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Resonance category

Dmitry N. Kozlov*

Abstract.  The main purpose of this paper is to introduce a new category, which we call

a resonance category, whose combinatorics reflect that of canonical stratificatiotisldf
symmetric smash products. The study of the stratifications can then be abstracted to the study
of functors satisfying certain sets of axioms, which we name resonance functors.

One frequently studied stratification is that of the set of all polynomials of degaefined
by fixing the allowed multiplicities of roots. We apply our abstract combinatorial framework,
in particular the notion of direct product of relative resonances, to study the Arnold problem of
computing the algebro-topological invariants of these strata.
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1. Introduction

Complicated combinatorial problems often arise when one studies the homological
properties of strata in some topological space with a given natural stratification. In
this paper, we study the symmetric smash products stratified by point multiplicities.

More specifically, lefX be a pointed topological space (we refer to the base point
as a point at infinity), and denote

XD =XAXA--AX/Sp,
~——

n

whereA is the smash product of pointed spacgsis the symmetric group, and the
action of §,, on then-fold smash product ok is the permutation action. In other
words,X ™ is the set of all unordered collectionsiopoints onX with the collections
having at least one of the points at infinity identified, to form a new infinity point.
X™ is naturally stratified by point coincidences, and the strata are indexed by the
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number partitions of. Note that we consider the closed strata, so, for example, the
stratum indexedl, 1, ..., 1) is the whole spac& ™.
~——

n

The main open stratum, that is the complement of the closed st(atdm . ., 1),
is a frequently studied object. It was suggested by Arnold in a much more general
context, see for example [2], that in situations of this kind one should study the
problem for all closed strata. The main argumentin support of this point of view is that
there is usually no natural stratification on the main open stratum, while there is one
on its complement, also known as discriminant. Having a natural stratification allows
one to apply such computational techniques as spectral sequences in a canonical way.
Once some information has been obtained about the closed strata, one can try to find
out something about the open stratum by means of some kind of duality.

If one specifiest = S, resp.X = S?, one obtains as strata the spaces of all monic
real hyperbolic, resp. monic complex, polynomials of degreeith specified root
multiplicities. These spaces naturally appear in singularity theory, [1]. Homological
invariants of several of these strata were in particular computed by Arnold, Shapiro,
Sundaram, Welker, Vassiliev, and the author, see [2], [4], [5], [8], [9]. These are the
special cases which have inspired this general study.

Here we take a different, more abstract look at this set of problems. More specif-
ically, the idea is to introduce a new canonical combinatorial object, independent
of topology of particulatX, where the combinatorial aspects of these stratifications
would be fully reflected. This object is a certain category, which we nameethe
onance category. It was suggested to the author by B. Shapiro, [7], to use the term
resonance as a generic reference to a certain type of linear relations among parts of
a number partition.

Having this canonically defined category at hand, one then can, for each specific
topological space, view the natural stratification of ) as a certain functor from
the resonance category Top*. These functors satisfy a system of axioms, which
we take as a definition aksonance functors. The combinatorial structures in the
resonance category will then project to the corresponding structures in each specific
X™_ This opens the door to develop the general combinatorial theory of the resonance
category, and then prove facts valid for all resonance functors satisfying some further
conditions, such as for example acyclicity of certain spaces.

The main combinatorial structure inside the resonance category, which we study,
is that ofrelative resonancesand their direct products. Intuitively, arelative resonance
encodes the combinatorial type of a stratum with a union of some substrata shrunk
to form the new infinity point. These spaces appear naturally if we are trying to
compute the homology groups of our strata by means of long exact sequences, or,
more generally, spectral sequences.

Our idea is that the combinatorial knowledge of which relative resonances-are
ducible (that is, are direct products of other relative resonances) serves as a guidance
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for which long exact sequences one is to consider for the actual homology compu-
tations. This way, the Arnold problem of computing the algebraic invariants of the
strata splits into two parts: the combinatorial one, embodied by various structures
in the resonance category such as the relative resonances, and the topological one,
reflecting the specific properties &f.

Our notions of sequential and strongly sequential resonances are intended to cap-
ture the combinatorial structure of those resonances, which are particularly compati-
ble with the spectral sequence computations. This, in turn, leads to the natural notion
of complexity of resonances.

As mentioned above, to illustrate a possible appearance of this abstract framework
we choose to use a class of topological spaces which come in particular from the
singularity theory, and whose topological properties have been studied: spaces of
polynomials (real or complex) with prescribed root multiplicities. In particular, in
case of straté&™, 17), which were studied in [2], [4] for the complex case, and in [5],

[8] for the real case, we demonstrate how the inherent combinatorial structure of the
resonance category makes this particular resonance especially reducible.

The paper is organized as follows:

Section 2. We introduce the notion of resonance category and describe the structure
of its set of morphisms.

Section 3. We introduce the notions of relative resonances, direct products of relative
resonances, and resonance functors.

Section 4. We formulate the problem of Arnold and Shapiro which motivated this
research as that concerning a specific resonance functor. Then we analyze the combi-
natorial structure of resonanceg, b'), which leads to the complete determination

of the homotopy types of the corresponding strataXfos S2.

Section 5. We analyze the combinatorial structure of the sequential and strongly se-
quential resonances. F&r= S this leads to the complete computation of homotopy
types of the strata corresponding to resonarigésh!, 1) such thatz — bl < m.

Next, we consider division chain resonances, which constitute a vast generalization
of the casdaX, 1/). We prove that in this case the strata always have a homotopy
type of a bouquet of spheres. We describe a combinatorial model to enumerate these
spheres as paths in a certain weighted directed graph, with dimensions of the spheres
being given by the total weights of the paths.

Section 6. We introduce the notion of a complexity of a resonance and give a series
of examples of resonances having arbitrarily high complexity.

Acknowledgments. | would like to thank Peter Mani-Levitska and Eva-Maria Feicht-
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2. Resonance Category

2.1. Resonances and their symbolic notation. For every positive integet, let
{—1, 0, 1}" denote the set of all points iR"” with coordinates in the sg¢t-1, 0, 1}.
We say that a subsét C {—1, 0, 1}" is span-closed if span(S) N {—1,0, 1} = §,
where spafs) is the linear subspace spanned by the origin and poirfts@f course
the origin lies in every span-closed set. ko& (x1,...,x,) € {—1,0, 1}, we use
the notations Plug) = {i € [n] | x; = 1} and Minugx) = {i € [n] | x; = —1}.

Definition 2.1. (1) A subsetS C {—1,0, 1}" is called arm-cut if it is span-closed
and for everyr € S\ {origin} we have Pluér) # ¢ and Minugx) # ¢. We denote
the set of alk-cuts byR,,.

(2) 8, acts on{—1, 0, 1} by permuting coordinates, which in turn inducgs
action onR,,. Then-resonances are defined to be the orbits of the latéraction.
We let[S] denote the:-resonance represented by theut S.

The resonance consisting of origin only is caltedial.

Example 2.2 (n-resonances for small values:gf (1) There are no nontrivial 1-
resonances.

(2) There is one nontrivial 2-resonand§o, 0), (1, —1), (—1, 1)}].
(3) There are four nontrivial 3-resonances:

[{(0’ 01 O)a (1’ _17 O)? (_17 1» 0)}]9

[{(0,0,0),(1,-1,0),(-1,1,0),(2,0,-1),(-1,0,1), (0,1, —-1), (0, -1, 1)}],
[{(0’ 07 0)9 (1’ _17 _l)’ (_la 1’ 1)}]5
[{(0,0,0), (1,-1,-1),(—1,1,1), (0,1, -1), (0, -1, 1)}].

