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Hilbert modular foliations on the projective plane
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Abstract. We describe explicitly holomorphic singular foliations on the projective plane corre-
sponding to natural foliations of Hilbert modular surfaces associated to th&)fie/8). These

are concrete models for a very special class of foliations in the recent birational classification of
foliations on projective surfaces.

M athematics Subject Classification (2000). Primary 37F75; Secondary 14G35.

Keywords. Holomorphic foliation, Kodaira dimension, Hilbert modular surfaces.

Contents
1 Introduction and statementofresults. . . . .. ... ... ....... 244
2 Preliminaries . . . . . . . . e 249
2.1 Hilbert modular surfaces and foliations . . . . ... ....... 249
2.2 Birational geometry of Hilbert modular foliations . . . . . . . .. 251
3 Projective models for modular foliations {5, (2)) . ... ... .. .. 256
3.1 Y(5, (2) asKlein'sicosahedral surface.. . . .. ... ...... 256
3.2 Numerical data of the foliations. . . . . . ... ... ....... 259
3.3 Determining the vectorfields . . . . . . ... ... ... .. ... 261
3.4 A model where the involution is an automorphism of the plane. . . . 265
4 Projective models for modular foliations®f{5) . . . . .. ... ... .. 268
4.1 The quotient oP? by the icosahedralgroup . . . . . .. ... .. 268
4.2 Numerical data and determination of vector fields . . . . . . .. 271
5 Projective models for modular foliations B{5, W5) . 273
5.1 Y(5,+/5) as adouble covering oftheplane . . ... ....... 273
5.2 Y (5, +/5) as a modification oP2 and the minimal involution. . . . 275
5.3 Numerical data of the foliations. . . . .. ... ... ....... 276
A Factorization of the Cremonianinvolution . . . . ... ... ... ... 278
B Reduction of singularities of the plane modelgab) . . . . .. ... .. 282

*During the preparation of this paper the authors received financial support respectively from CNPqg and
Profix-CNPq.



244 L. G. Mendes and J. V. Pereira CMH

B.1 Resolutionoffty. . . . . . . . . . .. . 282
B.2 Resolutionofffs. . . . .. .. ... .. . .. ... ... 287

1. Introduction and statement of results

Ouraim is to give concrete models in the projective plane for the holomorphic singular
foliations which are the natural foliations Biilbert modular surfaces.

Such foliations are calle#lilbert modular foliations and have a distinguished
role in the birational classification of foliations on projective surfaces (cf. [12], [4],
[13]). Recently M. Brunella ([5]) and M. McQuillan ([12]) completed the birational
classification of holomorphic singular foliations showing that rational fibrations and
modular foliations are the unique foliations with negatigbated Kodaira dimen-
sion. Besides the role in the birational classification, Hilbert modular foliations have
some remarkable dynamical properties and also a distinguished place in the theory
of transversally projective foliations.

We recall the definitions. L&Y be a square free positive integ&rthe totally real
quadratic field)(+v/N) and@k the ring of integers ok . The two distinct embeddings
of K into R induce an embedding of P&, K) into PSL(2, R) x PSL(2, R). If
I C Ok is a maximal ideal theil; will be the lattice defined by the following exact
sequence:

0— I'y - PSL(2, 0k) — PSL(2,0k/I) — 0. Q)

Denote byH? := H x H the product of Poincaré upper planes. Then the Hilbert
modular surfac&’ (N, I) is defined as the minimal desingularization of the compact-
ification of H2/T";. When the quotient is made by the full Hilbert modular group
PSL(2, Ok) the associated surface is the Hilbert modular surfa@é). The Hilbert
modular foliations are defined as the singular foliations which are the extensions of
the images of the horizontal and vertical fibrations under the quotient defining the
Hilbert modular surfaces.

In order to motivate the study of this class of foliations, we list in Theorem 1
some properties of modular foliations. Byr@duced foliation we mean a foliation
whose singularities are reduced in Seidenberg’s sense, see [4]. For the concepts of
transversally affine andtransversally projective foliations we refer to [16], [17] and
references therein.

Theorem 1. Let # be a reduced modular foliation on the projective surface S and
Z the reduced divisor whose support are the invariant algebraic curves of #. Then
J hasthe following properties.

a. Quasi-minimality:The algebraic invariant curves are rational curves and every
non-algebraic leaf is dense.
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b. Hyperbolicity: Except for afinite set, every leaf is hyperbolic and simply-connec-
ted, i.e., biholomor phic to the Poincaré disc.

¢. Uniformity: #¢ istransversally projective outside Z and there exists a neighbor-
hood U of Z such that #\ 7 istransversally affine.

d. Sporadicity:If L isthe class of the cotangent line bundle 7'}, in Pic(S), then # is
the unique holomorphic singular foliation S whose classfor the cotangent bundle
isL € Pic(S).

In the realm of modular surfaces some particular cases are rational surfaces, i.e.,
birational toP2. We will focus on the following three rational Hilbert modular surfaces
Y (5), Y (5, (2)) andY (5, (v/5)).

We first obtain plane models for the Hilbert modular foliations/@5, (2)). In
the statement below bydicritical point we mean a singularity of foliation having
infinitely many local analytic separatrices anadial points are dicritical singularities
locally given byw = xdy — ydx + h.o.t.= 0:

Theorem 2. The Hilbert modular foliations of Y (5, (2)) can be obtained fromfolia-
tions J¢s and Jtgy of the projective plane by means of one blow up at each of sixteen
distinct points p1, ..., p1g in the plane, with the following properties:

i. Jfs and a Fg have degrees 5 and 9, respectively.
ii. J¢s5 has 16radial pointsat p1, ..., p1g and 15 linearizable saddle points; the
quotient of eigenvalues of the saddlesis #

iii. J5 and F9 have the same invariant algebraic curves, a configuration of 15
straight lines for which ps..., p1g are triple points, pi1,..., p1s are 5-ple
pointsand the 15 saddle-points of #5 or g are nodes. Moreover, the analytical
type of the singularities of both foliations on the singular points is the same,
except for 6 points p11, ..., p1e Which for #g are analytically equivalent to
dicritical points with algebraic multiplicity 3 and Milnor number 11

iv. J¢5 and Jfg are invariant under the irreducible action of As, the icosahedral
group, on the projective plane.

v. There exists an involutive Cremonian transformation of degree 5 which trans-
forms 5 into Jfo.

Moreover, there exist affine coordinates on the plane, for which one of theinvariant
linesistheline at infinity, such that #¢s is given by the vector field

X' =2 = D)% - (V5-2x + V5y)
Y =% = D% - (V5-2( +5x),



246 L. G. Mendes and J. V. Pereira CMH

while Fg is given by
X = (% = 1)(x% — (V5 - 2))[(—40+ 18V5)y + (=10v5 + 20)y3
+ 4v5y° + (8v5 — 18)x + (—30+ 12v/5)xy? 4 20xy*
+ (4 — 2v/5)x?%y + 6v5x?y3 + (10— 4v5)x3 + 2x3)?]

y = (2 = 1) (% — (v/5 = 2?)[(—40+ 18V5)x + (—10v5 + 20)x°
+ 4+/5x5 4 (8v5 — 18)y + (—30+ 12V/5)x2y + 20x*y
+ (4 - 2x/§)xy2 + 6x/§x3y2 + (10— 4x/§)y3 + 2x%y3).
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Figure 1. Real picture of the arrangement of lines invariantdgyand #g. The line at infinity
is also invariant.

Remarkson Theorem 2. In Figure 1 there are four directions determined by parallel
lines, which correspond to 4 dicritical singularities#§ and#g at infinity. Also we
remark that the 15 invariant lines determine a simplicial decompositicﬁ’n‘f&m‘uch

that each triangle has one saddle and two dicritical singularities as vertices. Note that
both #¢5 and #g are induced by real equations and therefore they induce (singular)
foliations of]P’f%. The qualitative behavior of both of these foliations on the cells of
the simplicial decomposition dﬂ‘ﬁ is topologically conjugated to the one presented

in Figure 2. It has to be noted that the foliatiéfs appeared in [1] as an example of

a degree 5 foliation aR? with the maximum number of invariant lines.

The degree five Cremonian involution sendiffg to Jfg in Theorem 2 becomes,
after blowing-up the 6 pointg11, ..., p1s, @an automorphism of a rational surface
corresponding to the natural involution Bt5, (2)).

Searching for models in the plane where the involutiol (8, (2)) corresponds
to minimal automorphism as defined in [3], we obtain other models in the plane:
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A

Figure 2. The qualitative behavior s and#¢g on each cell.

Theorem 3. Thepair of Hilbert modular foliationsof Y (5, (2)) ishirationally equiv-
alent to a pair of foliations &, 4 of the projective plane, where both ¥ and g have
degree 7. There exists an involutive automorphism ¢ of P2 such that ¢*(%) = §
and ¢*(4) = F. Moreover, the algebraic invariant curves are 7 straight linesand 4
Cconics.

We remark that by the same methods used in the proof of Theorem 3 we can
produce another model for the modular foliationg'@5, (2)) in the plane for which
both have degree 10.

Our next result is a detailed description of the Hilbert modular foliatioris(8§,
which is regarded as the desingularized quot®htAs (cf. [11]). In the statement
below by aminimal reduction of singularities of a foliation we mean a sequence of
blow ups in which blow ups at reduced singularities or at regular points of foliations
are not allowed.

Theorem 4. The modular foliations of Y (5) are obtained by means of the minimal
reduction of singularities of the foliations #¢» and #¢3 of the projective plane with the
following properties.

i. The degrees of #¢> and #¢3 are 2 and 3, respectively, and there are affine coor-
dinates (x, y) where they are induced respectively by

x' =y + 32 — 3&?

y' = 80y — 60xy — 80x?
and

x' =4y — 3xy — 4x?

y' = —5y2 4 80xy — 240>,

ii. The tangency set of #f> and #3 is an invariant curve composed by the line at
infinity and the rational quintic given in the coordinates (x, y) by

0: —17285 + 7203y — 80xy? + 64(5x2 — y)2 + 13 = 0.
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iii. The non-reduced singularities of #» and J¢3 are at the cuspidal points of Q,
namely: (0, 0), (32, 2% and the point at infinity (0,0) = (w,s) = (2, 1,
which are dicritical singularities for both foliations. )

iv. Thesequenceof blowupso : Y (5) — P2 producing thereduction of singularities
of foliationsiscomposed by eleven blow ups:. four blowupsat (0, 0) andinfinitely
near points; four at the point at infinity (0, 0) = (w, s) andinfinitely near points;
three at (32, 2224) and infinitely near points

v. The singularities of both foliations at (1, 4) = (x, y) are reduced saddles with
quotient of eigenvalues equal to ‘3%@

In Figure 3 we represent (qualitatively) the cuspidal quintic curve.

Figure 3. A cuspidal quintic curve and the line at infinity are the tangency s#b @ind #.

Next, we consider the Hilbert modular foliations b¢b, (+/5)). Through a similar
analysis to the one made in the proof of Theorem 3 we obtain:

Theorem 5. The pair of Hilbert modular foliations of Y (5, (+/5)) is birationally
equivalent to a pair of foliations ¥, 4 of the projective plane, where both # and §
have degree 9. Thereexistsaninvolutive automor phism¢ of P2 suchthat ¢*(F) = §
and ¢*(4) = F. Moreover, the algebraic invariant curves are 5 straight linesand 7
Cconics.

Again, by the same methods, we can give a second model in the plane for the
modular foliations ofY (5, (+/5)) where the degree is 12 for both modular foliations
and the algebraic invariant curves are 1 straight line and 12 conics.

