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Resonance category

Dmitry N. Kozlov∗

Abstract. The main purpose of this paper is to introduce a new category, which we call
a resonance category, whose combinatorics reflect that of canonical stratifications ofn-fold
symmetric smash products. The study of the stratifications can then be abstracted to the study
of functors satisfying certain sets of axioms, which we name resonance functors.

One frequently studied stratification is that of the set of all polynomials of degreen, defined
by fixing the allowed multiplicities of roots. We apply our abstract combinatorial framework,
in particular the notion of direct product of relative resonances, to study the Arnold problem of
computing the algebro-topological invariants of these strata.
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1. Introduction

Complicated combinatorial problems often arise when one studies the homological
properties of strata in some topological space with a given natural stratification. In
this paper, we study the symmetric smash products stratified by point multiplicities.

More specifically, letX be a pointed topological space (we refer to the base point
as a point at infinity), and denote

X(n) = X ∧ X ∧ · · · ∧ X︸ ︷︷ ︸
n

/Sn,

where∧ is the smash product of pointed spaces,Sn is the symmetric group, and the
action ofSn on then-fold smash product ofX is the permutation action. In other
words,X(n) is the set of all unordered collections ofn points onX with the collections
having at least one of the points at infinity identified, to form a new infinity point.
X(n) is naturally stratified by point coincidences, and the strata are indexed by the
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number partitions ofn. Note that we consider the closed strata, so, for example, the
stratum indexed(1, 1, . . . , 1︸ ︷︷ ︸

n

) is the whole spaceX(n).

The main open stratum, that is the complement of the closed stratum(2, 1, . . . , 1),
is a frequently studied object. It was suggested by Arnold in a much more general
context, see for example [2], that in situations of this kind one should study the
problem for all closed strata. The main argument in support of this point of view is that
there is usually no natural stratification on the main open stratum, while there is one
on its complement, also known as discriminant. Having a natural stratification allows
one to apply such computational techniques as spectral sequences in a canonical way.
Once some information has been obtained about the closed strata, one can try to find
out something about the open stratum by means of some kind of duality.

If one specifiesX = S
1, resp.X = S

2, one obtains as strata the spaces of all monic
real hyperbolic, resp. monic complex, polynomials of degreen with specified root
multiplicities. These spaces naturally appear in singularity theory, [1]. Homological
invariants of several of these strata were in particular computed by Arnold, Shapiro,
Sundaram, Welker, Vassiliev, and the author, see [2], [4], [5], [8], [9]. These are the
special cases which have inspired this general study.

Here we take a different, more abstract look at this set of problems. More specif-
ically, the idea is to introduce a new canonical combinatorial object, independent
of topology of particularX, where the combinatorial aspects of these stratifications
would be fully reflected. This object is a certain category, which we name theres-
onance category. It was suggested to the author by B. Shapiro, [7], to use the term
resonance as a generic reference to a certain type of linear relations among parts of
a number partition.

Having this canonically defined category at hand, one then can, for each specific
topological spaceX, view the natural stratification ofX(n) as a certain functor from
the resonance category toTop∗. These functors satisfy a system of axioms, which
we take as a definition ofresonance functors. The combinatorial structures in the
resonance category will then project to the corresponding structures in each specific
X(n). This opens the door to develop the general combinatorial theory of the resonance
category, and then prove facts valid for all resonance functors satisfying some further
conditions, such as for example acyclicity of certain spaces.

The main combinatorial structure inside the resonance category, which we study,
is that ofrelative resonances and their direct products. Intuitively, a relative resonance
encodes the combinatorial type of a stratum with a union of some substrata shrunk
to form the new infinity point. These spaces appear naturally if we are trying to
compute the homology groups of our strata by means of long exact sequences, or,
more generally, spectral sequences.

Our idea is that the combinatorial knowledge of which relative resonances arere-
ducible (that is, are direct products of other relative resonances) serves as a guidance
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for which long exact sequences one is to consider for the actual homology compu-
tations. This way, the Arnold problem of computing the algebraic invariants of the
strata splits into two parts: the combinatorial one, embodied by various structures
in the resonance category such as the relative resonances, and the topological one,
reflecting the specific properties ofX.

Our notions of sequential and strongly sequential resonances are intended to cap-
ture the combinatorial structure of those resonances, which are particularly compati-
ble with the spectral sequence computations. This, in turn, leads to the natural notion
of complexity of resonances.

As mentioned above, to illustrate a possible appearance of this abstract framework
we choose to use a class of topological spaces which come in particular from the
singularity theory, and whose topological properties have been studied: spaces of
polynomials (real or complex) with prescribed root multiplicities. In particular, in
case of strata(km, 1t ), which were studied in [2], [4] for the complex case, and in [5],
[8] for the real case, we demonstrate how the inherent combinatorial structure of the
resonance category makes this particular resonance especially reducible.

The paper is organized as follows:

Section 2. We introduce the notion of resonance category and describe the structure
of its set of morphisms.
Section 3. We introduce the notions of relative resonances, direct products of relative
resonances, and resonance functors.
Section 4. We formulate the problem of Arnold and Shapiro which motivated this
research as that concerning a specific resonance functor. Then we analyze the combi-
natorial structure of resonances(ak, bl), which leads to the complete determination
of the homotopy types of the corresponding strata forX = S1.
Section 5. We analyze the combinatorial structure of the sequential and strongly se-
quential resonances. ForX = S1 this leads to the complete computation of homotopy
types of the strata corresponding to resonances(ak, bl, 1m) such thata − bl ≤ m.
Next, we consider division chain resonances, which constitute a vast generalization
of the case(ak, 1l). We prove that in this case the strata always have a homotopy
type of a bouquet of spheres. We describe a combinatorial model to enumerate these
spheres as paths in a certain weighted directed graph, with dimensions of the spheres
being given by the total weights of the paths.
Section 6. We introduce the notion of a complexity of a resonance and give a series
of examples of resonances having arbitrarily high complexity.
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2. Resonance Category

2.1. Resonances and their symbolic notation. For every positive integern, let
{−1, 0, 1}n denote the set of all points inRn with coordinates in the set{−1, 0, 1}.
We say that a subsetS ⊆ {−1, 0, 1}n is span-closed if span(S) ∩ {−1, 0, 1}n = S,
where span(S) is the linear subspace spanned by the origin and points inS. Of course
the origin lies in every span-closed set. Forx = (x1, . . . , xn) ∈ {−1, 0, 1}n, we use
the notations Plus(x) = {i ∈ [n] | xi = 1} and Minus(x) = {i ∈ [n] | xi = −1}.

Definition 2.1. (1) A subsetS ⊆ {−1, 0, 1}n is called ann-cut if it is span-closed
and for everyx ∈ S \ {origin} we have Plus(x) �= ∅ and Minus(x) �= ∅. We denote
the set of alln-cuts byRn.

(2) Sn acts on{−1, 0, 1}n by permuting coordinates, which in turn inducesSn-
action onRn. Then-resonances are defined to be the orbits of the latterSn-action.
We let[S] denote then-resonance represented by then-cutS.

The resonance consisting of origin only is calledtrivial.

Example 2.2 (n-resonances for small values ofn). (1) There are no nontrivial 1-
resonances.

(2) There is one nontrivial 2-resonance:[{(0, 0), (1, −1), (−1, 1)}].
(3) There are four nontrivial 3-resonances:

[{(0, 0, 0), (1, −1, 0), (−1, 1, 0)}],
[{(0, 0, 0), (1, −1, 0), (−1, 1, 0), (1, 0, −1), (−1, 0, 1), (0, 1, −1), (0, −1, 1)}],

[{(0, 0, 0), (1, −1, −1), (−1, 1, 1)}],
[{(0, 0, 0), (1, −1, −1), (−1, 1, 1), (0, 1, −1), (0, −1, 1)}].

(4) Here is an example of a nontrivial 6-resonance:

[{(0,0,0,0,0,0), ±(1,1,0,−1,−1,0), ±(0,1,1,0,−1,−1), ±(1,0,−1,−1,0,1)}].
Symbolic notation. To describe ann-resonance, rather than to list all of the elements
of one of its representatives, it is more convenient to use the following symbolic
notation: we write a sequence ofn linear expressions in some number (between 1
andn) of parameters, the order in which the expressions are written is inessential.

Here is how to get from such a symbolic expression to then-resonance: choose
an order on then linear expressions and observe that now they parameterize some
linear subspace ofRn, which we denote byA. Then-resonance is now the orbit of
A⊥ ∩ {−1, 0, 1}n.
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Reversely, to go from ann-resonance to a symbolic expression: choose a repre-
sentativen-cut S, the symbolic expression can now be obtained as a linear parame-
terization of span(S)⊥.