(4) Here is an example of a nontrivial 6-resonance:
[{(07 07 07 07 07 0)7 j:(lv 19 09 _17 _17 0)7 j:(o’ 17 19 09 _19 _l)’ :l:(lv 07 _17 _17 07 1)}]'

Symbolic notation. To describe an-resonance, rather than to list all of the elements

of one of its representatives, it is more convenient to use the following symbolic

notation: we write a sequence eflinear expressions in some number (between 1

andn) of parameters, the order in which the expressions are written is inessential.
Here is how to get from such a symbolic expression toittiesonance: choose

an order on the linear expressions and observe that now they parameterize some

linear subspace &”, which we denote byd. Then-resonance is now the orbit of

A+t nNn{-10 1)".
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Reversely, to go from an-resonance to a symbolic expression: choose a repre-
sentativen-cut S, the symbolic expression can now be obtained as a linear parame-
terization of spa(s)=.

For example the 6 nontrivial resonances listed in Example 2.2 are (in the same
order):

(a,a), (a,a,b), (a,a,a), (a+b,a,b),
(2a,a,a), (a+b,b+c,a+d,b+d, c+d,2d).

2.2. Acting on cuts with ordered set partitions. We say thatr is anordered set
partition of [n] with m parts (sometimes calldolocks) whenn = (1, ..., my),

i # W, [n] = UL i, andr; Nw; = @, fori # j. If the order of the parts is not
specified, them is just called aet partition. We denote the set of all partitions, resp.
ordered partitions, of a set by P(A), resp. ORA). For R[n]), resp. OR[n]), we

use the shorthand notationg#, resp. ORn). Furthermore, for every set, we let

un: OP(A) — P(A) be the map which takes the ordered partition to the associated
unordered partition.

Definition 2.3. Givenz = (71, ..., ) an ordered set partition ¢#:] with k parts,
andv = (vy, ..., vy,) an ordered set partition ¢f] with m parts, theircomposition
7 o v is an ordered set partition §i] with k parts, defined byt ov = (u1, ..., ur),
Wi = UjEni Vj, fori = 1,...,k.

Analogously, we can define o v for an ordered set partitiomand a set partition
7, in which caser o v is a set partition without any specified order on the blocks.

In particular, whenn = n, and|n;| = 1, fori = 1,...,n, we can identify
n = (m, ..., m,) with the corresponding permutation pf]. The composition of
two such ordered set partitions corresponds to the multiplication of corresponding
permutations, and we denote the ordered set pariition. . ., {n}) by id,, orjustid.

Definition 2.4. For A € B, let pg.4: P(B) — P(A) denote map induced by the
restriction fromB to A. For two disjoint setd and B, andIT C P(A), A C P(B),
we definell x A = {mr e P(GAUB) | pAUB,A(T[) e IT, pAUB,B(n) e A}.

The following definition provides the combinatorial constructions necessary to
describe the morphisms of the resonance category, as well as to define the relative
resonances.

Definition 2.5. Assumes is ann-cut. For an ordered set partition pf], denoted
T = (11, ..., 7Ty, We definer S € R,, to be the set of allz-tuples(z1, ..., t,) €

{—1,0, 1}'*, for which there exist$s1, ..., s,) € § such that for allj € [m], and
i € mj, we haves; =1t;.
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Clearly idS = §, and one can see that o v)S = 7 (vS).

Verification of (; o v)S = m(vS). By definition we have
(mov)S ={(t1,...,t) | A(s1,....50) € SSt.Vje[kl,i e pj:s =tj},

vS = {(x1,...,%n) | A(s1,...,5,) € SS.L.Vg € [m],i € vy :5; = x4},
TS ={(t1,.... %) [ I(x1, ..., xm) €VSSLVje[kl,g emj,i €vy:s5 =1}

The identity(z o v)S = 7 (vS) follows now from the equalitys; = (J, e, vq-
There are many different ways to formulate Definition 2.5. We chose the ad

hoc combinatorial language, but it is also possible to put it in the linear-algebraic

terms. An ordered set partition pf], 7 = (71, ..., m,), defines an inclusion map

¢: R" — R" by ¢(e;) = Zjem éj, where{ey, ..., ey}, resp.fey, ..., e,}, is the

standard orthonormal basis Bf*, resp.R". GivenS € R,, = S can then be defined

as¢p L(Img¢ N S).

2.3. The definition of the resonance category and the terminology for its mor-
phisms

Definition 2.6. Theresonance category, denotedR, is defined as follows:
(1) The set of objects is the set of allcuts, for all positive integers, O (R) =
1R
(2) The set of morphisms is indexed by triptes 7', =), whereS € R, T € Ry,
andr is an ordered set partition pf] with m parts such tha§ € = T. Forthe reasons
which will become clear later we denote the morphism indexed ¢§th, =) by
S—»aT T,

As the notation suggests, the initial object of the morphtsm 7 T S Tiss
and terminal object i¥. The composition rule is defined by

(S 7T < T)o(T 10 <> Q)=8 = nv0 s Q,

whereS € R, T € R, O € R, 7w is an ordered set partition @] with k parts,
andv is an ordered set partition ] with m parts.

An alert reader will notice that the resonances themselves did not appear explicitly
in the definition of the resonance category. In fact, it is not difficult to notice that
resonances are isomorphism classes of objeci®.oket us now look at the set of
morphisms ofR in some more detail.

. . . . id
(1) ForS € R,, the identity morphism of is § — S S s
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. . id
(2) Letus introduce short hand notatior$s=— T for S — T &5 T,andrT <> T
fornT — xT <> T. Then we have

S 1T S T=(—>al)o@T < T).

id
Note alsothal — S =S S S.

(3) The associativity of the composition rule can be derived from the commutation
relation i N
@S> SHo(S—>T)=@S >naT)o@T — T)

as follows:

S >»>aT —>T)o(T »vQ > Q)o(Q —» pX — X)
=l »>al)o@T —>T)o(T »vQ)o(wQ — Q)o(Q — pX)o (pX — X)
=l »>aT)o(x@aT »navQ)o (v — wvpX)

o(mvpX — vpX)o (VpX — pX)o (pX — X).

(4) We shall use the following names: morphisghs» T are calledgluings (or
n-gluings, if it is specified thaf, T € R,,); morphismst T < T are callednclu-
sions (or (n, m)-inclusions, if it is specified thef € R, 7T € R,,), the inclusions
are calledsymmetriesif  is a permutation. As observed above, the symmetries are
the only isomorphisms irR. Here are two examples of inclusions:

(0,0), (L -1, (-1, 1} <P 10,0, (1, -1, ~1), (-1, 1, D},

{(0,0), (1, =1), (=1, 1)) 223D _ 10,0, 0), (1 —1, —1), £(0, 1, —1)}.

3. Relativeresonances, direct products, and resonance functors

3.1. Relative Resonances. Let A(n) denote the set of all collections of non-empty
multisubsets ofn], and let Rn) € A(n) be the set of all partitions gf:]. For every
S € R, let us define a closure operation aiiz), resp. on ).

Definition 3.1. Let A € A(n). We defineA || S € A(n) to be the minimal set

satisfying the following conditions:

(1) AcAlS;

(2) if{B1,B2,..., By} € A S,then{B1UB>, B3,..., By} € Al S;

(3) if {B1, B2, ..., By} € A | S, and there exists € S such that Plus) C By,
then{(B1 \ Plusx)) UMinus(x), Ba, ..., Bn} € 4 | S.
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Forz € P(n), we definer | S C Pn)asn | S = (@ | S NPHn). For
asetll € P(n) we definell | S = (J,.qm | S. We say thafll is S-closed if
nys=II.