Acknowledgments. The authors thank Karl Otto Stéhr for calling their attention to
the work of Hirzebruch on Hilbert modular surfaces. They also thank E. Ghys and
the participants of the Seminar of Complex Dynamics at IMPA for the interest and
enthusiasm concerning this work. The first author heartly thanks the attention of
S. Cantat, D. Cerveau, C. Favre, S. Lamy, J.-M. Lion, L. Meersseman and F. Touzet.
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Remark. After this paper was completed and being submitted, the authors found
a paper by R. Kobayashi and I. Naruki, Math. Ann. 279 (1988), 485-500, where
they describe the 1-forms inducidgs and #g in another coordinate system. Their
interest is in the uniformization theory of surfaces and they do not give a detailed
description of the pair of foliations. So we think that our description, by completely
different methods, gives new information on the foliations'@¥, (2)). They also
describe explicitely the irreducible 2-web produced by the 2-fold ramified covering
p: Y (5, (+/5)) — P2, which is complementary to our description of the foliations of

Y (5, (v/5)).

2. Preliminaries

2.1. Hilbert modular surfacesand foliations. After having recalled the definition
of modular surfaces in the Introduction, let us say a few words about the compactifica-
tion H2/T"; of H2/T';. The two embeddings df into the reals induce an embedding
of P into P} x P C PL x PL. PSL(2, R) acts onPZ by fractional linear transfor-
mations, thus so does P&. K) onP%..

The action of the lattic&; C PSL(2, K) C PSL(2,R) x PSL(2, R) preserves
P C PL x PL. The orbits ofP} under the action of; are calleccusps.

The compactification dff2/T; is then obtained by adding the cusps, i.e.,

H2/T; = H?/T; U Py /T,

There exists a bijection between the cuspy @V) and the ideal class group of
K (see Proposition 1.1 in [7]). In the particular case where the class numigeisof
one, equivalently is factorial, the cusps df (N, I) are parametrized by the finite
projective spac®%, whereF is the finite fieldOx /1. From (1) we see that the group
PSL(2, OTK) actsont (N, I). Of course this action must preserve the cusps and when
the cusps ot (N, I) are parametrized b%, the induced action o]PEIlF is the usual
action. The modular forms induce a structure of projective, resp. quasi-projective,
varieties onH?2/I';, resp.H?/I";. For more details the reader can consult the two
first chapters of [7].

As already defined, the Hilbert modular foliations are the singular foliations which
are extensions of the images of the horizontal and vertical fibrations under the quo-
tient defining the Hilbert modular surfaces. The algebraic curves introduced in the
compactification and desingularization defining the modular surfaces are invariants
for both modular foliations.

Along this section we prove Theorem 1, except for the proof ofsfimeadicity
property of modular foliations. This one is postponedto Section 2.2.4, since itdepends
on notions from the birational classification of foliations which we will recall in 2.2.
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2.1.1. Quasi-minimality. LetI" ¢ PSL(2, R)? be the lattice defining the Hilbert
modular surface. Iff is the horizontal foliation oH x H and

p:HxH—>YZH?/T

is the quotient map, then the density of leaves,df onY is equivalent to the density
of 7(I') on PSL(2, R), wherexr : PSL(2, R)2 — PSL(2, R) is the projection on the
second factor.

In the casd is the image of PS{2, ©x) on PSL2, R)? under the pair of em-
beddings of the totally real quadratic fiekd, 7 (I") contains the elements

1 u 10
A,L=[0 J and Bﬂz[u 1],

for arbitraryu € Ok . Let G denote the closure of P$2, Ok) in PSL(2, R). Since
Ok is dense iR the Lie algebra o5 contains the elements

X=[8 é} and Yz[g 8]
Since[X, Y] is linearly independent aX andY the Lie algebra ot; has dimension
3, and since PS2, R) is a connected 3-dimensional Lie group, we conclude that
PSL(2, Ok) = PSL(2, R).

The general case follows from Margulis—Selberg’s Theorem, which asserts that
any latticel’ ¢ PSL(2, R)? is commensurable witfix for some totally real quadratic
field K, i.e., there existg € PSL(2, R)? such thag'g~1 N 'k is of finite index in
bothI'x andglg~.

2.1.2. Hyperbalicity. Keeping the notation of the previous section we are going to
prove that all the leaves gf.F are hyperbolic and, except for a finite number of
exceptions, simply-connected.

The hyperbolicity is obvious since the leavesf are presented as quotient of
the upper half-planl. To conclude thatthe genericleafis simply-connected, observe
that the non-trivial elements in the fundamental group of a leaf are in correspondence
with fixed points of the action of some elementofl’) on H. As T is discrete
we can see that the fixed points are countable, and since to any eleme(it)of
there correspond at most two fixed points, we may conclude that the generic leave is
simply-connected. To conclude observe that every non-simply connected leave must
pass through a quotient singularity and the finiteness of the number of non-simply
connected leaves follows.

2.1.3. Uniformity. Since the foliationp, ¥ is described as a quotient B by I
we can easily see that every element of the pseudogroup of holonomyFois
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conjugated to a projective transformation, given by the action of(RS0x) on the
second factor of?; thusp, ¥ is transversely projective on the complemenZoh
the sense of [16], [17].

In order to understand the local structurep@f in neighborhood ofnfinity, i.e.
in the neighborhood of the cusps, one has to analyze the structure of the isotropy
group of the cusp.

Again, Margulis—Selberg’s Theorem allows us to reduce to the case Where
PSL(2, Ok) for some quadratic fiel&. If o is a cusp ofl" then the isotropy group
of o under the action of is conjugated, insid€, to a group of typez (M, V),

G(M, V) = {[g ‘ﬂ € PSL(2, K)le € V,,ueM} —MxV,

whereM C K is an additive subgroup af which has rank 2 as a free abelian
group andV C U; is a subgroup of the positive units such that for every V we
havee M = M. Therefore the isotropy group of the cusp is an affine group and on
neighborhood of infinity of th&, p, ¥ is transversally affine. Observe also that the
orbits are not locally dense.

2.2. Birational geometry of Hilbert modular foliations

2.2.1. Kodaira dimension of foliations. In this section we recall the concepts of
the birational theory of holomorphic foliations on projective surfaces that we will use
along the paper. The references for this section are [12], [4] and [13].

A holomorphic foliation # on a compact complex surfades given by an open
covering{U;} and holomorphic vector fieldX; over eachU; such that whenever
the intersection olJ; andU; is non-empty there exists an invertible holomorphic
functiong;; satisfyingX; = g;; X;. The coIIection{(gij)—l} defines a holomorphic
line-bundle, called théangent bundle of ¥ and denoted’s. The dual ofT¢ is the
cotangent bundie 7'z

Similarly, a holomorphic foliation¥ on a compact complex surfagecan be
given by an open coveringUU;} and holomorphic 1-forms; over eachU; such
that whenever the intersection of andU; is non-empty there exists an invertible
holomorphic functiom;; satisfyingw; = h;jw;. The collection{(k;;)} defines a
holomorphic line-bundle, called thrmal bundle of ¥ and denote&v¢. The dual
of N# is theconormal bundle N%.

Along the paper, a foliation means a holomorphic foliation with a finite number of
singularities of a smooth projective surface. Observe that there is no loss of generality
since every codimension one component of the singular set can be eliminated by
factoring out its defining equations from the local vector fields, or 1-forms, inducing
the foliations.
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A reduced foliation F is a foliation such that every singularigy is reduced in
Seidenberg’s sense, i.e., for every vector figldjenerating# and every singular
point p of X, the eigenvalues of the linear part &f are not both zero and their
guotient, when defined, is not a positive rational number. For a reduced foli&tion
T is called the foliated canonical bundle and is denoted’py

We define théKodaira dimension kod(¥) of a foliation # as follows.

Definition 1. If & is a reduced holomorphic foliation on a projective surféi¢hen

logh0(S, (K#)®"
kod(F) := lim sup Ogh7(S. (Ks)™").
n— 00 Iogn

When# is not reduced we set ko) as kod ), where¥ is any reduced foliation
birationally equivalent to%

In principle it is necessary to prove that the above definition is well-posed. In fact
this is done in [4], [13], [12].

The birational classification of foliations is built on the interplay of two birational
invariants of foliations, the above defined foliated Kodaira dimension armlither-
ical Kodaira dimension. This concept is based on Miyaoka’s semipositivity theorem
and the Zariski decomposition of pseudo-effectisdivisors.

Miyaoka'’s semipositivity theorem ([12], [4]) states tHa} is a pseudo-effective
line bundle (divisor) for any foliation on any projective surface, except for pencils of
rational curves (i.e. foliations which after blow ups are rational fibrations). By pseudo-
effective we mean a divisor with non-negative intersection withrsefiylivisor. By
nef we mean a divisor whose intersection with any curve is non-negative.

The Zariski decomposition of a pseudo-effective divigofor of the associated
holomorphic line bundle) is the numerical decompositio®asP + N, whereN is
aQ*-divisor whose support (possibly empty) is contractible to a normal singularity
of surface,P is a nefQ-divisor andP - N; = 0 for any irreducible component on the
support ofN.

Definition 2. Let ¥ be a reduced foliation on the complex surfacelf 7 is not
pseudo-effective then theumerical Kodaira dimension of #, denoted by (¥), is
—oo. Otherwise, ifT = P + N is the Zariski’s decomposition then we set

0 whenP is numerically equivalent to zero,
v(F)={1 whenP?2=0butP is not numerically equivalent to zero,
2 whenP? > 0.

When # is not reduced we set(¥) := v(F), where¥ is any reduced foliation
birationally equivalent tor .
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Again, in order to verify the well-posedness of the above definition the reader
should consult [4], [12].

A foliation ¥ of the surfaceS is relatively minimal if ¥ is reduced and the
contraction of any-1-curve induces a non-reduced foliation on the blow-down of
S. If ¥ is a relatively minimal foliation, it is proven in [12] (see also [4]) that the
support of the divisoWV of the Zariski decomposition df % is composed bghains
of F-invariant rational curves of self-intersection lower thah. The chain starts
with a curveC ® with just one singularity of the foliation and, if it has more than one
component, continues with curves® with 2 singularities. Every singularity in the
support of the negative part admits a local holomorphic first integral.

2.2.2. Birational characterization of Hilbert modular foliations. Both notions
of Kodaira dimension and numerical dimension can be extended to any line bundle
(or divisor) D, cf. [15] and there is the general inequality K& < v(D). When
kod(D) = v(D) we usually say thatbundance holds forD.

The classification result of [12] (see also [5]) asserts that for any foligkon
of projective surface kad) = v(&F), except uniquely for the modular foliations,
which are birationally characterized by ko) = —oco andv(F) = 1. In other
terms, ¥ is a modular foliation if, and only if, abundance does not holdKer.

We remark that our work gives also concrete examples of (nef) diviswiith
kod(D) = —oo andv(D) = 1, for whichD - K3y > 0 (a class of examples that,
as far we know, does not appear in the literature [15], [2]). The examples consist in
taking D := K g, or D := K , for the modular foliations of Theorem 2 (details are
given in Section 3).

2.2.3. Birational modifications and numerical data. In order to be able to trans-

late the information from the birational characterization of modular foliations into
numerical data about singularities and degrees of their projective models, we need to
understand the effect of sequences of blowing ups on foliations of the plane.

Definition 3. Let # be a holomorphic foliation on a surfaSeandp € sing(¥). Let
o be a holomorphic 1-form generatitfg on a neighborhood gf andr : § — S the
blow-up atp.
a. The order of the first non-zero jet ofwill be denoted byn(p, ). The non-
negative integem (p, ) is called thealgebraic multiplicity of p.
b. The vanishing order of *w over the exceptional divisor will be denoted by
I(p, F).

