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Abstract. The topological symmetry group of a graph embedded in the 3-sphere is the group
consisting of those automorphisms of the graph which are induced by some homeomorphism
of the ambient space. We prove strong restrictions on the groups that can occur as the topo-
logical symmetry group of some embedded graph. In addition, we characterize the orientation
preserving topological symmetry groups of embedded 3-connected graphs in the 3-sphere.
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1. Introduction

In this paper, we begin a systematic study of topological symmetry groups of graphs
embedded in the 3-sphere. The notion of a topological symmetry group was intro-
duced by Simon [Si], who was motivated by the Longuet-Higgins symmetry groups
of non-rigid molecules [L]. The significance of symmetry groups in chemistry stems
from the fact that the chemical properties of a molecule depend on the symmetries
of its molecular graph (where the vertices represent atoms and the edges represent
bonds).

The study of graphs as geometric objects necessarily involves an investigation
of their symmetries. The symmetries of an abstract gnagire described by the
group Aui(y) of automorphisms of. The automorphism group of a graph has been
the subject of much study, with roots in the nineteenth century (see [B3] and [B4]
for surveys). In contrast, the group of those symmetries of an embedded graph in
$3 which are induced by homeomorphisms of the ambient space has received little
attention.

By a graph we shall mean a finite, connected graph, such that each edge has
two distinct vertices and there is at most one edge with a given pair of vertices. An

*The fourth author was supported in part by NSF Grant DMS-0296023.
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embedded graph I is a pair(V, E) of sets of vertice¥ and edge& such thatV is
a set of points irs3, every edge is a smoothly embedded ar§3rbetween two ver-
tices, and the interior of each edge contains no vertex and no point of any other edge.
When we writeh: ($3,T) — (3, T) or h(I") = I, we shall mean that(V) = V
andh(E) = E. The restriction of: to V induces an automorphism of the abstract
graphy underlyingI". Thetopological symmetry group TSG(T') is defined to be the
subgroup of Auty) consisting of those automorphisms which are induced by some
homeomorphism of$3, I'). Allowing only orientation preserving homeomorphisms
of $2 defines the orientation preserving topological symmetry groupI$& For
any embedded graph, either TSG.(I') = TSG(I") or TSG,(T") is a normal sub-
group of TSGI') with index 2. Starting with a particular embedded graphwe
can re-embed it by tying the same invertible chiral knot in every eddetofget an
embedded graph’ suchthat TS@) = TSG, (I'") = TSG,(I'). Thus every group
which is the orientation preserving topological symmetry group of some embedded
graph is also the topological symmetry group of some (possibly different) embedded
graph.

Frucht [Fr] showed that any finite group is the automorphism group of some
connected graph; moreover, restrictingctoonnected graphs for a fixé¢d> 2 does
not affect the conclusion [Sa] (a graphkisonnected if at leastk vertices together
with their incident edges must be removed in order to disconnect the graph or reduce
it to a single vertex). Since every graph admits an embeddirsd it is natural to
ask whether every finite group can be realized as T9Gor TSG, (T")) for some
embedded graph. Using the terminology of [B3], the question becomes whether the
class of embedded graphs and their topological symmetry groupisesal for finite
groups. We show that the answer to this question is negative, and we characterize
the class of all orientation preserving topological symmetry groups for 3-connected
graphs.

In general, TSG (I") will depend on the particular embedding of the grapkin
For example, conside¥, consisting of two vertices which are joined togethemby
edges. Sincé, is not a graph, we add a vertex of valence 2 to each edge to obtain
a graphy, (see Figure 1). Starting with a planar embedding,gfwe add identical

Figure 1.y,
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non-invertible knots to each of the arcs to obtain an embedded @haghch that
TSG, (I'y) is the symmetric grouf,. On the other hand, if;, is an embedded graph
obtained from a planar embeddingygfby tying distinct non-invertible knots in each
edge, then TSG(T")) is trivial.

Given any finite abelian groufl, we can construct an embedded grdpbluch
that TSG.(T') = H. For example, the embedded graptwhich is illustrated in
Figure 2 has TSG(I") = Zo x Z3 x Zq4. If H contains more than one factor of a
givenZ,, we can add knots to the spokes of each “wheel” so that no homeomorphism
takes one “wheel” to another “wheel.”

N

Figure 2. TSG(I') = Z2 x Z3 X Z4

Another source of topological symmetry groups comes from planar embeddings.
For a planar graph realized as a planar embedded gr@p¥a the natural inclusion
of $2 in $3, it can be shown using results of [Ma] and [D, Theorem 4.3.1] that
TSGT) = TSG, (') = Aut(y). The automorphism groups of planar graphs have
been characterized by Mani [M] and Babai [B1], [B2]. In particular, these groups do
not exhaust all finite groups, and for 3-connected planar graphs the automorphism
groups are precisely the finite subgroups @BYO In contrast to the case of planar
embeddings, in general for an arbitrary embedded graph,, TBGZAut(y). Infact,
itwas shownin[F1]thatfor > 6, no matter how the complete gragh is embedded
in $3, the cycle automorphisifi234 of K, cannot be induced by a homeomorphism
of $3. Thus for any embedded graptwhich has underlying abstract grafh with
n > 6, TSET) is a proper subgroup of AUK,,).

In general, it is not possible for each element of TSG) to be induced by a
finite order homeomorphism &f. For example, consider the graph with n > 4
described above whose underlying abstract graph is illustrated in Figure 1. Then as
seen above, TSET,) = S,,; however, many of the homeomorphisms?éfwhich
induce the elements of TSGI") cannot be of finite order. Indeed, it follows from the
proof of the Smith Conjecture [MB] that no finite order homeomorphisrséfI",,)
can interchange two vertices of valence two and fix the remaining vertices, since the
fixed point set of such a homeomorphism would include a non-trivial knot.



320 E. Flapan, R. Naimi, J. Pommersheim and H. Tamvakis CMH

In fact, there exist 3-connected embedded grdpksch that not every element
of TSG(I") can be induced by a finite order homeomorphisnsf An example of
such a graph is illustrated in Figure 3. There is no order 3 homeomorphisth of
which takes a figure eight knot to itself ((Ha] and [Tr]); and by Smith Theory [Sm],
no finite order homeomorphism 6f can pointwise fiX". Hence the automorphism
(123)(456) is induced by a homeomorphism §t (by sliding the graph along itself),
but cannot be induced by a finite order homeomorphisisfof

Figure 3.(123)(456) cannot be induced by a finite order homeomorphisrsitof

The above examples indicate that a priori, the classification of all possible topolog-
ical symmetry groups could be rather complicated. The three main theorems which
follow help to clarify the situation.

Theorem 1. Let I be an embedded graph.

a) If TSG.(T") is a simple group, then it is either the alternating group As or a
cyclic group of prime order.

b) Ingeneral, thesequenceof quotient groupsin any compositionseriesfor TSG, (')
contains only alternating groups A,, with n > 5 and cyclic groups.

We note that the same conclusion holds for the automorphism groups of planar
graphs; infact Theorem 1 implies the corresponding resultsin [B2], since TISG=
Aut(y) if I is planar embedding of. However, there exist embedded graphsuch
that TSG,_(T") is not isomorphic to the automorphism group of any planar graph (see
Section 2).

It follows from Theorem 1 that the class of orientation preserving topological
symmetry groups of embedded graphs is not universal for finite groups. Furthermore,
if TSG(I') is a simple group then TSGI') = TSG(TI"), and hence the class of
topological symmetry groups is also not universal.

Theorem 2. Let I" bean embedded 3-connected graph. Then TSGy (T") isisomorphic
to a finite subgroup of the group Diff . (S3) of orientation preserving diffeomor phisms
of §3.
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In contrast to Theorem 2, the orientation preserving topological symmetry group
of an arbitrary graph is not necessarily isomorphic to a subgroup of 0iff). For
example, we have seen that every finite abelian group is the orientation preserving
topological symmetry group of some embedded graph. However, not all finite abelian
groups are subgroups of Diff $3).

In the last section of the paper, we study when a graphay be embedded in
$3in such a way that a given subgroup of Auj is induced on the embedded graph
by an isomorphic subgroup of Diff($%). We also prove the following converse to
Theorem 2.

Theorem 3. For every finite subgroup G of Diff 4 (52), there is an embedded 3-
connected graph I" such that G = TSG,(T"). Moreover, I' can be chosen to be a
complete bipartite graph K, ,, for some n.

We deduce from Theorems 2 and 3 that the set of orientation preserving topological
symmetry groups of 3-connected embedded graplss is exactly the set of finite
subgroups of Diff_($3). The finite subgroups of Diff($2) consist of the finite
subgroups of S@), possibly together with the Milnor group8(8k, m, n) in the
case where the subgroup acts freelyséigsee [DV] for the finite subgroups of 38,
and [Mi] and [Z] for groups that could act freely &f). We note that Thurston’s
geometrization program [Th] would imply that the groupésk, m, n) do not occur.

We prove Theorems 1 and 2 in Section 2, assuming two propositions which are
proved in Sections 3 and 4. The heart of the argument lies in the proof of Proposition 1
in Section 3, which uses the Characteristic Submanifold Theorem of Jaco—Shalen [JS]
and Johannson [Jo] and Thurston’s Hyperbolization Theorem [Th], in the context of
pared manifolds. These results were applied in a similar fashion in [F2]. In the case
of a 3-connected embedded grdphthe strategy is to re-embéddin a “nicer” way
asA suchthat TSG(I") < TSG,(A) and TSG.(A) is induced by a finite subgroup
of Diff . ($3). Finally, in Section 5, Theorem 3 is proved by a direct construction.

The first and fourth named authors first met and began collaborating on this project
in the fall of 2000 during a visit to the Institut des Hautes Etudes Scientifiques. It is
a pleasure to thank the Institut for its hospitality. The second author wishes to thank
the California Institute of Technology for its hospitality during his sabbatical in the
spring of 2002.

2. Proofsof Theorems1and 2

Let I be a graph embedded & with underlying abstract grapj. Recall that

we defined TS@") as the subgroup of Agy) induced by homeomorphisms of the
pair ($3, T"). However, for technical reasons we prefer to restrict our study to those
homeomorphisms ofs®, I') which are diffeomorphisms except possibly on the set
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of vertices ofl". By an abuse of terminology we shall call such a homeomorphism
adiffeomorphismof (53, I"). Note that by standard smoothing theory (see [Moi]), if
there is a homeomorphism ¢§3, I') inducing an automorphisia of I, then there

is also a diffeomorphism ofS3, I') inducing the automorphism. Thus we can
equivalently define TS@") as the subgroup of Agy) induced by diffeomorphisms

of (83, I).

Let G be a group of orientation preserving diffeomorphismg$f, I'). Let H
be the image o&; under the natural homomorphism frathto TSG; (I"). ThenH
is said to benduced onT by G.

AgroupH is saidto beealizableif there isan embedded grapwith TSG (T") =
H. Inthis case, we say thaf isrealized by I".

We introduce some notation that we will use throughout the rest of the paper. Let
V denote the set of embedded vertices of an embedded @raphd letE denote
the set of embedded edgesIof We shall construct a neighborhoddT") as the
union of two setsN (V) and N (E), which have disjoint interiors. For each vertex
v € V, let N(v) denote a small ball around and letN (V) denote the union of
all of these balls. For each embedded edge E, let N(¢) denote a tubed? x [
whose core is — N(V), such thatV (¢) contains no other part @f, andN (¢) meets
N(V) in a pair of disks. LetN(E) denote the union of all the tubdé(e). Let
N(') = N(V) U N(E). Throughout the paper we shall uge&V(s) to denote the
annulusdN (") N N (¢) in order to distinguish it from the sphedeV (¢).

We will usecl to denote the closure of a set a@ntito denote the interior of a set.
Finally, by achain of length n we shall mean an arc ifi containingn vertices of
valence two and no vertices of higher valence in its interior such that neither endpoint
of the arc has valence two. A single edge such that neither endpoint has valence two
is said to be a chain of length zero.

We shall use spheres and pinched spheres to decoriidose smaller pieces as
follows.

Definition 1. Let & be a 2-sphere embeddedSA. If ¥ intersectsl" in a single
vertexv of valence more than two and each componerfdf % contains part of
I, then we say thak is atype | sphereandv is atypel vertex of I'. (See Figure 4.)

Observe that removing a type | vertex frdimseparate§’, but not every vertex
which separateF is a type | vertex.