The idea behind this definition comes from the context of the standard stratification
of the n-fold symmetric product. Given a stratukhindexed by a number partition
of n with m parts, let us fix some order on the parts. A substratuim obtained
by choosing some partitiom of [z] and summing the numbers within the blocks of
7. Since the order of the parts of the number partition indexinig fixed, X gives
rise to a uniquen-cut S. The setr | S describes all partitions of [m] such that if
the numbers within the blocks ofare summed then the obtained stratdrmsatisfies
Z C Y. In particular, ifY is shrunk to a point, then so 8. The two following
examples illustrate how the different parts of Definition 3.1 might be needed.

Example 1. The equivalences of type (2) from the Definition 3.1 are needed. Let

the stratumX be indexed by3, 2, 1, 1, 1) (fix this order of the parts), and lat =
{1}{23}{4}{5}. Then, the straturk is indexed by3, 3, 1, 1). Clearly, the stratunz,
which is indexed by3, 3, 2), lies insideY, hence{1}{2}{345 < = | S, whereS is

the cut corresponding t8, 2, 1, 1, 1). However, if one starts from the partition

and uses equivalences of type (3) from Definition 3.1, the only other partitions one
can obtain arg¢1}{24}{3}{5}, and{1}{25}{3}{4}. None of them refine§l}{2}{345},
hence it would not be enough in Definition 3.1 to just take the partitions which can
be obtained via the equivalences of type (3) and thensakesS to be the set of all

the partitions which are refined by these.

Example 2. It is necessary to view the equivalence relation on the larger set A(n).

This time, let the stratunX be indexed bya + b,b +c,a +d,b+d,c + d, 2d)

(fix this order of the parts, and assume as usual that there are no linear relations on
the parts other than those induced by the algebraic identities on the vauables

¢, andd). Furthermore, leir = {16}{23}{45}. Then the stratunY is indexed by
(a+b+2d,a+b+c+d,b+ c+2d). Clearly, we havg34}{15}{26} € = | S,
whereS is the cut corresponding @ + b, b +c,a +d, b +d, c +d, 2d).

A natural idea for Definition 3.1 could have been to define the equivalence relation
directly on the set ) and use “swaps” instead of the equivalences of type (3), i.e.,
to replace the condition (3) by the following one:

If{B1, By, ..., By} € A | S,andthereexists x € S, such that Plugx) C
B1,andMinus(x) C By, then{(B1\Plugx))UMinus(x), (B2\Minus(x))U
Plugx), B3, ..., By} € A | S.

However, this would not have been sufficient as this example shows, since no swaps
would be possible on = {16}{23}{45}.
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Definition 3.2. Let S be amm-cut, IT C P(n) anS-closed set of partitions. We define
S\IT =S8\ {s € S| (Minus(s), Plugs), singleton$ < I1},

where(Minus(s), Plug(s), singletons is the partition which has only two nonsingle-
ton blocks: Minuss) and Pluss).

In the next definition we give a combinatorial analog of viewing a stratum relative
to a substratum.

Definition 3.3. (1) A relative n-cut is a pair(S, IT), whereS C {—1,0,1}", IT C
P(n), such that the following two conditions are satisfied:

* (spanS) \ IT = §;

« ITis (spanS)-closed.

(2) The permutatiors,-action on{—1, 0, 1}"* induces ar$,,-action on the relative
n-cuts by(S, IT) > (S, Tlo~ 1), foro € 48,. Therelative n-resonances are defined
to be the orbits of this§,-action. We let[S, IT] denote the relative-resonance
represented by the relatiwecut (S, IT).

WhensS € R, andIl C P®), IT is S-closed, it is convenient to use the no-
tation Q(S, IT) to denote the relative cutS \ I, IT). Clearly we haveg s, I1) =
Q(spars, IT). Analogously,[Q(S, IT)] denotes the relative resonarice\ IT, IT].

We use these two notations interchangeably depending on which one is more natural
in the current context.

The special case of the particular importance for our computations in the later
sections is that oD (S, = | §), wherern is a partition of{rn] with m parts. In this
case,wecallS\ (= | S), 7 | S) the relative(n, m)-cut associated t§ and.

By Definition 3.3, the relative cutS, IT) = ((spanS) \ IT, IT) consists of two
parts. We intuitively think ofspans) \ IT as the set of all resonances which survive
the shrinking of the strata associated to the elemeriig gb it is natural to call them
surviving elements. We also think oflT as the set of all partitions whose associated
strata are shrunk to the infinity point, so, accordingly, we call thpanitions at
infinity.

3.2. Direct products of relative resonances
Definition 3.4. For relative resonancgs, IT) and(T, A) we define
(S, ID) x (T,A) = (S x T, (Il x P(m))U (P(n) x A)).

Clearly the orbif (S, IT) x (T, A)] does not depend on the choice of representatives of
the orbitgd S, IT]and[T, A], so we may defingS, IT]x [T, Altobe[(S, IT) x (T, A)].
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The following special cases are of particular importance for our computation:

(1) A direct product of two resonances. For anm-cut S, and am-cut T, we have

SXT ={(x1, s Xm> V1o - > V) | (X125 Xm) €8S, V1, .., ) € T} € Ryt
and[S] x [T] =[S x T].

(2) A direct product of a relative resonance and a resonance. For S € R, I1 €
P(n) arlS-cIosed setof partitions, afmfd e Ry, we haveQ (S, [I)xT = Q(Sx T, I),
wherell = I xP({n+1,n+2,...,n+k}),and[Q(S, ID]x[T] = [Q(S, 1) x T].

Example.
=1{0} x 2({(0,0), £(1, =D}, {12}).

Remark 3.5. One can define a category, callediative resonance category, whose
set of objects is the set of all relativecuts. A new structure which it has in
comparison toR is provided by “shrinking morphisms”(S, IT) ~ (T, A), for
S, T C{-1,0,1}", P(n) 2 A 2 I, such thatspanS) \ A = T. They correspond
to shrinking strata to infinity.

3.3. Resonance Functors. Given a functor¥: R — Top*, we introduce the
following notation:

FQE.M=5©®)/ |J mMF@asSs).

un(r)ell

Definition 3.6. Afunctor¥ : R — Top* is called aesonancefunctor if it satisfies
the following axioms:

(A1) Inclusion axiom.
If §$ € R,, andz € OP(n), thenF (xS & S) is an inclusion map, and
F©S)/ImF xS & §) ~ F(Q(S, 7 | S)).

(A2) Relative resonance axiom.
If, for someS, T € R,, andIl, A C P(n), [Q(S,I1)] = [Q(T, A)], then
F(O((S, ) =~ F(Q(T, A)).

(A2) Direct product axiom.
For two relativen-cuts(S, IT) and(T, A) we have

F(S, 1) x F(T, A) ~ F((S, ) x (T, A)).
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GivenS € R,, andx € OP(n), letis , denote the inclusion mag (7 S SN S).
There is a canonical homology long exact sequence associated to the triple

FrS) ST 7(5) L= F (S 7 | 5)), (3.1)

namely

s ~ (Isn)s ~ s ~
Y B(F(rS) s B (F(8) — B(F(Q(S. 7 L S)))
(3.2)

0x ~ o~ (iS,rr)*
— = Hp (F(S) —>

We call (3.1), resp. (3.2), thetandard triple, resp. thestandard long exact sequence

associated to the morphismsS < § and the functorF (usually # is fixed, so its
mentioning is omitted).

