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1. A conjecture of Kodaira

A fundamental question in Kahler geometry asks whether any compact Kéahler man-
ifold can be realised as a deformation of a projective manifold. This is made more
precise in the following

Definition 1. A compact Kahler manifold is said to balgebraically approximable
oralmost algebraicif there exists a complex manifoi and a surjective holomorphic
submersionr: X — A to the unit discA ¢ C such that the fiber&;, = 7 ~1(r)
satisfy Xo ~ X and there is a sequen¢g) converging to 0 such that al;;, are
projective.

In [Kod63] Kodaira proved that every Kahler surface is almost algebraic, and it
was a standard conjecture, known as the Kodaira conjecture, that this should be also
true in higher dimensions. In particular, according to that conjecture, every rigid
compact Kéhler manifold should have been algebraic.

However recently, a few months after this paper was completed, C.Voisin [Vo0O4a]
came up with a counterexample: she constructed a rigid non-algebraic Kahler three-
fold, arising as a blow-up of a complex torus. Later Oguiso [Og04] constructed a
simply connected counterexample. During the final revision of this paper, C. Voisin
[Vo04b] even announced the construction of Kéhler manifolds such that no smooth
bimeromorphic model can be deformed to a projective complex manifold, thereby
showing that a weakened “bimeromorphic version” of the Kodaira conjecture does
not hold either.

However, even with the original version of the Kodaira conjecture, we still believe
that there are important classes of compact Kéhler manifolds for which algebraic
approximationis possible. Such a class might be the clasgmfalcompact Kahler
manifolds, i.e. manifolds witlK y nef, since blow-up tricks used to manipulate toriare
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then forbidden. Another such class should be the class of compact Kahler manifolds
with hermitian seminegative canonical bundle (or, even more generally,-whtk
nef). A structure theorem for compact Kéhler manifolds of this type states that they
have afinite étale covering mapping surjectively onto the Albanese torus, and the fibers
of the Albanese map are products of Calabi—Yau manifolds, hyperkahler manifolds or
manifoldsX with —K x semipositive and7°(X, Q$") = 0 for allm > 0 [DPS96].
The latter manifolds are projective algebraic, while tori and hyperkahler manifolds are
algebraically approximable, so there is indeed a very good hope to reach a proof for
this class; the very special case of numerically flat projective bundles over complex
tori follows in fact from Proposition 2 below.

The main idea is the following easy general argument for projective bundles over
tori, which asserts that the projective bundle structure survives by deformation.

Proposition 2. Let X be a compact Kahler manifold which ha®abundle structure
X — A over some complex torus. Then for every deformatiof — S with

Xo ~ X, the nearby fibers¢, have aP,-bundle structureX;, — 4; where is

a deformation ofd in a neighborhood of = 0. Moreover, ifX = P(V) for some
vector bundleV on A, thenX;, = P(V,) for a suitable deformatiorV, — A, of

V - A.

Proof. We look at the relative Albanese map XX — 4. ThenA — Sis a
deformation of tori such that,: X, — A, is the Albanese map for eache S.
Sinceqg is a submersiony, should be also a submersiom a neighborhood/ C §
of 0, and the fibers of; are deformations oP,. SincelP, is undeformable, we
conclude thaty,: X, — A, is also aP,-bundle for smallz. Now, the fact that
X, = P(V,) is equivalent to the fact that the relative anticanonical bumﬁ@/ﬁr
has anr +1)-rootL; on X, in which casé/; = («;)+«(L;). However, the obstruction
for aline bundle to have am +1)-root lies inH?(X,, Z/(r +1)Z). This is a discrete
locally constant coefficient system, so if the obstruction vanishes #00, it must
also vanish on the connected component of Uitt S. a

Proposition 2 more generally holds for arbitrary projective bundles over compact
manifolds and even for bundles whose fibers are rigid manifolds without holomorphic
1-forms; the proof is slightly more involved and is given in the last section.

In view of this, it is natural to look at the following potential candidate for a
counter-example: Start with a 3-dimensional complex tefusith Picard number
p(A) > 3. LetL; € NS(A) be (numerical equivalence classes of) linearly inde-
pendent holomorphic line bundles ovér Let U ¢ C° be a neighborhood dfA]
in the universal deformation space 4f As explained in the next section, evety
determines a 3-codimensional subsp&ce- V(L;) in U such that1(L;) is (1, 1),

i.e. L; is a holomorphic line bundle oA’ if and only if [A'] € V;.
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Now we make the following Assumption:
The intersection of th&;’s has the expected dimensioni.e.