The above defined indices are related as follows: when the exceptional divisor
E = n~Y(p) is not invariant byz*# thenl(p, F) = m(p, F) + 1; otherwise
I(p, F) = m(p, ). More generally when the exceptional divisbr= 7 ~1(p) is
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not invariant by the transformed foliation, then
I(p, F) =tangE, o*(F)) + 2,

where tangE, 7*(F)) is the number of tangency points, counted with multiplicities,
and whenE = 7 ~1(p) is n*(F)-invariant then

I(p,F)=Z(E,¥F) -1,

whereZ(E, ¥) denotes the sum of Poincaré—Hopf indices al@hgf local holo-
morphic vector fields inducing .

If o is a composition of blow ups; then cotangent line bundles of the transformed
foliation £ on M and of # on M are related by

TE=o" (1)@ 05( = YU F) - 1) - E). (2)

whereo denotes the composition of blow ugsandE; = 6_1(pi). Here we consider
the total transforms, i.eEl.2 =-landE; - E; =0ifi # j.
The conormal bundleN; of # on a surface can be determined by means of
the adjunction formula
T;v (Y N;; =Ky,

wherek y; is the canonical divisor a¥/. From this relation, the previous isomorphism

and the formula
Kiy=0"Ki) @05 (Y E).
i

we obtain for the normal bundle

Ny =0" W) @Oy (— 1. F)- ).

OnP?, thedegree d(F) of a foliation ¥ is defined as the number of tangencies
betweenF and a generic straight ling, counted with multiplicities. There is the
following isomorphism:

T} = Op2(d(F) — 1)),

and fromKp2 = O(—3) we obtain in the plan&/s = O (d(F) + 2)).

From the previous remarks and formulae, we can deduce the behavior of the
cotangent and normal bundles of foliations of the plane under any finite sequence of
blowing ups. Sincdirational transformations are compositions of blowing ups and
blowing downs, it is natural that along this paper an exceptional clirves —1(p)
arises as strict transfor@ of some rational curv€ ¢ P2 under blowing ups”, i.e.
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C = E. Also, in some cases the foliatierf (¥ ) will be regarded as the transformed

foliation by o’ of another foliationg in the plane, i.es*(¥) = ¢ = (¢/)*(4). In
such a situation, for computing

I(p, F) =tangE, o*(F)) + 2 =tangC, §) + 2,

it will be necessary to know the following relation:

tangC, §) = tangC, §) — v,(C) - (v,(C) +1(p, §) — 1),
wherev, (C) is the algebraic multiplicity of the curve.

2.2.4. Sporadicity of modular foliations. In our approach, after determining the
numerical data of the foliations in the plane (i.e. degrees and multiplicities of singu-
larities) we explicitly determine the polynomial vector fields inducing the modular
foliations. What justifies the uniqueness of the foliations submitted to the numerical
data is thesporadicity property of modular foliations (cf. [13] and [12]). For the
reader’s convenience, we sketch below the proof of sporadicity, for further details see
[13]. This will complete the proof of Theorem 1.

Let M be a projective surface and denote by(®6] .£) the set of foliations oM
with foliated canonical bundle isomorphic 6, i.e., FolM, £) = PHOM, Ty ®
L) . We call a foliationF sporadic if Fol(M, £) = {F}. We assert that iff is a
reduced modular foliation, thef is sporadic.

In fact, suppose, on the contrary, that @l 77) # {¥} and takeg # #,
g € Fol(M, TZ). Contractions of local holomorphic vector fields inducifigand
local 1-forms inducing. produce functions vanishing alongengency curve, which
is an algebraic curve (possibly with non-reduced components) denotdg-by In
equivalent terms we have the isomorphism of line bundlés Dzg) = Ty ® N;.
Thus

Tz ® Tg = O(Dgg) ® K,

ie., T;_i®2 = 0O(Dgg) ® K. As a consequence?{ﬁ%2 is not effective: otherwise
;‘8’4 is effective, contradicting kqd) = —oco. On the other sidey has no (non-

trivial) global holomorphic 1-form (the existence would imply a global section either

of T*¥ or of the cotangent of the companion modular foliation). Thus we can apply

Castelnuovo’s criterion of rationality of surfaces, to conclude Mhad rational. Now

we arrive at a contradiction using the following fact from [15] (a proof is also given in

[13]): if D is a pseudo-effective divisor of the rational surfa¢ethenk y; ® @ (D)

is pseudo-effective if and only if ka& ;s ® @ (D)) > 0. This concludes the proof.
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3. Projective modelsfor modular foliations of Y (5, (2))

In this section we first recall Hirzebruch’s descriptior¥ab, (2)) as the blown up?
atpoints iriPﬁi c P2 determined by the vertices and centers of faces of an Icosahedron,
cf.[9]. Afterthis, we determine the modular foliations in the plane, using the concepts
of Section 2.

Next we express the natural involution of the modular surface as a Cremona
transformation changing one foliation into the other. We finish the section proving
the existence of other models in the plane where the involution is expressed as an
automorphism. In particular, for some plane models the modular foliations can have
the same degree.

3.1. Y(5, (2)) as Klein’s icosahedral surface. Along this section we freely use
material from Hirzebruch’s paper [9] in order to describe d@halytic isomorphism
betweent (5, (2)) and the blown up projective plane.

Some fundamental facts from [9] are ¥/ I'» is asmooth complex open surface;

ii) its compactificatioriH2/ I'; is a projective singular surface, obtained by adding 5
cusps.

The induced action of SI(©)/ ', onH2/ I', permutes cusps, and for this reason
the cusps have the same analytical structure. The minimal resolution of singularities
of each cusp introduces a cycle composed by three rational curya$,0f2)) with
self-intersection number 3.

The diagonaliz; = z»} of H? becomes a smooth rational curdeof H2/ I,
passing through exactly 3 of the 5 cusps (remark thaninus three points is hy-
perbolic). Let us denote bg the strict transform ot in Y (5, (2)). There are 10
pairwise disjoint curves (including' itself) arising fromC by the action induced
by SLy(©)/ "2, which we call for short “diagonals” ofi (5(2)). Each of these ten
diagonals has self-intersection numbet in Y (5, (2)). If we label the cusps by;,

i =0,...,4,then each “diagonal” can be identified@s (= C;;), wherei, j refer
the pairc;, ¢; of cusps that doot belong toC; ;. Denote the pairwise disjoint cycles
introduced by elimination of the cuspsby A; U B; U C;. The intersections of the
smooth rational curves;;, A;, B;, C; are the following:

a. A;-Bi=A;-Ci=B;-C;=1andA? = B> = C? = -3,fori =0,..., 4,
b. Ci; are pairwise disjoint withC7 = —1;

c. each curved;, B;, C; intersects 2 curves among tlig; and eachC;; passes
through 3 components of (three) distinct cycles, as shown in Figure 4.

We also refer to the original paper for the computation of the Euler characteristic,
which verifiese(Y (5, (2)) = 19. The main fact is:
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Theorem 6 (Hirzebruch). Uptoanalyticisomorphism, Y (5, (2)) istheuniquesmooth
projective surface with Euler number 19 and having a configuration of 25 rational
curves with intersections described in a), b), ¢) and Figure 4.

Cmfl,m72 Cmfl,erZ

Cm+1,m+2 Cerl,mfZ
~/ By C

m m

‘Am‘

Cm—l,m+1‘ 1Cm—2,m+2

Figure 4. Intersections between diagon@)sand cycles, with integers taken modulo 5.

Now we recall Hirzebruch’s description of how to obtain such a configuration
of rational curves, as in items a), b), ¢) and Figure 4, by means of 16 blow ups
of the projective plane. Consider an icosahedfoim R2 (Figure 5) and denote

Figure 5. Vertices and centers of faces of an icosahedron.

by o1, . .., 020 the points inR3 corresponding to the centers of the 20 faced .of
These points can be seen as the vertices of a dual DodecahiedAdso denote by
T21, . .., U3z the points inR3 corresponding to the 12 vertices bf Now identify

antipodal points among the poiris, . .., v32. Denote the 16 points obtained]]ﬂﬁ
byos,...,010andv1y, ..., vig. The 30 edges of determine 15 straight lines Iﬂ"ﬁ
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denotedL 4,, L, Lc;, wherei =0, ..., 4:

Lay :=v12v13, Lp, :=V1avie, Lc, := V11015,
L4, '=v12v15, Lp, :=7v11014, L, 1= V13016,
L4, :=vi2v1e, Lp, :=7v11013, Lc, := V14015,
La; :=v12v14, Lpy:=713v15, L(; = V11016,
L, :=v11v12, Lp, :=7visvie, Lc, = V13V14,

Since 5 edges of intersect at each vertex éf 5 lines of the 15 line€. 4,, Lp,,
L, pass through each point, i = 11, ..., 16. Moreover, if 3 mutually orthogonal
edges off c R® are prolonged they intersect at the center of a facé; afo we
conclude that 3 of the 15 lines pass through each pginThese intersections are
given in the tables below (we give the intersections in all details for further use along
the paper).

points intersection of lines
V11 LCO . LBl . L82 : LC3 . LA4
v12 LAO . LAl . LA2 . LA3 . LA4
v1i3 | Lag-Ley- L, - Ly - Le,
V14 LBO . LB]_ . LC2 : LA3 : LC4
vi5 | Leg-Lay Lo, Lpy-Lp,
V16 LBO : Lcl . LA2 . LC3 . LB4

points | intersection of lines|| points | intersection of lines
01 Lag-Lcy Ly 02 Ley - Loy - Lag
03 Lpy-Lpy-La, 04 Lpy-La,-Lp,
05 LAl : LC3 . LC4 06 LBZ ' LA3 ' LB4
o7 LCo : LA2 : LC4 08 LBl : LA2 : LB3
09 Lay-Lp - Lp, 010 Ley - Loy - Lag

We refer to this configuration of fifteen lindsy,, L 5, andL ¢, as theicosahedral
configuration of lines, which is represented in Figure 6.

Consider now the inclusioﬁﬁ c P? and the 15 complex projective lines deter-
mined by the icosahedral configuration. Consider the complex suMaobtained
by blow up ofP? at the 16 pointes, ..., 010, V11, . . . , V16. Thiscomplex surfaceM
is theKlein'sicosahedral surface. Since one blow up increases the Euler number by
one, we have(M) = e¢(P?) + 16 = 19.
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A TN

Figure 6. The icosahedral configuration of lines.

Next, consider the strict transforms#h of the complex lines, denoted,,, L, ,
Lc,. Since each complex line received 4 blow ups, we obtaif in

—2 —2
Lo =Lg =L¢ =-3

Denote now byC;; the exceptional lineg; = o Yop), fork =1, ..., 10, ifo, does
not belong to lines in the icosahedral configuration indexeddny;. The reader can
check that the 25 curvds,,, Lp;, Lc;, C;j have the intersection properties described

in items a), b), ¢) and Figure 4. Also we can check that U L, U L, are five
disjoint cycles inM.

3.2. Numerical data of the foliations

Proposition 1. Let £' and 4’ be the modular foliations in the plane producing the
modular foliations £ and § of Y (5, (2)) under the 16 blow upso: Y (5, (2)) — P2
defining Y (5, (2)) asKlein'sicosahedral surface. Then ' and ¢’ have the following
properties.

(1) Thedegreeof ¥’ is5 and the degree of ¢ is 9.

(2) Foreveryi € {1, ..., 10}, the algebraic multiplicities are

m(oi, F') =m(o;, §) = 1.

(3) Foreveryi € {11,...,16}, m(v;, F) = 1and m(v;, §') = 3.

(4) Theo; areradial singularitiesfor £" and §'.