4. First applications

4.1. Resonance compatible compactifications. As mentioned in the introduction
we shall now look at the natural strata of the spaké&8. The strata are defined by
point coincidences and are indexed by number partitions dfet Ef denote the
stratum indexed by.

Let » be a number partition of and leti be A with some fixed order on the
parts. Therk can be thought of as a vector with positive integer coordinat&in
Let S; be the sefx € {-1,0,1}" | (x, 1) = 0}. Obviously,S; is ann-cut and the
n-resonance; , which it defines, does not depend on the choick, diut only on the
number partitiori..

The crucial topological observation is thatiifis another partition of: such
that S, = S,, then the spaceE;* and £ are homeomorphic. This is precisely
the fact which leads one to introduce resonances and the surrounding combinatorial
framework and to forget about the number partitions themselves.

This allows us to introduce a funct@f mappings; to Ef; the morphisms map
accordingly. Clearly# (1/) = X®_. One can observe in this example the justification
for the names which we chose for the morphismgof‘inclusions” and “gluings”.
Furthermore, it is easy, in this case, to verify the axioms of Definition 3.6, and hence
to conclude tha# is a resonance functor. The only nontrivial point is the verification
of the second part of (A1), which we do in the next proposition.

Proposition 4.1. Let S bean n-cut and r € OP(n). Then # (vS) € F (= S) if and
only if un(v) € un() | S.
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Proof. Itis obvious that all the steps of the definition of(an | S which change the
partition preserve the proper# (vS) € ¥ (x S), hence thef direction follows.

Assume nowF (vS) € F (S). This means that there existses OP(m), where
m is the number of parts of, such thatF (7 S) = F(vS). By definition,t o €
un(r) | S. Now, we can reach um) from un(z o ) by moves of type (3) from the
definition of the relative resonances.

Indeed, ifF (z7S) = F(S) = Ef, then the sizes of the resulting blocks after
gluing alongr o 7 and alongv are the same. For every bloslof A we can go, by
means of moves of type (3), from the block of(ur ) which glues ta to the block
of un(v) which glues tab. Since we can do it for any block a&f we can go from
un(z o ) to un(v), and hence ufw) € un() | S. O

In the context of this stratification the following central question arises.

TheMain Problem (Arnold, Shapiro [7]). Describe an algorithm which, for a given
resonance, would compute the Betti numbers ﬁ?ffl, or Efz.

The case of the straﬁf1 is simpler, essentially because of the following elemen-
tary, but important property of smash productsXiandY are pointed spaces aid
is contractible, thelX A Y is also contractible.

In the subsequent subsections we shall look at a few interesting special cases, and
also will be able to say a few things about the general problem.

4.2. Resonances (a¥, 1!). Leta, k, [ be positive integers such that> 2. LetS be
the (I + k)-cut consisting of all the elementsf 1, O, 1}/*+* which are orthogonal to
the vectord, ..., 1, a, ..., a). Clearly, the( +k)-resonancés] is equal to(a¥, 1%).
! k

The casé < a is not very interesting, since then*, 1) = (1) x (1%). Therefore
we may assume that> a.

We would like to understand the topological properties of the sgaeé, 1/). In
general, this is rather hard. However, as the following theorem shows, it is possible
under some additional conditions @n

Theorem 4.2. Let ¥ : R —> Top* be a resonance functor such that # (1) is con-
tractiblefor / > 2. Letl =am + ¢, where0 < e <a — L

(@) Ifk # 1, 0r e > 2, then F (a¥, 1') is contractible.
(b) If k =1,and e € {0, 1}, then

}v(ak’ 11) ~ SUS[ﬁn(?’(l)ere{L), (41)

where # (1)"+<+1 denotes the (m + € + 1)-fold smash product.
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Since for the resonance functéf described in the subsection 4.1 we have
F (1) = X®, we have the following corollary.

Corollary 4.3. If X® iscontractible for I > 2, then

(@ Ifk #£#£1,0re>2(againl = am + ¢), then Eék 10 is contractible.

(b) Ifk = 1,ande € {0, 1},thenxX, , ~ susp' (X" +<t1), where X" <1 denotes
(a*,1%)
the (m + ¢ + 1)-fold smash prod(Jct.

Note. Clearly, (S1)® is contractible fod > 2, so the Corollary 4.3 is valid. In this
situation, the cask > 1 was proved in [5], and the cake= 1 in [3], [8].

Before we proceed with proving Theorem 4.2 we need a crucial lemma. Let
7 ePk+Dbe(d,...,a},{a+1},{a+2},...,{k+1}). Itis immediate that
[78] = (@1, 1=%), ifun(®) = 7.

Lemmad4.4. Let S be as above, T € R; such that [T] = (1)), and let v be the
partition ({1, ...,a}, {a+ 1}, {a + 2}, ..., {I}), then we have

[Q(S, 7 L )] =[Q(T,v | T)] x (1. (4.2)

Note. Lemma 4.4 is a special case of Lemma 4.6, however we choose to include
a separate proof for it for two reasons: firstly, it is the first, still not too technical
example of investigating the combinatorial structure of the resonance category, which
is a new object; secondly, the particular caséddt 1) resonances was a subject of
substantial previous attention.

Proof of Lemma 4.4. Recall that by the definition of the direct product,
[Q(T.v i T x A =[0(T xU, (w{ T)xP{l+1,....1+k}))],

whereU € R, and[U] = (1Y). Clearly,(v | T) x P{l +1, ..., 1 +k}) =m | S,
hence we just need to show th&t\ (x | S) = T xU)\ ((v | T) x
Pl +1,....1 + k})). Note that(T x U)\ (v | T) x P{l +1,...,
I+k}))=(T\ (v{T)) x U. Furthermore,

§= {0 w0 € (-1,0,2) | Zlfk tay  w=0},

g1
and the set which we need to remove fréro getS \ (z | S) is

I+k 1)
{(xl, coox4k) €(-1,0, 1}l+k | Zj:l—i—lxj +a Zi:lxi =0,

max(| Plus(xy. . ... x). |Minus(x1. ....x)[) > a}.
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Therefore, by the definition of the relative resonances, we have

S\( 9= {(xl, Cxp) € {=1,0, 1| Zizlxi =0,

I+k
Z i =0, |PIuS(x1,..-,x1)|<a}-

X
j=i+1

On the other hand1¥) = [{(y1, ..., y) € {—1,0, 1}} | Z’j‘.zl yj = 0}], and

I
NI ={G 2 e-1.01" | Yz =0 |Plusz,....2)| <al,
which proves (4.2). O

Proof of Theorem 4.2 (a) We use induction oh. The casd < « can be taken
as an induction base, since thert, 1)) = (1¥) x (1%), hence, by the axiom (A3),
F(d*, 1) = F (1% A F (1)), which is contractible, sinc& (1¥) is. Thus we assume
that! > a, andF (a*, 1!') is contractible for all’ < 1.

Let S andz be as in Lemma 4.4. The standard triple associated to the mor-
phismzS < S is F (a1, 1179) — F@ak, 1) — F(ak, 1)/ F (@1, 1-9).
Since, by the induction assumptiafi(a*+1, 1/%) is contractible, we conclude that
F(a*, 1) ~ F(a*, 1)/ F (@*1, 1179,

Basically by the definition, we have

F@d, 1)/F @17 = 50, 7 | 95)).