(x) ViNnVoNVz contains{A} as an isolated point
Then consider the 6-dimensional manifold
Y =P(O4 @ L1) xaP(O4 @B L) xaP(O4 @ L3).

Thisis aIP’f-bundIe overA with projectionr: ¥ — A.In each subspad® @, @ L;)
there is a sectiof; atinfinity given by the direct summardl,. This gives a sectiod
of r by selecting over every € A the point(x1, x2, x3), where{x;} = Z; N7~ 1(a).

Proposition 3. The blow ups: X — Y of Z C Y is rigid in the sense that there is
no positive-dimensional family of deformationsxof

Proof. Notice that, denoting byP3(x) the blow up of P3 in one point, X is a
IP’?(x)—bundle over. Solet(X;) be adeformation o = Xg over the 1-dimensional
unit discA. The first step is to proof that, possibly after shrinkingevery X, is
a]P’f(x)-bundIe over its (3-dimensional) Albanese toris In fact, g(X;) = 3 for
all ¢+ and the Albanese mag is smooth for smalt. In order to prove that, is a
P3(x)-bundle, it suffices to show thﬁt'f(x) is rigid, i.e. every small deformation of
]P’%(x) is againP3 (x).

In fact, letZ = P3(x) for simplicity of notations. Let: Z — P3 be the blow-up
map with exceptional divisoE >~ P,. Then there is an exact sequence

0—> Ty, — I*TIP? — Tg(=1) = 0.

Since dimHO(TP%) =9,dimH%T,) = 6, HO(Tr(-1)) = 3 andHl(r*TP.z,) =0,
by taking cohomology of the above exact sequence it follows

HY(T7) =0,

in particularZ is rigid.

Let X be the total space dfX;) and letzr: X — A be the relative Albanese
map forXX — A. ThenA — A is a torus bundle; le#; be the fiber over, so that
A = Ap. Now the exceptional divisob of ¢ moves inX. This is easy to see by
consideringD N7 ~1(a) = P, fora € A. In fact, the normal bundle of thiB; is
O(—1) ® 0%, so that thé®, moves and force® to move. Therefore one obtains a
fiberwise blow-downX — ¥ inducing the birational map: X — Y. Of course
there is a factorisatiotd — Y — A andy — A is aIP’f-bundIe. Again lett; be
the fiber over. Next it is shown that it is possible to write

Yy =11, X A, Yo, XA, Y3;
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with P1-bundlesy; ;/A;, and this can be done simultaneously, i.e. tkig) form

a family %;. The most economic way to do that is to note that the relative Picard
numberp(Y/4) equals 3 since (Yo/Ag) = 3 and sinceKy, is relatively ample

over A, (this is a product situation). By taking relative extremal contractions in the
sense of Mori theory one gets a tower of thigebundles. Of course there are three
choices of the first one and then two choices for the second since the situation is
completely symmetric in. (This situation could possibly lead to some monodromy
actionm1(A;) — &3, but since such actions are discrete and depend continuously
ont, the fact that we have a non twisted product foe= 0 implies that we have

no such twist for arbitrary). The last contraction will provide the spdgefor the
appropriate. Now consider the canonical map

Y: = Y1 x4, Yo x4, Y3;.

Then this map is immediately seen to be an isomorphism.
SinceY; ; is alP1-bundle overA,; and since it is has a section by construction, it
follows

Yi; =P(E;,)

with a rank 2-bundlI€; ; (normalized such thaig, = @4, ® L;), and theE; ; form

a holomorphic rank 2-bundl& over. Since the section at infinity ity deforms
by construction to sections if}, one obtains a global quotieét — §; — 0 such
thatg;|Ao = O4,. By changingé; appropriately, one may assume tigat= O 4.
Let£; be the kernel 0&; — O 4. ThenL;|Ag = L;. But this implies that there is a
deformation ofA = Ag such that all three line bundlés remain holomorphic. But
the assumption