(5) Thev; aredicritical singularities eliminable by one blow-up for both #” and §/;
for £’ the v; have Milnor number 1, while for G’ they have Milnor number 11
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Proof. The singularities off and § at the corners of the cycles; U B; U C; C

Y (5, (2)) are not affected by the blowing downs produciffy see Figure 4. Such
singularities at corners are reduced, with Milnor number one. Plugginﬁiﬁ:

Bl.2 = Cl? = —3 in Camacho—Sad’s formula the quotient of eigenvalues of the

singularities of# and g is determined and turns out to be equahte= #
These singularities sum 15 reduced singularities, for Botlandg’, with the same
guotient of eigenvalues.

The 16 blow downs transforming = Y (5, (2)) into P2 include the blowing
downs of 10 “diagonalst;;. Since theC;; are completely transverse to bathand
g, cf. Figure 4, the transformed foliatiors’ andg’ in the plane have radial points
ato;, withm(o;, ') =m(o;, ¢’y =1fori =1,...,10.

The pointsv1s, ..., vig are also obtained from the blow down of extral)-
curves which are neithef - nor g-invariant and that do not pass through the corners
of the cycles inY (5, (2)), cf. Figure 4. Thug; (i = 11, ..., 16) are dicritical points
for both £ and g/, with the extra property that the transformed foliations have no
singularities along, *(v;).

The automorphism group & (5, (2)) permutes the cycles resolving the cusps,
therefore

m(vi, F)=---=m(vie, F') and m(v11,4) =--- =m(vie, $).

Denoting the blow ups producin(5, (2)) fromP? by o := 01 0. .. 0 016, We have,
cf. (2), the isomorphisms

10 16
T: = 0*Op2(d(F) — 1) ® (9M(—<Z E - m, ?”)Ei>,
i=1 i=11
10 16
Ty = 0" 0p(d(§) ~ D@ Ou(—( D Ei = Y mwi, §)E;).
i=1 i=11
whereE; = o 1(0;) fori = 1,...,10 andE; = o 1(v;) fori = 11,...,16.
Remark that the 15 reduced singularities are not affected.
The rational invariant curves fo&F or § are the cycles, so thE-part for 7 and
Tg* is empty, cf. Section 2. Therefore, since the numerical Kodaira dimension is one
for modular foliations, we havé; - Tz = 0 andTg - T = 0, which can be written

as
16

@(F) = D? =10+ Y m(vi, F)* = 10+ 6-m(F')’ 3)
i=11

and
16

d(§)—D*=10+ > m(v;.§)*=10+6-m(g)? 4

i=11
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from which we have/(¥’) > 5 andd(4) > 5.
The tangency locus of and§ on M = Y (5, (2)) is thereduced (i.e. free of
multiple components) curve given by the union of the five cycle®of Y (5, (2)),

cf. [4], [12].
We can write
4 10 16
(9M<ZA,~ Y B+ Cl-) — 6" O0p2(15) ® (9( N 3E - Y 5Ei),
i—0 i=1 i=11

sinceo; are triple points and; are 5-uple points in the arrangement of 15 lines. Since
the tangency locus is described by a sectioii'’bf® Ng, cf. Section 2,

10 16
Tj ® Ng = 0" 0p(15 @ 0( — Y 3E; - ) 5E;).
i=1 i=11

Expanding the left hand side of the equation above interms of the generatiys(1),
E1, ..., E1g of Pic(M) we deduce thaf(F') + d(4') = 14 and

mi, ) +m@;, §) =4, foralli=11 ..., 16

Sinced(F'), d(4’) > 5, the unique possible positive solutions wattF’) < d(4")
are
d(F"),d(§)) €{(5,9),(6,8), (7, 7)}.

The possibilitiesd (F'), d(4')) = (6, 8) or (7, 7) are excluded by (3) and (4). There-
fore (d(F'),d(4)) = (5,9) and

mi, F)=---=m(vi, F)=1 and m(i1,$)=---=m(vie, §) =3

To conclude observe that the sum of Milnor numbersgois % + 9+ 1 = 91
(Darboux’s theorem) and that there are 15 reduced saddles and 10 radial points for
g/ thusu(v;, §') =11 foralli = 11,...,16. O

Remark 1. We will show in Appendix A that there are Cremona maps transform-
ing the pair of modular foliations with degrees 5 and 9 given in this Proposition 1
into pairs of modular foliations with degre€8, 8) and also(7, 7). But either the
Cremona transformations produce invariemriics or the transformed foliations have
singularities no longer eliminable by just one blow up.

3.3. Determining the vector fields. Taking in consideration Proposition 1, we de-
note by #s and #o, respectively, the modular foliations of the plane of degree 5
and of degree 9. In order to explicitly determine polynomial vector fields inducing
the foliations#s and #y, we will first locate its dicritical singularities in the plane.
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These are the points, ..., 010, v11, . . ., v16 Of Proposition 1. In order to construct
a plane model for this arrangement we follow [6] and take the coordinaf@3 af
the 12 vertices of an Icosahedrdrfwhose edge is 2):

(1,0, £7), (0, x7,£1), (£7,£1,0),

wheret = %ﬁ is thegolden ratio (recall the basic equatior? = t + 1). The
coordinates of the vertices of the dual Dodecahedvqwith edge 2 1) are

0,277 Y 1), (21,0, £t7Y), (2r7h £1,0), (£1, £1, £1).
In the projectivization oRR3 to P2, we determine

01:(0:7:_1, 7), o2=(=1:1:1), 03:(1_1:—7::0),
04=(‘L'_1Z‘EZO), o5=(1:1:1), og=(1:1:-1),
07=(‘L’:0:‘L’_1), og=(1:-1:1), 09:(0:—r_1:r),

o10=(—71:0: t_l),
and from the vertices af the following points in[P’H%:

v1i1=(-1:0:7), vi2o=0:7:-1), vi3=(0:7:1),
via=(—1:1:0), vi5=(1:0:71), vig=(r :1:0).

Let us determine convenieatfine coordinates for the singularities éfs and.#g.
Take affine coordinate&, y) := (X : Y : 1), for which the lineL g, := v1av16 in
the icosahedral configuration becomes the line at infinity.

So0o03, 04, V14, V16 bECOMe points at infinity and this produces four parallel direc-
tions for some of the affine lines of the icosahedral configuration (Figure 6), which
now is represented in Figure 7.

From these affine coordinatés y) we obtain after a change of affine coordinates,

given by
(Tt T+l _ _
(x’y) = (—T t_{_l)'(x»Y),

the affine coordinates desiredl&?, for which the lines in the arrangement are those
givenin Figure 1 inthe Introduction: four horizontal lings= +1 andy = +(2r+1)
and four vertical lines = +1 andx = +(2r + 1). The coordinatesgx, y) for the
singular points are shown in Table 1.

The strategy now is to associate to the general polynomial vector Xield
X (x, y) of degree 5 a system of linear equations in its coefficients in such a way that
the solutions of this linear system correspond to foliations of degree Hwvith. , 019
andwv1y, ..., vig as radial singularities.
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Figure 7. The arrangement of lines induced by the icosahedron, with one line at infinity.

Table 1. Affine coordinates for the singularities, where: 1‘—2‘/3 is thegolden ratio.

or=({1,1 oo=(1,2t+1 os=2t+11

og = (-2t —1,-1) o7=(2t—1,2t+1) |og=(-1 -2t -1
o9 =(—1,-1) oo=(—-2t—-1,2t+1) | vi1=(-11
vio=(-2t—-1,-2t—-1) | viz=2r+1,2t+1) | vis=(1, -1,

Let g be a foliation corresponding to a solution of this linear system. ILbe
any line of the configuration. Suppose tliais notg-invariant. Then, sincg has 4
radial singularities ori, the order of tangency betwegrandL is at least 8. This is
in contradiction with the fact th& has degree 5. Then any liieof the configuration
must be invariant bg. From this we deduce thgtis also the unique solution, since
with any other solution the tangency locugjaghould have degree 11 and contains the
15 lines of the configuration. Hence to determiffe we found the unique solution
of the linear system mentioned above, obtaining the result stated in Theorem 2. The
computations were carried out with the help of a computer algebra system.

To determinefyg we can repeat the same strategy, i.e., writing down the linear
system in the coefficients of the generic foliation of degree 9 whose solutions cor-
responds to foliations with radial singularities en ..., 010 and singularities with
algebraic multiplicity at least 3 ony1, ..., v1g. In order to reduce the number of
indeterminates we use the fact that any solution to our problem must be written in the
form

(2= (2 — 20 + 1)2>P5% 42— D2 - (20 + 1>2)Q5%,

wherePs and Os are generic polynomials of degree 5. This follows from our choice
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of coordinateqx, y) for which the linesy = +1, y = +(2r + 1) andx = =+1,
x = +(2t + 1) are invariant by the foliations.

Solving the linear system in the coefficientsfgfand Os leads to the vector field
of degree 9 presented in the statement of Theorem 2.

3.3.1. Theinvolutionof Y (5, (2)) asabirational transfor mation of theplane. We
will describe the Cremonian transformati@nof the plane to itself transformings
into Jfg, which expresses in the plane the automorphisni (5, (2)) — Y (5, (2))
sending one modular foliation to the other. More precisely, we will show that, if
> : N — P2 denotes the blow up at the six vertidess, . . ., vig}, then there exists a
Cremonian transformatiaii such that o 7 o 1 = 7, where by abuse of notation
I denotes the involution @V sending one modular foliation to the other.

The definition of the involutiory™ as a birational transformation is the following
(cf. [14]). Let E; C N be the exceptional lines of the blowing upswaf, viz, v13,
v14, V15, v16. Consider the 6 conicS ), .., passing through exactly five vertices

.....

—_ 2 _5— _
P1sees Ps_cpl,-wps 5=-1

The involution/ : N — N sends eacﬁ,,1 ,,,,, s 10 the uniqueE; which does not
intersectit. The six curves,,, . ,, can be blown down to six points in a non-singular

surfaceN’. Let E; C N’ denote the strict transforms of the exceptional lidgs
by such blow downs. Since exactly five conics among@hg .. s passes through

each vertews ;, eachE; intersects exactly five curves among tig, ., and we
conclude that the self-intersectionsiof in N’ satisfy

-2 _ 2 _

Moreover, sinceV’ is a rational surface ane{lN’) = ¢(N) — 6 = 3, thenN’ = P?
andE; is a conic.

Itis well known that the surfac obtained fron2 by one blow up at each vertex
{v11, ..., v16} is embedded in the projective 3-space as a smooth cubic surface. A
smooth cubic surface in 3-space has exactly 27 straight lines. Among these lines we
will find the strict transforms of the 15 lines in the icosahedral arrangement of lines.
The remaining 12 lines are given by the ¢&t, j = 1,...,6 and the six curves
Cpi.....ps

In Appendix A we describd as a degree 5 Cremonian transformatior= 7s,
which factorizes as a composition of three quadratic birational transformations of the
plane:

S

5= (030020 Q1.
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The understanding of this factorization will enable us to give more models of modular
foliations, with degrees 6, 7, 8, starting frofs.

3.4. A model wheretheinvolution isan automor phism of the plane. In the pre-
vious section we described the involuti6h sending the modular foliatiotts to
Hg as a birational transformation. Now we show that we can obtain models in the
plane for the Hilbert modular foliations df (5, (2)) for which the involution is an
automorphism of the plane (in particular the pair of foliations has the same degree),
that is, we want to prove here Theorem 3 stated in the Introduction.