For example the 6 nontrivial resonances listed in Example 2.2 are (in the same
order):

(a, a), (a, a, b), (a, a, a), (a + b, a, b),

(2a, a, a), (a + b, b + c, a + d, b + d, c + d, 2d).

2.2. Acting on cuts with ordered set partitions. We say thatπ is anordered set
partition of [n] with m parts (sometimes calledblocks) whenπ = (π1, . . . , πm),
πi �= ∅, [n] = ⋃m

i=1 πi , andπi ∩ πj = ∅, for i �= j . If the order of the parts is not
specified, thenπ is just called aset partition. We denote the set of all partitions, resp.
ordered partitions, of a setA by P(A), resp. OP(A). For P([n]), resp. OP([n]), we
use the shorthand notations P(n), resp. OP(n). Furthermore, for every setA, we let
un: OP(A) → P(A) be the map which takes the ordered partition to the associated
unordered partition.

Definition 2.3. Givenπ = (π1, . . . , πk) an ordered set partition of[m] with k parts,
andν = (ν1, . . . , νm) an ordered set partition of[n] with m parts, theircomposition
π � ν is an ordered set partition of[n] with k parts, defined byπ � ν = (µ1, . . . , µk),
µi = ⋃

j∈πi
νj , for i = 1, . . . , k.

Analogously, we can defineπ � ν for an ordered set partitionν and a set partition
π , in which caseπ � ν is a set partition without any specified order on the blocks.

In particular, whenm = n, and |πi | = 1, for i = 1, . . . , n, we can identify
π = (π1, . . . , πn) with the corresponding permutation of[n]. The composition of
two such ordered set partitions corresponds to the multiplication of corresponding
permutations, and we denote the ordered set partition({1}, . . . , {n}) by idn, or just id.

Definition 2.4. For A ⊆ B, let pB,A : P(B) → P(A) denote map induced by the
restriction fromB to A. For two disjoint setA andB, and� ⊆ P(A), � ⊆ P(B),
we define� × � = {π ∈ P(A ∪ B) | pA∪B,A(π) ∈ �, pA∪B,B(π) ∈ �}.

The following definition provides the combinatorial constructions necessary to
describe the morphisms of the resonance category, as well as to define the relative
resonances.

Definition 2.5. AssumeS is ann-cut. For an ordered set partition of[n], denoted
π = (π1, . . . , πm), we defineπS ∈ Rm to be the set of allm-tuples(t1, . . . , tm) ∈
{−1, 0, 1}m, for which there exists(s1, . . . , sn) ∈ S such that for allj ∈ [m], and
i ∈ πj , we havesi = tj .
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Clearly idS = S, and one can see that(π � ν)S = π(νS).

Verification of (π � ν)S = π(νS). By definition we have

(π � ν)S = {(t1, . . . , tk) | ∃(s1, . . . , sn) ∈ S s.t. ∀j ∈ [k], i ∈ µj : si = tj },
νS = {(x1, . . . , xm) | ∃(s1, . . . , sn) ∈ S s.t. ∀q ∈ [m], i ∈ νq : si = xq},

π(νS) = {(t1, . . . , tk) | ∃(x1, . . . , xm) ∈ νS s.t. ∀j ∈ [k], q ∈ πj , i ∈ νq : si = tj }.
The identity(π � ν)S = π(νS) follows now from the equalityµj = ⋃

q∈πj
νq .

There are many different ways to formulate Definition 2.5. We chose the ad
hoc combinatorial language, but it is also possible to put it in the linear-algebraic
terms. An ordered set partition of[n], π = (π1, . . . , πm), defines an inclusion map
φ : R

m → R
n by φ(ei) = ∑

j∈πi
ẽj , where{e1, . . . , em}, resp.{ẽ1, . . . , ẽn}, is the

standard orthonormal basis ofR
m, resp.Rn. GivenS ∈ Rn, πS can then be defined

asφ−1(Im φ ∩ S).

2.3. The definition of the resonance category and the terminology for its mor-
phisms

Definition 2.6. Theresonance category, denotedR, is defined as follows:

(1) The set of objects is the set of alln-cuts, for all positive integersn, O(R) =⋃∞
n=1 Rn.

(2) The set of morphisms is indexed by triples(S, T , π), whereS ∈ Rm, T ∈ Rn,
andπ is an ordered set partition of[n] with m parts such thatS ⊆ πT . For the reasons
which will become clear later we denote the morphism indexed with(S, T , π) by

S � πT
π

↪→ T .

As the notation suggests, the initial object of the morphismS � πT
π

↪→ T is S

and terminal object isT . The composition rule is defined by

(S � πT
π

↪→ T ) � (T � νQ
ν

↪→ Q) = S � πνQ
πν
↪→ Q,

whereS ∈ Rk, T ∈ Rm, Q ∈ Rn, π is an ordered set partition of[m] with k parts,
andν is an ordered set partition of[n] with m parts.

An alert reader will notice that the resonances themselves did not appear explicitly
in the definition of the resonance category. In fact, it is not difficult to notice that
resonances are isomorphism classes of objects ofR. Let us now look at the set of
morphisms ofR in some more detail.

(1) ForS ∈ Rn, the identity morphism ofS is S � S
id
↪→ S.
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(2) Let us introduce short hand notations:S � T for S � T
id
↪→ T , andπT

π
↪→ T

for πT � πT
π

↪→ T . Then we have

S � πT
π

↪→ T = (S � πT ) � (πT
π

↪→ T ).

Note also thatS � S = S
id
↪→ S.

(3) The associativity of the composition rule can be derived from the commutation
relation

(πS
π

↪→ S) � (S � T ) = (πS � πT ) � (πT
π

↪→ T )

as follows:

(S � πT ↪→ T ) � (T � νQ ↪→ Q) � (Q� ρX ↪→ X)

= (S � πT ) � (πT ↪→ T ) � (T � νQ) � (νQ ↪→ Q) � (Q� ρX) � (ρX ↪→ X)

= (S � πT ) � (πT � πνQ) � (πνQ� πνρX)

� (πνρX ↪→ νρX) � (νρX ↪→ ρX) � (ρX ↪→ X).

(4) We shall use the following names: morphismsS � T are calledgluings (or

n-gluings, if it is specified thatS, T ∈ Rn); morphismsπT
π

↪→ T are calledinclu-
sions (or (n, m)-inclusions, if it is specified thatT ∈ Rn, πT ∈ Rm), the inclusions
are calledsymmetries if π is a permutation. As observed above, the symmetries are
the only isomorphisms inR. Here are two examples of inclusions:

{(0, 0), (1, −1), (−1, 1)} � � ({1},{2,3}) �� {(0, 0, 0), (1, −1, −1), (−1, 1, 1)},

{(0, 0), (1, −1), (−1, 1)} � � ({1},{2,3}) �� {(0, 0, 0), ±(1, −1, −1), ±(0, 1, −1)}.

3. Relative resonances, direct products, and resonance functors

3.1. Relative Resonances. Let A(n) denote the set of all collections of non-empty
multisubsets of[n], and let P(n) ⊆ A(n) be the set of all partitions of[n]. For every
S ∈ Rn let us define a closure operation onA(n), resp. on P(n).

Definition 3.1. Let A ∈ A(n). We defineA ⇓ S ⊆ A(n) to be the minimal set
satisfying the following conditions:

(1) A ∈ A ⇓ S;
(2) if {B1, B2, . . . , Bm} ∈ A ⇓ S, then{B1 ∪ B2, B3, . . . , Bm} ∈ A ⇓ S;
(3) if {B1, B2, . . . , Bm} ∈ A ⇓ S, and there existsx ∈ S such that Plus(x) ⊆ B1,

then{(B1 \ Plus(x)) ∪ Minus(x), B2, . . . , Bm} ∈ A ⇓ S.
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For π ∈ P(n), we defineπ ↓ S ⊆ P(n) asπ ↓ S = (π ⇓ S) ∩ P(n). For
a set� ⊆ P(n) we define� ↓ S = ⋃

π∈� π ↓ S. We say that� is S-closed if
� ↓ S = �.

The idea behind this definition comes from the context of the standard stratification
of then-fold symmetric product. Given a stratumX indexed by a number partition
of n with m parts, let us fix some order on the parts. A substratumY is obtained
by choosing some partitionπ of [m] and summing the numbers within the blocks of
π . Since the order of the parts of the number partition indexingX is fixed,X gives
rise to a uniquem-cutS. The setπ ↓ S describes all partitionsν of [m] such that if
the numbers within the blocks ofν are summed then the obtained stratumZ satisfies
Z ⊆ Y . In particular, ifY is shrunk to a point, then so isZ. The two following
examples illustrate how the different parts of Definition 3.1 might be needed.

