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Hilbert modular foliations on the projective plane

L. G. Mendes and J. V. Pereira∗

Abstract. We describe explicitly holomorphic singular foliations on the projective plane corre-
sponding to natural foliations of Hilbert modular surfaces associated to the fieldQ(

√
5). These

are concrete models for a very special class of foliations in the recent birational classification of
foliations on projective surfaces.
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1. Introduction and statement of results

Our aim is to give concrete models in the projective plane for the holomorphic singular
foliations which are the natural foliations ofHilbert modular surfaces.

Such foliations are calledHilbert modular foliations and have a distinguished
role in the birational classification of foliations on projective surfaces (cf. [12], [4],
[13]). Recently M. Brunella ([5]) and M. McQuillan ([12]) completed the birational
classification of holomorphic singular foliations showing that rational fibrations and
modular foliations are the unique foliations with negativefoliated Kodaira dimen-
sion. Besides the role in the birational classification, Hilbert modular foliations have
some remarkable dynamical properties and also a distinguished place in the theory
of transversally projective foliations.

We recall the definitions. LetN be a square free positive integer,K the totally real
quadratic fieldQ(

√
N) andOK the ring of integers ofK. The two distinct embeddings

of K into R induce an embedding of PSL(2, K) into PSL(2, R) × PSL(2, R). If
I ⊂ OK is a maximal ideal then�I will be the lattice defined by the following exact
sequence:

0 → �I → PSL(2, OK) → PSL(2, OK/I) → 0. (1)

Denote byH2 := H × H the product of Poincaré upper planes. Then the Hilbert
modular surfaceY (N, I) is defined as the minimal desingularization of the compact-
ification of H2/�I . When the quotient is made by the full Hilbert modular group
PSL(2, OK) the associated surface is the Hilbert modular surfaceY (N). The Hilbert
modular foliations are defined as the singular foliations which are the extensions of
the images of the horizontal and vertical fibrations under the quotient defining the
Hilbert modular surfaces.

In order to motivate the study of this class of foliations, we list in Theorem 1
some properties of modular foliations. By areduced foliation we mean a foliation
whose singularities are reduced in Seidenberg’s sense, see [4]. For the concepts of
transversally affine andtransversally projective foliations we refer to [16], [17] and
references therein.

Theorem 1. Let H be a reduced modular foliation on the projective surface S and
Z the reduced divisor whose support are the invariant algebraic curves of H . Then
H has the following properties.

a. Quasi-minimality:The algebraic invariant curves are rational curves and every
non-algebraic leaf is dense.
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b. Hyperbolicity:Except for a finite set, every leaf is hyperbolic and simply-connec-
ted, i.e., biholomorphic to the Poincaré disc.

c. Uniformity: H is transversally projective outside Z and there exists a neighbor-
hood U of Z such that H|U\Z is transversally affine.

d. Sporadicity:If L is the class of the cotangent line bundle T ∗
H in Pic(S), then H is

the unique holomorphic singular foliation S whose class for the cotangent bundle
is L ∈ Pic(S).

In the realm of modular surfaces some particular cases are rational surfaces, i.e.,
birational toP2. We will focus on the following three rational Hilbert modular surfaces
Y (5), Y (5, (2)) andY (5, (

√
5)).

We first obtain plane models for the Hilbert modular foliations ofY (5, (2)). In
the statement below by adicritical point we mean a singularity of foliation having
infinitely many local analytic separatrices andradial points are dicritical singularities
locally given byω = xdy − ydx + h.o.t.= 0:

Theorem 2. The Hilbert modular foliations of Y (5, (2)) can be obtained from folia-
tions H5 and H9 of the projective plane by means of one blow up at each of sixteen
distinct points p1, . . . , p16 in the plane, with the following properties:

i. H5 and a H9 have degrees 5 and 9, respectively.

ii. H5 has 16 radial points at p1, . . . , p16 and 15 linearizable saddle points; the

quotient of eigenvalues of the saddles is −3+√
5

2 .