LetX: N — P2 be the blowing up at the six indetermination poims, . . ., vig
of 7 and consider again the 6 coni€s, .. ,, passing through exactly five points
amonguiy, ..., vie. Thusl = ¥ 167 o ¥ is anon-minimal regular involution
in the sense of Bayle—Beauville [3]. This is due to the fact gt is sent to
E; and thesg—1)-curves are disjoint. Our task now is to obtain framN — N
a minimal involution/ of IP’(%: X ]P’(lC and from this an automorphisin of the plane.
For this purpose we firstly describe the mapand the birational mag in the next
diagram, wherd" is the birational transformation stated in Theorem 3:

ITON—=PLxPLOT

|

\LZ | E

r \
TOP2—-——->P20 L.

Consider again the lines,;, L, andL¢, of the icosahedral configuration, and
denote now byl 4., L, and Lc, the strict transforms by.. Remark that these are

(=1)-curves ofN. Since the involution has order two and there are 5 cutVA—;‘s'n
N, it can be proved [9] that the effect of the involution is described as

I(La)) =La,, 1(Lag)=Lay, I(Lag)=La,.

Consider now the blow down of the 5 curveg, C N to points denotedy,, i =
1,...,5 of the resulting smooth surfad€, denotedg: N — W. That is, we have
chosen to blow down one component of each triarigleU L, U L¢, of N. In [9]

it is proven that the rational surfad®, which is minimal (since its Euler number
is e(M) = 9 — 5 = 4), in fact is isomorphic t®% x PL. We can verify that the
transformed curves by of L, andL¢, (we keep the same notation for the curves
in N) have self-intersection equal to 2W = IP’}C X IP’}C. For instance, iV we have

2 , N
Lp, = —1, butthe intersections iN are

Ly - Lag=Lpg - Lay=Lp Lay=1
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(as we can check from the tables in Section 3.1), and so by blowing down
La,, La,, the intersection number of theg, in PL x PL is increased by 3. So
the transformed curves @fg, andLc, are curves oPL x PL with self-intersection
number 2; so they are curves of bi-degréksdl). Besides the pointy, they intersect
along an extra point of IP}C X IF’}C. The points 4, are dicritical points for the foliations
and the extra-poing is a saddle point for the foliations (see Figure 8).

Figure 8. Contraction producing the poin, of PL x PL.

In coordinates oP% x PZ, the involution obtained can be written as

- 11
e =(55)

With T = =5 following [9] we put
o, = (17 1)5 ra, = (0, O)a ra, = (OO, OO),

Fag=(-1,7—=1), ra=~Ct+171).

The singularities of the pair of foliatior®s andg, obtained ifP}. x PL are exactly:
a) 5 singularities at,, with Milnor number 9 and algebraic multiplicity (r4,) = 3
(since its blow up produces an invariant exceptional line with two radial points and
two reduced singularities) and b) 5 saddle points.

Denoting byH andV horizontal and vertical fibers, we write

T = O(d(F)H + do(F)V),
Nz =0d1(F) +2)H + (d2(F) +2)V)
(analogously fog), and when combined with Darboux’s theorem

Y WF,p)—e®r x P =T Np
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we obtain
5-9+5-1—4=2d1(F) - do(F) + 2(d1(F) + do(F)),

hencedi(F) - da(F) + di(F) + do(F) = 23.
Now we consider the Poincaré—Hopf formula applied to the transformed curve of
Lg, inPL x PL:

* 7 __ ko,
T}T-LBi—T? (H+V)

=1+ Z(r1,) + Z(rLy,) + Z(rLy) — x (L)
== 3‘3+ 1_ 2: 8’

wherei # j #k € {0, 1, 2, 3, 4}; so we conclude that; (F) + d2(F) = 8 and
di(F) - d(F)=23—-8=15

from the previous relations. Easily we obtain that the unique solutions for the bi-
degree(d1(¥), d>(F)) are (3,5) and (5,3). If F has bi-degred3, 5) then the
companion modular foliatio§, has bi-degre&5, 3), since they are related by the
involution of 7: PL x PL ¢,

34.1. The birational map E. We will consider the birational mag: PL x P
— —> P2, in order to obtain from the foliations with bi-degre@g (¥), do(¥)) =
(3,5 and(d1($), d2($)) = (5, 3) a pair of foliations of the plane, both with degree 7.

Then the so-calledementary transformation E is defined as follows: it is given
by blowing up a poinp and then contracting the strict transforms of the horizontal
and vertical fibers through.

We will compute the degree of foliations in the plane, denstédndg/’, by using
the Poincaré—Hopf theorem applied to the straight line the plane which is the
transform of the exceptional linE = o ~1(p). Let us choose = r4, € PL x PL,

a singularity of both® and§ (cf. previous section).

If h = col(H) andv = col(V) are the dicritical points produced by the blow
downs of the transformed curves of the horizontal and vertical fitiérand V in
Figure 9, then Poincaré—Hopf in the plane yields

d(F)—1=) 2. F) - x(L) =4+ mh, F)+m@, F) -2,
geL

where 4 is the contribution of two radial points and two reduced points. We can use
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. col(H)

Figure 9. Passing frofil. x P% to P2.

the remarks of Section 2.2.3 for the computatiom@p, £'), obtaining

d(F)—1=4+[tangF, H) + 1] + [tangF, V) + 1] — 2
=4+ [(di(F) =3+ 1+ [(d2(F) = 3) +1] -2
=di1(F) +d2(F) - 2,

thusd(¥’) — 1 = 6 as desired. Since we blow up a pomtbelonging to 6 of
the invariant(1, 1)- curves, the pair of modular foliations obtained in the plane has
6 invariant straight lines besides the liieand 4 invariant conics, images of the
(1, 1)-curves not blown up.

Of course, we could have chosen another ppifir the elementary transforma-
tion. For instance if we choose a point which is regular for both foliations, then the
pair of foliations in the plane would have degree 10.

4. Projective models for modular foliations of Y (5)

4.1. Thequotient of P2 by the icosahedral group. We can regard the quotient in
the definition ofY (5) (cf. (1) in the Introduction) as

H?/ PSLp(Ok) = (H?/T2)/ PSLa(Ok /(2),

and it is known that PSKOk /(2)) = PSLy(IF4) = As, the icosahedral group.
Following the classical approach due to F. Klein, we desclif® as a birational
modification of the quotien§ := P?/As, whereAs acts on the plane (which is the
blow down ofY (5, (2))). In other words, we consider the modular foliationg'¢5)
as the quotients off5 and ¢y of Theorem 2 under their group of symmetriés



Vol. 80 (2005) Hilbert modular foliations on the projective plane 269

The facts described in detail in [11] that we use are the followingz:e§ — S
be the minimal desingularization 6f= P2/ As. SinceAs is finite, S is birationally
equivalent toP2. From Hirzebruch’s work we know that the Euler characteristic
of Y(5) is 14 andY (5) can be obtained from the pIaﬂP@ by means of 11 blow
ups, denoted : Y (5) — P2, Denoting again : Y (5, (2)) — P2 the sixteen blow
ups of the Klein icosahedral surface (cf. previous sections), there is the following
commutative diagram:

Y < 5 -Y5,(2)

I

P2 P?

s

§<*;_TS=IP’2/A5.

In what follows we exploit the mag': Y(5) — P2, but we remark that the
explicit coordinates of the rational mdf are known from Klein’s work on the ring
of invariants for the action ofis on the plane [11], and so the study®f could be
another way to get the modular foliationso€5).

The strict transform by the birational transformatipnP2 — —> $ of the quotient
oftheicosahedral arrangement of lines is an irreducible rational quintic QuryeP2.
There are affine coordinatés, y) of P>— L, for which the quinticis) : —1728c°+
720x3y — 80xy? + 64(5x2 — y)2 4+ y3 = 0; the line at infinityL = Lo, C P?is the
strict transform byp of a component of the exceptional divisor introducedrby

The eleven points to be blown up bfy: Y (5) — P2 are the points that must be
blown up in order to obtain normal crossing between the strict transform oy
f and the exceptional divisor of its resolution, see pages 635-636 of [11]. The
singularities of the quinti@ are at the pointg0, 0), (1, 4), (33, 1224) and at infinity
0,0) = (w,s) = (;—‘ %) At (0, 0) and at infinity the quintic is locally given as
22 —15 =0, at(32, 192%) it is locally given asc? — +> = 0 and at(1,4) Q has a
nodal point. The resolution process is done by means of four blow uBs@t(and
infinitely near points), four blow ups at infinitg0, 0) = (w, s) (and infinitely near
points) and three g-% %‘) (and infinitely near points), as shown in Figure 10.
Some remarks on Figure 10 are useful. We denoté& bhe exceptional line of the
i-th blow upE; = Jl._l(pl-), fori = 1,...,11. Then we denote bE their strict

transforms by subsequent blow ups. For instance, according to Figutéflﬁ:—l
fori e {4,8,11), E? = -2, fori € {1,3,5,7,10} andL? = -2, E? = -3 for
i €{2,6,9}.

Denoting the sequence of eleven blow upsfhyhe strict transform of the quintic
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(32/27, 1024/81)

0,0) = (w,s)

Figure 10. The 11 blow ups composiifg Y (5) — P2.
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in Y (5), denotedQ, can be describe@® (Q) in Pic(Y (5) as
f*(9P2(5)®(9(—2E1—2E2— E3—E4—2E5—2FEg— E7— Eg—2E9— E10— E11).

HenceQ is a rational n_odal curve with self-intersectiof 5 26 = —1, as shown
in Figure 11. InY(5), Q corresponds to the desingularization of the unigque cusp
introduced by compactification @2/ PSLy(Ok).

Figure 11.Q cC Y (5) is a cycle introduced in the resolution of the cusp.

4.2. Numerical dataand deter mination of vector fields. Consideringy (5) as the

blown up plane byf, its pair of modular foliations, denotetf, and#3 (the indices
2 and 3 will be justified), are the transformed foliations of foliations in the plane
denoted#¢,> and #3.

The pair #, and #3 has as (reduced) tangency curve the following curves:
i) the strict transform of the quintiQ2, denotedQ, ii) the strict transform of the
line at infinity L, denotedL and iii) the curve<;, fori = 1,2, 3,5, 6, 7, 9, 10.

Remark thatE4, Eg, E11 are not#, or Hs-invariant, since they intersect the
cycle 0 and the unique singularities of these foliations along the cycle are at the node
of Q.

The strict transform of the line at infiniti in Y (5), denotedL, can be described
in Pic(Y (5)) as

O(L) = f*O(1) ® O(~E1 — E2 — E3),
and we can easily writ&; in terms ofE;’s, for instance

E1=E1— Es, Ep=E2—E3— Es,
etc. So the tangency curv@angbetween#, and #; satisfies

@(Dtang) = f*@(6) ® O(—2E, — 3E> — 2E3 — 3E4 — Ex
— 2Eg — E7— 3Eg— E9g — E10— 3E11).

Recalling that the tangency divis@kang verifies @ (Diang = T;7 ® N}—(,s, we
2
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obtain

11

frOd(H) +d(Hz) +1) ® (9( - Z(l(ﬂ’z, pi) — 1+ 1(H3, pi) - Ei)
i
= f*O6) ® O(—2E1 — 3E» — 2E3 — 3E4 — Es
— 2Eg — E7 —3Eg — E9g — E10 — 3E11).
From this isomorphism we obtain the following numerical equalities:
d(F2) +d(H3) =5,

I(Ho, pi) +1(H3, pi) =3
[(H2, pi) +1(H3, pi) =4
1(H, pi) + 1(H3, pi) =2

fori =1,3,6,
fori =2,4,8, 11,
fori =5,7,9, 10.