Example 1. The equivalences of type (2) from the Definition 3.1 are needed. Let
the stratumX be indexed by(3, 2, 1, 1, 1) (fix this order of the parts), and letπ =
{1}{23}{4}{5}. Then, the stratumY is indexed by(3, 3, 1, 1). Clearly, the stratumZ,
which is indexed by(3, 3, 2), lies insideY , hence{1}{2}{345} ∈ π ↓ S, whereS is
the cut corresponding to(3, 2, 1, 1, 1). However, if one starts from the partitionπ
and uses equivalences of type (3) from Definition 3.1, the only other partitions one
can obtain are{1}{24}{3}{5}, and{1}{25}{3}{4}. None of them refines{1}{2}{345},
hence it would not be enough in Definition 3.1 to just take the partitions which can
be obtained via the equivalences of type (3) and then takeπ ↓ S to be the set of all
the partitions which are refined by these.

Example 2. It is necessary to view the equivalence relation on the larger set A(n).
This time, let the stratumX be indexed by(a + b, b + c, a + d, b + d, c + d, 2d)

(fix this order of the parts, and assume as usual that there are no linear relations on
the parts other than those induced by the algebraic identities on the variablesa, b,
c, andd). Furthermore, letπ = {16}{23}{45}. Then the stratumY is indexed by
(a + b + 2d, a + b + c + d, b + c + 2d). Clearly, we have{34}{15}{26} ∈ π ↓ S,
whereS is the cut corresponding to(a + b, b + c, a + d, b + d, c + d, 2d).

A natural idea for Definition 3.1 could have been to define the equivalence relation
directly on the set P(n) and use “swaps” instead of the equivalences of type (3), i.e.,
to replace the condition (3) by the following one:

If {B1, B2, . . . , Bm} ∈ A ↓ S, and there exists x ∈ S, such that Plus(x) ⊆
B1, and Minus(x) ⊆ B2, then {(B1\Plus(x))∪Minus(x), (B2\Minus(x))∪
Plus(x), B3, . . . , Bm} ∈ A ↓ S.

However, this would not have been sufficient as this example shows, since no swaps
would be possible onπ = {16}{23}{45}.
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Definition 3.2. Let S be ann-cut,� ⊆ P(n) anS-closed set of partitions. We define

S \ � = S \ {s ∈ S | (Minus(s), Plus(s), singletons) ∈ �},
where(Minus(s), Plus(s), singletons) is the partition which has only two nonsingle-
ton blocks: Minus(s) and Plus(s).

In the next definition we give a combinatorial analog of viewing a stratum relative
to a substratum.

Definition 3.3. (1) A relative n-cut is a pair(S, �), whereS ⊆ {−1, 0, 1}n, � ⊆
P(n), such that the following two conditions are satisfied:

• (spanS) \ � = S;
• � is (spanS)-closed.

(2) The permutationSn-action on{−1, 0, 1}n induces anSn-action on the relative
n-cuts by(S, �)

σ�→ (σS, �σ−1), for σ ∈ Sn. Therelative n-resonances are defined
to be the orbits of thisSn-action. We let[S, �] denote the relativen-resonance
represented by the relativen-cut (S, �).

WhenS ∈ Rn and� ⊆ P(n), � is S-closed, it is convenient to use the no-
tation Q(S, �) to denote the relative cut(S \ �, �). Clearly we have(S, �) =
Q(spanS, �). Analogously,[Q(S, �)] denotes the relative resonance[S \ �, �].
We use these two notations interchangeably depending on which one is more natural
in the current context.

The special case of the particular importance for our computations in the later
sections is that ofQ(S, π ↓ S), whereπ is a partition of[n] with m parts. In this
case, we call(S \ (π ↓ S), π ↓ S) the relative(n, m)-cut associated toS andπ .

By Definition 3.3, the relative cut(S, �) = ((spanS) \ �, �) consists of two
parts. We intuitively think of(spanS) \ � as the set of all resonances which survive
the shrinking of the strata associated to the elements of�, so it is natural to call them
surviving elements. We also think of� as the set of all partitions whose associated
strata are shrunk to the infinity point, so, accordingly, we call thempartitions at
infinity.

3.2. Direct products of relative resonances

Definition 3.4. For relative resonances(S, �) and(T , �) we define

(S, �) × (T , �) = (S × T , (� × P(m)) ∪ (P(n) × �)).

Clearly the orbit[(S, �)×(T , �)] does not depend on the choice of representatives of
the orbits[S, �] and[T , �], so we may define[S, �]×[T , �] to be[(S, �)×(T , �)].
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The following special cases are of particular importance for our computation:

(1) A direct product of two resonances. For anm-cutS, and ann-cutT , we have

S × T = {(x1, . . . , xm, y1, . . . , yn) | (x1, . . . , xm) ∈ S, (y1, . . . , yn) ∈ T } ∈ Rm+n,

and[S] × [T ] = [S × T ].
(2) A direct product of a relative resonance and a resonance. For S ∈ Rn, � ⊆

P(n) anS-closed set of partitions, andT ∈ Rk, we haveQ(S, �)×T = Q(S×T , �̃),
where�̃ = �×P({n+1, n+2, . . . , n+k}), and[Q(S, �)]×[T ] = [Q(S, �)×T ].
Example.

Q({(0, 0, 0), ±(1, −1, −1), ±(0, 1, −1)}, {1}{23})
= {(0)} × Q({(0, 0), ±(1, −1)}, {12}).

Remark 3.5. One can define a category, calledrelative resonance category, whose
set of objects is the set of all relativen-cuts. A new structure which it has in
comparison toR is provided by “shrinking morphisms”:(S, �) � (T , �), for
S, T ⊆ {−1, 0, 1}n, P(n) ⊇ � ⊇ �, such that(spanS) \ � = T . They correspond
to shrinking strata to infinity.

3.3. Resonance Functors. Given a functorF : R −→ Top∗, we introduce the
following notation:

F (Q(S, �)) = F (S)
/ ⋃

un(π)∈�

Im F (πS
π

↪→ S).

Definition 3.6. A functorF : R −→ Top∗ is called aresonance functor if it satisfies
the following axioms:

(A1) Inclusion axiom.

If S ∈ Rn, andπ ∈ OP(n), thenF (πS
π

↪→ S) is an inclusion map, and

F (S)
/

Im F (πS
π

↪→ S) � F (Q(S, π ↓ S)).
(A2) Relative resonance axiom.

If, for someS, T ∈ Rn, and�, � ⊆ P(n), [Q(S, �)] = [Q(T, �)], then
F (Q(S, �)) � F (Q(T , �)).

(A2) Direct product axiom.
For two relativen-cuts(S, �) and(T , �) we have

F (S, �) × F (T , �) � F ((S, �) × (T , �)).



Vol. 80 (2005) Resonance category 207

GivenS ∈ Rn, andπ ∈ OP(n), let iS,π denote the inclusion mapF (πS
π

↪→ S).
There is a canonical homology long exact sequence associated to the triple

F (πS)
iS,π �� F (S)

p �� F (Q(S, π ↓ S)), (3.1)

namely

. . . ∂∗ �� H̃n(F (πS))
(iS,π )∗ �� H̃n(F (S))

p∗ �� H̃n(F (Q(S, π ↓ S)))

∂∗ �� H̃n−1(F (πS))
(iS,π )∗ �� . . .

(3.2)

We call (3.1), resp. (3.2), thestandard triple, resp. thestandard long exact sequence

associated to the morphismπS
π

↪→ S and the functorF (usuallyF is fixed, so its
mentioning is omitted).

4. First applications

4.1. Resonance compatible compactifications. As mentioned in the introduction
we shall now look at the natural strata of the spacesX(n). The strata are defined by
point coincidences and are indexed by number partitions ofn. Let 
X

λ denote the
stratum indexed byλ.

Let λ be a number partition ofn and letλ̃ be λ with some fixed order on the
parts. Theñλ can be thought of as a vector with positive integer coordinates inR

n.
Let Sλ̃ be the set{x ∈ {−1, 0, 1}n | 〈x, λ̃〉 = 0}. Obviously,Sλ̃ is ann-cut and the
n-resonanceSλ, which it defines, does not depend on the choice ofλ̃, but only on the
number partitionλ.

The crucial topological observation is that ifν is another partition ofn such
that Sλ = Sν , then the spaces
X

λ and
X
ν are homeomorphic. This is precisely

the fact which leads one to introduce resonances and the surrounding combinatorial
framework and to forget about the number partitions themselves.

This allows us to introduce a functorF mappingSλ̃ to 
X
λ ; the morphisms map

accordingly. Clearly,F (1l) = X(l). One can observe in this example the justification
for the names which we chose for the morphisms ofR: “inclusions” and “gluings”.
Furthermore, it is easy, in this case, to verify the axioms of Definition 3.6, and hence
to conclude thatF is a resonance functor. The only nontrivial point is the verification
of the second part of (A1), which we do in the next proposition.