iii. H5 and H9 have the same invariant algebraic curves, a configuration of 15
straight lines for which p1 . . . , p10 are triple points, p11, . . . , p16 are 5-ple
points and the 15saddle-points of H5 or H9 are nodes. Moreover, the analytical
type of the singularities of both foliations on the singular points is the same,
except for 6 points p11, . . . , p16 which for H9 are analytically equivalent to
dicritical points with algebraic multiplicity 3 and Milnor number 11.

iv. H5 and H9 are invariant under the irreducible action of A5, the icosahedral
group, on the projective plane.

v. There exists an involutive Cremonian transformation of degree 5 which trans-
forms H5 into H9.

Moreover, there exist affine coordinates on the plane, for which one of the invariant
lines is the line at infinity, such that H5 is given by the vector field

x′ = (x2 − 1)(x2 − (
√

5 − 2)2)(x + √
5y)

y′ = (y2 − 1)(y2 − (
√

5 − 2)2)(y + √
5x),
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while H9 is given by

x′ = (x2 − 1)(x2 − (
√

5 − 2)2)[(−40+ 18
√

5)y + (−10
√

5 + 20)y3

+ 4
√

5y5 + (8
√

5 − 18)x + (−30+ 12
√

5)xy2 + 20xy4

+ (4 − 2
√

5)x2y + 6
√

5x2y3 + (10− 4
√

5)x3 + 2x3y2]
y′ = (y2 − 1)(y2 − (

√
5 − 2)2)[(−40+ 18

√
5)x + (−10

√
5 + 20)x3

+ 4
√

5x5 + (8
√

5 − 18)y + (−30+ 12
√

5)x2y + 20x4y

+ (4 − 2
√

5)xy2 + 6
√

5x3y2 + (10− 4
√

5)y3 + 2x2y3].

Figure 1. Real picture of the arrangement of lines invariant byH5 andH9. The line at infinity
is also invariant.

Remarks on Theorem 2. In Figure 1 there are four directions determined by parallel
lines, which correspond to 4 dicritical singularities ofH5 andH9 at infinity. Also we
remark that the 15 invariant lines determine a simplicial decomposition ofP2

R
such

that each triangle has one saddle and two dicritical singularities as vertices. Note that
bothH5 andH9 are induced by real equations and therefore they induce (singular)
foliations ofP2

R
. The qualitative behavior of both of these foliations on the cells of

the simplicial decomposition ofP2
R

is topologically conjugated to the one presented
in Figure 2. It has to be noted that the foliationH5 appeared in [1] as an example of
a degree 5 foliation ofR2 with the maximum number of invariant lines.

The degree five Cremonian involution sendingH5 to H9 in Theorem 2 becomes,
after blowing-up the 6 pointsp11, . . . , p16, an automorphism of a rational surface
corresponding to the natural involution ofY (5, (2)).

Searching for models in the plane where the involution ofY (5, (2)) corresponds
to minimal automorphism as defined in [3], we obtain other models in the plane:
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Figure 2. The qualitative behavior ofH5 andH9 on each cell.

Theorem 3. The pair of Hilbert modular foliations of Y (5, (2)) is birationally equiv-
alent to a pair of foliations F , G of the projective plane, where both F and G have
degree 7. There exists an involutive automorphism φ of P2 such that φ∗(F ) = G
and φ∗(G) = F . Moreover, the algebraic invariant curves are 7 straight lines and 4
conics.

We remark that by the same methods used in the proof of Theorem 3 we can
produce another model for the modular foliations ofY (5, (2)) in the plane for which
both have degree 10.

Our next result is a detailed description of the Hilbert modular foliations ofY (5),
which is regarded as the desingularized quotientP2/A5 (cf. [11]). In the statement
below by aminimal reduction of singularities of a foliation we mean a sequence of
blow ups in which blow ups at reduced singularities or at regular points of foliations
are not allowed.

