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An infinite family of non-concordant knots having the same
Seifert form

Taehee Kim

Abstract. By a recent result of Livingston, it is known that if a knot has a prime power branched
cyclic cover that is not a homology sphere, then there is an infinite family of non-concordant knots
having the same Seifert form as the knot. In this paper, we extend this result to the full extent.
We show that if the knot has nontrivialAlexander polynomial, then there exists an infinite family
of non-concordant knots having the same Seifert form as the knot. As a corollary, no nontrivial
Alexander polynomial determines a unique knot concordance class. We use Cochran–Orr–
Teichner’s recent result on the knot concordance group and Cheeger–Gromov’s von Neumann
ρ-invariants with their universal bound for a 3-manifold.
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1. Introduction

We work in the topologically locally flat category. Aknot is an embedding of a circle
into the 3-sphere. A knot is calledslice if it bounds a (locally flat) 2-disk in the 4-ball.
For two knotsK1 andK2,K1 is said to beconcordant toK2 if K1#−K2 is slice. Here
the symbol # denotes the connected sum operation and−K denotes the mirror image
of K with reversed orientation. This is an equivalence relation. The equivalence
classes (which are calledthe concordance classes) form an abelian group under
the connected sum operation. The group is calledthe (classical) knot concordance
group and denoted byC. In C, the identity is the class of slice knots. Levine [L]
constructed an epimorphismφ : C → G whereG denotes the algebraic concordance
group of Seifert forms modulo a certain equivalence relation. The homomorphismφ

maps the concordance class represented by a knot to the algebraic concordance class
represented by Seifert forms of the knot. Jiang [J] showed that the kernel ofφ is
infinitely generated. This implies that for each algebraic concordance class there are
infinitely many (mutually) non-concordant knots whose Seifert forms represent that
algebraic concordance class. But each algebraic concordance class is also represented
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by infinitely many distinct Seifert forms, and a question arises whether or not for a
given Seifert form there are non-concordant knots havingthat Seifert form. In fact,
Jiang’s examples have distinct Seifert forms, hence his result does not give an answer
to this question. Recently Livingston [Li] made progress and gave a partial answer
under a condition on the Alexander polynomials.

Theorem ([Li, Theorem1.1]). If a knot K has Seifert form VK and its Alexander
polynomial �K(t) has an irreducible factor that is not a cyclotomic polynomial φn
with n divisible by three distinct primes, then there is an infinite family {Ki} of non-
concordant knots such that each Ki has Seifert form VK .

In the above theorem the technical condition on the Alexander polynomial is
necessary since the theorem was proven by using Casson–Gordon invariants. (For
Casson–Gordon invariants, refer to [CG].) More precisely, Casson–Gordon invariants
are defined via characters on the first homology of prime power branched cyclic covers
of knots and if every prime power branched cyclic cover of the knot has the trivial
first homology then all Casson–Gordon invariants vanish. The following theorem
due to Livingston shows that a knot has a prime power branched cyclic cover with
nontrivial first homology under the given condition on the Alexander polynomial. In
the theorem,�K(t) denotes the Alexander polynomial of a knotK.

Theorem ([Li, Theorem1.2]).All prime power branched cyclic covers of a knot K
are homology spheres if and only if all nontrivial irreducible factors of �K(t) are
cyclotomic polynomials φn(t) with n divisible by three distinct primes. All finite
branched cyclic covers of K are homology spheres if and only if �K(t) = 1.

In addition to these results the author [K] proved that for eachn divisible by three
distinct primes there exist infinitely many non-concordant knotsKi with �Ki (t) =
(φn(t))

2 which have the same Seifert form. (In fact, in [K] the author showed that
the knotsKi are linearly independent in the knot concordance group.)

In this paper we extend the above results to the full extent. The main theorem is
as follows.

Theorem 1.1 (Main Theorem).If a knot K has Seifert form VK and its Alexander
polynomial is not 1, then there is an infinite family {Ki} of non-concordant knots such
that each Ki has Seifert form VK .