Proposition 4.1. Let S be an n-cut and π ∈ OP(n). Then F (νS) ⊆ F (πS) if and
only if un(ν) ∈ un(π) ↓ S.



208 D. N. Kozlov CMH

Proof. It is obvious that all the steps of the definition of un(π) ↓ S which change the
partition preserve the propertyF (νS) ⊆ F (πS), hence theif direction follows.

Assume nowF (νS) ⊆ F (πS). This means that there existsτ ∈ OP(m), where
m is the number of parts ofπ , such thatF (τπS) = F (νS). By definition,τ � π ∈
un(π) ↓ S. Now, we can reach un(ν) from un(τ � π) by moves of type (3) from the
definition of the relative resonances.

Indeed, ifF (τπS) = F (νS) = 
X
λ , then the sizes of the resulting blocks after

gluing alongτ � π and alongν are the same. For every blockb of λ we can go, by
means of moves of type (3), from the block of un(τ �π) which glues tob to the block
of un(ν) which glues tob. Since we can do it for any block ofλ, we can go from
un(τ � π) to un(ν), and hence un(ν) ∈ un(π) ↓ S. �

In the context of this stratification the following central question arises.

The Main Problem (Arnold, Shapiro [7]). Describe an algorithm which, for a given
resonanceλ, would compute the Betti numbers of
S1

λ , or 
S2

λ .

The case of the strata
S1

λ is simpler, essentially because of the following elemen-
tary, but important property of smash products: ifX andY are pointed spaces andX

is contractible, thenX ∧ Y is also contractible.
In the subsequent subsections we shall look at a few interesting special cases, and

also will be able to say a few things about the general problem.

4.2. Resonances (ak, 1l). Let a, k, l be positive integers such thata ≥ 2. LetS be
the(l+k)-cut consisting of all the elements of{−1, 0, 1}l+k, which are orthogonal to
the vector(1, . . . , 1︸ ︷︷ ︸

l

, a, . . . , a︸ ︷︷ ︸
k

). Clearly, the(l +k)-resonance[S] is equal to(ak, 1l).

The casel < a is not very interesting, since then(ak, 1l) = (1k) × (1l). Therefore
we may assume thatl ≥ a.

We would like to understand the topological properties of the spaceF (ak, 1l). In
general, this is rather hard. However, as the following theorem shows, it is possible
under some additional conditions onF .

Theorem 4.2. Let F : R −→ Top∗ be a resonance functor such that F (1l) is con-
tractible for l ≥ 2. Let l = am + ε, where 0 ≤ ε ≤ a − 1.

(a) If k �= 1, or ε ≥ 2, then F (ak, 1l) is contractible.
(b) If k = 1, and ε ∈ {0, 1}, then

F (ak, 1l) � suspm(F (1)m+ε+1), (4.1)

where F (1)m+ε+1 denotes the (m + ε + 1)-fold smash product.
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Since for the resonance functorF described in the subsection 4.1 we have
F (1l) = X(l), we have the following corollary.

Corollary 4.3. If X(l) is contractible for l ≥ 2, then

(a) If k �= 1, or ε ≥ 2 (again l = am + ε), then 
X
(ak,1l )

is contractible.

(b) If k = 1, and ε ∈ {0, 1}, then 
X
(ak,1l )

� suspm(Xm+ε+1), where Xm+ε+1 denotes
the (m + ε + 1)-fold smash product.

Note. Clearly,(S1)(l) is contractible forl ≥ 2, so the Corollary 4.3 is valid. In this
situation, the casek > 1 was proved in [5], and the casek = 1 in [3], [8].

Before we proceed with proving Theorem 4.2 we need a crucial lemma. Let
π ∈ P(k + l) be ({1, . . . , a}, {a + 1}, {a + 2}, . . . , {k + l}). It is immediate that
[π̃S] = (ak+1, 1l−a), if un(π̃) = π .

Lemma 4.4. Let S be as above, T ∈ Rl such that [T ] = (1l), and let ν be the
partition ({1, . . . , a}, {a + 1}, {a + 2}, . . . , {l}), then we have

[Q(S, π ↓ S)] = [Q(T, ν ↓ T )] × (1k). (4.2)

Note. Lemma 4.4 is a special case of Lemma 4.6, however we choose to include
a separate proof for it for two reasons: firstly, it is the first, still not too technical
example of investigating the combinatorial structure of the resonance category, which
is a new object; secondly, the particular case of(ak, 1l) resonances was a subject of
substantial previous attention.

Proof of Lemma 4.4. Recall that by the definition of the direct product,

[Q(T, ν ↓ T )] × (1k) = [Q(T × U, (ν ↓ T ) × P({l + 1, . . . , l + k}))],
whereU ∈ Rk and[U ] = (1k). Clearly,(ν ↓ T ) × P({l + 1, . . . , l + k}) = π ↓ S,
hence we just need to show thatS \ (π ↓ S) = (T × U) \ ((ν ↓ T ) ×
P({l + 1, . . . , l + k})). Note that (T × U) \ ((ν ↓ T ) × P({l + 1, . . . ,

l + k})) = (T \ (ν ↓ T )) × U . Furthermore,

S =
{
(x1, . . . , xl+k) ∈ {−1, 0, 1}l+k

∣∣ ∑l+k

j=l+1
xj + a

∑l

i=1
xi = 0

}
,

and the set which we need to remove fromS to getS \ (π ↓ S) is{
(x1, . . . , xl+k) ∈{−1, 0, 1}l+k

∣∣ ∑l+k

j=l+1
xj + a

∑l

i=1
xi = 0,

max(| Plus(x1, . . . , xl)|, | Minus(x1, . . . , xl)|) ≥ a
}
.
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Therefore, by the definition of the relative resonances, we have

S \ (π ↓ S) =
{
(x1, . . . ,xl+k) ∈ {−1, 0, 1}l+k

∣∣ ∑l

i=1
xi = 0,∑l+k

j=l+1
xj = 0, | Plus(x1, . . . , xl)| < a

}
.

On the other hand,(1k) = [{(y1, . . . , yk) ∈ {−1, 0, 1}k | ∑k
j=1 yj = 0}], and

T \(ν ↓ T ) =
{
(z1, . . . , zl) ∈ {−1, 0, 1}l ∣∣ ∑l

i=1
zi = 0, | Plus(z1, . . . , zl)| < a

}
,

which proves (4.2). �

Proof of Theorem 4.2. (a) We use induction onl. The casel < a can be taken
as an induction base, since then(ak, 1l) = (1k) × (1l), hence, by the axiom (A3),
F (ak, 1l) = F (1k)∧F (1l), which is contractible, sinceF (1k) is. Thus we assume
thatl ≥ a, andF (ak, 1l′) is contractible for alll′ < l.

Let S andπ be as in Lemma 4.4. The standard triple associated to the mor-

phism πS
π

↪→ S is F (ak+1, 1l−a) ↪→ F (ak, 1l) → F (ak, 1l)/F (ak+1, 1l−a).
Since, by the induction assumption,F (ak+1, 1l−a) is contractible, we conclude that
F (ak, 1l) � F (ak, 1l)/F (ak+1, 1l−a).

Basically by the definition, we have

F (ak, 1l)/F (ak+1, 1l−a) = F (Q(S, π ↓ S)).

On the other hand, we have proved in Lemma 4.4 that[Q(S, π ↓ S)] =
Q(T, ν ↓ T ) × (1k), whereT andν are described in the formulation of that lemma.
By axioms (A2) and (A3) we get thatF (Q(S, π ↓ S)) � F (Q(T , ν ↓ T ))∧F (1k),
which is contractible, sinceF (1k) is. Therefore,F (ak, 1l) is also contractible.

(b) The argument is very similar to (a). We again assumel ≥ a, which implies
l ≥ 2. By the using the same ordered set partitionπ as in (a), we get thatF (a, 1l) �
F (a, 1l)/F (a2, 1l−a). Further, by Lemma 4.4 and the axioms (A2) and (A3) we
conclude thatF (a, 1l) � F (1) ∧ (F (1l)/F (a, 1l−a)). SinceF (1l) is contractible,
we get

F (a, 1l) � F (1) ∧ suspF (a, 1l−a). (4.3)

SinceF (a) = F (1), F (a, 1) = F (1) ∧ F (1), andF (a, 1l) is contractible if
2 ≤ l < a, we obtain (4.1) by the repeated usage of (4.3). �

4.3. Resonances (ak, bl). The algebraic invariants of these strata have not been
computed before, not even in the caseX = S1, andF - the standard resonance
functor associated to the stratification ofX(n).
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We would like to apply a technique similar to the one used in the subsection 4.2.
A problem is that, once one starts to “glue”a’s, one cannot getb’s in the same
way as one could in the previous section from 1’s. Thus, we are forced to consider
a more general case of resonances, namely(gm, ak, bl), whereg is the least common
multiple of a andb. Assumeg = a · ā = b · b̄, andb > a ≥ 2. Analogously with
the Theorem 4.2 we have the following result.