Now we determine the numerical data of both foliations:
Proposition 2. For #¢> we have
d(#2) =2, l(py)=1 I[(p2)=2, Up3)=1 [(pa)=2 I(ps)=1,
lpe) =1, l(p)=1 I(ps) =2, l(p9) =1 I[(p1o)=1 I[l(p11) =2,
and for #¢3
d(H3) =3, l(p1) =2, l(p2)=2, Il(p3)=2, IUps) =2 I(ps)=1,
l(pe) =2, l(p1) =1, l(ps) =2, l(p9) =1 I[(p1o0)=1 I(p1)=2

Proof. Both foliations, #» and #¢3, admit as invariant algebraic curves the quintic
Q and the lineL . This is sufficient to determing¢,. If there exists¥ of degree 2
leavingQ andL ., invariant then the tangency locus®fand.#, would have degree 5
and would contairQ and L, thus¥ and#¢» should coincide. We determinei,
using the computer and after making its resolution, cf. Appendix B, we determined
I(p)),i=1,...,11, for #>.

From this data we obtain that

T;7 =0*0(1) Q O(—E» — E4— Eg— E17).

2

Since the tangency locus @f, and #3 is given by the formula
(9(Dtang) = T;T’z ® NJ73

we obtain

T;7 =0"02Q)QO(—E1— E» — E3— Es— Eg— Eg— Eq11).
3
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Observe that this determihép;),i = 1, ..., 11, for #3. Therefore we can translate
these conditions into an algebraic system of equations in the coefficients of the degree
3 vector fields. Solving this system with the help of a computer algebra system we
can find the polynomial vector field of degree 3 with the numerical data prescribed
(degrees and multiplicities along the resolution). In Appendix B we give in detail the
reduction of singularities aff3 and also that of». O

4.2.1. Canonical linebundlesof #, and #¢3. We describe the canonical line bun-
dles of the modular foliations df (5). These line bundles are explicit examples with
numerical Kodaira dimension 1 and Kodaira dimenstar.
Remark, from the previous subsection, that
T*?2=Tr?=_3
Ho H3 '
From the Zariski decompositioﬁ;‘7 = Py, + Ny, and T;% = Py, + Ngey WE
2 3

conclude thatl\/i,2 = N§{3 = —3. But the sporadicity property of the modular
foliations imply thatNz, # Ng,. The rational coefficients of each componént
of the N-part ofT* and T;{ are easily computed, provided we use the property of

Zariski decomposmon
T* .N; =N -N;,
#

combined with the fact that each; is J-invariant (McQuillan’s theorem from
Introduction) and Poincaré—Hopf theorem.

For this we need to know how many singularities exist over egchnd their
Poincaré—Hopfindices. This is provided by the study of the reduction of singularities
in Appendix 2 (see Figures 17 and 18). We obtain

N —3E_+1E+2E_+1Z+1E+2E_+1E_+1E+1E_
%2—5152333 55562739210

and
N —1E_+2E_+1E_+2Z+1E_+3E_+1E_+1E_+1E_
]{3—5152333 55562739210
whlchsatlsny2 =NZ =_3.

H3

5. Projective modelsfor modular foliations of ¥ (5, (+/5))

5.1. Y (5, +/5) asadouble covering of the plane. In this section we address The-
orem 5 of the Introduction. The description B{5, +/5) in [10] places it as an
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icosahedral-equivariant 2-fold ramified covering of the plane (blow up at 6 points).
Soin order to prove Theorem 5, our first task is to show how to obtén/5) from
the plangust using blowing ups and blowing downs, which is not explicitly described
in [10].
Known facts about (5, +/5) from [10] are: i)H2/ T /& Is asmooth open surface,
i) its compactificationH?2,/ I' 5 is done by adding six cusps. Each one of the 6

cusps ofY (5, (+/5)) is desingularized as a cycle of two rational curves) B;, with
intersection-3.

(-3

Figure 12. Cycles composed by two components 68 (+/5)).

Also it is known from [10] that the smooth rational curve which extends the
diagonal inHZ to Y (5, (+/5)), denoted byC, has self-intersection 2. The action of
SL2(0)/T sonY (5, (+/B)) carriesC to itself, andC passes through each one of the
six cyclesA; N B; at the nodal points (see Figure 13).

CHOHOHOHOC

Figure 13. The resolution of cusps B{5, 5)).

The extension of the involutioh: #2 O, I(x,y) = (y, x), is denoted also by
1: Y (5, (+/5) © and obviously/ (C) = C. Consider the quotieri (5, (~/5))/I and
the 2-fold covering

p: Y5, (vVB) = Y5, (V5)/I

ramified alongC. It was also proven by Hirzebruch thet5, (+/5))/1 is isomorphic

to P2 blown up at the six points. These points a#g, ..., vig given in Section 3

as associated to the vertices of the icosahedron. The ramification curve becomes in
the plane (so after six blow downs) Klein’s curve of degree 10, which is a rational
curve, having singularities at 1, ..., vig which are double cusps, invariant under

the action of the Icosahedron in the plane.
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Figure 14. Double cusps of Klein degree 10 curve at the pojnis= 11, ..., 16.

SIS

o S Y W)/

N e

o
,', v Ve "\
o9

Figure 15. The 2-fold covering df (5, (+/5)) over the blown up plane.

Remark that each cycle has self-intersectidn + B;)2 = -3 — 3+ 4 = —2
which is coherent with the fact that the cycle covers an exceptionakliaes ~1(v;)
(thatis,—2 = 2. E - E). Remark also that after 6 blow upsiat the self-intersection
of the degree 10 plane curve becomes equal f0-16- 42 = 4 (sincev(C, v;) = 4)
and after covering it becomes equal to 2.

5.2. Y(5, +/5) asa modification of P2 and the minimal involution. The fact that
the surface’ (5, (+/5)) is arational surfacefollows from the fact that there is a smooth
rational curve with positive self-intersection, nameélywith C2 = 2. Our aim now
is to obtain it from the plane by means of blowing ups and blowing downs.

Consider inP? the six conicsCy,, .. is passing through 5 among the 6 vertices
v11, ..., v1g. After the blow ups, these conics becorr(esl)—curves@l i in
Y (5, (+/5))/1. We claim thalfi1 ,,,,, is does not intersect the transformed curveCof

InfactC;,,.. s andC intersect at 5 among the 6 verticgs at whichv(C, v;;) = 4.
Thus the local intersection at each of these points is at least 4 and it is greater than

4 if, and only if, 5,-1 ,,,,, is intersects the strict transform 6f. Since we have 5 such
points andC - C;, ... ;s = 20, the claim follows.

.....
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Therefore, taking the 2-fold covering, there are 12 pairwise disjeidy-curves,

.....

intersects 5 of these 12-1)-curves (see Figure 16)

1

i
! Cil ..... is
e HOKAHHEHN
L c@ Y (5, (v/5)
! i1,..,05

1

Figure 16. Curveﬁ?i(1 is andc® , are pre-images afiy s

..... i 01,00l oo

Now we consider the map: Y (5, (v/5)) — W, which corresponds to the blow
down of all the 12 exceptional lines describedi(b, (v/5)).

Thenitis clear that the Euler characteristidbfs e(W) = e(Y (5, (v/5)) —12. It
is proven in [10] thae(Y (5, (+/5)) = 16. So the rational surfad® with e(W) = 4
is a Hirzebruch surfac®,,. Also we see that the transformed curvesdgfand B;
in S have self-intersectior-3 + 5 = 2. Now, using that these rational curves have
self-intersection 2 in the surfadé = =,, see [9], we can show thait = P% x PL.

5.3. Numerical data of the foliations. In order to find the numerical data of the
modular foliations inW = PL x PZ, let us apply the tangency formula to the image
of CinWwW = IP’}C X IP}C, whose self-intersection 2 has not changed by the map
h: Y(5, (v/5) — W. We have

Ti - C=tangC, F)—C*=12-2

since the twelve reduced singularities along the cydles B; belong toC. Then
d1(F) + do(F) = 10 (alsad1(4) + d2(4) = 10). The tangency curve of the pair of
modular foliations ir[PjIL: X IP}C is then composed by 12 curves of bi-degréksl),
images of the components of cycleshyif we denote again b andg, the foliations

in P}C X IP’}C then the tangency along these curves produces the relations

di(F) +d2(§) +2=d2(F) +di(§) +2=12

Let us now determine the Milnor numbers of the 12 dicritical singularities
introduced by the blowing downs. For computing this, we use Darboux’s theorem in
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IP’}C X IP’}C, taking into consideration the twelve saddle singularities along

12
124 u(ri) —4=T§ - Ng.
i=1

Then

12
Zu(n, F)=2-(du(F) - d2o(F) + di(F) + do(¥)) — 8
i=1

=2d1(F) - da(F) + 12

and so, for each;, _ ,~
w5y = A >6dz(f) 1

The unique solution of this equation for (non-zero) bi-degrees (whose sum we know
is 10) isd1(F) = 4, d2(F) = 6 (or vice-versa) ang(r;, F) = 5. After we know
the Milnor numbers, the invariani§;, ) are easily computed: they are equal to 3
foralli =1,...,12.

Now, by an elementary transformatidh P% x P — —> P2 (cf. Section 3.4.1)
we get foliations in the plane with the same degrees. Asremarked in that section, these
transformations are defined by blowing up a pegimind subsequent contraction of the
transformed curves of horizontal and vertical lines, dendéfeahd V. For instance,
if we blow up a regular poinp for the foliations, we get foliations in the plane
whose degrees are both equal to 12. On the other hand, if we choose the elementary
transformation which blows up one dicritical poimt= r;, we get degree 9 for both
modular foliations. In this model, the algebraic curves invariant by the modular
foliations are 5 straight lines and 7 conics. The lines are images in the plane of the
(1, 1)-curves passing through = r;, whose self-intersection decreases by one by
the blow up atp and which are not affected by the contractionfbfand V. The
conics correspond to th@, 1)-curves not affected by the blow up atbut whose
self-intersection 2 is increased by 2 under the contractiods ahd V.

Atlast, aremark on the canonical line bundles is in plac&. tfenotes a reduction
of singularities of the modular foliation iR x P%, obtained from 12 blow ups at
dicritical points, therT; is nef (theN-part is empty) and

12
T: = O(4H +6V) ® (9( - Zin)
i:1

gives T; . T; = 0. Also Tg . T§ = 0 holds for the companion foliation, since

T* = O6H +4V) ® 0( - S 2E;).
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A. Factorization of the Cremonian involution

In this section we construct the involutiohin the plane associated to the involution
of Y (5, (2)) (which sends#s to #g in Theorem 2) as a composition of three quadratic
transformations of the plane:

T =Q03002001.

The transformatioly™ is a degree five Cremonian transformation with six inde-
termination points and is described by Godeaux [8] as a degenerated cdse st a
involution (in general a degree eight involution with seven indetermination points).
In this particular case, the 2-net of rational curves defiding composed by degree
five curves with double points at the six indetermination points. According to [8], in
this case, there is a non-empty fixed part of degree 3 in the 2-net of curves of degree
8 defining the general Geiser involution.

Moreover, in this section we construct birational modificationsiaf denoted
FHi, k = 6, 8,9 of degrees 6, 8, 9, respectively, given as follovig: = (QIl)*(,%’s),

Hg = ((Q20 Q1) ™H)*(Hs) andHo = ((Q3 0 Q2 0 Q1) H*(Hs). With this factor-
ization process we are also led to a better understanding of the efféctofis on
the foliations and on the configuration of lines.

The standard quadratic transformation of the plane,Q: P2 — —> P2, is given
in homogeneous coordinates By(xg : x1 : x2) = (x1-x2 : xp-x2 : x0-x1). It
factorizes as the blowup at :=(1:0:0),e2:=(0:1:0),e3:=(0:0: 1), with
E; = ai_l(el-), followed by the blow downs of the strict transformg of the three
linesLy :=¢; - ej to pointsgy, k = 1, 2, 3. The strict transforms df; are three lines
E! C P2 connecting two points among.