In fact, in the course of the proof of the main theorem, we show a stronger result
that fori �= j , the knotsKi#−Kj are not(1.5)-solvable. (For the definition of(1.5)-
solvable knots, see Section 2.) Also we note that if the rational Alexander module
of the knotK has a unique self-annihilating submodule with respect to the rational
Blanchfield pairing, then usingrationally universal solvable representations of the
fundamental group of zero surgery on a knot in the 3-sphere as used in [K], one can
construct the above knotsKi such that they are not only mutually non-concordant
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but also linearly independent in the knot concordance group. A proof for this is not
given in this paper, but one can easily prove this using arguments in [COT2, K].

By Freedman’s work if�K(t) = 1 thenK is topologically slice [F, FQ]. (That is,
the concordance class ofK is the identity inC.) On the other hand, the main theorem
implies that if�K(t) is not 1 then there are infinitely many non-concordant knots
having the Alexander polynomial�K(t). Thus we have the following corollary.

Corollary 1.2. No nontrivial Alexander polynomial determines a unique concor-
dance class in the knot concordance group.

In the proof of the main theorem we construct the knotsKi by performingsatellite
construction onK. (This construction is also calledgenetic modification in [COT2].)
This construction is briefly reviewed in the next section. To show that theKi are
mutually non-concordant we use Cochran–Orr–Teichner’s filtration of the knot con-
cordance group in [COT1] and von Neumannρ-invariants defined by Cheeger and
Gromov [ChG], which were applied as knot concordance invariants first by Cochran,
Orr, and Teichner in [COT1]. In particular, we use the fact that there is a universal
bound for von Neumannρ-invariants for a fixed 3-manifold. More precisely, for a
fixed 3-manifoldM, there exists a constantcM such that|ρ(2)� (M,ψ)| ≤ cM for every
representationψ : π1(M) → � where� is an arbitrary group [R, Theorem 3.1.1].
We remark that in [CT] Cochran and Teichner used this fact to show that Cochran–
Orr–Teichner’s filtration of the knot concordance group is highly nontrivial, that is,
Fn/Fn.5 is nontrivial for alln ≥ 2.

2. Preliminaries

Throughout this paper, we use the following convention. Unless mentioned otherwise,
integer coefficients are to be understood for homology groups. The zero surgery on a
knotK in S3 is denoted byMK . We use the same notation for a simple closed curve
and the homology (and the homotopy) class represented by the curve. We denote
Q[t, t−1], the Laurant polynomial ring with rational coefficients, by�.

In this section we briefly review the machinery that will be used in the proof of
the main theorem. In [COT1], Cochran, Orr, and Teichner established a filtration
of the knot concordance group{Fn}n∈ 1

2N0
indexed by half-integers whereFn is the

subgroup of(n)-solvable knots. The definition of(n)-solvable knots (n ∈ N0) is as
follows. Recall that for a groupG,G(n) denotesthe nth derived group ofG which is
defined as follows: LetG(0) ≡ G, and inductivelyG(n) ≡ [G(n−1),G(n−1)].

Definition 2.1. A knotK is called(n)-solvable if MK bounds a spin 4-manifoldW
such that the inclusion mapMK → W induces an isomorphism on the first homology
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and such thatW admits an(n)-Lagrangian with(n)-duals. This means that the
intersection form and the self-intersection form onH2

(
W ; Z[π1(W)/π1(W)

(n)]),
which vanish on the(n)-Lagrangian, pair the(n)-Lagrangian and the(n)-duals non-
singularly and that their images together freely generateH2(W). The 4-manifoldW
is called an(n)-solution for K and we sayK is (n)-solvable via W .

Similarly, we define(n.5)-solvable knots forn ∈ N0. (An (n.5)-solutionW is
required to admit an(n + 1)-Lagrangian with(n)-duals.) For more details, refer to
[COT1, Definition 8.5 and Definition 8.7].

Cochran–Orr–Teichner showed that every slice knot is(n)-solvable for alln
[COT1, Remark 1.3.1]. They detect(n.5)-solvable knots,n ∈ N0, using von Neu-
mannρ-invariants as follows.

Theorem 2.2 ([COT1, Theorem 4.2]).Suppose that � is an (n)-solvable poly-
torsion-free-abelian group. Let φ : π1(MK) → � be a homomorphism. If K
is (n.5)-solvable via a 4-manifold W over which the coefficient system φ extends,
then ρ(2)� (MK, φ) = 0.