Theorem 4. The modular foliations of Y (5) are obtained by means of the minimal
reduction of singularities of the foliations H2 and H3 of the projective plane with the
following properties.

i. The degrees of H2 and H3 are 2 and 3, respectively, and there are affine coor-
dinates (x, y) where they are induced respectively by

x′ = y + 32x − 36x2

y′ = 80y − 60xy − 80x2

and

x′ = 4y − 3xy − 4x2

y′ = −5y2 + 80xy − 240x3.

ii. The tangency set of H2 and H3 is an invariant curve composed by the line at
infinity and the rational quintic given in the coordinates (x, y) by

Q : −1728x5 + 720x3y − 80xy2 + 64(5x2 − y)2 + y3 = 0.
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iii. The non-reduced singularities of H2 and H3 are at the cuspidal points of Q,
namely: (0, 0),

(32
27,

1024
81

)
and the point at infinity (0, 0) = (w, s) = (

x
y
, 1

y

)
,

which are dicritical singularities for both foliations.

iv. The sequence of blow ups σ : Y (5) → P2 producing the reduction of singularities
of foliations is composed by eleven blow ups: four blow ups at (0, 0) and infinitely
near points; four at the point at infinity (0, 0) = (w, s) and infinitely near points;
three at

(32
27,

1024
81

)
and infinitely near points.

v. The singularities of both foliations at (1, 4) = (x, y) are reduced saddles with

quotient of eigenvalues equal to −3+√
5

2 .

In Figure 3 we represent (qualitatively) the cuspidal quintic curve.

Figure 3. A cuspidal quintic curve and the line at infinity are the tangency set ofH2 andH3.

Next, we consider the Hilbert modular foliations onY (5, (
√

5)). Through a similar
analysis to the one made in the proof of Theorem 3 we obtain:

Theorem 5. The pair of Hilbert modular foliations of Y (5, (
√

5)) is birationally
equivalent to a pair of foliations F , G of the projective plane, where both F and G
have degree 9. There exists an involutive automorphism φ of P2 such that φ∗(F ) = G
and φ∗(G) = F . Moreover, the algebraic invariant curves are 5 straight lines and 7
conics.

Again, by the same methods, we can give a second model in the plane for the
modular foliations ofY (5, (

√
5)) where the degree is 12 for both modular foliations

and the algebraic invariant curves are 1 straight line and 12 conics.

Acknowledgments. The authors thank Karl Otto Stöhr for calling their attention to
the work of Hirzebruch on Hilbert modular surfaces. They also thank E. Ghys and
the participants of the Seminar of Complex Dynamics at IMPA for the interest and
enthusiasm concerning this work. The first author heartly thanks the attention of
S. Cantat, D. Cerveau, C. Favre, S. Lamy, J.-M. Lion, L. Meersseman and F. Touzet.
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Remark. After this paper was completed and being submitted, the authors found
a paper by R. Kobayashi and I. Naruki, Math. Ann. 279 (1988), 485–500, where
they describe the 1-forms inducingH5 andH9 in another coordinate system. Their
interest is in the uniformization theory of surfaces and they do not give a detailed
description of the pair of foliations. So we think that our description, by completely
different methods, gives new information on the foliations ofY (5, (2)). They also
describe explicitely the irreducible 2-web produced by the 2-fold ramified covering
p : Y (5, (

√
5)) → P2, which is complementary to our description of the foliations of

Y (5, (
√

5)).

2. Preliminaries

2.1. Hilbert modular surfaces and foliations. After having recalled the definition
of modular surfaces in the Introduction, let us say a few words about the compactifica-
tion H2/�I of H2/�I . The two embeddings ofK into the reals induce an embedding
of P1

K into P1
R

× P1
R

⊂ P1
C

× P1
C

. PSL(2, R) acts onP1
C

by fractional linear transfor-
mations, thus so does PSL(2, K) onP1

K .
The action of the lattice�I ⊂ PSL(2, K) ⊂ PSL(2, R) × PSL(2, R) preserves

P1
K ⊂ P1

C
× P1

C
. The orbits ofP1

K under the action of�I are calledcusps.
The compactification ofH2/�I is then obtained by adding the cusps, i.e.,

H2/�I = H2/�I ∪ P1
K/�I .