VinVonVy={A}

implies that there is no such (nontrivial) deformationdof O

It is therefore a very natural question to ask whether these rigid 6-dimensional
Kahler manifolds are projective or not. If they were not projective, we would get
counter-examples to the Kodaira conjecture. Unfortunately (in view of getting easy
counter-examples!), Theorem 4 of the next section tells us that a complex4orus
verifying Assumption(x) for some triple of holomorphic line bundlds is always
an abelian variety. In fact, Theorem 4 even shows ¢Ba}3-bundles of the special
type

Y =P(Oa @ L1) xaP(Oa @ L2) xaP(Os @ L3)

satisfy the Kodaira conjecture, even without assumptienfor L1, Lo, L3 (see
Lemma 6).
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2. Holomor phic line bundles on complex tori

Let X be a complex torus of dimensign As explained in [BL99], [LB92]X admits
a period matrix of the fornir, 1,) with T € M,(C), theg x g-matrices with entries
in C such that deétm ) # 0. Conversely every such matrix is the period matrix of
a complex torus.

If A e C# := V denotes the lattice generated by the columnsgrofl,) the
Néron—Severi group aX may be described as

A B A and( alternating and
NS(X) = :E - <—’B C> € M24(Z) ‘ A—Bt+'t"B+'tCt=0 } ‘

The equality ensures that the alternating fdtns a (1, 1)-form, cf. [BL99, p. 10].

Theorem 4. Let X be a3-dimensional complex torus with period mat¢ix 13) and
letE1-Z@® E>-Z® E3-7Z C NS(X) be arank3 subgroup of the Néron—Severi group
NS(X) of X generated by, E», E3 € NS(X). Then there is a sequen¢¥,,) of
3-dimensional complex tori with period matricés,, 13) such that

() thet, converge ta forn — oo,
(i) E1-Z®E2-Z @ E3-7Z C NS(X,,), and
(iii) X, is a complex abelian variety.

. A B .
As afirst step towards a prodf, = < ) may be considered as an element

—'B C
0 ai  az
of the free abelian groufg!®: the matricesA = | —a1 0 a3| andC =
—az —az 0
0 c1  C2 b1 by b3
—c1 0 3] are alternating, an®® = | bs bs bg | is arbitrary. Since
—c2 —c3 O b7 bg bg

k- E € NS(X) impliesE € NS(X), condition (ii) is equivalent to
E1-Q® E2-Q& E3-Q C NS(X,) ®z Q,

andE; - Q@ E> - Q @ E3- Q may be interpreted as(@-rational point in the Grass-
mannianG (3, 15).
For a given 3-dimensional subspage Q& E»>- Q& Esz-Q ¢ Q'°the equations
A — Bit +'t'B; +'tC;t = 0,i = 1, 2, 3 imply algebraic relations between the
entries of
T1 T2 13
T = 'L'4 T5 T6
T7 T8 19
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Since theA; — B;t + 't'B; + 't C;t are alternating matrices, the number of these
relations can be reduced to®= 1, 2, 3):

0 = aj1 — bj1t2 — bi2ts — bi3tg + biat1 + bisT4 + bigT7

+ ¢i1(t1T5 — T2T4) + Ci2(T1T8 — T2T7) + Ci3(T4T8 — T577)
0 = aj2 — bj1t3 — bi2t6 — bi379 + b;771 + bigta + big17

+ ci1(T176 — T3T4) + ci2(T1T9 — T3T7) + ¢i3(T4T9 — TET7)
0 = a;3 — biat3 — bi5T6 — bieTg + bi7t2 + bigts + bigTs

(%)

+ cin(v2t6 — T375) + ci2(7279 — T378) + Ci3(T579 — T6T8).
So there is an algebraic sub$ét, g, g, of C9 such that
Uk, s E5 N (T € C7 : detim 1) # 0}

describes alt’'swith E1 - Q ® E> - Q d E3 - Q € NS(X;) ®z Q whereX; is the
complex torus corresponding to the period mageix1s). In particular, the union of
alltheseU, £, £, is an algebraic family/ ¢ G (3,15 xC°. LetU c G(3, 15) xP°
denote the projective closure bf.

The heart of the proof is now a careful analysis of this faniilyespecially of
the fibers ovef)-rational points ofG (3, 15). If they always contain an (analytically)
dense subset afs such thatX; is a complex abelian variety, the theorem will follow.