Lemmal. Let Q: P? — —> PP? bethe standard quadratic transformation (keeping
the previous notations). If C isadegreed = d(C) curve, then the degree of the strict
transform Q(C) is2-d(C) — Zf’zl v, (C), wherev,, (C) isthealgebraic multiplicity.
Moreover

Vg (Q(C)) =d(C) — v, (C) — v, (C), i #j#ke{l 23}

If # isafoliation of degree d = d(#), then the degree of the foliation Q. (#)
(with isolated singularities) isequal to 2- d(#) +2— Y3, I(e;, J). Furthermore

Proof. The assertion on curves in this lemma is well known from classical books on
algebraic curves.

The assertion on the degrees of foliations can be proven if we remark that by
definition,d(Q.(#)) is the sum of tangencies with a generic straight indut L
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is the strict transform by) of a conicC passing throughi, e2 andes. So the proof
follows easily from the formula for the variation of order of tangencies under blow
ups (at the end of Section 2.2.3) and from the formula

tang(C, #) = Ny - C — x(C) = 2- d(J) + 2.

As explained in Section 2.2.3, the computatiori(@f., Q.(#)) depends on the sum
of tangencies along the exceptional libg (if it is not invariant by the foliation) or
on the sum of Poincaré—Hopf indices alabgand is easily done. O

Let us start the definition df = Q30 Q20 Q1.

Definition of @1. By a linear transformation of the plane we can put three vertices
as
el =1v11, €2 =113, €e3= V15

and take forQ; the standard transformation based on these points. So the strict
transforms ofL 5, = v11v13, L, = v13v15 andL¢, = v11v15 by the blow ups done
by 01 will be contracted, producing again the projective plane.

By Lemma 1, the transforms dfp, = v14v1e, L4, = V12016 aNdL o, = V12014
(cf. Section 3) under the Cremonian transformation are conics passing through the
points introduced by contraction of the strict transformg gf, L g, andL¢,, which
we denotegp,, gp; andgc,, respectively. All other lined4,, Lp;, Lc; in the
configuration are transformed into straight lines, because each one has received one
blow up at one point fronfv11, v13, vis}.

Let #¢; denote the transformed foIiatiQQ[l)*(ﬂ5) (with isolated singularities).
By Lemma 14 (#{) =2-5+2—3-2 =6 and its singular set is the following:

i. #¢ has singularities at the imagesaf, o2, os, 09, v12, v14 andvie by Q1 that
are isomorphic to those d#s, that is, are radial points.

ii. There are degenerate singularities#f atgp,, ¢z, andgc,. The reduction of
singularities ol g, is as follows: one blow up produces an invariant exceptional
line E with two radial points, isomorphic to the radial poimksandos (which
need to be blown up again) and two more reduced singularities isomorphic to the
singularitiesL 4, N L g, andL¢, N Lp, of F. The picture is like that of Figure 8
in Section 3.4 (see page 266).

In order to compute the algebraic multiplicity 8 atgp,, ¢, andgc,, we use
the known formula

Z (o™ (Hg), p) = g — mg(Hs) - (mg(Hg) — 1) + 1,
peE
which gives

4= pp(@* (HE)) = Loy, (HE) — myy (HE) - Mgy (H) — 1) + 1
peE
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and, summing up for the three points,

Mgp, (mtIBz -+ Mgp, (qug -+ Myeqy * (cho -1D+9
= Hgp, (Hg) + Ky, (Hg) + Kgc, (Hs)
=[6°+6+1—(5°+5+1-3-3-4)]
= 27,

from the homogeneity in the definition gk,, g5,, gc, we obtain
quz = qu3 = m(ICO =3

At this point we can verify directly that the numerical Kodaira dimensioggf
is one, exemplifying the birational invariance of this concept; we have

(d(HL) — 1)? = (m(qp,, He) — 1)? + (m(qps, HL) — 1)?

+(m(qeg He) — D2+ D> m(p. HY2,
p#quﬂqB:gano

where in
N2
> m(p. Hy)
p#quququCO

we include the contribution of the blow ups of radial points along the exceptional
introduced by blow up of ,, g5, ¢, that is, we have the equality 253- 4+ 13.
We conclude tha#f; is a degree 6 modular foliation, denoté#d = (Q1)+(Hs).

Definition of Q2. Now consider the point®1(v12), Q1(v14), Q1(v1e). They are
not collinear and we can take a linear transformation putting

e1=(1:0:0) = 01(v12),
e2=(0:1:0) = Q1(v14),
e3=(0:0:1) = Q1(v1e),

and we defing)» as the standard quadratic transformation with base points at these
points. Since#s hasl,, (#s) = 2, we obtain from Lemma 1

d((Q2)sHs) =2-64+2—-3.2=28,
lg,((Q2)xHe) =6+2—2-2=4.

Remark that the lineg := e;e; arenot Hg-invariant. Sincer; ande; are radial
points for#g, tang Ly, ¢;) + tang Ly, e;) = 4 and the pointg; introduced by the
blow downs of (the transforms of), are dicritical and we havig, ((Q2)+«#e) = 4.
So we have obtained th&D») . #s = (Q2 o Q1) H5 is a model#s of degree 8.
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Definition of Q3. In order to complete the construction of the Cremonian transforma-
tion7 = Q30 Q20 Q1, let us defing)z. For doing this, take a linear transformation
of the plane such that

e1=(1:0:0) = Q2(Q1(v11)),
e2=(0:1:0) = 02(Q1(v13)),
e3=(0:0:1) = 02(01(v15).

Now again by Lemma 1,

d((Q3)sHg) =2-8+2—-3.3=09,
lg,((Q3)Hg) =8+2—-2-3=14

andgy are dicritical points eliminable by one blow up, sin@g has blown up all
singular points of#fg that needed more that one blow up in its reduction. In this way
we have obtained the model of degree 9 in the p#k, F#9) asdHy = Ti(Hs).

The compositiol = Q30 Q20 Q1 of three quadratic transformations has degree
fiveas a birational transformation (the degree of the compositioat isight, because
the base points of the quadratic transformation in the composition are not disjoint).
In order to see this, consider the image of the 2-dimensional linear system of curves
of degree 5 passing doubly througty, . .., vie. If C denotes one of these curves,
the degrees of its strict transforms are computed, by means of the previous lemma as

d(Q1(C) =2-5-3-2=4, v, (01(C) =1

and

d(Q2(01(C)) =2-d(Q1(C)) —3-2=2.

Finally d(Q3(Q2(Q1(C))) = 2-d(Q2(Q1(C)) —3-1 = 2-2~-3 = 1 which
gives a 2-dimensional system of lines, thatPs The birational transformation
7:P?2 — —> P2 = N’ can be given a§ (xg : x1 : x2) = (Py : P1 : P2) where
Po, P1, P2 is a basis of th€-vector space of polynomials of degree 5 vanishing with
order two at the five pointsiy, ..., v1s.

At last, let us explain how the transformatiGh= Q1 o Q2 o Q3 does preserve
the configuration of 15 line& 4,, Lp;, Lc;, although this isiot the case for any of
the quadratic transformation®;,i = 1, 2, 3.

For showing this, let us divide the set of 15 lines into three subsets; a) lines that
do not pass throughi 1, neither byvis, norvis; b) lines that pass through exactly
one point in{v11, v13, v15}; and c) lines that pass through a pair of points from
{v11, v13, v15}.

In case a), for fixing ideas, take the lideg, = viav1e. The strict transform
01(Bo) is a conic. Sinceg does not contain o, the transformatio, operates on

Q1(Bo) by means of two blow ups a1(vi4), Q1(vie) and sod(Q2(Q1(Co))) =



282 L. G. Mendes and J. V. Pereira CMH

2-2—2=2,andQ2(Q1(Bo)) also is a conic. Now sinc@1(Bo) containsyc,, ¢z,
qB,, We conclude thad (Q3(02(0Q1(Bp)))) = 2-2— 3 =1 and we obtain a line as
desired.

In case b), if aline in the configuration contains just one point fform v13, vis},
for fixing ideas let us suppose this pointig. ThenQ1(L) is also a line, passing
through just one of the pointg,, ¢5,, g5,, Namely bygp,, because g, = v13v1s.

Butany line in the configuration of 15 lines must contain 2 vertigesNow vy €
L, vi13, vis € L, henceL contains exactly one point frofvi2, v14, v16}. SO when
applying Q2 exactly one point ofD1(L) (a line) is blown up and (Q2(Q1(L))) =
21— 1= 1. When applyingds we blow upQ2(ps,); s0d(Q3(Q2(Q1(L)))) =
2.-1—1=1andagain we have aline.

Finally, in the case c), if a line in the configuration contains a pair of points from
{v11, v13, v15} it does not contains the third one (they are not collinear). But fhen
is blown down byQ; and re-introduced as one of the three lines create@y

B. Reduction of singularities of the plane models of Y (5)

Here we give a detailed reduction of singularities for the modular foliations in the
plane associated tB(5), given in Proposition 2. Figures 17 and 18 present all the
reduction processes, composed each by eleven blowing ugg5) — P2. Remark

that the reduced singularities which are not at the corners of the exceptional divisors
are denoted respectively lyy, g; andr; in these figures.

B.1. Resolution of #€>. We begin with the reduction of singularities#&b at infinity
in the plane. The foliatiot#, is induced in affine coordinatés, y) of the projective
plane by

Q = (80y — 60xy — 80x2)dx — (y 4 32x — 36x%)dy = 0.
In the chari(u, v) = (1, ) there is a reduced singularitygt := (0, = %) = (u, v)
(with Camacho-Sad index% relative to the line at infinity ), as can be easily verified.
The foliation#t, is induced at the point at infinity; := (0, 0) = (w, s) = (’;‘ %) by
Q(w, s) = (80s% — 60ws — 80w2s)dw + (s — 48ws + 24w? + 80w>)ds = 0,

wheres = 0 is an affine equation of th&,-invariant line at infinity. The blowing up
o1 at p1 is written in local charts as

o1(x1, 1) = (x1, x111) = (w, s), o1(u1, y1) = (U1y1, y1) = (w, s),
and
03w, s) = x1-[(—=36x1t1 +12 4 32x112)dxy + (x111 + 24x2 — 48211 +80xD)d 1],
thatis,l[(#2, p1) = 1.
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Figure 17. Resolution ofts.
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Figure 18. Resolution offs.
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The unique singularity of the transformed foliation aloAg := Gl_l(pl) is at
(0,0) = (x1, 11), as is easily verified. The blowing up at p2 := (0, 0) = (x1, 1)
is written in local charts as

02(x2, 12) = (x2, x212) = (x1, y1), 02(u2, y2) = (U2y2, y2) = (x1, y1),
and

o5 [(—36x1ty + 12 + 320112)dxy + (x111 + 242 + 80x5 — 48x211)d 1]
= x% (=128 — 16x2t22 + 80x212 + 2t22)dx2
+ (24x2 + t2x2 + 80x5 — 48x312)d12],
that is,l/(#2, p2) = 2.
The non-reduced singularity of the transformed foliation al@ags at (0, 0) =

(x2,12). There are also two reduced singularities, ongsat= (0, 6) = (x2, t2)
(with Camacho-Sad indexg relative to E2) and the other is at infinity0, 0) =

(uz, y2) = E1N E> (with Camacho-Sad index% relative toE>).
The blowing upos at p3 := (0, 0) = (x2, t2) is written in local charts as

03(x3, 13) = (x3, x313) = (x2, ¥2), 03Uz, y3) = (U3y3, y3) = (x2, y2),
and

03 [(—12tp — 16x013 + 80x212 + 212)dxp + (24xp + t2x2 + 80x2 — 48x312)d 1]
= x3 - [(24x3 + 80x2 — 47x213+)d13
+ (1213 + 160Qx3t3 + 3X3t§ - 64x§t§)dx3],
thatis,l(#2, p3) = 1.
There is a reduced singularity &, 0) = (x3, r3) which is the crossing point
E3 N L (with Camacho-Sad index2 relative toE3). The point at infinityps :=

(0, 0) = (u3, y3), pa = E3N E», is a non-reduced singularity, where the transformed
foliation is induced by

(12u3+3u3y3+16Qu3y3—64u3y3)dyz+(—12y3+2y3+80uzys —16uzy3)duz = 0,

which clearly is a dicritical point of radial type, that i$#¢, ps) = 2.
Let us now consider the reduction# at p5 := (0, 0) = (x, y) in the projective
plane. The blowing ups at ps is written in local charts as

os(xs, 15) = (x5, x5t5) = (x,y), 05(us, y5) = (usys, ys) = (x, y),
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and

ol ((80y — 60xy — 80x%)dx — (y 4 32x — 36x%)dy)
= x5 - [(—32v5 — xsf5 + 36x2)d1s + (48t5 — 80xs — 24xsts — 12)dxs],
thatis,/(#2, ps) = 1.