There exists a bijection between the cusps ofY (N) and the ideal class group of
K (see Proposition 1.1 in [7]). In the particular case where the class number ofK is
one, equivalentlyOK is factorial, the cusps ofY (N, I) are parametrized by the finite
projective spaceP1

F
, whereF is the finite fieldOK/I . From (1) we see that the group

PSL
(
2, OK

I

)
acts onY (N, I). Of course this action must preserve the cusps and when

the cusps ofY (N, I) are parametrized byP1
F
, the induced action onP1

F
is the usual

action. The modular forms induce a structure of projective, resp. quasi-projective,
varieties onH2/�I , resp.H2/�I . For more details the reader can consult the two
first chapters of [7].

As already defined, the Hilbert modular foliations are the singular foliations which
are extensions of the images of the horizontal and vertical fibrations under the quo-
tient defining the Hilbert modular surfaces. The algebraic curves introduced in the
compactification and desingularization defining the modular surfaces are invariants
for both modular foliations.

Along this section we prove Theorem 1, except for the proof of thesporadicity
property of modular foliations. This one is postponed to Section 2.2.4, since it depends
on notions from the birational classification of foliations which we will recall in 2.2.



250 L. G. Mendes and J. V. Pereira CMH

2.1.1. Quasi-minimality. Let � ⊂ PSL(2, R)2 be the lattice defining the Hilbert
modular surface. IfF is the horizontal foliation ofH × H and

ρ : H × H → Y ∼= H2/�

is the quotient map, then the density of leaves ofρ∗F onY is equivalent to the density
of π(�) on PSL(2, R), whereπ : PSL(2, R)2 → PSL(2, R) is the projection on the
second factor.

In the case� is the image of PSL(2, OK) on PSL(2, R)2 under the pair of em-
beddings of the totally real quadratic fieldK, π(�) contains the elements

Aµ =
[
1 µ

0 1

]
and Bµ =

[
1 0
µ 1

]
,

for arbitraryµ ∈ OK . Let G denote the closure of PSL(2, OK) in PSL(2, R). Since
OK is dense inR the Lie algebra ofG contains the elements

X =
[
0 1
0 0

]
and Y =

[
0 0
1 0

]
.

Since[X, Y ] is linearly independent ofX andY the Lie algebra ofG has dimension
3, and since PSL(2, R) is a connected 3-dimensional Lie group, we conclude that
PSL(2, OK) = PSL(2, R).

The general case follows from Margulis–Selberg’s Theorem, which asserts that
any lattice� ⊂ PSL(2, R)2 is commensurable with�K for some totally real quadratic
field K, i.e., there existsg ∈ PSL(2, R)2 such thatg�g−1 ∩ �K is of finite index in
both�K andg�g−1.

2.1.2. Hyperbolicity. Keeping the notation of the previous section we are going to
prove that all the leaves ofρ∗F are hyperbolic and, except for a finite number of
exceptions, simply-connected.

The hyperbolicity is obvious since the leaves ofρ∗F are presented as quotient of
the upper half-planeH. To conclude that the generic leaf is simply-connected, observe
that the non-trivial elements in the fundamental group of a leaf are in correspondence
with fixed points of the action of some element ofπ(�) on H. As � is discrete
we can see that the fixed points are countable, and since to any element ofπ(�)

there correspond at most two fixed points, we may conclude that the generic leave is
simply-connected. To conclude observe that every non-simply connected leave must
pass through a quotient singularity and the finiteness of the number of non-simply
connected leaves follows.