The first observation is that all coefficients in the equationé«pfare rational.
Hence,Q is the field of definition ofU, i.e. there exists &-schemelg such that

U = Ug xg SpecC. In particular, every fiber o/ over aQ-rational point of
G (3, 15) hasQ as field of definition, too.

Next, one computes a fib@rEl,Ez,E3 of U with sufficiently general entries in the
matricesE1, E2, E3. This can be done with the computer algebra program Macaulay?2
([GS], [EGSS02]). Setting

0 0 O 110 0O 1 0
A1=|0 0 2], Bi=|11 2y, Ci=|-1 0 0},

0 -2 0 112 0 0O

O 1 2 0 0O 0 0 O
Ap=|-1 0 1}, B=1(|1 1 1), C,=|0 0 1},

-2 -1 0 010 0 -1 0

O 1 2 111 0O 01
Az=-1 0 1), Bz=|1 2 1], C3=| 0 0 O

-2 -1 0 1 21 -1 00

(the matrix entries were chosen by a random number generator) and using the fol-
lowing Macaulay?2 script
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k = QQ
PT = k[t_0..t_9];

Al = matrix(PT,{{0,0,0},{0,0,2},{0,-2,0}});
BL = matrix(PT,{{1,1,0},{1,1,2},{1,1,2}});

Cl = matrix(PT,{{0,1,0},{-1,0,0},{0,0,0}});
A2 = matrix(PT,{{0,1,2},{-1,0,1},{-2,-1,0}});
B2 = matrix(PT,{{0,0,0},{1,1,1},{0,1,0}});

C2 = matrix(PT,{{0,0,0},{0,0,1},{0,-1,0}});
A3 = matrix(PT,{{0,1,2},{-1,0,1},{-2,-1,0}});
B3 = matrix(PT,{{1,1,1},{1,2,1},{1,2,1}});

C3 = matrix(PT,{{0,0,1},{0,0,0},{-1,0,0}});

gent = generichMatrix(PT,t_1,3,3);

sl = matrix(PT,{{t_0,0,0},{0,t_0,0},{0,0,t_0}});
s2 = sl*sl,
QL = Al*s2 - Bl*gent*sl + transpose(gent)*transpose

(Bl)*s1 + transpose(gent)*Cl*gent;

@ = A2*s2 - B2*gent*sl + transpose(gent)*transpose
(B2)*s1 + transpose(gent)*C2*gent;

@B = A3*s2 - B3*gent*sl + transpose(gent)*transpose
(B3)*s1 + transpose(gent)*C3*gent;

Q= Q@ @B; --- Qcontains the 9 rel ations between

the t_i’s honogenized with respect to t_0O

g = saturate(ideal (flatten Q, ideal (t_0))
-- saturation with t_O0 renmoves all components on
the hyperplane t_0 =0

betti g

one gets 8 linear and 1 quadratic equation describing the projective closure of
UE,.E2.E5'

t _7+3/5t _8+8/5t_9
t_6-3/20t_8+1/10t_9
t_5-3/5t_8+2/5t 9
t_4+1/2t 8+t 9
t_3-1/20t_8-3/10t_9
t_2+3/10t_8+9/5t_9
t_1-3/10t_8+1/5t_9
t_0-1/4t_8-3/2t_9
t_872-48t_8t_9-172/3t_972

Since the quadratic generator has discriminaﬁﬂ%-%2 > 0 which is not the square
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of a rational number, this is@-irreducible 0-dimensional scheme of degree 2; over
C it consists of two points.

Unfortunately, these equations may cut out too much, since the projective closure
of a fiber may be less than the fiber of the projective closure of a family. To deal with
this problem one has to do a little detour: First one looks at the (inhomogeneous) ideal
of the whole familyU pulled back taA12)3 x P° where eact\1? parametrizes triples
A, B, C with C normalized. This pull back is necessary since otherwise one has to
embedG (3, 15) in some projective space which makes the computations impossible.

k = QQ
P=k[t 0.t 9];

PE = k[e_0..e_11,f_0..f_11,9_0..g_11];

PT = P ** PE

Al = matrix(PT,{{0,e_0,e_1},{-e_0,0,e_2},{-e_1,-e_2,0}});