Definition 2. Let X be a 2-sphere embeddedSA. If ¥ intersectd” in verticesv
andw, the closure of neither component @ — ¥) N T is a single arc, and the
annulusx — int(N (v) U N (w)) is incompressible in ¢53 — N(IN)), then we say that
Y is atypell sphereof I'. (See Figure 5.)
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Figure 4. An embedded graph with a type | sphere
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Figure 5. An embedded graph with a type Il sphere

Definition 3. Let X be a 2-sphere with two points identified to a single pgintVe
say thatX is apinched sphere and p is thepinch point. Let X be a pinched sphere
in $3, with pinch pointp. Suppose thap is a vertex ofl” such thats N T = {p},
each component of® — X contains part of”, and the annuluE — int(N(p)) is
incompressible in ¢ — N(I")). Then we say that is atype Il sphereof I'. (See
Figure 6.)

Figure 6. An embedded graph with a type Ill sphere

We remark that our definition of a type | sphere is close to that of Suzuki [Su],
however, our definition of a type Il sphere is different from his.
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We will use the following two propositions to prove Theorems 1 and 2. The proofs
of these propositions will be given in the next two sections.

Proposition 1. Let I' be an embedded graph with no type | spheresand let H =
TSG, (I'). Then either H isisomorphic to a finite subgroup of Diff . (S%), H = S,
for some r, or H has a non-trivial normal subgroup N such that both N and H/N
arerealizable. Furthermore, if I" hasno typell or typelll spheres, thenT" can bere-
embedded as A suchthat H < TSG,(A), and H isinduced on A by an isomorphic
finite subgroup of Diff | (53).

If H= S, andH is simple, thenH = Z,. Thus it follows from Proposition 1
that if ' has no type | spheres and T$@") is a simple group then TSGT) is
isomorphic to a finite subgroup of Diff($3).

Proposition 2. Let I" be an embedded graph and let H = TSG, (I"). Then either
H isrealized by a graph with no type | spheres, H = S, for somer, or H has a
non-trivial normal subgroup N such that both N and H/N arerealizable.

If H= Zp, thenH is realized by the graph consisting of a single edge. Hence
it follows from Proposition 2 that any realizable simple group can be realized by an
embedded graph with no type | spheres.

We now prove Theorems 1 and 2 from these propositions.

Theorem 1. Let I" be an embedded graph.

a) If TSG.(T) is a simple group, then it is either the alternating group As or a
cyclic group of prime order.

b) Ingeneral, the sequenceof quotient groupsin any compositionseriesfor TSG, (')
contains only alternating groups A,, with n > 5 and cyclic groups.

Proof. To prove part(a), we observe that by Proposition 2, there is an embedded graph
A with no type | spheres such that TS@") = TSG, (A). Then by Proposition 1,
TSG, (A) is isomorphic to a finite subgroup of Diff $3). However, it is shown in
[Z, Theorem 1] that the alternating grous; is the only non-abelian finite simple
group which acts faithfully by diffeomorphisms on a homology 3-sphere. The result
follows.

To prove part (b), we use induction on the number of elememts #a TSG, ().
Let |H| = k and assume the result is true for all realizable groups with fewer than
k elements. IfH is simple, then we are done by part (a). Otherwise Propositions 1
and 2 imply that eitheH is a finite subgroup of Diff ($%), H = S, for somer, or
H has a non-trivial normal subgrouy such that botliv and H/N are realizable. In
the first case, the result follows from [Z, Theorem 2], while the second case is clear.
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In the third case, we know by induction that bathand /N have composition
series all of whose simple quotients are either alternating or cyclic. Putting these two
series together gives a composition seriesHawith the same property. Finally, the
Jordan—Holder theorem implies that this also holds for any other composition series
for H. O

By a similar argument, we can prove that for any realizable giéuthe number
of quotients in a composition series fAr which are isomorphic t@; is at least as
large as the number of quotients which are isomorphic togmyith » > 6. To see
this, observe that if{ is a finite subgroup of Diff ($%) or H = S,, then the result
follows; otherwise, the proof uses induction on the ordeflofis above. A complete
characterization of all realizable groups may be possible, working along the lines
of [B2].

Accordingto[B2, Corollary 9.15], the group = AsxZ3is notthe automorphism
group of any planar graph. However, we see as follows@hatrealizable. It follows
from [M] that A5 is the automorphism group of a 3-connected planar graph which can
be realized as the 1-skeletahof a convex polytope? in R3, such that all abstract
automorphisms oKX are induced by isometries &f. LetI'; be obtained fronkX by
connecting each vertex df to a pointvs in the interior of P. Now letI"; be the
1-skeleton of a tetrahedron disjoint frofn Tie the same non-invertible knot in each
of the three edges df, which do not contain a particular vertex, all oriented in the
same way. Finally, forni” from I'1 andI'2 by connectingy1 to v2 by an arc which
does not meet the rest df or I'>. Then TSG.(I') = As x Z3. Thus there exist
realizable groups which are not the automorphism group of any planar graph.

Theorem 2. Let I' bean embedded 3-connected graph. Then TSGy (I') isisomorphic
to a finite subgroup of Diff | (S3).

Proof. If I" has a type | or Il sphere thahcan be disconnected be removing a single
vertex and the edges incident to itIThas a type Il sphere théhcan be disconnected
by removing two vertices and the edges incident to them. ThiDddf3-connected,
thenI" has no type |, Il, or lll spheres. So the result follows by Proposition 10

We also use Proposition 1 to prove the following strengthening of Theorem 2.

Proposition 3. Let H = TSG, (I'") for some embedded 3-connected graph I". Then
" can be re-embedded as A such that H isa subgroup of TSG; (A) and TSG(A)
isinduced by an isomor phic finite subgroup of Diff | (S3).

Proof. Let Hy = TSG,(I"). Then, as in the proof of Theorem B, has no type
[, Il or lll spheres. Hence by Proposition 1 we can re-embedsI'1 such that
H; < TSG, (I'1), andH; is induced by an isomorphic subgrokp of Diff | (53). If
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TSG, (I'1) = Hi, then we are done by lettily = I'1. If Hy is a proper subgroup of
TSGL(I'1), we letH2 = TSG, (I"1) and again apply Proposition 1 to the 3-connected
embedded graph;. Continue this process. Then for eachSG, (T';) is a subgroup

of Aut(y), wherey is the underlying abstract graphBf Since Auty) is finite, this
process cannot go on indefinitely. O

3. Proof of Proposition 1

We assume the reader is familiar with standard 3-manifold topology. However, we
will need to use some terminology and results about pared manifolds which we give
below.

Definition 4. A pared 3-manifold (M, P) is an orientable 3-manifold/ together
with a family P of disjoint incompressible annuli and tori M.

A pared manifold is a special case of a manifold with boundary patterns in the
sense of Johannson [Jo] or a 3-manifold pair in the sense of Jaco—Shalen [JS]. The
following definitions agree with those of [Jo] and [JS].

Definition 5. A pared manifold M, P) is said to besimpleif it satisfies the following
three conditions:

1) M isirreducible andM — P is incompressible.
2) Every incompressible torus M is parallel to a torus component 8f
3) Any annulusA in M with dA contained indM — P is either compressible or

parallel to an annulud’ in 9 M with A’ = 9 A and such that’ N P consists of
zero or one annular component Bf

Definition 6. A pared manifold M, P) is said to beseifert fibered if there is a Seifert
fibration of M for which P is a union of fibers. A pared manifold/, P) is said
to bel-fibered if there is an/-bundle map ofM over a surfaceB such thatP is the
preimage ob B.

We will use the following results about pared manifolds.

Characteristic Submanifold Theorem for Pared Manifolds ([JS] and [Jo]). Let
(X, P) be a pared manifold with X irreducible and X — P incompressible. Then,
up to anisotopy of (X, P), thereisa unique family 2 of disjoint incompressible tori
and annuli with 92 containedin 9 X — P such that the following two conditions hold:

1) If W isthe closure of a component of X — €2, then the pared manifold (W, W N
(P U Q)) iseither simple, Seifert fibered, or I-fibered.
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2) Thereisno family " with fewer elements than © which satisfies the above.

Thurston’s Theorem for Pared Manifolds ([Th]). If (M, P) issimple, M is con-
nected, and 9 M is non-empty, then either M — P admits a finite volume complete
hyperbolic metric with totally geodesic boundary, or (M, P) is Seifert fibered or
I -fibered.

Now we are ready to prove Proposition 1. Since the proof of Proposition 1 is long,
we begin with an outline. In Step 1, we will follow the proof of [F2, Theorem 1], and
use the Characteristic Submanifold Theorem ([JS] and [J0]) to split the complement
of N(T") along a minimal family® of incompressible tori which is unique up to
ambient isotopy and such that each component is either simple or Seifert fibered. We
let X denote the component which contaig(I'). Sincel” has no type | spheres,
we can then use the Characteristic Submanifold Theorem for Pared Manifolds to
split X along a minimal family2 of incompressible annuli which is unique up to
ambient isotopy and such that as a pared manifold each component is either simple,
Seifert fibered, or I-fibered. We then define a graupof orientation preserving
diffeomorphisms of $%, I') such that for everg € G, g(®) = © andg(Q) = 2,
and everyu € TSG, (T") is induced by somg, € G.

In Step 2, we choose a particular componi@mif X — Q2 which is setwise invariant
underG, such thatG permutes some of the elementsothat are contained i6W
or some of the components ®V (V) N W. In Step 3, we show that the proof can be
reduced to analyzing the action th@tinduces oriv. In Steps 4, 5, and 6 we obtain
our result in the cases wheWé is Seifert fibered, I-fibered, and simple, respectively.

Proof of Proposition 1. LetI" be an embedded graph with no type | spheres, and let
y denote the underlying abstract graplofThe resultis clear if TSG(T") is trivial.
So we assume it is non-trivial. We begin by considering the special cases where
is homeomorphic to an arc or a circle. In these cases, the full automorphism group
Aut(y) is either a finite cyclic group or a dihedral group, and hence T@G is a
finite subgroup of Diff, ($%). We embedA as an embedding of which is a planar
round circle or a line segment. Then TS@\) = Aut(y), and there is a subgroup
G of Diff +(S3) such thatG = H andG inducesH on A.

From now on, we assume thatis not a simple closed curve or an arc. Hence
" has some vertex with valence at least three. Also sihbas no type | sphereF,
cannot have any vertices of valence one. kebe a number larger than the total
number of vertices if". We will usem at several places in the proof.

Step 1. We split the complement of T™ along characteristic tori and annuli.

Let M = cl(S® — N(I")). Sincel is a connected grapl¥ is irreducible. So we
can apply the Characteristic Submanifold Theoremtto get a minimal family of
incompressible tori@, in M such that the closure of every componenibf- @ is
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either simple or Seifert fibered, art is unique up to an isotopy a¥/ fixing oM
pointwise. It follows from the uniqueness®fandN (I") up to isotopy that for every
automorphismuz € TSGy(T"), there is an orientation preserving diffeomorphism
g: (83, T) - (83,T") which inducess, such thatg(®) = ©, g(N(V)) = N(V),
andg(N(E)) = N(E). SincedM is connected, there is a uniqgue component of
M — © which containd M. Let X denote the closure of this component. Then for
each diffeomorphisng : (53, T') — (53, T) such thatg(M) = M andg(®) = O,

we haveg(X) = X. If X is Seifert fibered, thefX is a collection of tori, and hence
" is a simple closed curve, contrary to our assumption above. Xmsst be simple.
So every incompressible torus K is boundary parallel. Also note that since each
torus boundary component &fis incompressible il andM is irreducible X must

be irreducible.

Now 9 X consists ob N (I") together with a collection of tori i®. Let P denote
the union of the annuli id’ N (E) and the torus boundary componentstofObserve
thatckoX — P) = aN(V) N aX consists of a collection of spheres with holes.

We show as follows thaiX — P is incompressible itk. Suppose that there is a
non-trivial loop L in some component gfX — P which compresses iX. ThenL
is contained in soméN (v) N dX andL bounds a diskD1 in X. Also L bounds a
disk D2 in N (v) such thatD; intersectd” only inv. Now X = D; U D5 is a sphere,
whose intersection with' is the vertex. SinceL is non-trivial ind N (v) N9 X, each
component ofs® — ¥ contains part of”. Recall thatl” has no vertices of valence
one. If the valence of is two, we can slid& along an arc irf” until ¥ intersectd
at a vertex with valence at least three. But this gives us a type | sphdredontrary
to hypothesis. Henc&X — P must be incompressible .