We explain the terminologies in the theorem. A groupG is called(n)-solvable if
G(n+1) = 1. A groupG is defined to bepoly-torsion-free-abelian (henceforth PTFA)
if it admits a normal series 1= G0 � G1 � · · · � Gm = G such that the factors
Gi+1/Gi are torsion-free abelian. For the von-Neumannρ-invariantρ(2)� (MK, φ),
refer to [COT1, Section 5] and [COT2, Section 2].

In fact, the target group� which we will use for the proof of the main the-
orem is a quotient groupG/G(n)r whereG(n)r is the nth rational derived group
of G defined by Harvey [H] as follows. LetG(0)r ≡ G. For n ≥ 1, define
G
(n)
r ≡ [

G
(n−1)
r ,G

(n−1)
r

]
Pn−1 where

Pn−1 = {
g ∈ G(n−1)

r | gk ∈ [
G(n−1)
r ,G(n−1)

r

]
for somek ∈ Z − {0}}.

The quotientG(i)r /G
(i+1)
r is isomorphic to

(
G
(i)
r /

[
G
(i)
r ,G

(i)
r

])
/{Z − torsion} for

all i ≥ 0 [H, Lemma 3.5]. Harvey showed the quotientG/G(n+1)
r is PTFA [H,

Corollary 3.6], and one easily sees thatG/G
(n+1)
r is (n)-solvable.

To construct the knotsKi in the main theorem we usesatellite construction (or
genetic modification) explained as follows. LetK be a knot andη be an unknot
in S3 which is disjoint fromK. Let J be another knot. Take the union of the
exterior ofη in S3 and the exterior ofJ in S3 along the common boundary (which
is homeomorphic to a torus) such that a meridian ofη is identified with a longitude
of J and a longitude ofη with a meridian ofJ . The resulting ambient manifold is
homeomorphic toS3. The image ofK under this construction is denoted byK(η, J )
and we sayK(η, J ) is obtained by performing satellite construction onK via η
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andJ . If we letD be an embedded disk inS3 bounded byη, then this construction
is equivalent to tying all the strands ofK transversally passing throughD into J .
For more details, refer to [COT2]. This construction can be generalized to the case
when we have a trivial link{η1, . . . , ηn} which is disjoint fromK and auxiliary knots
{J1, . . . , Jn} by iterating the above process. In this case the resulting knot is denoted
byK({η1, . . . , ηn}, {J1, . . . , Jn}).

3. Proof of Theorem 1.1

LetF be a Seifert surface of a knotK with�K(t) �= 1 andVK an associated Seifert
form. The Seifert surfaceF can be thought of as a disk with 2g bands whereg is the
genus ofF . Letηn, 1 ≤ n ≤ 2g, be a trivial link inS3 which is disjoint fromF such
that thenth componentηn links thenth band ofF once and does not link the other
bands. It is known thatηn, 1 ≤ n ≤ 2g, generate the rational Alexander module
H1(MK ;�). (For example, see [Ro].)

By [R, Theorem 3.1.1], there exists a constantc such that
∣∣ρ(2)� (MK#−K, φ)

∣∣ ≤ c

for every representationφ : π1(MK#−K) → � where� is an arbitrary group. Let
J1 be a knot with vanishing Arf invariant such thatρ(2)

Z
(J1) > c. Hereρ(2)

Z
(J1)

denotes the von Neumannρ-invariantρ(2)
Z
(MJ1, φ) whereφ : π1(MJ1) → Z is the

abelianization. Note thatρ(2)
Z
(J1) is equal to the integral of the Levine–Tristram

signatures ofJ1, integrated over the circle normalized to length one [COT2, Propo-
sition 5.1]. Inductively, we defineJi+1 to be a knot with vanishing Arf invariant
such thatρ(2)

Z
(Ji+1) > c + 2g · ρ(2)

Z
(Ji). TheseJi can be easily found by taking the

connected sum of suitably many even copies of a left-handed trefoil. For eachi ∈ N,
let J ni be a copy ofJi for 1 ≤ n ≤ 2g. That is,J ni ≡ Ji , 1 ≤ n ≤ 2g.

Now letKi ≡ K({η1, . . . , η2g}, {J 1
i , . . . , J

2g
i }), the knot resulting from satellite

construction. Sinceηn, 1 ≤ n ≤ 2g, lie in the complement ofF in S3, Ki have the
same Seifert formVK asK. We proveKi are mutually non-concordant.