On the other hand, we have proved in Lemma 4.4 @S, = | S)] =
O(T,v | T) x (1¥), whereT andv are described in the formulation of that lemma.
By axioms (A2) and (A3) we getth&l (Q(S, 7 | §)) >~ F(Q(T,v | T)) AF (15),
which is contractible, sincé& (1) is. ThereforeF (a¥, 1') is also contractible.

(b) The argument is very similar to (a). We again assdéiea, which implies
I > 2. By the using the same ordered set partitioas in (a), we get thaf (a, 1) ~
F(a, 1))/ F (a?,1=%). Further, by Lemma 4.4 and the axioms (A2) and (A3) we
conclude thafF (a, 1) ~ F (1) A (F 1)/ F (a, 17%)). SinceF (1) is contractible,
we get

F(a, 1) ~ F(1) A suspF (a, 1179). (4.3)
SinceF(a) = F(1), Fa,1l) = FQ) A F(1), and F(a, 1) is contractible if
2 <1 < a, we obtain (4.1) by the repeated usage of (4.3). O

4.3. Resonances (ak, b'). The algebraic invariants of these strata have not been
computed before, not even in the case= $1 and F - the standard resonance
functor associated to the stratificationXf”.
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We would like to apply a technique similar to the one used in the subsection 4.2.
A problem is that, once one starts to “glue’s, one cannot geb’s in the same
way as one could in the previous section from 1's. Thus, we are forced to consider
a more general case of resonances, natélya*, b'), whereg is the least common
multiple ofa andb. Assumeg = a-a = b - b, andb > a > 2. Analogously with
the Theorem 4.2 we have the following result.

Theorer_n 45, Let £ be as in Theorem 4._2 Let furthermore k = x - a + €1,
l=y-b+ey,where0 <e1 <a,0<er <b. Then

susg YL F (rtytmtate) ifm, e, e € {0, 1);

Fg" a" by =" ,
point, otherwise.

(4.4)

Justas in Subsection 4.2 (Corollary 4.3), Theorem 4.5 is true if one repfa@es
with £,

The proof of Theorem 4.5 follows the same general scheme as that of Theorem 4.2,
but the technical details are more numerous. Again there is a crucial combinatorial
lemma.

Let S be an(m + k + [)-cut consisting of all the elements g1, 0, 1) +k+!
which are orthogonal to the vecttt, ..., a,b, ..., b, g,...,g). Assumek > a,

k I
and let an unordered set partitiorbe equal ta{1, . c‘g} {a +1}, ..., {k+1+m}).
We see thalS] = (g", a, b'), and[7 S] = (gm+1 —a ph,ifr = un(n)

Lemma4.6. LetT € R suchthat [T] = (1¥),andv = ({1,...,a}, {a+1},...,
{k}), then

[Q(S, 7 | I =[O(T,v | T)] x (3", 1)). (4.5)

Proof. Again, it is easy to see that the sets of the partitions at infinity on both sides
of (4.5) coincide. Indeed,

[Q(T. W] x " 1) =[Q(T x U, (v | T) x Pk + 1,....k+m +1})],
whereU € R,,4;suchthaiU] = (0™, 1)), and(v | T)xP({k+1, ..., k+m+l}) =
m | S. Also, we again have the equality

TxH\((w{T)yxPlk+1,....k+m+I1}) =T\ | T)xU,

which greatly helps to prove that the sets if the surviving elements on the two sides
of (4.5) coincide.
By the definition
k+i

k
= {ea o xr) € FLO U a3 x>

k+I1+m
+gZz k1T }
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and, again, the set which we have to remove ftoto getS \ (& | S) is
k+
Xi

k
{Ga e € (L0 [ wtnd

k+I1+m . _
+g Zi=k+z+lx" =0, max(| Plusx1, ..., xo)l, | Minus(x1, ..., x¢)|) > a}.

By the definition of the relative resonances and some elementary number theory we
conclude that

S\ 4 8) = {0t ki) € (=10, | [Plustag, x| <,

k k+1 k+1+m
Yo x=0,bY " X xp = }
i=1 i=k+1 i=k+I1+1

The number theory argument which we need is thatif+ by + Icm(a, b)z = 0,
thena | x, wherea - a = Icm(a, b). This can be seen by, for example, noticing that if
ax + by +Ilcm(a, b)z = 0, thenb | ax, but since alsa | ax, we have Icnta, b) | ax,
hencez | x.

The equation (4.5) follows now from the earlier observations together with the
equalities

T\(v]T)
— {(xl,...,xk)e{—l,O, 1 | |Plusxy, ..., x0)| < @, Z;xizo},
and
™, 1
m+l I+m
= {1 e 10 [ Y b w=o)] o

Proof of Theorem4.5. The caseg < a and! < b are easily reduced to Theorem 4.2.
Assume therefore that> a and! > b. Recall alsothak > a > 2, and hence > 2.
Let S andx be as in the formulation of Lemma 4.6. The standard triple associated

to the morphismr S & Sis

F (" a0 b > F (g db b > F(g",ak b))/ F (@b, (4.6)

We break the rest of the proof into 3 cases.

Casem > 2. Again, we prove tha# (g™, a*, b') is contractible by induction OA.
This is clear ifk < a. If k > a, it follows from (4.6) that¥ (g™, a*, b') ~
F(g", a*, b/ F (g™, ak 4 b = F(Q(S. 7 | §)). ByLemmad4. 6 we conclude
that (g™, a*, b') ~ F(Q(T,v | T)) A F(b™,1)). By Theorem 4.2F (b™, 1}) is
contractible, hence so & (g™, a¥, b').
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Casem = 0. By Lemma 4.6 we get that

FOS, 7| 8) = FQT, v THAFA).
Sincel > 2, we have that? (1) is contractible, hence so B, | 8) =
F (d*, b))/ F (g, a2, bl). Therefore, by (4.6 (a*, b') ~ F (g, a*%, b').

Casem = 1. Since ¥ (g2 a*=%, b') is contractible, we conclude by (4.6) that
F(g,a", b)) ~ F(g,dak b)) F (g2 a*=% by = F(Q(S, 7 | §)). By Lemma 4.6,
and the properties of the resonance functors, we have

F(g.a*. b)) = F (b, 1) A (F(1)/F @ 1)

_ _ 4.7
~ F (b, 1) A susgF (a, 1F-%). *.7)

By the repeated usage of (4.7) we obtain (4.4). a

5. Seguential resonances
5.1. Thestructuretheory of strata associated to sequential resonances

Definition 5.1. LetA = (A1, ..., p), A1 < --- < Ay, be anumber partition. We call
A sequential if, whenevery_; ., A; = ;. ; A, andg € I suchthay = max(71UJ),
then there existd < J, such that., = D it

Correspondingly, we call a resonanSesequential, if it can be associated to
a sequential partition.

Note that the set of sequential partitions is closed under removing blocks.
Examples of sequential partitions. (1) All partitions whose blocks are equal to
powers of some number.

(2) (a*, b, 1) such thata > bl; more generall)(all‘l, ...,a", 1™ such that
a; > Z;:Hlajkj, foralli € [¢].