Since X is irreducible anddX — P is incompressible ik, we can now apply
the Characteristic Submanifold Theorem for Pared Manifolds to the(paiP).
This gives us a minimal family2 of incompressible tori and annuli iK with the
boundary of each component@fcontained ird X — P, such that ifW is the closure
of any component ok — Q, then the pared manifolgW, W N (P U Q)) is either
simple, Seifert fibered, dr-fibered, and2 is unique up to anisotopy ¢, P). Since
every incompressible torus X is boundary parallel, and the famify is minimal,

Q cannot contain any tori. Thu® is a (possibly empty) family of incompressible
annuliinX. Furthermore, forany, oW —(WN(PUR)) Cc dX — P andW C X.
Thus sinced X — P is incompressible ik, oW — (W N (P U Q)) is incompressible
in W.

We denote byG the group of all those orientation preserving diffeomorphisms
g: (83, 1) — (83, 1) for which g(N(V)) = N(V), g(N(E)) = N(E), g(®) = ©
andg(2) = Q. ThenP and X are each setwise invariant und@r Also by the
uniqueness of each of the s&i$V), N(E), and®, up to an isotopy ots3, ') and
the uniqueness a® up to an isotopy of X, P), it follows that everya € TSGy (T")
is induced by somg, € G.
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For each annulud in 2, the boundary ofd is contained i X — P. So each
component 0B A is contained in someN (v). Thus each component 6/ bounds
a disk D in someN (v) such thatD N T" = {v}. Furthermore, we can choose the
collection of these disks to be pairwise disjoint except possibly on the set of vertices
V. Thusforeaclt € @, thereis a pair of diskB; andD, suchthatt = AUD1UD,
is either a sphere meetingin two vertices or a pinched sphere with its pinch point
at a vertex. LetA denote the collection of these spheres and pinched spheres. Then
the elements of\ are pairwise disjoint except possibly &h Since the collection
of these disks is unique up to an isotopyMdfV) fixing bothI" andoN (V), we can
assume that we chogesuch that for every € G, g(A) = A.

Since everyA € Q is incompressible irX, and every torus component 8X
is incompressible i, everyA € Q is incompressible id. ThusifX € Aisa
sphere and the closure of neither componentséf— =) N I is a single arc, then
¥ is a type Il sphere; and iE € A is a pinched sphere and the closure of neither
component of S* — £) N T is a single vertex, thel is a type |1l sphere.

Step 2. We choose a setwiseinvariant component W of X — Q such that G permutes
some of the elements of Q in aW or some of the componentsof IN (V) N W.

If Q@ is empty, letW = X. Then every component &fN (V) meetsW, and
henceG permutes some of the componentsaf(V) N W. So we suppose th&t is
non-empty.

The proof of [F2, Theorem 1] shows thatlifis a 3-connected graph then there
is a unique component of — Q whose closuréV has the properties that: every
element of2 is contained ird W and for everyxz; € A the closure of the component
of $3 — =; which is disjoint fromW meetsI" in an arc if3; is a sphere and in a
single vertex ifE; is a pinched sphere. The proof that there is sudhia analogous
if we replace the hypothesis thBtis 3-connected by the hypothesis tiiahas no
type |, Il, or lll spheres. Thus if" has no type I, Il or lll spheres, then we choose this
W. By the uniqueness d¥ we know thatW is setwise invariant undes. Also if v
is any vertex with valence at least three, théw(v) N W contains a sphere with at
least three holes. Hence for every non-triviag TSG,.(I"), g, induces a non-trivial
permutation of either the elements®@for the components &fN (V) N W. Thus we
are done with Step 2 in the case wherbas no type Il or lll spheres.

In order to choos& whenT" does have a type Il or type Il sphere, we will first
associate an abstract graptvith the setA of spheres and pinched spheres. For each
component’ of S3 — A, let y be a vertex im; and for every pair of components
Y and Z of §% — A, let there be an edge in between the vertices andz if and
only if there is some&: € A which is contained in the boundary of bothand Z.
Observe that because every element afeparates?, the grapht is a tree. Sinc&
takesA to itself, everyg € G defines an automorphisgi of ». Let G’ be the group
of automorphisms of. induced byG. Sincex is a tree, it follows from elementary
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graph theory that there is either a vertex or an edgetbét is invariant unde6’. If

no vertex ofA is fixed byG’, then there is an invariant edgef A whose vertices are
interchanged by some element@f. In this case, there is a spheec A which is
invariant undeiG, and some elemegte G which interchanges the two components
of 2 — =. We handle this case as follows.

Claim 1. Suppose that there is a sphere ¥ € A which is invariant under G, and
some g € G which interchanges the components of S3 — . Then either H = Z, or
H has a non-trivial normal subgroup N such that both N and H/N arerealizable.

Proof of Claim 1. The closures of the components $ — ¥ intersectl” in sub-
graphse; anday. SinceX is invariant undeiG, we can define a homomorphism
®: TSG,(I') — Zpasfollows. Foreach € TSG, ('), let®(a) = 0if a takes each
«; to itself, and letd (@) = 1 if a interchange&; andwaz. Since some € TSGy (T)
interchangeg&; anday, ® must be onto.

If ker(®) is trivial then TSG.(I') = Z,. So we assum&’ = ker(®) is non-
trivial. We create a new embedded graph by adding a vertex in the interior of every
edge ine1 which meetsz, and adding an edge incident to each of these new vertices.
Let IT denotel” with these new vertices and edges. Then ewéry TSG, (1) takes
this set of new edges to itself and hence induces somd&SG, (T") which does not
interchangex; andaz. Also everya € ker(®) naturally defines an’ € TSG, (I1).

It is thus easy to see that TS@1) = ker(®). Finally, letIT" denote the graph
consisting of a single edge, then TS@1') = Z, = H/N. Now N andH/N are
both realizable. This proves Claim 1. O

Because of Claim 1, we assume no such spheexists. Hence there is some
vertex of A which is invariant unde6’. First suppose that’ does not act trivially
on . Then there is some vertexof A which is fixed byG’ and which is adjacent to
a vertex ofa which is not fixed byG’. In this case, we choos# to be the closure
of the component ok — Q which corresponds to the vert@of A. ThenW will be
setwise invariant undet, however some element &f which is contained iR W is
not setwise invariant undé€f. Finally, suppose that’ acts trivially oni. Then every
component ofX — Q is setwise invariant undet. Since TSG (T") is not trivial,
there is some vertex of I' which is not fixed byG. Let W be the closure of some
component ofX — Q which meets$) N (v). Thus we are done with Step 2.

Before we begin Step 3, we introduce some notation. Agt..., A, denote
those annuli i2 which are contained iAW, and letX, ..., X, denote the spheres
or pinched spheres of containingAsy, ..., A, respectively. IfZ; is a sphere, let
¥ NI = {v;, w;}, and if X; is a pinched sphere, |I&; N T = {u;}. For each
i, letc; andd; denote the boundary componentsAf such that ifZ; is a sphere
¢; C ON(v;) andd; C N (w;), and ifX; is a pinched spherg Ud; C dN(u;). For
eachX;, we let B; denote the closure of the componentssf— %; whose interior
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is disjoint fromW and letl’; = B; N I". The setqI'1,...,',} and{Ba, ..., By}
are each setwise invariant undey sinceW is setwise invariant unde¥. It follows
thatl' = cl(I' — ('L U ---UTy,)) is setwise invariant unde¥. (Note thatl™ is not
necessarily connected.)

Step 3. Wereduce the proof to analyzing the action that G induceson W.
In particular, we prove the following.

Claim 2. Suppose that thereissome g € G and A; € Q such that g(A;) = A;,
g(ci) = ¢i, g(d;) = d;, and g induces a non-trivial automorphismon I';. Then I’
hasatypell or typelll sphereand A hasa non-trivial normal subgroup N such that
both N and H/N arerealizable.

Proof of Claim 2. Observe thal; is neither an arc nor a single vertex, since otherwise
g cannot induce a non-trivial automorphismion SinceG permutes some elements
of Q in 9W or some components 6N (V) N W, cl(I" — T';) is neither an arc nor a
single vertex. Thu§ has a type Il or type Il sphere.

Before we defingv, we useg to create another orientation preserving diffeomor-
phism#h of ($3,T) as follows. Firstwe let:|B; = g|B;. Thenh(B;) = B;, h|B; is
orientation preservingi(c;) = ¢;, andh(d;) = d;. It follows thath|Z; is isotopic to
the identity onZ; by an isotopy fixingy; andw; if ¥; is a sphere or fixing; if Z; is
a pinched sphere. L&; be a ball or a pinched ball (according to whiBhis) such
thatC; N T" = I'; and respectivelys; — {v;, w;} C int(C;) or B; — {u;} C int(C;).
Extendh to a diffeomorphism ofC; — B; such that: is the identity ondC;. Then
extendh to the rest ofs® by the identity. Now letz € TSG, (I') be induced by
h. Thena|cl(I" — T';) is the identity and; inducesa onT';. By hypothesis:|T'; is
non-trivial.

Let N be the set of alb € TSG,(I") such thatx|I"" is the identity, and for

eachj < n,a(l;) =T; andgy(c;) = cj andgy(d;) = dj. ThenN is a normal
subgroup ofA containing the non-trivial element Observe that for eaal € N,
g« does not permute any of thg;’s or any of the components &V (V) N W. Thus
by our choice ofW, N # TSG,.(I'). We shall prove thatv and H/N are both
realizable by constructing embedded graphand IT" with TSG, (IT) = N and
TSG,(IT') = H/N.

First we construcfl. We may assume that there is soge 1 such thatz; is a
type Il or type Il sphere if and only if < ¢. For eachj such thatz; is a type IlI
sphere, let; be an edge df ; which meetd™. Now for each edge in the orbit ofe;
underN, we add a vertex to iit) and an edge incident to this new vertex. For each
suchj, we letI"; denotel”; with this collection of vertices and edges added. For each
Jj such thatx; is a type Il sphere, if"; is not connected, IeIf;. denotel’; together
with a new edge; C X; with verticesv; andw;. For all otherT;, we letT’; =T';.
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We obtainll by stringing together, ..., ', with arcspy, . .., B,+1 as follows. For
eachj such that 1< j < n + 1, let8; denote an arc containingn vertices in its
interior. We addgy, ..., B,41t0'; U--- U T on the outside 0By, ..., By, such
that one endpoint o, is attached td"; at the vertexw; or u1; for each; such that
1 < j < n+1,B; has one endpoint at; or u; and the other endpoint at; ;1 or
uj+1; and one endpoint of, 1 is attached td",, atv, oru,. For eachj < ¢, B; is
the only chain inll of length jm, and hence each; is invariant under TSG(IT).
This implies that eaclT;. is also setwise invariant under TS@T). It can be shown

that TSG. (IT) is induced by a group of diffeomorphisms(s®, IT) which leave each

A setwise invariant. Furthermore, because of the additional edges that we added to
thosel'y wheres; is a pinched sphere, no diffeomorphism(6f, IT) interchanges

the boundary components of any. Thus itis not hard to show that = TSG, (IT),

and henceV is realizable.

Next we construct an embedded grdphsuch that TSG(IT') = H/N. Without
loss of generality there are natural numberands with s < r < n such that
{I'1, ..., I',} consists of one representative from each orbit ofthender TSG.(I'),
and there is somg € G which interchanges the boundary componentd pff and
only if j < s. For eachj < s, let 8; denote an arc withjm + 2 vertices in its
interior, and letr; andy; denote the valence 2 vertices ®f which are adjacent to
the endpoints. Thus there aje vertices of valence 2 ofi; betweenx; andy;. For
eachj < s, let ﬂ} denoteg; with single edges attached.at and aty;. For eachj
suchthat < j <r, let8; denote an arc withim + 1 vertices in its interior, and let
xj be a valence 2 vertex which is adjacent to one endpoifit or hus there argm
vertices org; betweenx; and the other endpoint ;. For eachy > s, Ietﬁ} denote
B; with a single edge attached at. Observe that there is an automorphisnﬁ?f
which interchanges the endpoints of the Ardf and only if j < s. Also noﬁ} has
a non-trivial automorphism which fixes both endpoints of thercNow for each
k < n, there is aj < r such thatl"; is in the orbit ofl"; under TSG.(I"). For each
suchk, let 8, be a copy oﬁ}, and lety; andy, be those vertices @ corresponding
to the vertices:; andy; of .