Fix i andj (i < j ), and suppose thatKi andKj are concordant. That is,Ki#−Kj
is slice. Observe that

Ki#−Kj = (K#−K)({η1, . . . , η2g, η̄1, . . . , η̄2g}, {J 1
i , . . . , J

2g
i ,−J 1

j , . . . ,−J 2g
j }).

Hereη̄n denote the mirror images ofηn, 1 ≤ n ≤ 2g.
Let M ≡ MK#−K andM ′ ≡ MKi#−Kj . We construct a cobordismC between

M andM ′ as follows. Choose a(0)-solutionWi for Ji . (SinceJi has vanishing Arf
invariant, it is(0)-solvable. See [COT1, Remark 1.3.2].) By doing surgery along
π1(Wi)

(1), we may assume tatπ1(Wi) ∼= Z. Similarly, we choose a(0)-solution
Vj for −Jj . LetWn

i ≡ Wi andV nj ≡ Vj for 1 ≤ n ≤ 2g. TakeM × [0,1] and

the disjoint union
( ∐2g

n=1W
n
i

) ∐ ( ∐2g
n=1V

n
j

)
. To form C, for eachn identify the
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solid torusS1 × D2 in ∂Wn
i = (S3 \ N(Jni )) ∪ S1 × D2 (whereN(Jni ) denotes an

open tubular neighborhood ofJ ni in S3) with a tubular neighborhood ofηn × {1}
in M × {1} such that a meridian ofJ ni is identified with a longitude ofηn and a
longitude ofJ ni with a meridian ofηn, and identify the solid torusS1 × D2 in
∂V nj = (S3\N(−J nj ))∪S1×D2 with a tubular neighborhood of̄ηn×{1} inM×{1}
similarly. One sees that∂−C = M and∂+C = M ′. Moreover one sees thatC is
spin.

SinceKi# − Kj is slice,Ki# − Kj is (1.5)-solvable by [COT1, Remark 1.3.1].
LetW ′ be a(1.5)-solution forKi# − Kj . In particular,∂W ′ = M ′. LetW be the
union ofC andW ′ along their common boundaryM ′. HenceW is a 4-manifold with
∂W = M.

Lemma 3.1. The 4-manifoldW , which is constructed as above, is a (1)-solution for
K# −K .

The proof of the above lemma is postponed. Let� ≡ π1(W)/π1(W)
(2)
r . Note

that� is a (1)-solvable PTFA group by [H, Corollary 3.6]. Letφ : π1(W) → � be
the projection homomorphism. Note thatM ′, MJni

, M−Jnj , andW ′ are subspaces

of W , henceφ can be restricted to the corresponding fundamental groups. Letφni
(respectivelyφnj ) denoteφ restricted toπ1(MJni

) (respectivelyπ1(M−Jnj )), 1 ≤ n ≤
2g. By [COT2, Proposition 3.2],

ρ
(2)
� (M, φ) = ρ

(2)
� (M ′, φ|π1(M ′))+

2g∑
n=1

ρ
(2)
� (MJni

, φni )+
2g∑
n=1

ρ
(2)
� (M−Jnj , φ

n
j ).

In the above equation,ρ(2)� (M ′, φ|π1(M ′)) = 0 by Theorem 2.2 sinceφ|π1(M ′)
extends over(1.5)-solutionW ′. Note thatφni factors throughπ1(W

n
i ) which is iso-

morphic toZ for eachn. If φ(ηn) = e, the identity element in�, thenρ(2)� (MJni
) = 0.

If φ(ηn) �= e, then the image ofφni is isomorphic toZ andρ(2)� (MJni
) = ρ

(2)
Z
(J ni ),

which is defined in the previous section, by [COT1, Proposition 5.13]. We obtain
similar results forρ(2)� (M−Jnj ). Now letεni ≡ 0 if φ(ηn) = e andεni ≡ 1 otherwise,

1 ≤ n ≤ 2g. Defineεnj , 1 ≤ n ≤ 2g, similarly. Then we have the following equation.

ρ
(2)
� (M, φ) =

2g∑
n=1

εni ρ
(2)
Z
(J ni )−

2g∑
n=1

εnj ρ
(2)
Z
(J nj ).