Through the rest of this subsection, we ldbe as in Definition 5.1. For such
we use the following additional notations:

o mm(A) = |{i € [n] | A; = A,}|. In other words

An—mm() Z An—mm()+1 = = Ay

« I()) C [n]is the lexicographically maximal set (see below the convention that
we use to order lexicographically), such that)| > 2, andi, = > i/ Ai-
Note that it may happen that(l) does not exist, in which casg (A) =~
F s AnemmGy) A F (1)) "and can be dealt with by induction.
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Letn be a positive integer. We use the following convention for the lexicographic
orderon[n]. ForA ={a1,...,ar}, B=1{b1,...,by}, A, B C[n],a1 < --- < ai,
b1 <--- < by, we say that is lexicographically larger than if either A © B or
there existg < min(k, m) suchthaty = by, ak—1 =bp—1,...,k—g+1 = bu—g+1,
anday_g > by—g.

Proposition 5.2. If 4 = (A1,...,44), 21 < .-+ < Ay, IS @ sequential partition,
thensoisi = (Ajy, -5 Ajis Diesy Mi)y Wheret = n — [I(M)], and {j1, ..., ji} =
]\ I (X).

Proof. Let A1 = Ajy,.... A = Aj, Mgl = Y e Mi- We need to check the
condition of Definition 5.1 for the identity

k=) i (5.1)
iel jelJ
If t+1 ¢ U J, then it follows from the assumption thiats sequential. Assume
t+1el. IfA = A,, for somej € J, takeJ = {j}, and we are done W = Ay,
for somei € I \ {r + 1}, then, since: is sequential, there exists € J such that
Z,e] A = A, = A;41, and we are done again.

Flnally, assume,; # A, fori e U J)\ {r+1}. Substitutingkn_instead oft, 11
into the identity (5.1) is allowed, sincg, does not appear among; };eruJ)\(r+1}-
This gives us an identity fox, and again, since is sequential, we find the desired

set] C J such thatZJEJ A= Ayl O

Let S € R, be the set of all elements ¢f1, 0, 1}", which are orthogonal to
the vectorh = (A1,...,A,). Clearly,[S] = 1. Letn € P(n) be the partition
whose only nonsingleton block is given byA). The next lemma expresses the main
combinatorial property of sequential partitions.

Lemmab.3. Let t € P(r) be a partition which has only one nonsingleton block B,
andassume i, = ;.gAi. Thentem | S.

Proof. Assume there exists partitiomsas in the formulation of the lemma such that
T ¢ w | S. Choose one so that the bloBkis lexicographically largest possible. Let
C = BNI(}). By the definition off (1), and the choice a8, we have) ., ;)\ c Ai =
ZjeB\C Aj,andg € I(A) \ C, whereg = max((I(x) U B) \ C).

Since partition. is sequential, there exisf3 € B\ C suchthat, = ;.5 4;.
Lety € P(n) be the partition whose only nonsingleton bloclGis= (B \ D) U {¢}.
Clearly,) ;,.; i = A4, and|G| > 2. By the choice of;, G is lexicographically
larger thanB, hencey e = | S.

Let furthermorey € P(n) be the partition having two nonsingleton blocks:
D andG. By Definition 3.1(2) ify € = | S, theny € = | S. By Definition 3.1(3),
if e | S, thent € x | S, which yields a contradiction. O
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Let T € Ru_mm( be the set of all elements ¢f-1, 0, 1}*~""™* which are
orthogonal to the vectairy, . .., Ay—mm(,)). Letv € P(n —mm(1)) be the partition
whose only nonsingleton block is given lyx). We are now ready to state the
combinatorial result which is crucial for our topological applications.

Lemma5.4.
[Q(S, 7 | )] =[Q(T,v | T)] x A™"W). (5.2)

Proof. By definition we must verify that the sets of partitions at infinity and the
surviving elements coincide on both sides of the equation (5.2).

Let us start with the partitions at infinity. Filtered through Proposition 4.1, the
identitywr | S =@ | T) x Pn —mm(Q) + 1, ..., n}) becomes essentially tau-
tological. Both sides consist of the partitions= (t1, ..., 1) € P(n) such that
the number partitior( )", c,, Ai, ..., X, i) Can be obtained from the number
partition (A, ..., Aj,, Ziem) A, where{ji, ..., j;} = [n]\ I(X), by summing
parts.

Let us now look at the surviving elements. It is obvious that(z | §) 2
(T'\ (v | T)) xU,whereU e Ry such tha{U] = (1™, and we need to show
the converse inclusion. Let= (x1,...,x,) € Ssuchthaty ' . .1x #0
(otherwisex e (T'\ (v | T)) x U). We can assumg_i_, ;)11 % > 0. Then,
sinces is a sequential resonance, there exjsts (y1, ..., y») € S such that

« if yi # 0, thenx; = y;;
e |Plugy)| =1,andPlugy) € {n —mm() +1,...,n}.

This, by Lemma 5.3, means that ¢ S \ (@ | ), which in turn necessitates
x & S\ (z | §). This finishes the proof of the lemma. O

Just as before, this combinatorial fact about the resonances translates into a topo-
logical statement, which can be further strengthened by requiring some additional
properties front.

Definition 55. LetA = (A1, ..., An), A1 < --- < A,, be a sequential partition, and
letg = max/ (A). A is calledstrongly sequential, if either 7 (1) does not exist or there
existsJ C I (1) \ {g} such that, = >,_, A; (note that we do not requitd| > 2).

We are now in a position to prove the main topological structure theorem con-
cerning the sequential resonances.

Theorem 5.6. Let ¥ beasin Theorem4.2 Let A be a sequential partition such that
I (1) exists. Then the following holds.

(1) f mm(A) > 2, then F (1) iscontractible.
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(2) If mm() = 1, then F(A) ~ F(Q(T,v | T)) A F(1), and we have the
inclusion triple F (1) < F(ri, ..., 1) — F(O(T,v | T)), where
= j,....xj) {j1, ..., jr} =[0I\ I(X), and v € P(n — mm(1)) is the
partition whose only nonsingleton block is given by 7(1). We set F(u) to be
apoint, if (1) does not exist.

If moreover X isstrongly sequential, then themap i ishomotopic to atrivial map
(mapping everything to a point), hence the triple splits and we conclude that

FR)=2(FDAFR, ..., k1) VSUSEF (1) A F (). (5.3)

Proof. (1) We use induction o@?;i"’"(” Ai. If I()1) does not exist, then, is
independent, i.eF (L) =~ F (1, ..., dnemmoy) X F(L™m*P) and henceF (1) is
contractible. Otherwise consider the inclusion triple

FA) = FOH) = FR/FQ) =FQS, 7|9, (5.4)

wherei = (Aj..... A5, Y e M), @ndm € P(n) is the partition whose only
nonsingleton block is given by (). By the induction assumptioft (1) is con-
tractible. On the other hand, by Lemma 5&(Q(S,7 | S)) >~ F(Q(T,v |
7)) A F (1M which is also contractible ifim (1) > 2.

(2) if mm(x) = 1, then we can conclude from (5.4) that(x) ~ F(Q) A
F(Q(T,v | T)). Next, consider the inclusion triple

F(u) <> FOL ... dm 1) — F(OT, v | T)). (5.5)

If A is strongly sequential, then there exigts 1(1) \ {¢} suchthat, = >
(hereq = max/ (1)). The map factors:

iel Ai

i2

i1 lrod
Fw) S }'(Am, ST AR DR xi) & FGi. h)),  (5.6)

where{p1,..., pn—1-1s)} = [n = 1]\ J. Since(r,,, ..., Apu_1 s Zie,m A s

sequential, andim (A py, - - - Ap, 1 ;1s 2iery M) = 2, we can conclude that the
middle space in (5.6) is contractible, and hende (5.5) is homotopic to a trivial
map. This yields the conclusion. O

5.2. Resonances (a, b’, 1™)

Theorem 5.7. Leta, b, k, L, m, r be positive integerssuch that » > 1, m > r, and
a=>bl+r. Then

F @, b, 1) ~ susgF (YA F (@, 1" ") v (FAHAF@B,1™). (5.7)
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Note. Therestrictionn > r is unimportant. Indeed, it < r,thena > bl+m, hence
aisnotinvolvedin any resonance other thas a. Thisimplies thatF (ak, bt 1m) =

F (1% x F (b, 1), and we have determined the homotopy typ&a&*, b', 1) by

the previous computations.