Theorem 4.5. Let F be as in Theorem 4.2. Let furthermore k = x · ā + ε1,
l = y · b̄ + ε2, where 0 ≤ ε1 < ā, 0 ≤ ε2 < b̄. Then

F (gm, ak, bl) �
{

suspx+y+m−1(F (1)x+y+m+ε1+ε2), if m, ε1, ε2 ∈ {0, 1};
point, otherwise.

(4.4)

Just as in Subsection 4.2 (Corollary 4.3), Theorem 4.5 is true if one replacesF (λ)

with 
S1

λ .
The proof of Theorem 4.5 follows the same general scheme as that of Theorem 4.2,

but the technical details are more numerous. Again there is a crucial combinatorial
lemma.

Let S be an(m + k + l)-cut consisting of all the elements of{−1, 0, 1}m+k+l

which are orthogonal to the vector(a, . . . , a︸ ︷︷ ︸
k

, b, . . . , b︸ ︷︷ ︸
l

, g, . . . , g︸ ︷︷ ︸
m

). Assumek ≥ ā,

and let an unordered set partitionπ be equal to({1, . . . , ā}, {ā+1}, . . . , {k+ l+m}).
We see that[S] = (gm, ak, bl), and[π̃S] = (gm+1, ak−ā , bl), if π = un(π̃).

Lemma 4.6. Let T ∈ Rk such that [T ] = (1k), and ν = ({1, . . . , ā}, {ā + 1}, . . . ,
{k}), then

[Q(S, π ↓ S)] = [Q(T, ν ↓ T )] × (b̄m, 1l). (4.5)

Proof. Again, it is easy to see that the sets of the partitions at infinity on both sides
of (4.5) coincide. Indeed,

[Q(T, ν)] × (b̄m, 1l) = [Q(T × U, (ν ↓ T ) × P({k + 1, . . . , k + m + l}))],
whereU ∈ Rm+l such that[U ] = (b̄m, 1l), and(ν ↓ T )×P({k+1, . . . , k+m+l}) =
π ↓ S. Also, we again have the equality

(T × U) \ ((ν ↓ T ) × P({k + 1, . . . , k + m + l})) = T \ (ν ↓ T ) × U,

which greatly helps to prove that the sets if the surviving elements on the two sides
of (4.5) coincide.

By the definition

S =
{
(x1, . . . , xk+l+m) ∈ {−1, 0, 1}k+l+m

∣∣ a ∑k

i=1
xi + b

∑k+l

i=k+1
xi

+ g
∑k+l+m

i=k+l+1
xi = 0

}
,
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and, again, the set which we have to remove fromS to getS \ (π ↓ S) is{
(x1, . . . , xk+l+m) ∈ {−1, 0, 1}k+l+m

∣∣ a
∑k

i=1
xi + b

∑k+l

i=k+1
xi

+ g
∑k+l+m

i=k+l+1
xi = 0, max(| Plus(x1, . . . , xk)|, | Minus(x1, . . . , xk)|) ≥ ā

}
.

By the definition of the relative resonances and some elementary number theory we
conclude that

S \ (π ↓ S) =
{
(x1, . . . ,xk+l+m) ∈ {−1, 0, 1}k+l+m

∣∣ | Plus(x1, . . . , xk)| < ā,∑k

i=1
xi = 0, b

∑k+l

i=k+1
xi + g

∑k+l+m

i=k+l+1
xi = 0

}
.

The number theory argument which we need is that ifax + by + lcm(a, b)z = 0,
thenā ||x, whereā · a = lcm(a, b). This can be seen by, for example, noticing that if
ax + by + lcm(a, b)z = 0, thenb || ax, but since alsoa || ax, we have lcm(a, b) || ax,
henceā || x.

The equation (4.5) follows now from the earlier observations together with the
equalities

T \ (ν ↓ T )

=
{
(x1, . . . , xk) ∈ {−1, 0, 1}k ∣∣ | Plus(x1, . . . , xk)| < ā,

∑k

i=1
xi = 0

}
,

and

(b̄m, 1l)

=
{(

y1, . . . , ym+l) ∈ {−1, 0, 1}m+l
∣∣ ∑l

i=1
yi + b̄

∑l+m

i=l+1
xi = 0

}]
. �

Proof of Theorem 4.5. The casesk < ā andl < b̄ are easily reduced to Theorem 4.2.
Assume therefore thatk ≥ ā andl ≥ b̄. Recall also thatb > a ≥ 2, and hencēa ≥ 2.

LetS andπ be as in the formulation of Lemma 4.6. The standard triple associated

to the morphismπS
π

↪→ S is

F (gm+1,ak−ā ,bl) ↪→ F (gm,ak,bl) → F (gm,ak,bl)/F (gm+1,ak−ā ,bl). (4.6)

We break the rest of the proof into 3 cases.

Case m ≥ 2. Again, we prove thatF (gm, ak, bl) is contractible by induction onk.
This is clear if k < ā. If k ≥ ā, it follows from (4.6) thatF (gm, ak, bl) �
F (gm, ak, bl)/F (gm+1, ak−ā , bl) = F (Q(S, π ↓ S)). By Lemma 4.6 we conclude
thatF (gm, ak, bl) � F (Q(T , ν ↓ T )) ∧ F (b̄m, 1l). By Theorem 4.2,F (b̄m, 1l) is
contractible, hence so isF (gm, ak, bl).
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Case m = 0. By Lemma 4.6 we get that

F (Q(S, π ↓ S)) � F (Q(T , ν ↓ T )) ∧ F (1l).

Sincel ≥ 2, we have thatF (1l) is contractible, hence so isF (Q(S, π ↓ S)) =
F (ak, bl)/F (g, ak−ā , bl). Therefore, by (4.6)F (ak, bl) � F (g, ak−ā , bl).

Case m = 1. SinceF (g2, ak−ā , bl) is contractible, we conclude by (4.6) that
F (g, ak, bl) � F (g, ak, bl)/F (g2, ak−ā , bl) = F (Q(S, π ↓ S)). By Lemma 4.6,
and the properties of the resonance functors, we have

F (g, ak, bl) � F (b̄, 1l) ∧ (F (1k)/F (ā, 1k−ā))

� F (b̄, 1l) ∧ susp(F (ā, 1k−ā)).
(4.7)

By the repeated usage of (4.7) we obtain (4.4). �

5. Sequential resonances

5.1. The structure theory of strata associated to sequential resonances

Definition 5.1. Letλ = (λ1, . . . , λn), λ1 ≤ · · · ≤ λn, be a number partition. We call
λ sequential if, whenever

∑
i∈I λi = ∑

j∈J λj , andq ∈ I such thatq = max(I ∪J ),

then there exists̃J ⊆ J , such thatλq = ∑
j∈J̃ λj .

Correspondingly, we call a resonanceS sequential, if it can be associated to
a sequential partition.

Note that the set of sequential partitions is closed under removing blocks.

Examples of sequential partitions. (1) All partitions whose blocks are equal to
powers of some number.

(2) (ak, bl, 1m) such thata > bl; more generally(ak1
1 , . . . , a

kt
t , 1m) such that

ai >
∑t

j=i+1 ajkj , for all i ∈ [t].
Through the rest of this subsection, we letλ be as in Definition 5.1. For suchλ

we use the following additional notations:
• mm(λ) = |{i ∈ [n] | λi = λn}|. In other words

λn−mm(λ) �= λn−mm(λ)+1 = · · · = λn.

• I (λ) ⊆ [n] is the lexicographically maximal set (see below the convention that
we use to order lexicographically), such that|I (λ)| ≥ 2, andλn = ∑

i∈I (λ) λi .
Note that it may happen thatI (λ) does not exist, in which caseF (λ) �
F (λ1, . . . , λn−mm(λ)) ∧ F (1mm(λ)), and can be dealt with by induction.



214 D. N. Kozlov CMH

Let n be a positive integer. We use the following convention for the lexicographic
order on[n]. ForA = {a1, . . . , ak}, B = {b1, . . . , bm}, A, B ⊆ [n], a1 ≤ · · · ≤ ak,
b1 ≤ · · · ≤ bm, we say thatA is lexicographically larger thanB if either A ⊇ B or
there existsq < min(k, m) such thatak = bm, ak−1 = bm−1, . . . , ak−q+1 = bm−q+1,
andak−q > bm−q .