2.1.3. Uniformity. Since the foliationρ∗F is described as a quotient ofH2 by �

we can easily see that every element of the pseudogroup of holonomy ofρ∗F is
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conjugated to a projective transformation, given by the action of PSL(2, OK) on the
second factor ofH2; thusρ∗F is transversely projective on the complement ofZ in
the sense of [16], [17].

In order to understand the local structure ofρ∗F in neighborhood ofinfinity, i.e.
in the neighborhood of the cusps, one has to analyze the structure of the isotropy
group of the cusp.

Again, Margulis–Selberg’s Theorem allows us to reduce to the case where� =
PSL(2, OK) for some quadratic fieldK. If σ is a cusp of� then the isotropy group
of σ under the action of� is conjugated, inside�, to a group of typeG(M, V ),

G(M, V ) =
{[

ε µ

0 1

]
∈ PSL(2, K)|ε ∈ V, µ ∈ M

}
= M � V,

whereM ⊂ K is an additive subgroup ofK which has rank 2 as a free abelian
group andV ⊂ U+

K is a subgroup of the positive units such that for everyε ∈ V we
haveεM = M. Therefore the isotropy group of the cusp is an affine group and on
neighborhood of infinity of theY , ρ∗F is transversally affine. Observe also that the
orbits are not locally dense.

2.2. Birational geometry of Hilbert modular foliations

2.2.1. Kodaira dimension of foliations. In this section we recall the concepts of
the birational theory of holomorphic foliations on projective surfaces that we will use
along the paper. The references for this section are [12], [4] and [13].

A holomorphic foliation F on a compact complex surfaceS is given by an open
covering{Ui} and holomorphic vector fieldsXi over eachUi such that whenever
the intersection ofUi andUj is non-empty there exists an invertible holomorphic
functiongij satisfyingXi = gijXj . The collection{(gij )

−1} defines a holomorphic
line-bundle, called thetangent bundle of F and denotedTF . The dual ofTF is the
cotangent bundle T ∗

F .

Similarly, a holomorphic foliationF on a compact complex surfaceS can be
given by an open covering{Ui} and holomorphic 1-formsωi over eachUi such
that whenever the intersection ofUi andUj is non-empty there exists an invertible
holomorphic functionhij satisfyingωi = hijωj . The collection{(hij )} defines a
holomorphic line-bundle, called thenormal bundle of F and denotedNF . The dual
of NF is theconormal bundle N∗

F .

Along the paper, a foliation means a holomorphic foliation with a finite number of
singularities of a smooth projective surface. Observe that there is no loss of generality
since every codimension one component of the singular set can be eliminated by
factoring out its defining equations from the local vector fields, or 1-forms, inducing
the foliations.
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A reduced foliation F is a foliation such that every singularityp is reduced in
Seidenberg’s sense, i.e., for every vector fieldX generatingF and every singular
point p of X, the eigenvalues of the linear part ofX are not both zero and their
quotient, when defined, is not a positive rational number. For a reduced foliationF ,
T ∗

F is called the foliated canonical bundle and is denoted byKF .
We define theKodaira dimension kod(F ) of a foliationF as follows.

Definition 1. If F is a reduced holomorphic foliation on a projective surfaceS then

kod(F ) := lim sup
n→∞

logh0(S, (KF )⊗n)

logn
.

WhenF is not reduced we set kod(F ) as kod(F ), whereF is any reduced foliation
birationally equivalent toF

In principle it is necessary to prove that the above definition is well-posed. In fact
this is done in [4], [13], [12].

The birational classification of foliations is built on the interplay of two birational
invariants of foliations, the above defined foliated Kodaira dimension and thenumer-
ical Kodaira dimension. This concept is based on Miyaoka’s semipositivity theorem
and the Zariski decomposition of pseudo-effectiveZ-divisors.