Proof of Theorem 5.7. Obviously, the conditiom > bl guarantees that the partition
(a*, b*, 1™) is sequential, hence Theorem 5.6 is valid. It follows that i 2, then
F (a*, b', 1™) is contractible, hence (5.7) is true.

Furthermore, if > 2, or,/ = 1 andm > b, then(a, b, 1™) is strongly sequen-
tial, hence in this case (5.3) is valid, which in new notations becomes precisely the
equation (5.7).

Finally, assumé = 1 andb > m > r > 1. Leta = b+d. If F(a, 1" %)

or F (b, 1) is contractible, then the maipin the inclusion tripleF (a, 1"~9) <5

F (b, 1) — F (b, 1"™)/F (a, 1) is homotopic to a trivial map, and we again
conclude (5.7). If both of these spaces are not contractible fien 1"~¢) ~
§2vteatl gnd F (b, 1) ~ S&+atl where nonnegative integess y, €1, e> are
defined by

m=bx+e€1, m—d=0b+d)y+e, ¢€1,e€{0,1}. (5.8)

Letusshowthat2+e1 > 2y+e. If x > y,thenZX4¢€1 > 2x > 2y+2 > 2y +eo.
From (5.8) we have th@t(x —y) = d+dy+e2—e€1. If x < y, thenthe left hand side
is nonpositive. On the other hand, sinte> 1, the right hand side is nonnegative.
Hence, both sides are equal to 0, which imphes: y,d = €1 = 1,¢2 = y = 0.
Thisyields & + €1 > 2y + €.

The homotopic triviality of the mapfollows now from the fact that the homotopy
groups of a sphere are trivial up to the dimension of that sphereri@’) = 0, for
O<k<n-1 O
5.3. Division chain resonances. We call the resonana@;, ", b, ", ..., b1'*) adi-
vision chain resonanceif b; | b;+1, for anyi € [n — 1]. For convenience, we assume
m; > 1,fori € [n], and set; = b; /b;_1, forn > i > 2, andry = b1.

Let us see that division chain resonances are strongly sequential. First, we show

thata = (by", b7, ..., by is sequential. Assume that
Z%’bi = Zﬂjbj, (5.9)
iel jeJ

and there are no equal size parts appearing on both sidesf Semax(/ U J),
g = min(/ U J). We use induction orf — g. If f = g + 1 then the condition of
sequentiality is obviously satisfied. Otherwise, divide both sides,byrhe number
of parts of size 1 must be divisible by, 1, hence, in (5.9) all the parts of sizg can
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be replaced by a certain number of parts of $ize;. By the induction assumption
the condition of sequentiality is satisfied for the new relation, hence it follows for (5.9)
as well.

Note that it also follows from the previous argument th@t) must be of the form
{p,p+1,....,n—mm() — 1 n—mm(r)}, for somep.

Itis now easy to see thatis strongly sequential. Assumg = b,_1+ ;. oib;,
then(r, — 1)b,—1 = Y ,; «ib;. The sequentiality condition is true for the latter
relation, hence the strong sequentiality condition is true for the first one.

Thus, Theorem 5.6 applies, and it yields:

(1) if m, > 2, then¥ (1) is contractible;
(2) if I()) exists, then

Fbn, )"t DI X(FQAF BT ... DY) (5.10)
VSTAF Q) AF (ba, by, b7 D),
where (b, bf‘f, b;"jil, ..., by is obtained from(b,, b "7*, ..., b1 by re-

moving the parts indexed bi(1). We haven, > 1.
(3) If I(1) does not exist, then

Fbn, by 1t DI 2 FOAF O D, (5.11)

It is immediate from the formulae (5.10) and (5.11) that each topological space
F(by", b;”jf, ..., b]"") is homotopy equivalent to a wedge of spaces of the form
F (1) A SP, where F (1) means anw-fold smash product of (1). The natural
combinatorial question which arises is how to enumerate these spaces. We shall now
constructa combinatorial model: aweighted graph which yields such an enumeration.
For convenience of notations, we sef = 1. I'; is a directed weighted graph on
the set of verticef0, 1, . . ., n} whose edges and weights are defined by the following
rule. Forx,x +d € {0, ...,n},d > 1, there exists an edgéx, x + d) (the edge is
directedfromx to x + d) if and only if

bx+d ' bx+d—lmx+d—1 + bx+d—2mx+d—2 + -+ bx+1mx+1 + by (my — 1)
In this case the weight of the edge is defined as
wx,x +d) = (bxgd—1Mxyd—1+ -+ + byxpamyi1 +be(my — 1)) /byiq.

Note that ifd > 2 and there exists an edgér, x + d), then there exists an edge
e(x,x+d—1).

We call a directed path iir;, complete if it starts in O and ends in. Lety be
a complete path i, consisting of edgesy = (e(xg, x1), ..., e(x;—1, x;)), where
xo = 0, andx; = n. The weight ofy is defined to be the paii(y), w(y)), where
I(y) =t,andw(y) = Y j_y w(xi_1, %)
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Theorem 5.8. Let A = (by, b, "%, ..., b7, then

F) = \/(FQ OO A gv®), (5.12)
Y

where the wedge is taken over all complete paths of T,.

Proof. We use induction on. The base of the inductionis= 1. In this casd’, is
a graph with only one edgg0, 1), w(0, 1) = 0. Thus, there is only one complete
path. It has weigh(l, 0), andF (A) >~ F (1).

Next, we prove the induction step. We break up the proof in three cases.

Case 1. 7(A) doesnot exist. By (5.11) we have
FQ)xFQAFOB ... 0. (5.13)

On the other hand; () does not exist if and only b, > m,_1b,—1+ - -+ + m1b1.

We also know that: > 2. This implies that there is at most one edge of the type
e(x,n), namelye(n — 1, n). This edge exists if and only if,,_1 = 1, in which case
wn—1,n)=0.

If this edge does not exist then there are no complete pafhisamd, at the same
time (b;"fil, ..., b]'") is contractible by the previous observations. This agrees
with (5.12).

If, on the other hand, this edge does exist, then all complete pathgst be of
the typey = (7, e(n — 1, n)), wherey is a complete path from 0 to— 1. Also in
this case (5.13) agrees with (5.12).

Case 2. I(A) existsand m,,_1 > 2. In this case’F(ijil, el b’l’”) is contractible,
and N

FO)=SPAF Q) AF (b, by, b, 7. b, (5.14)
where(b,, bf", b;"jil, ..., biYyis asin (5.10).

Letd = (by, bqﬁ", bZﬁl, ..., bI""). We can describe the grajph: it is obtained
from I, by

(1) removing all vertices indexed iy + 1, ..., n — 1} and the incident edges;
(2) decreasing the weight of every existing edge, n) by 1;
(3) keeping all the existing edges with the old weights on th¢Get ., g — 1, g}.