Proposition 5.2. If λ = (λ1, . . . , λn), λ1 ≤ · · · ≤ λn, is a sequential partition,
then so is λ̄ = (λj1, . . . , λjt ,

∑
i∈I (λ) λi), where t = n − |I (λ)|, and {j1, . . . , jt } =

[n] \ I (λ).

Proof. Let λ̄1 = λj1, . . . , λ̄t = λjt , λ̄t+1 = ∑
i∈I (λ) λi . We need to check the

condition of Definition 5.1 for the identity∑
i∈I

λ̄i =
∑
j∈J

λ̄j . (5.1)

If t +1 �∈ I ∪J , then it follows from the assumption thatλ is sequential. Assume
t + 1 ∈ I . If λ̄j = λn, for somej ∈ J , takeJ̃ = {j}, and we are done. If̄λi = λn,
for somei ∈ I \ {t + 1}, then, sinceλ is sequential, there exists̃J ⊆ J such that∑

j∈J̃ λ̄j = λn = λ̄t+1, and we are done again.

Finally, assumēλi �= λn, for i ∈ (I ∪J )\ {t +1}. Substitutingλn instead of̄λt+1
into the identity (5.1) is allowed, sinceλn does not appear among{λ̄i}i∈(I∪J )\{t+1}.
This gives us an identity forλ, and again, sinceλ is sequential, we find the desired
setJ̃ ⊆ J such that

∑
j∈J̃ λ̄j = λ̄t+1. �

Let S ∈ Rn be the set of all elements of{−1, 0, 1}n, which are orthogonal to
the vectorλ = (λ1, . . . , λn). Clearly, [S] = λ. Let π ∈ P(n) be the partition
whose only nonsingleton block is given byI (λ). The next lemma expresses the main
combinatorial property of sequential partitions.

Lemma 5.3. Let τ ∈ P(n) be a partition which has only one nonsingleton block B,
and assume λn = ∑

i∈B λi . Then τ ∈ π ↓ S.

Proof. Assume there exists partitionsτ as in the formulation of the lemma such that
τ �∈ π ↓ S. Choose one so that the blockB is lexicographically largest possible. Let
C = B∩I (λ). By the definition ofI (λ), and the choice ofB, we have

∑
i∈I (λ)\C λi =∑

j∈B\C λj , andq ∈ I (λ) \ C, whereq = max((I (λ) ∪ B) \ C).
Since partitionλ is sequential, there existsD ⊆ B \ C such thatλq = ∑

j∈D λj .
Let γ ∈ P(n) be the partition whose only nonsingleton block isG = (B \ D) ∪ {q}.
Clearly,

∑
i∈G λi = λn, and|G| ≥ 2. By the choice ofq, G is lexicographically

larger thanB, henceγ ∈ π ↓ S.
Let furthermoreγ̃ ∈ P(n) be the partition having two nonsingleton blocks:

D andG. By Definition 3.1(2) ifγ ∈ π ↓ S, thenγ̃ ∈ π ↓ S. By Definition 3.1(3),
if γ̃ ∈ π ↓ S, thenτ ∈ π ↓ S, which yields a contradiction. �
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Let T ∈ Rn−mm(λ) be the set of all elements of{−1, 0, 1}n−mm(λ), which are
orthogonal to the vector(λ1, . . . , λn−mm(λ)). Let ν ∈ P(n − mm(λ)) be the partition
whose only nonsingleton block is given byI (λ). We are now ready to state the
combinatorial result which is crucial for our topological applications.

Lemma 5.4.
[Q(S, π ↓ S)] = [Q(T, ν ↓ T )] × (1mm(λ)). (5.2)

Proof. By definition we must verify that the sets of partitions at infinity and the
surviving elements coincide on both sides of the equation (5.2).

Let us start with the partitions at infinity. Filtered through Proposition 4.1, the
identity π ↓ S = (ν ↓ T ) × P({n − mm(λ) + 1, . . . , n}) becomes essentially tau-
tological. Both sides consist of the partitionsτ = (τ1, . . . , τk) ∈ P(n) such that
the number partition

( ∑
i∈τ1

λi, . . . ,
∑

i∈τk
λi

)
can be obtained from the number

partition (λj1, . . . , λjt ,
∑

i∈I (λ) λi), where{j1, . . . , jt } = [n] \ I (λ), by summing
parts.

Let us now look at the surviving elements. It is obvious thatS \ (π ↓ S) ⊇
(T \ (ν ↓ T )) × U , whereU ∈ Rk such that[U ] = (1mm(λ)), and we need to show
the converse inclusion. Letx = (x1, . . . , xn) ∈ S such that

∑n
i=n−mm(λ)+1 xi �= 0

(otherwisex ∈ (T \ (ν ↓ T )) × U ). We can assume
∑n

i=n−mm(λ)+1 xi > 0. Then,
sinceS is a sequential resonance, there existsy = (y1, . . . , yn) ∈ S such that

• if yi �= 0, thenxi = yi ;
• | Plus(y)| = 1, and Plus(y) ⊆ {n − mm(λ) + 1, . . . , n}.

This, by Lemma 5.3, means thaty �∈ S \ (π ↓ S), which in turn necessitates
x �∈ S \ (π ↓ S). This finishes the proof of the lemma. �

Just as before, this combinatorial fact about the resonances translates into a topo-
logical statement, which can be further strengthened by requiring some additional
properties fromλ.

Definition 5.5. Let λ = (λ1, . . . , λn), λ1 ≤ · · · ≤ λn, be a sequential partition, and
letq = maxI (λ). λ is calledstrongly sequential, if eitherI (λ) does not exist or there
existsJ ⊆ I (λ) \ {q} such thatλq = ∑

i∈J λi (note that we do not require|J | ≥ 2).

We are now in a position to prove the main topological structure theorem con-
cerning the sequential resonances.

Theorem 5.6. Let F be as in Theorem 4.2. Let λ be a sequential partition such that
I (λ) exists. Then the following holds.

(1) If mm(λ) ≥ 2, then F (λ) is contractible.



216 D. N. Kozlov CMH

(2) If mm(λ) = 1, then F (λ) � F (Q(T , ν ↓ T )) ∧ F (1), and we have the

inclusion triple F (µ)
i

↪→ F (λ1, . . . , λn−1) → F (Q(T , ν ↓ T )), where
µ = (λj1, . . . , λjt ), {j1, . . . , jt } = [n] \ I (λ), and ν ∈ P(n − mm(λ)) is the
partition whose only nonsingleton block is given by I (λ). We set F (µ) to be
a point, if I (λ) does not exist.
If moreover λ is strongly sequential, then the map i is homotopic to a trivial map
(mapping everything to a point), hence the triple splits and we conclude that

F (λ) � (F (1) ∧ F (λ1, . . . , λn−1)) ∨ susp(F (1) ∧ F (µ)). (5.3)

Proof. (1) We use induction on
∑n−mm(λ)

i=1 λi . If I (λ) does not exist, thenλn is
independent, i.e.,F (λ) � F (λ1, . . . , λn−mm(λ)) × F (1mm(λ)), and henceF (λ) is
contractible. Otherwise consider the inclusion triple

F (λ̄) ↪→ F (λ) → F (λ)/F (λ̄) = F (Q(S, π ↓ S)), (5.4)

where λ̄ = (λj1, . . . , λjt ,
∑

i∈I (λ) λi), andπ ∈ P(n) is the partition whose only
nonsingleton block is given byI (λ). By the induction assumptionF (λ̄) is con-
tractible. On the other hand, by Lemma 5.4,F (Q(S, π ↓ S)) � F (Q(T , ν ↓
T )) ∧ F (1mm(λ)), which is also contractible ifmm(λ) ≥ 2.

(2) if mm(λ) = 1, then we can conclude from (5.4) thatF (λ) � F (1) ∧
F (Q(T , ν ↓ T )). Next, consider the inclusion triple

F (µ)
i

↪→ F (λ1, . . . , λn−1) → F (Q(T , ν ↓ T )). (5.5)

If λ is strongly sequential, then there existsJ ⊆ I (λ) \ {q} such thatλq = ∑
i∈J λi

(hereq = maxI (λ)). The mapi factors:

F (µ)
i1

↪→ F
(
λp1, . . . , λpn−1−|J |,

∑
i∈I (λ)

λi

)
i2

↪→ F (λ1, . . . , λn−1), (5.6)

where{p1, . . . , pn−1−|J |} = [n − 1] \ J . Since(λp1, . . . , λpn−1−|J |,
∑

i∈I (λ) λi) is
sequential, andmm((λp1, . . . , λpn−1−|J |,

∑
i∈I (λ) λi)) ≥ 2, we can conclude that the

middle space in (5.6) is contractible, and hencei in (5.5) is homotopic to a trivial
map. This yields the conclusion. �

5.2. Resonances (ak, bl, 1m)

Theorem 5.7. Let a, b, k, l, m, r be positive integers such that b > 1, m ≥ r , and
a = bl + r . Then

F (ak, bl, 1m) � susp(F (1k) ∧ F (a, 1m−r )) ∨ (F (1k) ∧ F (bl, 1m)). (5.7)
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Note. The restrictionm ≥ r is unimportant. Indeed, ifm < r, thena > bl+m, hence
a is not involved in any resonance other thana = a. This implies thatF (ak, bl, 1m) =
F (1k)×F (bl, 1m), and we have determined the homotopy type ofF (ak, bl, 1m) by
the previous computations.