The singularities of the transformed foliation alohAg := agl(pg,) are a reduced
singularity atgs := (0, 48) = (x5, 15) (with Camacho—Sad index% relative toEs)
and a non-reduced singularity @& 0) = (xs, t5).

The blowing upos at ps := (0, 0) = (x5, t5) is written in local charts as

o6(xe, f6) = (x6, x6f6) = (x5, y5), 06(us, y6) = (usYys6, y2) = (x5, y5),
and

Gg[(—X5t5 — 32x5 + 36x§)dt5 + (485 — 24xs5t5 — 80x5 — t52)dX5]
= x6 - [(—80+ 161 + 12r6x5 — 2x612)dxp + (—32x6 + 36x2 — 16x2)d 1],
that isl(#2, pg) = 1.
There s areduced singularity@ 0) = (us, ys) Whichis the intersectioBsN Eg
(with Camacho—Sad index% relative toEs). The non-reduced singularity of the
transformed foliation alongs is at(0, 5) = (xg, t6).

After the linear change of coordinates;, ts) — (xs, t6 — 5), the foliation around
p7 is induced by

(16¢6 + 10xg — 8xgls — 2x618)dxe + (—32x6 + 31x§ — xte)d1s = O.
The blowing upo7 at p7 is written in local charts as
o7(x7,t7) = (x7, x717) = (x6, Y6),  07(u7, y7) = (U7Y7, ¥7) = (%6, Y6),
and
o3 [(—2xets — 8xgte + 10xp + 16t6)dxs + (—xats + 31k — 32xp)d1g]

= x7- [(10 — 1617 + 26x717 — 2x217 — x2t2)dx7
+ (—32v7 + 317 — xJ1)d7,
that isl(#>, p7) = 1.
There is a reduced singularity g := (0, 3) = (x7,7) (with Camacho—Sad

index—2 relative toE7). The non-reduced singularity of the transformed foliation is
at (0, 0) = (u7, y7) € E7, where the foliation is induced by

(—16u7 + 10u2 — 3u2y2 + 23u3y2)dy7 + (16y7 + 10u7y7 — 8u7y2 — 2u7y3)du,
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which is clearly a dicritical singularity of radial type; thatig#2, pg) = 2.

Now let us reduce the singularity &%, in the projective plane at32, 192%) =
(x,y). The blowing upog at pg = (3—3 @') produces two singularities along
Eg = Gg_l(pg)' a reduced singularity afy := (O, O) (x9, t9) With index —3
relative to £, and a non-reduced singularity @, 32°) = (xg, t9). It can be easily
verified thatl (#2, pg) = 1.

Next, the blow upoyg at p1o := (0, %’) = (xg, tg9) produces two singularities
alongE1g = ol_ol(plo). One is a reduced singularity @i := (0, 105 = (x10, t10)
with index —2 relative toE1g and the other is a non-reduced singularity at infinity
(0,0) = (u10, y10). It is easily verified that alsf&( #2, p1g) = 1. At last, it can be
verified thatpi1 := (0,0) = (u10, y10) IS a dicritical point of radial type, that is,
[(Jt2, p11) = 2.

Finally, at the point(1,4) = (x, y) in the projective planejf> has a reduced
singularity. The quotient of eigenvalues of the linear part of a vector field inducing it

is equal to*%@.

B.2. Resolution of #€3. We begin with the singularity at infinity in the projective
plane, which has the more involved resolution.
The foliation#¢3 is induced in affine coordinatés, y) of the plane by

Q:( 2 24 20xy — 60x3>dx+(—y+§1xy+x2>dy20.

In the chart at infinity(u, v) = ( x) there is no singularity, as can be easily verified.
The foliation#3 is induced ap; := (0,0) = (w, s) = ( ) by

Qw.s) = ( 232+20ws 60w3s>dw + (:—les — 21w2s +60w4+s2>ds _0

wheres = 0 is an affine equation of th&s-invariant line at infinity.
The blowing upo at ps is written in local charts as

o1(x1, 11) = (x1, x111) = (w, 5), o1(u1, y1) = (1y1, y1) = (w, s),

and

* _2[(_32_ 2,3 1 52 3 2
01 (Q(w,s)) = X1 [( 4tl x:]_tl +t1)dx1+(2.x1tl 21x1t1+60x1+xltl>dt1:|,
thatis,l(#3, p1) = 2.

The singularities of the transformed foliation alabig : = Ul_l(pl) areat0, 0) =
(x1,11) and (0, 3) = (x1,11). The pointry := (0, 3) = (x1, 1) is a reduced singu-
larity (with CS index equal t(}g relative toE1).
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The blowing upo2 at p2 := (0, 0) = (x1, #1) is written in local charts as

02(x2, t2) = (x2, x2t2) = (x1, y1), 02(u2, y2) = (U2y2, y2) = (x1, y1),

and
o;[( - %tf — x4 tf)dxl + (%xltl — 21?1y + 605 + xltlz)dtl]
= x5 [ (60xztz - %1;22 — 226913 + 22315 ) dxz
+ (%xztz — 21x312 4 6Qx2 + xztzz)dtz],

that isl(#3, p2) = 2.

The non-reduced singularity of the transformed foliation al@ags at (0, 0) =
(x2, t2). Also there is a reduced singularity at infinit§, 0) = (u2, y2) = E2 N E1
(with CS index— 3 relative toE7).

The blowing upos at p3 := (0, 0) = (x2, r2) is written in local charts as

03(x3, 13) = (x3, x3t3) = (x2, y2), 03(u3, y3) = (U3y3, y3) = (x2, ¥2),

and
o3 [(60}(21‘2 — ‘—11t22 — 22xp13 + 2x2t23>dx2 + (%xztz — 21x21) 4 60x5 + x2t22>dt2]
= x5 [ (60rs + %xgtg — 21edig + 2315 )dry
+ (1205 + %tg — 43vard + 33315 )dx),

that is,/(#3, p3) = 2.

There is a reduced singularity @t := (0, —480) = (x3, 13) € E3 and a reduced
singularity at(0, 0) = (x3, 3) which is the crossing point with (with Camacho-Sad
index —2 relative toL). The point at infinity inE3, that is,ps := (0, 0) = (u3, y3)
is a non- reduced singularity, where the foliation is induced by

-1 1
(Ty3+60u3y3—22y§u3+2u3yg)dus+(Zu3—43u§y3+3ugyg+1204§)dy3 =0,

which clearly is a dicritical point of radial type, that i$#¢3, p4) = 2.
Let us now reduce the singularity 8fs in the projective plane gis := (0, 0) =
(x, y). The blowing upos at (0, 0) is written in local charts as

os(xs, 15) = (x5, x5t5) = (x,y), 05(us, y5) = (usys, ys) = (x, y),

and, since¥s is given by

Qx,y) = <— gy2+20xy - 60x3)dx + (— y+ gxy +x2>dy =0,



Vol. 80 (2005) Hilbert modular foliations on the projective plane 289
we have

* 32 1
Og (Q(x,y)) =x5- <x5 + 4x5t5 — X5[5)dt5 + <21)C5t5 — ExSts 60x5 — ts)dX5

that isl(#3, ps) = 1.
The singularity of the transformed foliation alofg := 05_1(]95) is just(0, 0) =
(x5, 15). The blowing upsg at pg := (0, 0) = (x5, 15) is written in local charts as

oe(xe, t6) = (x6, x6te) = (x5, ¥5), 0o6(us, y6) = (Usye, y2) = (x5, ¥5),

and

aé"[(xg + %xél@ — X5t5)dt5 + (21)C5t5 %xsts 60x5 t52>dx5]

= ¢ [(— 60+ 225+ %xeté — 21 )dxq
+ (xe + %xéte - xete>dt6],

that isi(F2, ps) = 2. There is a reduced singularity &t := (0, 6) = (usg, ys)
(with Camacho-Sad indexg relative to Eg). Also there is a reduced singularity
at the intersectio0,0) = (us, y6) = Es N Eg (with Camacho-Sad index2
relative toEs). Also there is a non-reduced singularity of the transformed foliation
at(0,5) = (xg, tg) € Es.

After the linear change of coordinatéss, ts) — (xs, s — 5)), the foliation is
induced by

= (22‘6 + 2—5x6 + %xetg - 2tg + %Oxatta)dxs

4
+<—4x6—xGl‘6+745x6+i gtg+3;10

The blowing upo7 at p7 := (0, 5) = (xs, tg) iS written locally as

xﬁte)dte

o7(x7,t7) = (x7, x7t7) = (%6, ¥6), 07(U7, y7) = (U7Y7, y7) = (X6, V6),
and

15 75 3 31 3
(77*77 =Xx7- |:<Z —2t7+ ZX7 + 2xﬂ7 + Zx%% - ZX7t72 + Zx?t?)d)w

75 2 30 3 3 4.2
+ ( — 4X7 + Z.Xj 7t7 + Z.th? + 4X7t7)dt7],
thatis,l(#3, p7) = 1.
There is a reduced singularity 0, =22) = (x7, t7) (with Camacho-Sad index
—2 relative toE7). The non-reduced singularity of the transformed foliation is at
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(0, 0) = (u7, y7), where the foliation is induced by

50 2, 85 > 32
( 2u7 — 3u7y7 + Zu7 + ZWW + 2
25

10 1
+ (2y7 —2y2 + 2 U + ZMW% + Z”W?)dw,

which is clearly a dicritical singularity of radial type; that i$#¢3, pg) = 2.

Let us reduce the singularity ¢ in the projective plane &3, 1924) =

(x, y).
The blowing upoy at ps = (32, 2224) produces two singularities alonfy =

agl(pg); a reduced singularity af := (0,0) = (x9, fr9) With index —3 relative
to £1 and a non-reduced singularityél %)) = (xg, tg). It can be easily verified
thatl(#s, pg) = 1.

Next, the blow uprig at p1o := (0, 32°) = (xg, t9) produces two singularities
alongE1g = Gl_ol(plo). One is a reduced singularity €@, 25 = (x10, t10) With
index —2 relative toE1g, the other a non-reduced singularity at infin{§, 0) =
(#10, y10). Itis easily verified that(#3, p1o) = 1. At last, it is easily verified that
p11 := (0, 0) = (u10, y10) is a dicritical point of radial type, that ig(#3, p11) = 2.

At the point(1, 4) = (x, y) in the projective planeffs has a reduced singularity.
The quotient of eigenvalues of the linear part of a vector field inducing it is given
by 73+\f

31, 5
Susy? + 4”7)’7)dY7
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