Alexander modile(M; A).
(This is obvious sinced1(M; A) is isomorphic toH1(Mg; A) & Hi(M_g; A).)
Since Ak (t) # 1, Hi(M; A) is not trivial. HenceK# — K has the (nontrivial)
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nonsingular rational Blachfield formB¢: Hi(M; A) x Hi(M; A) — Q(t)/A. Let

iv: HH(M; A) — Hi(W; A) be the homomorphism induced by the inclusion. Since
P = Ker(iy) is self-annihilating by [COT1, Theorem 4.4] (that B,= P1) and

B¢ is nonsingularj, is not a trivial homomorphism. Hendg(n") # 0 for some

n ori.(n") # 0 for somen in Hi(W; A). SinceW is a(1)-solution forK# — K,
Hi(W) = Z. This implies thatry (W)Y = 71(W)@. Hence

rW)V/m (W)@ @7 Q = m (W) P /my (W)@ ®7 Q = Hi(W; A).

The first isomorphism holds by [H, Lemma 3.5]. Thti&;") # e or ¢ (i) # e for
somen in w1(W)® /71 (W) P which is a subgroup df, and this proves the claim.
Now suppose’; # 0 for somen. By our choice of/; andJ;,

2 2 2
PP (M, ¢) < 2g - o2 () — pP () < —c,

which is a contradiction. It;? = 0 for all n, thene!" # O for somen by the above
claim. Then X )
P (M. ¢) = pi (J) > e,

which is also a contradiction. Therefore, to complete the proof we only need to prove
Lemma 3.1 and a proof is given below.

Proof of Lemma 3.1. We follow a course of the proof for a more general case in
[CT]. Using Mayer-Vietoris sequence observe that

Hi(M) = Hi(C) = Hy(M') = Hy(W') = Hi (W) = Z.

Again using Mayer-Vietoris sequence one sees that

Ho(C) = (é HZ(W,.”)) @ (é HZ(V}’)) & Ho(M)
n=1 n=1

and observe thatl;(W) = (Ho(C) ® H2o(W")) /(p«, q)(H2(M')) where p, and

g+ are induced by inclusiong: M’ — C andqg: M’ — W', respectively. Since
HY(W')y - HY(M’) is an isomorphismHs(W’, M') — H>(M’) is an isomorphism
by duality. Thus the homomorphisg : Ho(M') — Ho(W’) is a trivial homomor-
phism. Observe thail>(M) = H»(M') = Z and they are generated by a capped-off
Seifert surface okK# — K and its image under satellite construction, respectively.
Moreoverp,: Ho(M') — H>(C) maps the generator éf>(M’) to the generator of
H>(M). Hence

Hy(W) = (é Hy(W))) @ (é Ha(V}')) ® Ha(W").
n=1

n=1
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Observe thatr1 (W)™ maps intory (W)@ by the homomorphism induced by the
inclusion. Alsor1(W}") andx1(V}) map intorry (W)@ by the homomorphisms in-
duced by the inclusions singé andi;" lie in 71 (W)@ and they generate, (W) and
nl(V].") (which are isomorphic t&), respectively. Now using naturality of equiv-
ariant intersection forms, one sees ti@tLagrangians and0)-duals forW;" and

V]” and a(1)-Lagrangian and1)-duals forW’ together form g1)-Lagrangian and
(1)-duals forw. Finally, W’ has two possible spin structures, and a spin structure on
W’ can be chosen such thit is spin. This completes the proof. O
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