We obtainIT’" from I'" by addingg;, ..., B, as follows. For eaclk < n, we
embedﬂ;{ in By so that the endpoints ¢ are atv, andwy or both atuy, andﬁ;(
can be isotoped int&;, fixing the endpoints 0B;. Now the only chains of length at
leastm in T1" are contained i, . .., B,; and for eacly < r, g, contains a chain of
lengthjm if and only if ', was in the orbit of"; under TSG.(T"). Now TSG, (IT') is
induced by a group of diffeomorphisms(@f, IT’) which leave{A1, . . ., A,} setwise
invariant. Furthermore, there is a diffeomorphism(s?, 1) which takesA; to
itself interchanging its boundary components if and only if there is a diffeomorphism
of (§3,T") which takesA; to itself interchanging its boundary components. Also
if g is a diffeomorphism of $3, IT") which takes somel; to itself preserving its
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boundary components theninduces a trivial automorphism g8f. Now for each
a € TSG, (I'), there existg, € G such thatg,(IT") = IT’. If another element
g, € G also inducesr onT" and g/, (IT") = IT, theng, andg,, induce the same
automorphism ofT’. Define®: TSG, (I') — TSG,(IT") by letting ® («) denote
the automorphism that, induces onl1’. ThenN = ker(®). Now it is not hard to
check thatb is onto and hence TSGII) = H/N.

Thus bothV andH/N are realizable, and Claim 2 is proven. O

Because of Claim 2, we can assume that& G such thalg(A;) = A;, g(c;) =
¢i, andg(d;) = d;, theng induces a trivial automorphism dn;. Thus we have
completed Step 3.

Recall from Step 1 that the pared manifghd’, W N (P U 2)) is either Seifert
fibered,/-fibered, or simple. We shall consider each of these cases in a separate step,
making use of the above assumption.

Step 4. We prove the proposition when (W, W N (P U 2)) is Seifert fibered.

First we prove the following claim which does not assume (Hatw N (P U 2))
is Seifert fibered.

Claim 3. Let T be the component of 3W which meets dN (I'"). If T isatorus, then
TSG, (I') isa subgroup of a dihedral group, and I" has a type |1 or type |11 sphere.

Proof of Claim 3. Let{xy, ..., x,} denote those vertices bfsuch thad N (x;) meets
W. Let the components GfN (V) N W be Jy, ..., J,. (Note that for a given vertex
xi, the seB N (x;) N W may have more than one component, so we may have-.)
Now each/; is a sphere with holes, and each boundary componeiitisfeither a
boundary component &f N (¢) for some edge, or a boundary component of some
A;. We saw in Step 1, tha&tW — (W N (P U Q)) is incompressible iW. Thus
for eachi, J; is incompressible i, and hence each boundary component;dé
essential ifl". SinceT is a torus, this means that evefyhas exactly two boundary
components.

Recall from Step 2 tha; permutes some of thé ;’s or some components of
ON(V) N W. ThusW must contain at least twa ;’s or at least twaJ;’s. In either

case,q > 1 andT is made up of alternating annuliy, ..., R, (which are each
eitherA ;’s or components of’ N (E)) and spheres with two holeg;, . .., J,. Also,
G takesT to itself, leaving each of the setdy, ..., J,} and{Ry, ..., R,} setwise

invariant. It follows that the group of automorphisms tlatinduces on the set
{J1,...,J4, R1, ..., Ry} is a subgroup of the dihedral group, .

Defined®: TSG,(I') — D, by letting ®(a) denote the automorphism that
inducesonthesgty, ..., J,, Ry, ..., R;}. We see thab is well-defined as follows.
Suppose thag, andg/, are both elements & which inducea onT". Theng, and
g, induce the same permutation on the set of the componerét&/ 6¥). Sincel’
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has at most one edge between two vertices and every edge has two distinct vertices,
g« andg/, also induce the same permutation on the set of arfayli. .., A,}, the
set of circles{c1, ds, ..., cy, d,}, and the set of components &fN(E). Thusg,
andg, both induce the same permutation on the componeri®/@¥) N W and on
{J1,..., g, R1, ..., Ry}. Therefored is a well-defined homomorphism.
We show as follows thab is one-to-one. Suppose thata) is the identity. Then
foreachi = 1,..., ¢, we haveg,(J;) = J; andg,(R;) = R;. Hencea(x;) = x;
for each vertexy; such thatdoN(x;) meetsW. Let v be a vertex ofl" such that
v ¢ {x1,...,x}. Then for somej, the vertexv is in I";. Also sinceT contains
more than one/; andg, does not permute thé, the boundaries ofA; cannot be
interchanged by,. Thus by our assumption at the end of Step|8); is the identity.
In particular,a(v) = v. So® is one-to-one. Hence TSGI") is a subgroup oD, .
Finally, recall from Step 2 that it has no type Il or lll spheres, thévV (V)N W
contains a sphere with at least three holes. However, as we saw abovd; &aah
sphere with two holes. Thusmust have a type Il or type Il sphere. This completes
the proof of Claim 3. O

By Claim 3, if the component ciW which meets N (T') is a torus then we are
done. In particular, it W, (W N (P U Q))) is Seifert fibered, then we are done. Thus
from now on, we assume that the componend Bf which meetsdN(I") is not a
torus. SinceW — (W N (P U Q)) is incompressible iW, this component is also
not a sphere. Hence this component has genus at least two. It follows that there is
some vertex of I such thab N (v) N W contains a sphere with at least three holes.

Step 5. We prove the proposition when (W, W N (P U Q)) is I -fibered.

SinceW is an/ -fibered subspace 6f, W = Y x I whereY is a surface with holes
and thel -fibers come from thé-factor in the product. Now, sin@g@v, W N (P U))
is I-fibered as a pared manifolt N (P U Q) = dY x I. ThusYy =Y x {0} and
Y1 =Y x {1} are components &N (V) N W. In particular there are verticeg and
v1 in I such that eithevg # v1, andYy = dN(vo) N W andY1 = aN(v1) N W, or
vo = v1 and bothYg andYy are components dfN (vg) N W. In either caseYp and
Y1 are spheres with holes, for some. By our assumption at the end of Step4#/
has genus at least two. Thus 3. Letb, ..., b, denote the boundary components
of Y, and for eachi, letC; = b; x I. SinceW N (P UQ) = dY x I, eachC; is either
an element of2 or a component o8’ N (E). For each, let F; denote the sphere or
pinched sphere obtained frofh by adding disks withinV (vg) andN (v1) which are
disjoint fromI" and from each other except@f andv;. Let E; denote the closure
of the component o3 — F; which is disjoint fromW, and lety; = I' N E;. Now
'=y1U---Uy. If C; € Qtheny, =T'; for somej, and if C; is a component
of ' N(E) theny; is a single edge. Sinc&X — P is incompressible inX, Yy is
incompressible irX. Thus nob; x {0} bounds a disk irX. SinceW has only one
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boundary componenk = cl(S3 — N(I")). It follows that nob; x {0} bounds a disk
in E; disjoint fromI", and hence at most ongis a single vertex. So ifg = vy, then
" has a type Ill sphere.

Suppose thaf” has no type Il or Ill spheres. Thug # v; and by Step 2
everyy; is an arc. For the sake of contradiction suppose df¥ahas at least four
components. Let be a simple closed curve dhx {0} which separates two of the
boundary components &ffrom the other boundary componentstafLet A denote
the annulus x 7 in Y x I. Now ¢ x {0} bounds a diskDg in N (vg) such that
DoNT = {vg} andc x {1} bounds a diskD; in N (v1) suchthatD; NT" = {v1}. Let
¥ = AU DgU D;. ThenX is a type |l sphere, contrary to our hypothesis. Since
we already know that > 3, it follows thatr = 3. Hence the underlying abstract
graph ofT" is a graphgs, containing two vertices of valence three and some positive
number vertices of valence 2. Now Ad) is a subgroup o83 x Z. Thus TSG.(I")
is a subgroup of the dihedral groups = S3 x Z, and hence is isomorphic to a
finite subgroup of Diff, ($3). Furthermore, we can embégin S? asA such that
the vertices of valence three are at the poles of the sphere, and the components of
$2 — A are three identical wedges. Thi#s= TSG,(I') < Aut(63) = TSG,(A),
and TSG.(A) is induced by an isomorphic finite subgroup of @D Thus ifT" has
no type Il or lll spheres, then we are done.

Now we return to the general case. Recall that eyery G restricts to a map
of the pair(W, W n (P U Q)). So for everyg € G, g({Yo, Y1}) = {Yo, Y1} and
g({Cq,...,CH) = {Cq,...,C;}. Suppose that there is sorgee G which in-
terchangedp andY;. Let ®: TSG.(I') — Zy be defined as follows. For each
a € TSG,(T), let ®(a) be the permutation that, induces on the s¢tp, Y1}. Then
® is onto. If ker(®) is trivial then TSG.(I') = Z». Hence in this case we are done.
If N = ker(®) is non-trivial, then we lefl be the embedded graph obtained frbm
by adding a single edge incident#g. Then TSG.(IT) = ker(®). Hence bothv
andH/N = Z are realizable. Thus from now on we assume that for eyetyG
we haveg(Yp) = Ypandg(Yy) = Yi.

Now suppose that there is some TSG, (I') such thatz(y;) = y; for some;.

If C; € Q, thenC; = A;, for someA;. Hencey; = I';, g.(A;) = A;, and since
ga(Yo) = Ypandg, (Y1) = Y1, gu(c;) = ¢; andg, (d;) = d;. Thus by our assumption
at the end of Step 3; induces the trivial automorphism on. If C; ¢ Q, theny;
is a single edge. Thus again, singgYo) = Yo andg,(Y1) = Y1, a induces the
trivial automorphism ory;. Thus for every non-triviad € TSG,(I"), there is some
yj such that:(y;) # y;. Because TSG(I") is non-trivial, without loss of generality
we can assume thai is not setwise invariant under TS@"). Let{y1, ..., y,} be
the orbit ofy; under TSG.(I'). Now defined: TSG,(I') — S, by letting®(a) be
the permutation that induces on the sé¥, ..., y,}. Then® is a homomorphism.

We prove thatd is onto as follows. Leti;j) be a transposition i§,. Since
{y1,..., 74} is the orbit ofyy, there is some € TSG, (I'), such thatz(y;) = y;.
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We will define an element € G as follows. Letg|E; = g,|E; andg|E; = ga_1|Ej.
Theng interchanged:; and E£;. Let b denote a simple closed curve iiwhich
separate$; andb; from all the other boundary components lof Let F denote
the disk with two holes it bounded by the three curvés, b;, andb. Extendg
to a diffeomorphism of x I such thatg|(b x I) is the identity. Next extend to
§3 — ((F x I) U N(vp) U N (v1)) by the identity. Finally, extengd within N (vg) and
N(v1) such thag(I') = I'. Now g: (53, ") — ($3,T') andg|I" — (y; Uy;) is the
identity. Leta’ denote the automorphism &finduced byg. Thena’ interchanges
i andy;, anda’|T" — (y; U y;) is the identity. Sob(a) = (ij), and hence is onto.
If ker(®) is trivial then TSG.(I'") = S, and we are done.

If N = ker(®) is non-trivial, thenr — g > 2. If vg # vy, we letII be the
embedded graph obtained from, 1 U - -- U y, by adding a single edge ap and
adding a chain of length atv1. If vg = v1, then eacly; contains at least two vertices
in its interior. In this case, lat be an edge iy, 1 such that containsvg. Now we
add a vertex to the interior of every edge in the orbit oinderN, and add a single
edge at each of these new vertices. [ebe y,;1 U --- U y, together with these
new vertices and edges. Now in either case, TH® = N. Also let 1’ denote
the graph obtained by gluingedges together at a single vertex to form a star. Then
TSG, (IT") = S, = H/N. Hence bothV andH /N are realizable. Thus we are done
in the case wheréW, W N (P U Q)) is I-fibered.

Step 6. We prove the proposition when (W, W N (P U )) issimple.

Note that the argument in the beginning of this step will be similar to the analogous
part of the proof of Theorem 1 in [F2].