This operation o, is well-defined, since there can be no edgef jnof the
typee(x, n), forx € {¢g +1,...,n — 1}, and since the weight of edgeé, n), for
x €{0,...,¢g} mustbe atleast 1, &, > 1. Furthermore, it is clear from the above
combinatorial description df; that the set of the complete pathsIafis the same
as that ofl"; , and that the weights of the edges in these paths are also the same except
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for the edge with the endpoint whose weight has been decreased by 1. Thus, (5.14)
agrees with (5.12) in this case.

Case 3. 1()) existsand m,_1 = 1. This case is rather similar to the case 2, except
that there is an edggn — 1, n) of weight 0. Thus['; bookkeeps all the complete
paths ofT";, except for the ones which have this edge — 1, n).

However, the first term of the right hand side of (5.10) bookkeeps the paths
(y,e(m—1,n)),justlike inthe case 1. Since the set of all complete paths @ the
disjoint union of the sets of those paths which contdin— 1, n), and those which
do not, we again get that (5.10) provides the inductive step for (5.12). O

Examples. (1) Leti = (a, 1), fora > 2. Thenl, is a graph on the vertex set
{0, 1, 2} having either one or two edges:

(a) it has in any case the edg@®, 1), w(0, 1) = 0;

(b) if a dividesl, then it has the edgg0, 2), in which casav(0, 2) = [/a;

(c) if a dividesl — 1, then it has the edg#1, 2), in which casev(1,2) = (I — 1)/a.
Clearly Theorem 5.8 agrees with Theorem 4.2. Indeedgf{0, 1} (wheree is taken
from the formulation of Theorem 4.2), then there are no complete pathg. irif

€ = 0, then there is one path, 2) of weight(1, [/a); and ife = 1, then there is one
path((0, 1), (1, 2)) of weight(2, ({ — 1)/a). Thus, (5.12) and (4.1) are equivalent in
this case.

(2) Leta = (8, 4, 23, 15). Then the grapl; is

2

1

Figure 1

It has 4 directed paths from 0 to 4 and, by Theorem 5.8, we have
FO) >~ (FDIASHVEFD ASHVEFEQDEASHV(FQ A SY,

in particularz® ~ §5v §8 v 5§10\ §11,
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6. Remarkson complexity of resonances

The main idea of all our previous computations was to find, for a givent S,
a partitiont € P(n) such thatspais\ (r | S)) # S. Intuitively speaking, shrinking
the substratum corresponding#d, where uriz) = 7, essentially reduces the set
of linear identities inS. It is easy to construct examples when smctioes not exist,
e.g., Example 2.2 (4).
These observations lead us to introduce a formal notion of complexity of a reso-
nance.

Definition 6.1. 1) ForS € R, thecomplexity of S is denoted:(S) and is defined by

c(S) = min{|II| | IT € P(n), spanS \ (IT | S)) # S}. (6.1)

2) We define the complexity of anresonance to be the complexity of one of its
representing cuts. Clearly, it does not depend on the choice of the representative.

Note. The numbek(S) would not change if we required the partitionslinto have
one block of size 2, and all other blocks of size 1.

The higher is the complexity of a resonariég, the less it is likely that one can
succeed with analyzing its topological structure using the method of this paper. This
is because one would need to take a quotient by a uniof( 8f) strata and it might
be difficult to get a hold on the topology of that union.

We finish by constructing for an arbitrary € N, a resonance of complexity.
Let A, = (a1,...,an, b1,...,b,) such thata;, b; € N, a; + b; = a; + b;, for
i, j € [n], and all other linear identities amomgs andb;’s with coefficientst1, 0
are generated by such identities. In other words, theS @gsociated ta is equal to
the set

n
{(xl, e Xna VL, Ya) € {—1,0, 1% ‘ Zizlyi =0,

(6.2)
xi+ 3 =0, Vi e [n].
It is not difficult to construct such,, directly:
1) Chooseus, .. ., a, such that the only linear identities with coefficientg, O
onthe seti1, a1, az, as, . .., a,, a, are of the formu; = a;; in other words, there are

no linear identities with coefficient&2, +1, 0 on the sets, ..., a,. One example
is provided by the choice; = 1,a2 =3, ..., a, = 3* 1.

2) Leth; = N + q;, fori € [n], whereN is sufficiently large. As the proof of
Proposition 6.2 will show, it is enough to choase> 23)""_; 4;. This bound is far
from sharp, but it is sufficient for our purposes.
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Proposition 6.2. Let S, be the n-cut associated to the ordered sequence of natural
numbers A,, described above. Then ¢(S,,) = n.

Proof. First, let us verify that the cut, associated ta,, is equal to the one described
in (6.2). Take(x1, ..., Xn, Y1, .., Yu) € Sy.
Assume first thad""_, yi # 0. Then,(x1,...,x,, y1,..., y,) Stands for the

identity
dai+ Y bi=) ai+ Yy b (6.3)
iely jen ielp jeJs
such thatJi| > |J2| + 1. This implies thaiV is equal to some linear combination of
a;'s with coefficientst2, +1, 0. This leads to contradiction, sindé > 22;’:1 Ai.

Thus, we knowtha}";_,; y; = 0. CancellingV-|J1| out of (6.3) we getan identity
with coefficientst2, +1, 0 on the set, ..., a,. By the choice ofy;’s, this identity
must be trivial, which amounts exactly to saying that- y; = 0, fori € [n].

Second, it is a trivial observation thatsS,) < n. Indeed, letr; € P®)
be a partition with only one nonsingleton blo¢k, n + i), for i € [r]. Then
span(S, \ ({71, ...,m} 1 Su) # S, since for any(x1, ..., X, ¥1,...,Yn) €
So \ ({1, ..., e} b S), we havery = 0.

Finally, let us see that(S,) > n — 1. As we have remarked after Definition 6.1,
it is enough to consider the case when the partitiond dfave one block of size 2,
and the rest are singletons. Let us call the identity b; = a; + b; the elementary
identity indexed (i, j).

From the definition of the closure operatipit is clear that an elementary identity
indexed(i, j) is notinS, \ (IT | S,) if and only if the partition whose only non-
singleton block igi, n + j) belongs tdll, or the partition whose only nonsingleton
block is(j, n + i) belongs td1. That is because the only reason this identity would
not be inS, \ (IT | S,) would be that one of these two patrtitions islin|, S,,. But,
if such a partition is inll | S,, then it must be ifl: moves (2) of Definition 3.1
can never produce a partition whose only nonsingleton block has size 2, while the
moves (3) of Definition 3.1 may only interchange between partitions+ j) and
(j, n + i) in our specific situation. Thus, we can conclude thaflif < n — 1, then
at mostn — 1 elementary identities are not#) \ (IT | S,).

Next, we note that for any distingtj, k € [n], the elementary identitigs, j) and
(j, k) imply the elementary identity, k). Let us now think of elementary identities
as edges in a complete graph ervertices,K,. Then, any seM of elementary
identities corresponds to a graptonn vertices, and the collection of the elementary
identities which lie in the spaM is encoded by theansitiveclosureof G. Itis awell
known combinatorial fact tha&, is (n — 1)-connected, which means that removal of
at mostn — 1 edges from it leaves a connected graph. Hence, if we remove at most
n — 1 edges fromK,, and then take the transitive closure, we ggtagain. Thus, if
ITI| < n—1, all elementary identities lie in spé$ \ (IT | S,,)). Since the elementary
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identities generate the whatg, we conclude thas,, = span(s, \ (IT | S,)), hence
c(Sy) >n—1. O
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