Bl = matrix(PT,{{e_3,e_4,e_5},{e_6,e_7,e_8}, {e 9,e_10,e_11}});
Cl = matrix(PT,{{0,1,0},{-1,0,0},{0,0,0}});

A2 = matrix(PT, {{0,f_O,f _1},{-f_0,0,f_2},{-f_1,-f_2,0}});

B2 = matrix(PT,{{f_3,f_4 ,f_5},{f_6,f 7,f_8}, {f 9,f _10,f_11}});
C2 = matrix(PT,{{0,0,0},{0,0,1},{0,-1,0}});

A3 = matrix(PT,{{0,9.0,9_1},{-9_0,0,9_2},{-0_1,-9_2,0}});

B3 = matrix(PT,{{g9_3,9 4,9 5},{9.6,0_7,0.8},{g_9,9_10,g _11}});
C3 = matrix(PT, {{0,0,1},{0,0,0},{-1,0,0}});

gent = generichMatrix(PT,t_1,3, 3);

QL = Al - Bl*gent + transpose(gent)*transpose(Bl) +
transpose(gent)*Cl*gent;

@ = A2 - B2*gent + transpose(gent)*transpose(B2) +
transpose(gent)*C2*gent ;

@B = A3 - B3*gent + transpose(gent)*transpose(B3) +
transpose(gent)*C3*gent;

Q= Q| Q| B;
o} ideal flatten Q

The projective closure df may be determined by computing a Groebner basis of this
ideal with respect to a monomial order refining the order by degree ip$tand then
homogenizing the generators with respeapthEis95, 15.31]). This computation is

too complicated for the whole Groebner basis, but it is already enough to look at the
first few elements which are added to the original generators:

gbasis = gb(q, PairLinmt=>31);

hgbasi s = honpgeni ze(gens gbasis,t_0,{1,1,1,1,1,1,1,1,1,1,0,
o,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0});
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Evaluation at E1, Ep, E3)
f = map(PT, PT, matrix(PT,{{t_O,t_1,t_2,t_3,t_4,t_5,
t 6,t 7,t 8t 9, 0,0,21,1,0,1,1,2,1,1,2,1,2,1,0,0,
0,1,1,1,0,1,0,1,2,1,1,1,1,1,2,1,1, 2,1}}));

genfibre = ideal f(hgbasis);

betti gb genfibre

shows that the fibr(el7)El,Ez,E3 is contained in a scheme cut out by 8 linear and 1
guadratic equation, so

(U)El,Ez,Ea = UEl,Ez,Es-

One can get further information abolit from the homogenized equations col-
lected inhgbasi s. Since the projective closure of a fiber is equal to the fiber of the
projective closure on an open subset they contain 9 equations describing the fibers of
U over an open subset aroutl, E», E3). Furthermore the command

transpose | eadTer m hgbasi s

shows that all of these equations contairariables. Hence each of these fibers is cut
out by 9 non-constant equations, so it is not empty. Consequantijger is empty.
Turning to the fibers o/ overC? (resp.lP°) one sees immediately that these are non-
empty linear subspaces. Hendds connected. Finally, the regularity 6f follows
directly by deriving the equations {i) with respect to the;;'s. Taken all these facts

together it follows that/ and hence/ is irreducible. So every 0-dimensional fiber
must have degree 2.

Now it is easy to prove for these 0-dimensional fibers d@yeational points that
they describe period matricesbelonging to complex abelian varieties: Since the
fibers areQ-rational, too, the entries af are elements of a field extension @fof
degree 2. The defining equations of the Néron—Severi group show that thigh NS
isa 15— 2 x 3 = 9-dimensional)-vector space. But a 3-dimensional complex torus
with maximal Picard number 9 is algebraic (cf. [BL99]).

What about the higher dimensional fibers? We considerQbational map
¢: G@3,15 --» Hilbz(P%) whose existence is the essence of the arguments used

above. Let
IS
T

G (3, 15—~ Hilb?(?Y)

be the resolution of the singularities@by blowing up centers smooth ov@x This
is possible by the Hironaka package, see [Hir64], [BM97] or [HLOQ97]. Now the
theorem is a consequence of the following result.
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Lemma 5. Let Z C Y be an embedding of regula®-schemes, let € Z be a
Q-rational point and letp: ¥ — Y be the blow up o with centerZ. Then the
Q-rational points are dense on the fibgr(z).