We assume by Steps 4 and 5 thidt, WN (P U L)) is neither Seifert fibered ndr
fibered. Now by applying Thurston’s Hyperbolization Theorem for Pared Manifolds
[Th] to (W, W N (P U )) we conclude thaW — (W N (P U Q)) admits a finite
volume complete hyperbolic metric with totally geodesic boundary. b etenote
the double ofW — (W N (P U )) along its boundary. Thep is a finite volume
hyperbolic manifold. For every € TSG, (I"), the diffeomorphisng,|W defines
a diffeomorphismg,, of D which restricts tog, on each side oD. Now we use
Mostow’s Rigidity Theorem [Mo], to obtain an orientation preserving finite order
isometry f, of D that restricts to an isometry, of W — (W N (P U Q)) such
that f, is homotopic tog,|W — (W N (P U Q)). Furthermore, Mostow’s Rigidity
Theorem implies that the set of all sughgenerates a finite grouf’ of isometries
of W — (WnN (P U)). Now by removing horocyclic neighborhoods of the cusps of
W —(WN(PUK)), we obtain a copy of the paitv, W N (P U)) which is contained
in W — (W N (PUK)) and is setwise invariant und&”’. We shall abuse notation
slightly and considek’ to be a finite group of isometries ¢V, W N (P U Q))
rather than of this copy. Now’ restricts to a finite group of isometries of the tori
and annuli inW N (P U Q) with respect to a flat metric. Finally, it follows from
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Waldhausen'’s Isotopy Theorem [Wa] that egfHs isotopic tog,|W by an isotopy
leavingW N (P U Q) setwise invariant.

Now observe that sinc&V(V)NW,d'N(E)YNW,{Ay, ..., A,},and®N W are
each setwise invariant undér, each of these sets is also setwise invariant under the
isometry grougk’. Let f andg be elements ok’ which induce the same permutation
of the components diN (V) N W, 3’N(E) N W, and{A1, ..., A,}. We prove as
follows that f = g. By the end of Step 4 we know there is some veitef I" such
that a componenf of 9N (v) N W is a sphere withr > 3 holes. Letuy, ..., a,
denote the boundary componentsjof Now f(J) = g(J) and f («;) = g(«;) for
eachi = 1,...,r. Hencef 1o g restricts to a finite order orientation preserving
diffeomorphism of/ which setwise fixes all of the boundary components$ o§ince
J is a sphere with at least three holes, this implies that o g|J is the identity.
Finally, sincef andg are isometries o which are identical ory, we must have
f=s

Now suppose thaf, andf, are elements ok’ which come from elemenig, and
g, of G respectively, such that, andg/, both induce a givea onT". As in the proof
of Step 4,¢, andg/, induce the same permutation of the componen&\ofV) N W,
d'N(E)NW,and{Aq, ..., A,}. Hencef, and f, also induce the same permutation
of these components. So by the above paragyaph f,. Thus eacla € TSG, (I")
determines a uniqug, € K’'. Also if a, b € TSG.(T"), theng, o g, and g,cp
induce the same permutation of the componen&MNfV) N W, o'N(E) N W, and
{A1, ..., Ay} Thusf, o fp and f,.» induce the same permutation of each of these
sets. Hence by the above paragrgph f, = fiop. ThusK’ = {f,]la € TSG;(I')}.

Now we will re-embed¥ in $° and extendK” to a finite subgroup of Diff (53).
We start withW’ = W U N(I'") U (B1 U --- U B,). ThendW’ is a collection of tori
in ©. We re-embed¥’ in $2 as follows. Let7; be a component cfW’. Because
T; is incompressible inv, the closure of the component 6% — 7; contained in
M is a knot complemenk;. Now, up to isotopy, there is a well-defined longitude
¢; of T;, which bounds a Seifert surface Ry. Also for everyg € G, there is a
componentl; of 3W’ such thatg(7;) = T. Now T} bounds a knot complement
Ry in M, g(R;) = Ry, andg(¢;) is a longitude ofR;. We re-embedV’ in S3 by
replacing each knot complemeR} by a solid torud/; such that a meridian df; is
glued to¢;. Re-embeddingV’ in $2 in this way gives us a re-embedding of I''.

We will extend K’ to a finite group of diffeomorphisms o2 in stages. For
each ball or pinched baB;, let C; denote the solid cylinder obtained frof by
removing in{N (v;) U N (w;)) or int(N (1;)). After we have re-embeddét’ in S° as
described aboves3 — W consists of the solid toil/y, . . ., Uy, the ballsN (v) where
v € A/, and the solid cylinder€, ..., C, andN(e) wheree C A’. First we will
extendK' to the solid toriUy, ..., U,. Recall that eaclf, € K’ is isotopic to the
corresponding, on (W, W N (P U ©)) and eacly, took longitudes to longitudes
ONdR1U---UdR,. ThusK’ will take meridians to meridians adhU1 U - - - U dU,,.
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SinceK’|(dUL U --- U dU,) is a finite group of orientation preserving isometries,
we can find a finite number of pairwise disjoint meridians for edglsuch that the
collection{yy, ..., u,} of meridians fon Uy U - - - U dU, are setwise invariant under
K'. We first extendK’ radially from{u1, ..., 1} to a collection of pairwise disjoint
meridional disks bounded ly.1, . .., 1, }. These disks cut the solid tdvk, ..., U,
into a collection of solid cylinders. We can now extekiiradially within these solid
cylinders to obtain a finite grouki; of diffeomorphisms oWy = WU U U---UU;,.

Next we will extendK; to the ballsN (v) such thatv € A’. Observe thaky
restricts to a finite group of diffeomorphisms of the spheres with Hdlgs,, dN (v)N
W. We extendK radially first to the collection of spher¢g, .., 9N (v) and then
to the balls| J,.,, N(v) to obtain a finite grougK» of diffeomorphisms ofiW1 U
Upear N(v) which leaves J, ., N(v) N A’ setwise invariant.

Now K> restricts to finite groups of diffeomorphisms of the anmi ..., A,,
of the disksB; N (N (v;) UON (w;)) or B;NA(N (u;)) fori =1, ..., n, ofthe annuli
9’ N (e) for eache C A’, and of the disk9YN(e) N N(V) for eache C A. Thus
we can extend radially within each of the solid cylinderSy, ..., C, and each
N(e) wheree C A’, to obtain a finite group of diffeomorphisnis of $2 such that
the collection of the cores of these solid cylinders is setwise invariant. In particular,
E N A’ is setwise invariant. Thuk is a finite subgroup of Diff (S%) which leaves
A’ setwise invariant.

Now for eachf, € K’, let h, denote the element & obtained fromf, by the
above extensions. Sincg is isotopic tog, on (W, W N (P U Q)), h, is isotopic
to g, on (W, W N (P U )). Henceh, inducesa|A’. Defined®: H — K by
®(a) = h,. Thend is well defined since each € TSG, (I') determines a unique
fa € K', which in turn extends to a uniqug, € K. Also, everyg € K came from
such arm € TSG.(I"). Thus® is onto. To see thab is one-to-one, suppose that
a € TSG,(I") such thatb (a) = h, is the identity onS2. Thush,|W is the identity.
So for every vertex of I'', a(v) = v. Letv be a vertex of” such thab N (v) does not
meetW. Thenv is a vertex of som&;. Now A; is contained ird W, andh,|A; is the
identity. Thusg,(A;) = A;, ga(ci) = ¢;, andg,(d;) = d;. Now by our assumption
at the end of Step 3|I'; is the identity. S@(v) = v. It follows that® is one-to-one,
and henceéd = K.

Finally, suppose thdl has no type Il or type Ill spheres. As we saw in Step 2,
then each; is either an arc or a single vertex. Latdenote the graph obtained
from A’ by adding the core of eadfy together with additional vertices so thatis
a re-embedding of that is setwise invariant undéfr. Now for eachu € TSG,(T"),

h, inducesz on A. It follows thatH is a subgroup of TSG(A). ThusH is induced
on A by an isomorphic finite subgroup of Dif$%). This completes the proof of
Proposition 1. O
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4. Proof of Proposition 2

An essential part of the proof of Proposition 2 involves showing that if T@G is a
simple group, then we can find an embedded graptith no type | vertices such that
TSG, (A) = TSG, (I'). Our strategy is to first find an invariant proper subgraph
of I', then create a new graphcontainingl’™ such that TSG(A) = TSG,(I'") and
A has fewer type | vertices thdn Continuing this process until no type | vertices
remain, we arrive at the desired embedded graph

We begin with some definitions and lemmas.

Definition 7. Let ' be a graph embedded &7, let = be a type | sphere foF,
let B be the closure of one of the componentsséf— Y, leta = BNT, and let
{v} = T NT. Then we say that is atype | subgraph of I" with associated sphere
¥, andassociated type | ball B, andv is theattaching vertex of @, X or B. If X and
X' are subsets of2 such thatx N X’ is either empty or a single vertex df, then we
say thatX and X’ arealmost digjoint.

Lemma 1. Let T’ be an embedded graph, and let ', ..., I, be pairwise almost
disoint type | subgraphs with attaching vertices vy, ..., v,, respectively. Let " =
cl(' = (TpLU---UT},)) and let o be atype | subgraph of I'” with attaching vertex x.
ThenT hasatypel ball E with attaching vertex x, and pairwise almost digjoint typel
ballsEy, ..., E, associated withT'1, ..., I, suchthat E NI = « and E is almost
disoint from E; for all i such that v; € cl(I'” — «).

Proof. Let D be a type | ball fol™” associated witlkx. For each, let B; andC; be
type | balls forl" associated with™; such thatB; — {v;} C int(C;). Then for each
i # j,T;isalmostdisjoint fronC;. Now for each, we can find a small baB’ C B;
such thaw; € B; andB; is almost disjoint from eacti’; with j # i and froma D.

We start by shrinkingg; within itself to B} by an isotopy ofs3 which is pointwise
fixed on clS3 — C1). This isotopy take$’; to somel“’1 - Bi. Next we shrinkB»
to B fixing cl(S3 — C>), takingI'> to somel’y, C Bj. Continue this process for
i = 1,...,r. The composition of these isotopies is an isotopydivhich is fixed
onI"andtaked"to A =T"UT}U---UT,. Now By, ..., B, are pairwise almost
disjoint type | balls forA with associated subgraphy, ..., I', such that eaci; is
almost disjoint frond D.

Now without loss of generality we can choas@nd: such that ifi < s then
B! Cint(D),if s <i <tthenB] C cl($® — D), and ifr <i < r thenv; = x and
B] C D. Let B C D be a ball containings/, , U --- U B; which is almost disjoint
fromI'" and from eaclB’ withi < s. Let B’ C cl(S3 — D) be a ball withx € 9B’
which is almost disjoint fronT’ and from eacPB{ with s < i < t. Now there is an
isotopy of $° taking B to B’ and pointwise fixing™ U (ByU---U B)). For each,



340 E. Flapan, R. Naimi, J. Pommersheim and H. Tamvakis CMH

let B andI"/ denote the images d@f’ andI"; as a result of this isotopy. This isotopy
takesAto A’ =T'UT{U---UT/.

Now B, ..., B/ are pairwise almost disjoint type | balls for' with associated
subgraph§'/, ..., T} respectively. Alsd is atype | ball forA’ such thaD NI = «,
andD is almost disjoint frorTB{/ for alli such thaw; € cl(I" —«). The composition
of the above isotopies determines a homeomorpliisits3, I') — (S2, A’) which
is fixed onI"” and takes each; toI';’. Now letE = h~1(D), and for each, let
E; = h—l(Blf’). Thenthe ball& andEy, .. ., E, satisfy the conclusion of the lemma.

O

We would like to focus on those type | subgraphs which are as small as possible.

Definition 8. Let I be a graph embedded §¥ and lete be a type | subgraph with
associated sphei®, associated balB, and attaching vertex. Suppose thaf has
no type | subgraph which is a proper subset offhen we say that is aninnermost
subgraph and B is aninnermost ball of T'.

We can also choose a particular type | vertex, and look for the smallest type |
subgraph attached at that vertex.

Definition 9. Let " be a graph embedded #¥ and leta be a type | subgraph with
associated sphei®, associated balB, and attaching vertex. Suppose thaf has
no type | subgraph with attaching vertexvhich is a proper subset of. Then we
say thatx is aninnermost subgraph rel v and B is aninnermost ball rel v.