We claim thatεni �= 0 for somen or εnj �= 0 for somen. One sees thatηn

together withη̄n, 1 ≤ n ≤ 2g, generate the rational Alexander moduleH1(M;�).
(This is obvious sinceH1(M;�) is isomorphic toH1(MK ;�) ⊕ H1(M−K ;�).)
Since�K(t) �= 1, H1(M;�) is not trivial. HenceK# − K has the (nontrivial)
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nonsingular rational Blachfield formB� : H1(M;�)×H1(M;�) → Q(t)/�. Let
i∗ : H1(M;�) → H1(W ;�) be the homomorphism induced by the inclusion. Since
P ≡ Ker(i∗) is self-annihilating by [COT1, Theorem 4.4] (that is,P = P⊥) and
B� is nonsingular,i∗ is not a trivial homomorphism. Hencei∗(ηn) �= 0 for some
n or i∗(η̄n) �= 0 for somen in H1(W ;�). SinceW is a (1)-solution forK# − K,
H1(W) ∼= Z. This implies thatπ1(W)

(1)
r = π1(W)

(1). Hence

π1(W)
(1)/π1(W)

(2)
r ⊗Z Q ∼= π1(W)

(1)/π1(W)
(2) ⊗Z Q ∼= H1(W ;�).

The first isomorphism holds by [H, Lemma 3.5]. Thusφ(ηn) �= e or φ(η̄n) �= e for
somen in π1(W)

(1)/π1(W)
(2)
r which is a subgroup of�, and this proves the claim.

Now supposeεnj �= 0 for somen. By our choice ofJi andJj ,

ρ
(2)
� (M, φ) ≤ 2g · ρ(2)

Z
(Ji)− ρ

(2)
Z
(Jj ) < −c,

which is a contradiction. Ifεnj = 0 for all n, thenεni �= 0 for somen by the above
claim. Then

ρ
(2)
� (M, φ) ≥ ρ

(2)
Z
(Ji) > c,

which is also a contradiction. Therefore, to complete the proof we only need to prove
Lemma 3.1 and a proof is given below.

Proof of Lemma 3.1. We follow a course of the proof for a more general case in
[CT]. Using Mayer-Vietoris sequence observe that

H1(M) ∼= H1(C) ∼= H1(M
′) ∼= H1(W

′) ∼= H1(W) ∼= Z.

Again using Mayer-Vietoris sequence one sees that

H2(C) ∼=
( 2g⊕
n=1

H2
(
Wn
i

)) ⊕
( 2g⊕
n=1

H2
(
V nj

)) ⊕H2(M)

and observe thatH2(W) ∼= (
H2(C)⊕H2(W

′)
)
/(p∗, q∗)(H2(M

′)) wherep∗ and
q∗ are induced by inclusionsp : M ′ → C andq : M ′ → W ′, respectively. Since
H 1(W ′) → H 1(M ′) is an isomorphism,H3(W

′,M ′) → H2(M
′) is an isomorphism

by duality. Thus the homomorphismq∗ : H2(M
′) → H2(W

′) is a trivial homomor-
phism. Observe thatH2(M) ∼= H2(M

′) ∼= Z and they are generated by a capped-off
Seifert surface ofK# − K and its image under satellite construction, respectively.
Moreoverp∗ : H2(M

′) → H2(C) maps the generator ofH2(M
′) to the generator of

H2(M). Hence

H2(W) ∼=
( 2g⊕
n=1

H2
(
Wn
i

)) ⊕
( 2g⊕
n=1

H2
(
V nj

)) ⊕H2(W
′).
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Observe thatπ1(W
′)(1) maps intoπ1(W)

(1) by the homomorphism induced by the
inclusion. Alsoπ1(W

n
i ) andπ1(V

n
j ) map intoπ1(W)

(1) by the homomorphisms in-

duced by the inclusions sinceηn andη̄n lie inπ1(W)
(1) and they generateπ1(W

n
i ) and

π1(V
n
j ) (which are isomorphic toZ), respectively. Now using naturality of equiv-

ariant intersection forms, one sees that(0)-Lagrangians and(0)-duals forWn
i and

V nj and a(1)-Lagrangian and(1)-duals forW ′ together form a(1)-Lagrangian and
(1)-duals forW . Finally,W ′ has two possible spin structures, and a spin structure on
W ′ can be chosen such thatW is spin. This completes the proof. �
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