Proof. This is almost trivial: Choose a regular sequeQgg ..., fs, fsx1, ..., fr)
in the local ringOy., defined overQ such thatnz , = (fi41...., fi) C Oz, and
my . = (f1, ..., fi). The blowing up of Spe@y , with center Spe@ . is given by

ProjOy.:[fot1. ... fil = (SpecOy.; x PG Y/ V(T f; — T f),
and the fiber over is = P{ds*l. O

Apply the lemma onp: If [E1- Q@ Ex-Q® E3-Q] = [W] € G(3,15 is
aQ-rational point thenr ~1([W1]) ¢ G will contain an analytically dense subset of
Q-rational points, and the same will be true of the image ~1([W1)) C Hilbz(]P’%).

But Q-rational points in HiIB(IP’(%) describe pairs of points corresponding to abelian

varieties, and all pairs ig(x —1([W])) map surjectively on the fiber ovgW]in U.
Hence this fiber contains a dense open subset of period matrizesh thatX; is an
abelian variety.

Remark. Some words about the Macaulay2 computations: Since all the relevant
equations and varieties are defined ofgeand also the operations applied to them
like taking the projective closure work ove, these calculations give exact results.

3. Modifications and a general setting for counter-examples

Of course the construction in Section 1 possibly could be modified in several ways
and then might lead to a counter-example to the Kodaira conjecture.

First we show that even without Assumpti@n) the varietyX constructed as
before Proposition 3 is algebraically approximable. Indeed in that situation (using
the previous terminology)y1 N V2 N V3 contains other complex tori tha#. Then
theorem 4 assures the existence of a sequefigk .y € Vi N Vo N V3 of abelian
varieties converging tat. The following lemma shows that this impliés almost
algebraic:

A B

Lemmab. LetE = _i'p ¢

> € Mp,(Z) be a skew symmetric matrix with integral

entries and let
V={teMs3C)|A—Br+'t'"B+'tCt =0; detlmr # 0} c C°

be the set of period matricessuch thatX; is a complex torus witl € NS(X;).
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Let X = V x C&/A. be the family of these toi; whereA, = (t, 1,) is the
lattice belonging taX, = C8/A;. Then everyy € V has an open neighborhood
U C V such that there exists a holomorphic line bundle on Xy such that
c1(Ly) =Eforallt e U.

Proof. Letw: XX — V be the projection of¢ onto V. By taking direct images with
respect tor and deriving the long exact sequence from0Z — Ox — 95 — 1
one obtains the sequence

R'7, 0% — R°m,.Z — R*m.0x.

The skew symmetric matri€ gives a section oR?r,.Z which is mapped to 0 in
R%7,0x sinceE € NS(X,) for all t € V. HenceE is the image of a section in
Rln*(9§6. Take an open neighborhoad of g such that the section restrictedto
is a cohomology class iHl(XWl(U), O%.). This class gives the line bundiey .
O

Next, consider the following more general setting: Take-@limensonal complex
torus A andk vector bundlesty, ..., E; overA of rankry, ..., < n. LetY be
the(m + r1 + - - - + rp)-dimensional manifold

P(Oa® E1) X4+ x4 P(Os & Eyp).

This a(lP't x - - - x P"*)-bundle overA with projectionz : ¥ — A. In each subspace
P(O4 @ E;) there is a sectior; at infinity given by the direct summar@,. This
gives a sectior¥ of = by selecting over every € A the point(xy, ..., x;), where
{xi} = Zi N7~ Ya). Leto: X — Y be the blow up ofZ C Y.

Similar arguments as in Section 1 show

Proposition 7. If there is a positive-dimensional family of deformations¥othen
there will also exist a deformation family of complex tpdi, },, such thatd = Ag
and all vector bundle€1, ..., E; remain holomorphic om;. O

The condition on the vector bundles to remain holomorphic requires some further
explanations: LefE be a vector bundle of rank over ang-dimensional torusA.
Then the Chern classes(E) are (i, i)-classes inH% (A, Z) = /\Zi Hom(A, Z),
where A ¢ C8 =: V is a (non-degenerate) lattice such that= V/A. Since
H"(A,C) = \'Homg(V, C) x A\'Homgs(V, C), the (i, i)-classes inH? (A, Z)
may be interpreted as a real valued alternating férion /\i V such that

i

F(i®,iV) = F(®, V) and F(/\A/\A) cZ.
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As in the case ofl, 1)-classes these conditions induce relations betwegmrit-
ten in terms of a base @f) and the period matrix. In a family{A;};c» of complex
tori these relations must be satisfied fprr # 0, if a holomorphic vector bundl&
on Ag still has a holomorphic structure ofy.