Observe that ifx is any type | subgraph of with attaching vertex, thena
contains an innermost subgraph and an innermost subgraph rehe following
lemma can be proved using an argument identical to that of Lemma 4.1 of [Su], so
we do not include the proof here.

Lemma 2. Let I" be an embedded graph and let A be an innermost subgraph of T’
(respectively rel v). Let T be atype | sphere for " (respectively rel v) and let the
closures of the components of I' —  be « and 8. Then A is contained entirely in
either « or 8.

Observe that it follows from Lemma 2 thatiif andi, are innermost subgraphs
of T" (respectively reb) which are not almost disjoint, thexy = A>. Thus every
embedded grapl® has a unique collection of innermost subgraphs (respectively
rel v) and these subgraphs are pairwise almost disjoint. Hence any diffeomorphism
of (83, I') takes this unique collection to itself.

Lemma3. LetT" beanembedded graphwithatypel vertex. ThenT" hasatypel vertex
v with the property that at most one innermost subgraph rel v is not an innermost
subgraph of T'.
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Proof. Suppose that1 is a type | vertex ofl” such that some innermost subgraph
rel vy is not an innermost subgraph &f Call this subgrapii";. SinceI'; is not
innermost, it contains a vertax # v1 where an innermost subgraph is attached.
Consider those innermost subgraphdofel v, which do not contairi. Suppose
that one of these subgraphs is not innermost. Call this subgtapBincelI'; does
not containvy, I'2 is a proper subgraph af;.

Repeat the above argument starting within place ofI";. Since the graph
[ is finite, it cannot have an infinite nested sequence of proper subgraphs. Hence
eventually, we obtain a vertey, such that every innermost subgraphiofel v, that
does not contaim,_1 is innermost. Sinc& has precisely one innermost subgraph
rel v, that containg,,_1, the vertexv,, satisfies the conclusion of the lemma. O

Now we are ready to prove Proposition 2.

Proposition 2. Let T be an embedded graph, and let H = TSG,.(I"). Then either
H isrealizable by a graph with no type | spheres, H = S, for somer, or H hasa
non-trivial normal subgroup N such that both N and H/N arerealizable.

Proof. If TSG,.(I") = Z», thenH is realized by the graph consisting of a single edge,
and if H is trivial then it is realized by the graph consisting of a single vertex. Thus
we assume thall # Z,, H is not trivial, andl” has at least one type | sphere. We
will show that eitherH = S, for somer, H has a non-trivial normal subgroup
such that bothv andH /N are realizable, or there exists an embedded graphch
that TSG.(A) = TSG,(I') and A has fewer type | vertices thdn

By Lemma 3 we can choose an innermost type | vertexhich has the property
that at most one innermost subgraphugls not an innermost subgraph bt If vg
is fixed by TSG.(I'), let{I'y, ..., [';;} be the collection of innermost subgraphdof
relvi. Otherwise, lefl'y, ..., I'),} be the collection of innermost subgraphdofin
either case, let; be the attaching vertex &f;. Thus ifv; is fixed by TSG.(T") then
for everyi, v; = v1. Observe that, since; is an innermost type | verteX; has at
least two innermost subgraphs and at least two innermost subgraphs Télus in
either caser > 1. Furthermore, by the uniqueness of the collec{by, ..., I',,},
each element of TSET") takes eaclr; to somel";. Furthermore, sincEy, ..., T,
are pairwise almost disjoint arigj, is a type | subgraph of @ — (I'y U - - - U T, 1)),
we can apply Lemma 1 where= n — 1 ande = T, to obtain a collection of pairwise
almost disjoint type | ballsB1, ..., B,} for I, associated withl'y, ..., T, }.

Let G denote the group of all orientation preserving diffeomorphism$afI).
Then G induces TSG(T") and for everya € TSG(T") there is ag, € G which
inducesu. Letm denote a number larger than the number of verticds. ikive will
use the following observation in several places in the proof.

Observation. Suppose thag: (53, T;) — (83, T;) is a diffeomorphism such that
g(v;) = v;. Let D; andD; be balls containind”; andI"; respectively such that



342 E. Flapan, R. Naimi, J. Pommersheim and H. Tamvakis CMH

0D; NT; = {v;}andoD; NT; = {v;}. Nowg(D;) andD; are both balls containing
I';. Thus the complements g{D;) and D; are isotopic by an isotopy o fixing
;. Henceg is isotopic to a diffeomorphismg’: (3, ;) — (83, T';) such that
g'(Di) = Dj andg'IT"; = g|T;.

Step 1. We prove the proposition in the case where vy is fixed by TSG,(T") and
some I'; is not setwiseinvariant under TSGy. (T).

Inthiscasef{I'y, ..., I';} isthe family of innermost subgraphs tel Without loss
of generality{I'1, ..., I';} is the orbit ofT'1, andr > 1. We define a homomorphism
®: TSGL(T) — S, by letting ®(a) be the permutation that induces on the set
{I',..., T}

To see thatb is onto, let(ij) be a non-trivial transposition if,. Sincel’; and
I'; are both in the orbit of"y, there is some € TSG, (I') such thata(I';) = T';.
Now g, is a diffeomorphism o2 such thatg,(I';) = I';, andB; and B; are balls
containingl’; andI’; respectively such thaB; N T'; = {v1} anddB; NT'; = {vy}.
By the Observation, there is a diffeomorphigi: (S3, 7)) — (83, I';) such that
g, (B;) = Bj. We will useg,, to define a diffeomorphismna: (S3,T) — (S5, 1) as
follows. SinceB; andB; are almost disjoint angl, fixesv, we letg|B; = g/,| B; and
g|B; = (g,)"1|B;. Let B denote aball containing; UB, suchthab BN(B;UB;) =
{vijandBNT =T; UT;. We can exteng to a diffeomorphism o8 — (B; U B})
such thag|d B is the identity, and then exterdo S° — B by the identity. Nowg is an
orientation preserving diffeomorphism ¢$3, I'). Let«’ denote the automorphism
induced onl" by g. Thena’ interchanged”; andI'; anda’|I" — (I'; U T)) is the
identity. So®(a’) is the transpositioli j). Hence® is onto.

If ker(®) is trivial, then TSG.(I') = S, and we are done. So suppose that
N = ker(®) is non-trivial. LetIT denote the embedded graph obtained fidras
follows. For each < r such thaf’; is not a simple closed curve, we add vertices
to every edge of; containingv1. Foreach < r such tharl’; is a simple closed curve
we addim vertices to a single edge bf. Now eachl”; is an innermost subgraph rel
v for I, and is the unique innermost subgraphugelvhich contains a chain whose
length is betweetw and(i + 1)m — 1. Thus every element of TSGIT) takesI;
to itself for alli < r. Now it is not hard to see that TSGIT) = ker(®). Finally,
let IT" denote the embedded graph consisting efiges joined together at a common
vertex. Then TSG(IT") = S, = H/N. Thus bothN andH/N are realizable. So
we are done with Step 1.

As a result of Step 1, we assume that one of the following hypotheses holds.
Hypothesis (a). v1 is not fixed by TSG (T).

Hypothesis (b). v is fixed by TSG.(I') and everyl'; is setwise invariant under

TSG.(D).
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Step 2. We choose an invariant proper subgraph I'” and define a non-trivial homo-
morphismW¥: TSG, (I') — TSG, (I'") suchthat N = ker(¥) isrealizable.

First we assume that Hypothesis (a) holds. In this dase.. .., I';} is the family
of innermost subgraphs df. Without loss of generality, we can assume that the
subcollection of innermost subgraphs with attaching vevtes {I"1, ..., I;}. Let
O denote the orbit of’1 U --- U T, under TSG.(I"). Without loss of generality
there exists am < n such thatO = T'1U ... UT,. Now letI” = cl(I" — 0).
ThenT” is a connected graph. Observe tlitis setwise invariant unde®, and
the homomorphisnw : TSG,(I') — TSG,(I'’) given by W (a) = a|I"’ for every
a € TSG(T") is not trivial sincev; is not fixed by TSG (T).

We create an embedded grapihwhich realizesN = ker(¥) as follows. Let
{x1, ..., x5} be distinct vertices representing the orbivgtunder TSG.(T"). As sets
{x1,..., x5} = {v1, ..., v}, however we may have > s if somev; = v; fori # j.
Let B1, ..., Bs+1 be arcs such that eagh contains;jm vertices in its interior. We
obtainIT fromI'y U --- UT, by addingg, ..., Bs+1 on the outside oB4, ..., B,,
such thap is attached ta; for eachj suchthat 1< j < s+1, 8; has one endpoint
atx; and the other endpoint at 1; andp,1 is attached ta,. For eachy, g; is the
only chain inIT of length jm, and hence eadhy; is invariant under TSG(IT). Thus
foreachj < s, {T;|v; = x;} is setwise invariant under TSGIT). Now it is not hard
to check that TSG(IT) = ker(W).

Now suppose that Hypothesis (b) holds. Théh,...,T',} is the family of
innermost subgraphs df rel v1. Since TSG(T") is non-trivial, without loss of
generality there is some € TSG, (I') which induces a non-trivial automorphism
onT,. In this case we lef’ = I',. Now I’ is setwise invariant unde¥, and again
V: TSGL(I') — TSG,(I') defined byW¥(a) = a|l"’ for everya € TSG, (') is
non-trivial. In this case, we ldl =T"; U - - - U T, _1 together with two arcs added at
v1, one withm vertices and the other withv2vertices (this guarantees thatis not
a single arc). Then every element of TSGI) fixesvi, and we see thdl realizes
N = ker(¥). So we are done with Step 2.

Next we will introduce some notation that will be used throughout the rest of the
proof. If Hypothesis (a) holds, then is not fixed by TSG.(I"). Hence there is some
innermost subgraph ref which is not one of th&';. By our choice o1, at most one
innermost subgraph rek is not one of thd™;. Thusé = cl(I' — (T U---UTY,))is
an innermost subgraph rel. AlsoI” = cl(I' — (' U---UT,)) C 4. If Hypothesis
(b) holds, thenwe let=r =n —1,andagainled =cl(I' — ('L U---UTY)). In
this case = I', = I'/, and hence agaifiis an innermost subgraph rel. We will
user in the next step and useands in Step 5.

Ingeneral¥: TSG,(I') — TSG,(I'") may not be surjective. In Step 3 we will
create a new embedded graplby adding vertices or chains of verticesltg and in
Step 4 we will show that\ realizesH/N.
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Step 3. We construct an embedded graph A which contains I'" and satisfies the
following conditions:

(1) For everya € TSGy(T'), thereisa g, € G suchthat g,(A) = A.

(2) If g, h € G induce the same automorphism of I" and leave A setwise invariant,
then g and # induce the same automor phism of A.

(3) If g is a diffeomorphism of (S3, A), then g({v1, ..., v,}) = {v1,..., v} and
g =T,

Case 1. v; has valence one ifi’.

ThenI contains a chai® with one endpoint ai1. Suppose that’ = P, then
TSG,.(I'") = Zy. Since there is some € TSG, (I') which induces a non-trivial
automorphism o, im(¥) = TSG, (I''). ThusH/N is realizable. IfN is trivial,
then TSG.(T") = Zo, contrary to our initial assumption. N is non-trivial we would
be done with the proposition. Thus we assume FHat P.

Let ¢ be the edge i containingv;. We createA from I'” by addingm vertices
to each edge in the orbit afunder TSG.(T"). It is easy to see that Conditions (1)
and (2) are satisfied fak. We abuse notation and I&t denote both the chain iR’
containingv1 and the chain ir\ containingv;. SinceP and its orbit under TSG(T")
are the only chains of length at leastin A, the orbit of P under TSG.(A) is the
same as the orbit @? under TSG (I'). Sincel’ # P, one endpoint of has valence
at least three il\. Hence no element of TSGA) interchanges the endpoints Bf
or any chain in its orbit. Thus for any diffeomorphigm (53, A) — (5%, A), we
must haveg({v1, ..., v,}) = {v1,..., v}, andg(I”) = I'’. Thus Condition (3) is
satisfied.

Case 2. The valence of is at least two irl"’.

Consider vertex neighborhood&v1), ..., N(v,). Foreach < r and each edge
ej in T” which containsy;, let f; = N(v;) N¢; and letw; be the point whergf;
meetsd N (v;). If Hypothesis (@) is satisfied, choose a collection of pairwise almost
disjoint regular neighborhoodS(f;) in N(v;) — (B1 U --- U B,). If Hypothesis
(b) is satisfied, choose a collection of pairwise almost disjoint regular neighborhoods
N(fj)in N(v;) N B,. In either case, for each we letd; C N(f;) be an arc with
endpointsy; andw; such that/; U f; bounds a disk; in N(f;). We createA from
I'" by adding eacld; together with the vertew ; andm additional vertices od;.