Proof of Theorem 5.7. Obviously, the conditiona > bl guarantees that the partition
(ak, bl, 1m) is sequential, hence Theorem 5.6 is valid. It follows that ifk ≥ 2, then
F (ak, bl, 1m) is contractible, hence (5.7) is true.

Furthermore, ifl ≥ 2, or, l = 1 andm ≥ b, then(a, bl, 1m) is strongly sequen-
tial, hence in this case (5.3) is valid, which in new notations becomes precisely the
equation (5.7).

Finally, assumel = 1 andb > m ≥ r ≥ 1. Let a = b + d. If F (a, 1m−d)

or F (b, 1m) is contractible, then the mapi in the inclusion tripleF (a, 1m−d)
i

↪→
F (b, 1m) → F (b, 1m)/F (a, 1m−d) is homotopic to a trivial map, and we again
conclude (5.7). If both of these spaces are not contractible thenF (a, 1m−d) �
S2y+ε2+1 and F (b, 1m) � S2x+ε1+1, where nonnegative integersx, y, ε1, ε2 are
defined by

m = bx + ε1, m − d = (b + d)y + ε2, ε1, ε2 ∈ {0, 1}. (5.8)

Let us show that 2x+ε1 > 2y+ε2. If x > y, then 2x+ε1 ≥ 2x ≥ 2y+2 > 2y+ε2.
From (5.8) we have thatb(x−y) = d +dy+ε2−ε1. If x ≤ y, then the left hand side
is nonpositive. On the other hand, sinced ≥ 1, the right hand side is nonnegative.
Hence, both sides are equal to 0, which impliesx = y, d = ε1 = 1, ε2 = y = 0.
This yields 2x + ε1 > 2y + ε2.

The homotopic triviality of the mapi follows now from the fact that the homotopy
groups of a sphere are trivial up to the dimension of that sphere, i.e.,πk(S

n) = 0, for
0 ≤ k ≤ n − 1. �

5.3. Division chain resonances. We call the resonance(bmn
n , b

mn−1
n−1 , . . . , b

m1
1 ) adi-

vision chain resonance if bi || bi+1, for anyi ∈ [n − 1]. For convenience, we assume
mi ≥ 1, for i ∈ [n], and setri = bi/bi−1, for n ≥ i ≥ 2, andr1 = b1.

Let us see that division chain resonances are strongly sequential. First, we show
thatλ = (b

mn
n , b

mn−1
n−1 , . . . , b

m1
1 ) is sequential. Assume that∑

i∈I

αibi =
∑
j∈J

βjbj , (5.9)

and there are no equal size parts appearing on both sides. Setf = max(I ∪ J ),
g = min(I ∪ J ). We use induction onf − g. If f = g + 1 then the condition of
sequentiality is obviously satisfied. Otherwise, divide both sides bybg. The number
of parts of size 1 must be divisible byrg+1, hence, in (5.9) all the parts of sizebg can
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be replaced by a certain number of parts of sizebg+1. By the induction assumption
the condition of sequentiality is satisfied for the new relation, hence it follows for (5.9)
as well.

Note that it also follows from the previous argument thatI (λ) must be of the form
{p, p + 1, . . . , n − mm(λ) − 1, n − mm(λ)}, for somep.

It is now easy to see thatλ is strongly sequential. Assumebn = bn−1+∑
i∈I αibi ,

then (rn − 1)bn−1 = ∑
i∈I αibi . The sequentiality condition is true for the latter

relation, hence the strong sequentiality condition is true for the first one.
Thus, Theorem 5.6 applies, and it yields:

(1) if mn ≥ 2, thenF (λ) is contractible;
(2) if I (λ) exists, then

F (bn, b
mn−1
n−1 , . . . , b

m1
1 ) �(F (1) ∧ F (b

mn−1
n−1 , . . . , b

m1
1 )) (5.10)

∨ (S1 ∧ F (1) ∧ F (bn, b
m̃q
q , b

mq−1
q−1 , . . . , b

m1
1 )),

where(bn, b
m̃q
q , b

mq−1
q−1 , . . . , b

m1
1 ) is obtained from(bn, b

mn−1
n−1 , . . . , b

m1
1 ) by re-

moving the parts indexed byI (λ). We havẽmq ≥ 1.
(3) If I (λ) does not exist, then

F (bn, b
mn−1
n−1 , . . . , b

m1
1 ) � F (1) ∧ F (b

mn−1
n−1 , . . . , b

m1
1 ). (5.11)

It is immediate from the formulae (5.10) and (5.11) that each topological space
F (b

mn
n , b

mn−1
n−1 , . . . , b

m1
1 ) is homotopy equivalent to a wedge of spaces of the form

F (1)α ∧ Sβ , whereF (1)α means anα-fold smash product ofF (1). The natural
combinatorial question which arises is how to enumerate these spaces. We shall now
construct a combinatorial model: a weighted graph which yields such an enumeration.

For convenience of notations, we setm0 = 1. �λ is a directed weighted graph on
the set of vertices{0, 1, . . . , n} whose edges and weights are defined by the following
rule. Forx, x + d ∈ {0, . . . , n}, d ≥ 1, there exists an edgee(x, x + d) (the edge is
directedfrom x to x + d) if and only if

bx+d || bx+d−1mx+d−1 + bx+d−2mx+d−2 + · · · + bx+1mx+1 + bx(mx − 1).

In this case the weight of the edge is defined as

w(x, x + d) = (bx+d−1mx+d−1 + · · · + bx+1mx+1 + bx(mx − 1))/bx+d .

Note that ifd ≥ 2 and there exists an edgee(x, x + d), then there exists an edge
e(x, x + d − 1).

We call a directed path in�λ complete if it starts in 0 and ends inn. Let γ be
a complete path in�λ consisting oft edges,γ = (e(x0, x1), . . . , e(xt−1, xt )), where
x0 = 0, andxt = n. The weight ofγ is defined to be the pair(l(γ ), w(γ )), where
l(γ ) = t , andw(γ ) = ∑t

i=1 w(xi−1, xi).
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Theorem 5.8. Let λ = (bn, b
mn−1
n−1 , . . . , b

m1
1 ), then

F (λ) �
∨
γ

(F (1)l(γ )+w(γ ) ∧ Sw(γ )), (5.12)

where the wedge is taken over all complete paths of �λ.

Proof. We use induction onn. The base of the induction isn = 1. In this case�λ is
a graph with only one edgee(0, 1), w(0, 1) = 0. Thus, there is only one complete
path. It has weight(1, 0), andF (λ) � F (1).

Next, we prove the induction step. We break up the proof in three cases.

Case 1. I (λ) does not exist. By (5.11) we have

F (λ) � F (1) ∧ F (b
mn−1
n−1 , . . . , b

m1
1 ). (5.13)

On the other hand,I (λ) does not exist if and only ifbn > mn−1bn−1 + · · · + m1b1.
We also know thatn ≥ 2. This implies that there is at most one edge of the type
e(x, n), namelye(n − 1, n). This edge exists if and only ifmn−1 = 1, in which case
w(n − 1, n) = 0.

If this edge does not exist then there are no complete paths in�λ and, at the same
time F (b

mn−1
n−1 , . . . , b

m1
1 ) is contractible by the previous observations. This agrees

with (5.12).
If, on the other hand, this edge does exist, then all complete pathsγ must be of

the typeγ = (γ̃ , e(n − 1, n)), whereγ̃ is a complete path from 0 ton − 1. Also in
this case (5.13) agrees with (5.12).

Case 2. I (λ) exists and mn−1 ≥ 2. In this caseF (b
mn−1
n−1 , . . . , b

m1
1 ) is contractible,

and
F (λ) � S1 ∧ F (1) ∧ F (bn, b

m̃q
q , b

mq−1
q−1 , . . . , b

m1
1 ), (5.14)

where(bn, b
m̃q
q , b

mq−1
q−1 , . . . , b

m1
1 ) is as in (5.10).