But the existence problem for vector bundles of higher rank with prescribed Chern
classes is much more difficult than in the case of line bundles. On (non-algebraic)
complex tori this problem is completely solved only in dimension 2 and rank 2
[Tom99], [TTO2]. Consequently, to construct a counter-example to Kodaira’s con-
jecture with vector bundles of higher rank it is not enough to give a set of Chern
classes and to prove that these classes can be Chern classes only for isolated period
matrix. On the other hand if there is a positive family of such period matrices there
may be still a counter-example depending on the existence of vector bundles with
these Chern classes only on isolated members of the families.

Finally the two simplest cases of this general setting are considered.

3.1. Linebundlesinarbitrary dimensions. LetX be acomplextorus of dimension
g given by the period matrixz, 1,). By the characterization of the Néron—Severi
group in the last section a skew symmetric matflix Mo, (Z) is a(1, 1)-form iff

the entries ofr satisfy g equations. Consequently, 3 skew symmetric matrices

E1, Ez, E3 € M, (Z) should determine at most a finite numbergok g period
matricesr such thatt1, E», E3 are first Chern classes of line bundlesXn

Asinthe last section, for givenone can choose random entriesfit E», Ezand
compute the locu¥ (E1) NV (E2) NV (E3) of t's as above. Butalready in dimension
4 this locus turns out to be empty for randomly chosen entries. This means that only
special triples of matrices belong to the Néron—Severi group of a complex torus, and
it seems difficult to find one such that furthermore the above locus consists of isolated
points. And then one has still to prove that the period matrices in this locus determine
a non-algebraic complex torus.

3.2. Rank 2 vector bundlesin dimension 3. This is the simplest case with vector
bundles of rank- 1. Unfortunately, by Poincaré duality

H%2(x,7) = HYY(X,7), H3Y(X,7) = H*%(X,7), HY3(X, Z) = H?O(X, 7)

and the equations for a skew symmetric matrix\a, (Z) to be a(2, 2)-form do
not differ from those for1, 1)-forms. Hence in this case a counter-example may be
found only by closer considering the question for which complex tori exist rank 2
vector bundles with given Chern classes.

Of course more difficult settings starting with rank 2 vector bundles on 4-dimen-
sional complex tori may give positive results. On the other hand the examples above
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give enough evidence to turn around one’s point of view, into an attempt to prove
Kodaira’s conjecture in these special cases.

4. Deformations of Projective Bundles
In this final section we generalize Proposition 2.

Theorem 8. Let X be a compact manifold which hasPa-bundle structureX — Y
over some compact manifoll Then for every deformatio® — S with Xo >~ X,
the nearby fibers¢; have aP,-bundle structureX, — Y; wherey is a deformation
of Y in a neighborhood of = 0. Moreover, ifX = P(V) for some vector bundl&
onY, thenX, = P(V;) for a suitable deformatio¥; — Y; of V — Y.

Proof. Letg: € — T be the irreducible component of the cycle space relative to
m: X — S containing the fibers ok — Y. So 7 parametrizes deformations of
the P, to nearby fibersX,. Since the normal bundle ié to these projective spaces
is trivial, it follows immediately that (possibly after shrinkirf) 7 is smooth. Let
p: C — X denote the projection and notice that there is another canonical projection
r: T — SrealizingT as a family(7;). We will also consideiC;, = ¢~ 1(T}) with
projectiong;, to T;. Now ¢g is alP,-bundle. Therefore for smail also the mapg;
are first submersions and second projective bundles (since projective space is locally
rigid). Having in mind thatpg: Cop — Xp is an isomorphism, we see thatis an
isomorphism so that alf; are projective bundles for small

The vector bundle statement finally is proved just as in Proposition 2. O
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