As an arcd; is isotopic tof; fixing I'. Hence for every: € TSG,(I'), we can
chooseg, € G suchthag,(A) = A. Hence Condition (1) is satisfied. Furthermore,
by our construction ofA, Condition (2) must also be satisfied. Observe that since
the valence oby is at least two i, A has at least twd;’s containing the vertex
v1. Thus for each < r, v; has valence at least four ix, while eachw; has valence
three. Thereforey, ..., v, are the only vertices of valence more than threein
which are endpoints of chains of length It follows that for any diffeomorphism
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g: (83, A) — (8%, A), we must havg({v1, ..., v-}) = {v1,..., v} andg(l') =
I'’. Hence Condition (3) is satisfied. Thus we are done with Step 3.

Step 4. Weprovethat H/N isrealized by A.

By Conditions (1) and (2), we can define a homomorph8mTSG,(I") —
TSGL(A) by letting @ () denote the automorphism that induces onA. Further-
more, it is easy to check that k@) = ker(¥) = N.

To show thatb is onto, we let: € TSGy (A). By definition there is an orientation
preserving diffeomorphisng: (53, A) — (S2, A) inducinga on A. We will con-
struct an orientation preserving diffeomorphism(s3, I') — (S3, I') that leaves\
invariant and induces on A as follows.

Case 1. T satisfies Hypothesis (a).

Since{vy, ..., v, }isthe orbitofv; underG and by Condition (3} ({vy, ..., v, }) =
{vi, ..., v}, for everyi < r, there is ag; € G such thatg; (v;) = g(v;). Now
for eachi < r, we can choosg (i) < r such thatg;(I';) = I';(;), and hence
gi(v;) = vj(). Itfollows from the Observation that for each< r, there is an orien-
tation preserving diffeomorphisrgf: (B;,I';) = (Bji),ji)). SinceBy, ..., B,

are pairwise almost disjoint, for each< r, we can define:|B; = g/. Then
h(v) = g/ (v;) = vji) = gp).
Next we define a collectiofiDy, ..., D,} of pairwise almost disjoint innermost

balls forT" with associated subgrapfis,, . . ., I';} such that eacB; — {v;} C int(D;)
andD;NA = B;NA = {v;}. Since eaclg(v;) = v;(;), eachg(D;) isisotopictoD; ;)
by an isotopy ofs fixing A. As in the Observation, it follows thatis isotopic to an
orientation preserving diffeomorphisgh: (53, A) — (3, A) suchthag’|A = g|A
and for each < r, g'(D;) = Dj). Henceg'({vy,...,v/}) = {v1,..., v} and
¢ (I = I'". Thuswe definé| cl(S°—(D1U- - -UD,)) = g'| cl(S3—(D1U- - -UD,)).
Finally, for everyi < r, sinceh(dD;) = dD;;) andh(dB;) = dBj(;), and
h|1dD; andh|d B; are both orientation preserving diffeomorphisms takintp v,
we can extend: to a diffeomorphism fromD; — B; to D) — Bj;). Now h is
a diffeomorphism of($2, A) which inducesz on A andi(I") = I'. Letb be the
automorphism whict induces om". Then®(b) = a, and henceb is onto.

Case 2. T satisfies Hypothesis (b).

In this casel” = I',,, we haveA C B, anddB, N A = {v1}. Now by the Ob-
servation, sincg(A) = A andg(v1) = v1, g is isotopic to an orientation preserving
diffeomorphisny’: (53, A) — (S2, A) suchthag’(B,) = B, andg’|A = g|A. De-
fineh|B, = g’|B,. Let D, be aninnermost ball fdr,, such thaiB,, — {v,} C int(D,,).
Sinceh|d By, is orientation preserving we can extentb a diffeomorphism oD, — B,
such that:|d D, is the identity, and then defirteto be the identity or$® — D,,. Now
h is a diffeomorphism otS3, A) whichinduces: on A, andi(I') = I'. So as above,
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let b be the automorphism whichinduces o, then® (b) = a. Thus again® is
onto.

Therefore in either casé]{/N = TSGy (A). Thus we are done with Step 4.

In Step 2 we saw thaV = ker(¥) is realizable. IfN is non-trivial then we are
done. OtherwiseH is realized byA. Hence we will be done after we prove the
following.

Step 5. We show that A has fewer type | verticesthanT.

First suppose that was created in Case 1 of Step 3. Thetis homeomorphic
as a topological space 1. Recall that a type | vertex must have valence at least
three. SoI” and A have the same set of type | vertices, and by Lemma 1, every
type | vertex ofl”’ is a type | vertex of". On the other handy; is a type | vertex
of I'. However, since the valence of is one inA, v is not a type | vertex ofA.
Therefore,A has fewer type | vertices thdn

Thus we can assume thatwas created in Case 2 of Step 3. kebe a type |
vertex of A. We will show thatx is a type | vertex of” which is notone obq, ..., v,.
Leta be atype | subgraph af with attaching vertex, and leto’ = cl(A — «). For
eachj, the simple closed curvg; Ud; is contained entirely in either or «’. Hence
a anda’ each contain at least one edgdldf Let® = AU (' U---UT,). Then
I'1,..., T, are type | subgraphs @. Thus by Lemma 1@ has a type | balE with
attaching vertex such thatE N A = « andE is almost disjoint from each; such
thatv; € cl(I" — «). Then by definition£ is a type | ball forA associated with.
LetX =0E.

Now suppose that is a vertex off”’. Then either the valence sfis at least three
in " or x = v; for somei. In either case, the valence.ofs at least three ifr. Also
NI c N6 = {x}, and each component of(§€ — =) contains at least one edge
of I'. HenceX is a type | sphere for andE N T is a type | subgraph of with
attaching vertex.

Recall from the end of Step 2 that, ..., I'; all have attaching vertex;, and
§=cl(I' = (I'yU---UTY})) is an innermost subgraph rel containingl™. Suppose
for the sake of contradiction that= v;. Foralli <¢,v; = x € c(I'" —«), henceE
is almost disjoint fronT"y U - - - UT,. Also sinceE NT is a type | subgraph df with
attaching vertex1, I' has an innermost subgraph velwhich is contained itk N T.
Let 8 be this subgraph. Thehic ENT c §. However, C § implies thatg = 3,
sinceB ands are both innermost subgraphs vgl ThusI’ ¢ § = ENT. Buta’ C
cl(S® — E) contains at least one edgel®f This contradiction implies that # v1.
Furthermore, for each< r, there is a diffeomorphism: (S, A) — (S2, A) such
thatg(vy) = v;. Thus, for alli < r, x # v;. Hence we have shown thatifis a
vertex of [/, thenx is a type | vertex of” which is not one obq, .. ., v,.

Finally, for the sake of contradiction, suppose thas not a vertex of™”’. Since
the valence ofe must be at least three in, x = w; for some;. Without loss of
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generality assume that; Ud; C o’ and hence; — f; C «. For some < r, v;
is an endpoint of/;. We will show that our assumption that; is a type | vertex of
A implies thatv; is also a type | vertex of\. Now v; has valence at least four i
and all of the edges of containingy; are ina’. By our construction of\, f; U d;
bounds a diskt ; such that intE ;) is disjoint fromA. Thus by taking the union of
E and a ball containingz; we obtain a type | balB for A with attaching vertex;
suchthatB N A = a U f; Ud;. Thusy; is a type | vertex ofA. But we saw above
that this is impossible. Henoe# w; for any j.

Thus we have shown that every type | vertex\ois a type | vertex of” which is
not one of the verticesy, ..., v,. Hence the set of type | vertices afis a proper
subset of the type | vertices df This completes the proof of Proposition 2. O

5. Embedding graphsin $3

In this section we prove the converse of Theorem 2. In particular, in Theorem 3
we will show that for every finite subgrou@ of Diff , (%), there is an embedded
complete bipartite graph with TSG(I") = G. A complete bipartite graph K, ,, is

the graph consisting of two sets ofverticesV and W together with edges joining
every vertex inV to every vertex irv.

Our strategy to construét will be as follows. Let: denote the order afi. Then
the sets of vertice¥ and W will be embedded as the orbits und@&rof distinct
points inS3. We will embed the edges &, ,, by lifting paths from the orbit space
$3/G. Finally, by tying distinct knots in edges from different orbits we will ensure
that TSG.(T") is not larger tharG.

We will use the following terminology. An edge of a graphy is said to be
invertible if there exists some € Aut(y) that interchanges the verticesefin this
case we say that inverts e. Analogously ife is an edge in an embedded graph
and there is some diffeomorphisgrof (S2, I') such thatg interchanges the vertices
of ¢, then we say isinvertibleandg invertse.

Graph Embedding Lemma. Let y be a graph. Let H be a subgroup of Aut(y)
that isisomorphic to a finite subgroup G of Diff | (S%). Suppose that no non-trivial
element of H fixes any vertex or inverts any edge of y. Then there is an embedded
graph ' with underlying abstract graph y such that G induces H onT.

Proof. Smith [Sm] has shown that the fixed point set of every finite order orientation
preserving homeomorphism 6f is either the empty set or a simple closed curve.
Let Y denote the union of the fixed point sets of all of the non-trivial elements
of G. ThenY is the union of finitely many simple closed curves whose pairwise
intersection consists of finitely many points. o= S — Y is path connected and
setwise invariant undeg.



348 E. Flapan, R. Naimi, J. Pommersheim and H. Tamvakis CMH

LetWw: H — G be an isomorphism and for eaghe H, defineg, = ¥ (a). Let
{wi, ..., w,} be a set consisting of one representative from each vertex orpit of
underH. Letvy, ..., v, be distinct points inV/ which have disjoint orbits unde¥.
For each < ¢, we embed the vertex; as the point;.

We embed an arbitrary vertex of y as follows. Since no vertex of is fixed by
any non-trivial element off, there is a unique € H andi < g suchthaw = a(w;).
Thus everyw determines a unique poigt,(v;) in M. So we embedv as g, (v;).
Let V denote the set of thus embedded vertices; tidaavesV setwise invariant.
Sincevy, ..., v, are inM and have disjoint orbits unde¥, all of the vertices ofy
are embedded as distinct pointsi The map sending eache H to g,|V is an
isomorphism, sinc& is an isomorphism an#l is disjoint fromY. ThusG induces
H on the setV.

Let{e1, ..., e,} be a set consisting of one representative from each edge orbit of
y underH. For each, letx; andy; be the embedded vertices&f SinceM is path
connected, for eachthere is a patky; in M from x; to y;.

Letw: M — M/G denote the quotient map. Thenis a covering map, and
the quotient spac@ = M/G is a 3-manifold. For each leta; = 7 o o;. Then
o/ is a path or loop fromr (x;) to 7 (y;). Using a general position argumentdh
we can homotop eaalt, fixing its endpoints, to a simple path or loppsuch that
int(py(I)), ..., int(p, (1)), andz (V) are pairwise disjoint. For eachlet p; be the
lift of p; beginning at;. Sincep; = 7 o p; is one-to-one except possibly on the
set{0, 1}, we know thato; must also be one-to-one except possibly on th¢Gset}.
Sincep! is homotopic tax; fixing its endpointsp; is also homotopic te; fixing its
endpoints. Thug; is a simple path il from x; to y;.

We embed each; asp;(I). We embed an arbitrary edgeas follows. Observe
that since no non-trivial element &f fixes any vertex or inverts any edge, no edge is
setwise invariant under any non-trivial elementfdf Thus there are uniquee H
andi < n such thate = a(e;). Hencee determines a unique agg (p; (1)) in M
from g, (x;) to g.(y;). Sowe embed ass = g,(p;(I)). Let E denote the set of thus
embedded edges. ThéhleavesE setwise invariant.

Let " consist of the vertice¥ together with the embedded edgés ThenT is
setwise invariant unde. We see thal” is an embedded graph as follows. First,
since each infp; (1)) is disjoint fromz (V), each embedded edge must be disjoint
from V. Similarly, since fori # j, p;(I) andp}(]) have disjoint interiors, for every
g, h € G, g(pi(I)) andh(p; (1)) have disjoint interiors. Finally, singe is a simple
path or loop, ifg # h, theng (p; (1)) andh(p; (1)) have disjoint interiors.