Let λ̃ = (bn, b
m̃q
q , b

mq−1
q−1 , . . . , b

m1
1 ). We can describe the graph�λ̃: it is obtained

from �λ by

(1) removing all vertices indexed by{q + 1, . . . , n − 1} and the incident edges;
(2) decreasing the weight of every existing edgee(x, n) by 1;
(3) keeping all the existing edges with the old weights on the set{0, . . . , q − 1, q}.

This operation on�λ is well-defined, since there can be no edges in�� of the
typee(x, n), for x ∈ {q + 1, . . . , n − 1}, and since the weight of edgese(x, n), for
x ∈ {0, . . . , q} must be at least 1, as̃mq ≥ 1. Furthermore, it is clear from the above
combinatorial description of�λ̃ that the set of the complete paths of�λ̃ is the same
as that of�λ, and that the weights of the edges in these paths are also the same except



220 D. N. Kozlov CMH

for the edge with the endpointn, whose weight has been decreased by 1. Thus, (5.14)
agrees with (5.12) in this case.

Case 3. I (λ) exists and mn−1 = 1. This case is rather similar to the case 2, except
that there is an edgee(n − 1, n) of weight 0. Thus,�λ̃ bookkeeps all the complete
paths of�λ, except for the ones which have this edgee(n − 1, n).

However, the first term of the right hand side of (5.10) bookkeeps the paths
(γ̃ , e(n−1, n)), just like in the case 1. Since the set of all complete paths of�λ is the
disjoint union of the sets of those paths which containe(n − 1, n), and those which
do not, we again get that (5.10) provides the inductive step for (5.12). �

Examples. (1) Let λ = (a, 1l), for a ≥ 2. Then�λ is a graph on the vertex set
{0, 1, 2} having either one or two edges:

(a) it has in any case the edgee(0, 1), w(0, 1) = 0;
(b) if a dividesl, then it has the edgee(0, 2), in which casew(0, 2) = l/a;
(c) if a dividesl −1, then it has the edgee(1, 2), in which casew(1, 2) = (l −1)/a.

Clearly Theorem 5.8 agrees with Theorem 4.2. Indeed, ifε �∈ {0, 1} (whereε is taken
from the formulation of Theorem 4.2), then there are no complete paths in�λ. If
ε = 0, then there is one path(0, 2) of weight(1, l/a); and ifε = 1, then there is one
path((0, 1), (1, 2)) of weight(2, (l − 1)/a). Thus, (5.12) and (4.1) are equivalent in
this case.

(2) Letλ = (8, 4, 23, 16). Then the graph�λ is

3

3

2

1 0

0
1

Figure 1

It has 4 directed paths from 0 to 4 and, by Theorem 5.8, we have

F (λ) � (F (1)3 ∧ S2) ∨ (F (1)5 ∧ S3) ∨ (F (1)6 ∧ S4) ∨ (F (1)7 ∧ S4),

in particular
R
λ � S5 ∨ S8 ∨ S10 ∨ S11.
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6. Remarks on complexity of resonances

The main idea of all our previous computations was to find, for a givenn-cut S,
a partitionπ ∈ P(n) such that span(S \(π ↓ S)) �= S. Intuitively speaking, shrinking
the substratum corresponding toπ̃S, where un(π̃) = π , essentially reduces the set
of linear identities inS. It is easy to construct examples when suchπ does not exist,
e.g., Example 2.2 (4).

These observations lead us to introduce a formal notion of complexity of a reso-
nance.

Definition 6.1. 1) ForS ∈ Rn, thecomplexity of S is denotedc(S) and is defined by

c(S) = min{|�| | � ⊆ P(n), span(S \ (� ↓ S)) �= S}. (6.1)

2) We define the complexity of ann-resonance to be the complexity of one of its
representing cuts. Clearly, it does not depend on the choice of the representative.

Note. The numberc(S) would not change if we required the partitions in� to have
one block of size 2, and all other blocks of size 1.

The higher is the complexity of a resonance[S], the less it is likely that one can
succeed with analyzing its topological structure using the method of this paper. This
is because one would need to take a quotient by a union ofc([S]) strata and it might
be difficult to get a hold on the topology of that union.

We finish by constructing for an arbitraryn ∈ N, a resonance of complexityn.
Let λn = (a1, . . . , an, b1, . . . , bn) such thatai, bi ∈ N, ai + bj = aj + bi , for
i, j ∈ [n], and all other linear identities amongai ’s andbi ’s with coefficients±1, 0
are generated by such identities. In other words, the cutS associated toλ is equal to
the set{

(x1, . . . , xn, y1, . . . , yn) ∈ {−1, 0, 1}2n
∣∣ ∑n

i=1
yi = 0,

xi + yi = 0, ∀i ∈ [n]
}
.

(6.2)

It is not difficult to construct suchλn directly:

1) Choosea1, . . . , an such that the only linear identities with coefficients±1, 0
on the seta1, a1, a2, a2, . . . , an, an are of the formai = ai ; in other words, there are
no linear identities with coefficients±2, ±1, 0 on the seta1, . . . , an. One example
is provided by the choicea1 = 1, a2 = 3, . . . , an = 3n−1.

2) Let bi = N + ai , for i ∈ [n], whereN is sufficiently large. As the proof of
Proposition 6.2 will show, it is enough to chooseN > 2

∑n
i=1 λi . This bound is far

from sharp, but it is sufficient for our purposes.
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Proposition 6.2. Let Sn be the n-cut associated to the ordered sequence of natural
numbers λn described above. Then c(Sn) = n.

Proof. First, let us verify that the cutSn associated toλn is equal to the one described
in (6.2). Take(x1, . . . , xn, y1, . . . , yn) ∈ Sn.

Assume first that
∑n

i=1 yi �= 0. Then,(x1, . . . , xn, y1, . . . , yn) stands for the
identity ∑

i∈I1

ai +
∑
j∈J1

bj =
∑
i∈I2

ai +
∑
j∈J2

bj , (6.3)

such that|J1| ≥ |J2| + 1. This implies thatN is equal to some linear combination of
ai ’s with coefficients±2, ±1, 0. This leads to contradiction, sinceN > 2

∑n
i=1 λi .

Thus, we know that
∑n

i=1 yi = 0. CancellingN ·|J1|out of (6.3) we get an identity
with coefficients±2, ±1, 0 on the seta1, . . . , an. By the choice ofai ’s, this identity
must be trivial, which amounts exactly to saying thatxi + yi = 0, for i ∈ [n].

Second, it is a trivial observation thatc(Sn) ≤ n. Indeed, letπi ∈ P(n)

be a partition with only one nonsingleton block(1, n + i), for i ∈ [n]. Then
span(Sn \ ({π1, . . . , πn} ↓ Sn)) �= Sn, since for any(x1, . . . , xn, y1, . . . , yn) ∈
Sn \ ({π1, . . . , πn} ↓ Sn), we havex1 = 0.

Finally, let us see thatc(Sn) > n − 1. As we have remarked after Definition 6.1,
it is enough to consider the case when the partitions of� have one block of size 2,
and the rest are singletons. Let us call the identityai + bj = aj + bi the elementary
identity indexed (i, j).

From the definition of the closure operation↓ it is clear that an elementary identity
indexed(i, j) is not inSn \ (� ↓ Sn) if and only if the partition whose only non-
singleton block is(i, n + j) belongs to�, or the partition whose only nonsingleton
block is(j, n + i) belongs to�. That is because the only reason this identity would
not be inSn \ (� ↓ Sn) would be that one of these two partitions is in� ↓ Sn. But,
if such a partition is in� ↓ Sn, then it must be in�: moves (2) of Definition 3.1
can never produce a partition whose only nonsingleton block has size 2, while the
moves (3) of Definition 3.1 may only interchange between partitions(i, n + j) and
(j, n + i) in our specific situation. Thus, we can conclude that if|�| ≤ n − 1, then
at mostn − 1 elementary identities are not inSn \ (� ↓ Sn).

Next, we note that for any distincti, j, k ∈ [n], the elementary identities(i, j) and
(j, k) imply the elementary identity(i, k). Let us now think of elementary identities
as edges in a complete graph onn vertices,Kn. Then, any setM of elementary
identities corresponds to a graphG onn vertices, and the collection of the elementary
identities which lie in the spanM is encoded by thetransitive closure of G. It is a well
known combinatorial fact thatKn is (n−1)-connected, which means that removal of
at mostn − 1 edges from it leaves a connected graph. Hence, if we remove at most
n − 1 edges fromKn and then take the transitive closure, we getKn again. Thus, if
|�| ≤ n−1, all elementary identities lie in span(Sn\(� ↓ Sn)). Since the elementary
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identities generate the wholeSn, we conclude thatSn = span(Sn \ (� ↓ Sn)), hence
c(Sn) > n − 1. �
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