HenceTl is an embedded graph with underlying abstract grapuch thatG
inducesH onT. O

Inthe proof of Proposition 4, we would like to be able to add a krtota particular
edgee of " so that no element of TSGTI') can takes to an edge which does not
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also contairx. Furthermore, we would like to be able to add a non-invertible knot to
an edge: so that no element of TSGI') can inverts.

We will use the concept of local knotting. LEtbe an embedded graph, lebe
a knot type, and let be some edge which is contained in a simple closed curve in
. We say that contains the local knot « with ball B, if B is a ballandB N T is
an arce in int(e) such thatx is properly embedded iB and the union of and an
arc ind B has knot typec. When we say an embedded grdphis obtained fronT
by adding « to ¢ with ball B we will mean thafl™’ is obtained fronT" by replacing
an arce in int(e) with an arce’ in a regular neighborhoo#t of o which is disjoint
fromI" — « such thaty’ is properly embedded iR, and the union o&’ and an arc
in 8B has knot typex.

Suppose we add a local prime kndio an edge of I and call the new embedded
edges’. We see as follows thatif # « is a prime knot that was not a local knotgf
thenk’ is not a local knot of’. Suppose for the sake of contradiction thiatontains
«’ with ball B’. Since the ball and B’ for « and«’ are disjoint froml" — ¢, and
¢ is contained in a simple closed curgein T, it is enough to prove the assertion in
the case whelr = C. But in this case the assertion follows immediately from the
prime decomposition theorem for knots.

Orienting an edge from one endpoint to the other naturally induces an orientation
on any local knot contained in the edge. «lfis a non-invertible prime knot not
contained in the oriented edggthen, by an argument similar to the above paragraph,
addingx to ¢ to gete’ does not result in the oriented edgecontaining the reverse
of . In particular, this means thatlif is the graph obtained frofi by adding« to
¢, then there is na € TSG, (I'") which invertse’.

We want to be able to add a new local knot to one edge of an embedded graph
without causing other edges to contain that local knot.shetndes be edges of".

A bridging sphere betweenes; ande; is a spheresS which meetd” transversely in
{x1, x2}, where each; is a point in the interior of;.

Local Knotting Lemma. Let I" be an embedded graph with distinct edgese1 and g2,
each contained in a simple closed curve in T", such that there is no bridging sphere
between 1 and 2. Let k1 and 2 be (not necessarily distinct) knot types such that 2
does not contain the local knot k2. Then adding «1 to &1 does not make g2 contain
the local knot «».

Proof. Let I'" be the graph obtained froin by adding the local knat; to &1 with
ball By, and lets} denote the edge iR’ obtained frome; in this way.

Suppose thatifi’, 2 contains the local knat, with ball B,. By general position,
we can assume thaB; anda B> intersect in a collection of pairwise disjoint circles.
Suppose there is a circle of intersection that bounds a Hisk 9 B; such thatF
is disjoint fromI"’. ChooseC to be an innermost circle of intersectiondB, with
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F, and letD1 be the disk inF which is bounded byC. Suppose, for the sake of
contradiction, that some compondd of d B, — C contains precisely one point of
g2. By the hypotheses of the lemms, is contained in a simple closed curvelih
Now the spheré1 U D, meets this simple closed curve transversely in a single point,
which is impossible. Thu€ bounds a diskD, on 4 B> which is disjoint fromI™’.
Then the spher®; U D> is disjoint fromTI”, so it bounds a balk which is also
disjoint fromI’. Therefore, while fixing™’, we can isotopD, throughX to a disk
just pastD1, and thus eliminate the circle of intersection By repeating this process
as necessary, we can isotsp, fixing I'’, to a new ballB;, such that no circle of
dB1 N 8B, bounds a disk 0a B disjoint fromI”. SinceB, is isotopic toB; fixing
I, Bé is also a ball for the local knaty in &5.

Suppose, for the sake of contradiction, th& N d B, is empty. ThenB; and
B, are disjoint. Hence we can replagen B; by the unknotted are; N By without
introducing any intersections betweenand B,. Thus, inT", &> contains the local
knot k2 with ball B, which is contrary to the hypothesis of our lemma. Therefore
dB1N aBé must contain one or more circles of intersection, none of which bounds a
disk ond B1 which is disjoint fromI"’. Let C be a circle of intersection @fB1 N aBé
that bounds an innermost digk ondB;. Let D2 be a disk bounded bg on aBé.
Now ¢} is contained in a simple closed curvelify which intersects; transversely
in some pointininte}). SinceD1 U D is a sphere anBi’ N B, C &2, Dy intersects
g2 transversely in a single interior point. Thilg U D is a bridging sphere for’
betweere] ande,. SinceD1 Nep = D1 N ey, D1 U Dy is also a bridging sphere for
" betweere; ande,. But this contradicts our hypothesis. Thus, as an eddg,eh
cannot contairk ». O

Observe that a 3-connected embedded gmapan have no bridging spheres.
Thus, by the Local Knotting Lemma, adding a local krgtto any edge of” does
not cause any other edgebtto contain a new local knat,.

Proposition 4. Let A be an embedded 3-connected graph, and let H be a subgroup
of TSG,(A) which isinduced by an isomorphic subgroup G of Diff ;. ($2) and such
that no non-trivial element of H fixes any vertex of A. Then A can be re-embedded
asT" suchthat H = TSG,(T") and H isinduced by G.

Proof. The vertices of" will be the same as those of. We will obtain the edges of
I" by adding local knots to the edgesaf For eachu € H, let g, denote the unique
element ofG which induces: on A. SinceG is a finite subgroup of Diff ($%), we
can choose a neighborhodt A) so thatv (V) andN (E) are each setwise invariant
underG.

Let {é1,...,48,} consist of one representative from each edge orbik ainder
H. Without loss of generality, we can assume there is sam€ n such that; is
invertible if and only ifi < m. Since no non-trivial element df fixes any vertex,
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for eachi < m, there is a unique; € H such thatg,, invertss;, and there is no
non-trivial element of5 which leaves any; setwise invariant without inverting it.

Let{k1, ..., k,} be a set of distinct prime knots none of which is contained jn
such that ifi < m thenk; is strongly invertible and otherwise is non-invertible.
For each, we add the local kno#; to §; with ball N (8;) and call this new embedded
edges;. Fori < m, sincex; is strongly invertible, we can adq to §; in such a way
thatgui (&1) = &i.

If @ andb are elements off such thai, (5;) = g,(5;), theng,(s;) = gp(e;). For
each edge of A, e is in the orbit of a uniqué;. Now there is am € H such that
e = a(8;). So we can re-embeadasg, (¢;) and this embedding does not depend on
our choice ofz. Since the local knots were each added witNifE), the interiors of
the new edges are pairwise disjoint. [etienote the embedded graph obtained from
A by re-embedding the edges in this way. Observe that the locakkneds added
to an edge of A if and only if e is in the orbit ofs; underG. By our construction,
foreverya € H, I is setwise invariant undey,. ThusH is a subgroup of TSG(T")
which is induced byG. Now it follows from the Local Knotting Lemma that an
embedded edgeof I' contains the local knat; if and only if ¢ is in the orbit ofe;
underG.

We show as follows thatf = TSG.(I"). Let ¢ be a non-trivial element of
TSG,(I'). Then there is some diffeomorphisim (53, T) — (§3, ") such thath
inducesp onT'. Sincey is non-trivial, there is some edgewhich z does not leave
setwise invariant. For somec is in the orbit ofe; underG, and hence contains the
local knotk;. Thush(e) must also contain the local knet, and thereforé:(¢) is
also in the orbit ok; underG. Sinces andh(¢) are both in the orbit of; underG,
there is some; € G such thalg1(e) = h(e). Thusg; > o h(e) = e.

We define another diffeomorphisyi: ($%, T') — ($%,T) as follows. Ifg; o h
invertse, then the local knot; must be invertible. Thus there is some elemenof
which invertse;, and since is in the orbit ofs; underG there is somg, € G which
invertse. In this case we lef = g2 o gl—l o h. Otherwise we leff = gl‘l oh. Thus
in either casef (¢) = ¢, fixing both vertices of.

We will show below thatf actually fixes every vertex df. Since we have shown
that f fixes the vertices dof, it suffices to show that if fixes a vertex, thenf fixes
every vertex adjacent to. Suppose that there is some edgeontaining the vertex
x, such thatf (¢') # ¢’. By the same argument given two paragraphs up, sihaed
f(¢") contain the same local knots, there is sogges G such thatgz(¢’) = f(&').
By hypothesis no non-trivial element 6f fixes any embedded vertex. Letdenote
the vertex ofgz(¢’) other thanx, thengs(x) = x'. SOg:,j1 o f is a diffeomorphism
of (83, IN) that takes’ to itself interchanging andx’. It follows that the local knot
which is contained ir’ must be invertible. Hence, as in the above paragraph, there
isags € G which invertse’. But this implies thagz o ga(¢’) #¢’ andgzo ga(x) = x.
Sogs o ga is a non-trivial element of; that fixes the vertex of A. This contradicts
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the hypothesis of the proposition. Hengdixes every vertex of".

Recall that eitherf = go o gl—l ohorf = gl‘l o h. Sincef fixes every vertex
of I', h induces the same automorphismloas eitherg1 o ggl or g1 does. Since the
automorphisms of" induced by botheq o gz_l andg; are elements off, it follows
that ¢, the automorphism of" induced by#, is also an element off. Therefore
TSGL(T) =H. 0

The following result follows immediately from Propositions 1 and 4, together
with the fact that a 3-connected embedded graph has no type |, Il, or Il spheres.

Corollary. Let A bean embedded 3-connected graph. Let H < TSG, (A) such that
no non-trivial element of H fixes any vertex of A. Then A can be re-embedded as
I suchthat H = TSG,(I") and H isinduced by an isomorphic finite subgroup of
Diff ;. (53).

We shall use Proposition 4 and the Graph Embedding Lemma to prove the fol-
lowing converse of Theorem 2. Note that the statement of Theorem 3 that we prove
below is slightly stronger than that given in the introduction.

Theorem 3. For every finite subgroup G of Diff 4 ($3), there is an embedded 3-
connected graph I' such that G = TSG, (I") and TSG,(I") isinduced by G. More-
over, I" can be chosen to be a complete bipartite graph K, , for somen.

Proof. The complete bipartite grapiz 3 is 3-connected. By the corollary there is an
embedded graph with underlying abstract grapkiz 3 such that TSG(I") is trivial.
So we assume that the groGpis not trivial.

Now letn denote the order af. Firstwe supposethat> 2. Let{vy, v, ..., v,}
and{w1, wo, ..., w,} denote the sets of vertices of an abstract complete bipartite
graphk, ,. Sincen > 2 we know thatk, , is 3-connected. Pick; to be a point
in $3 that is not fixed by any non-trivial element 6f. Let {x1, x2, ..., x,,} denote
the orbit ofx; underG. We will define a homomorphisn¥: G — Aut(K, ,) as
follows. Letg € G. Then for every < n, thereis g < n such thag(x;) = x;. We
defineW(g)(v;) = v; andW¥(g)(w;) = w;. Let H denote the image ob.

Since no non-trivial element @f fixes anyx;, ¥ is one-to-one, and henée = G.

Also, no non-trivial element off takes any vertex to itself. Furthermore, since no
element ofH takes any; to anyw;, no edges oK, , are inverted by any element

of H. Now we can apply the Graph Embedding Lemma to obtain an embedded graph
" with underlying abstract grapki, , such thatG inducesH onT". Furthermore, by
Proposition 4" can be chosen so that = TSG, (") andH is induced byG.

Finally, suppose that = 2, soG = Z,. Let{vs, v2, v, v4} and{w1, wz, ws, wa}
denote the sets of vertices of an abstract complete bipartite dg¢aph ThenKa 4
is 3-connected. LeH be the subgroup of AgK4 4) generated by the element
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(v1, v2)(v3, va) (w1, w2) (w3, wa). ThenH = Zy, no vertex ofKy 4 is fixed by any
non-trivial element off, and there are no edges which are inverted by an element
of H. Thus we can again apply the Graph Embedding Lemma and Proposition 4 to
get an embedded graphwith underlying abstract grapkis 4 such that TSG(T") is
induced byG andG = TSG,.(I'). O
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