Miyaoka’s semipositivity theorem ([12], [4]) states thatT ∗
F is apseudo-effective

line bundle (divisor) for any foliation on any projective surface, except for pencils of
rational curves (i.e. foliations which after blow ups are rational fibrations). By pseudo-
effective we mean a divisor with non-negative intersection with anynef divisor. By
nef we mean a divisor whose intersection with any curve is non-negative.

The Zariski decomposition of a pseudo-effective divisorD (or of the associated
holomorphic line bundle) is the numerical decomposition ofD asP +N , whereN is
a Q+-divisor whose support (possibly empty) is contractible to a normal singularity
of surface,P is a nefQ-divisor andP · Ni = 0 for any irreducible component on the
support ofN .

Definition 2. Let F be a reduced foliation on the complex surfaceS. If T ∗
F is not

pseudo-effective then thenumerical Kodaira dimension of F , denoted byν(F ), is
−∞. Otherwise, ifT ∗

F = P + N is the Zariski’s decomposition then we set

ν(F ) =




0 whenP is numerically equivalent to zero,

1 whenP 2 = 0 butP is not numerically equivalent to zero,

2 whenP 2 > 0.

WhenF is not reduced we setν(F ) := ν(F ), whereF is any reduced foliation
birationally equivalent toF .
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Again, in order to verify the well-posedness of the above definition the reader
should consult [4], [12].

A foliation F of the surfaceS is relatively minimal if F is reduced and the
contraction of any−1-curve induces a non-reduced foliation on the blow-down of
S. If F is a relatively minimal foliation, it is proven in [12] (see also [4]) that the
support of the divisorN of the Zariski decomposition ofT ∗

F is composed bychains
of F -invariant rational curves of self-intersection lower than−1. The chain starts
with a curveC(1) with just one singularity of the foliation and, if it has more than one
component, continues with curvesC(k) with 2 singularities. Every singularity in the
support of the negative part admits a local holomorphic first integral.

2.2.2. Birational characterization of Hilbert modular foliations. Both notions
of Kodaira dimension and numerical dimension can be extended to any line bundle
(or divisor)D, cf. [15] and there is the general inequality kod(D) ≤ ν(D). When
kod(D) = ν(D) we usually say thatabundance holds forD.

The classification result of [12] (see also [5]) asserts that for any foliationF
of projective surface kod(F ) = ν(F ), except uniquely for the modular foliations,
which are birationally characterized by kod(F ) = −∞ andν(F ) = 1. In other
terms,F is a modular foliation if, and only if, abundance does not hold forKF .

We remark that our work gives also concrete examples of (nef) divisorD with
kod(D) = −∞ andν(D) = 1, for whichD · KM > 0 (a class of examples that,
as far we know, does not appear in the literature [15], [2]). The examples consist in
takingD := KH5 or D := KH9 for the modular foliations of Theorem 2 (details are
given in Section 3).

2.2.3. Birational modifications and numerical data. In order to be able to trans-
late the information from the birational characterization of modular foliations into
numerical data about singularities and degrees of their projective models, we need to
understand the effect of sequences of blowing ups on foliations of the plane.

Definition 3. LetF be a holomorphic foliation on a surfaceS andp ∈ sing(F ). Let
ω be a holomorphic 1-form generatingF on a neighborhood ofp andπ : S → S the
blow-up atp.

a. The order of the first non-zero jet ofω will be denoted bym(p, F ). The non-
negative integerm(p, F ) is called thealgebraic multiplicity of p.

b. The vanishing order ofπ∗ω over the exceptional divisor will be denoted by
l(p, F ).

The above defined indices are related as follows: when the exceptional divisor
E = π−1(p) is not invariant byπ∗F then l(p, F ) = m(p, F ) + 1; otherwise
l(p, F ) = m(p, F ). More generally when the exceptional divisorE = π−1(p) is
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not invariant by the transformed foliation, then

l(p, F ) = tang(E, σ ∗(F )) + 2,

where tang(E, π∗(F )) is the number of tangency points, counted with multiplicities,
and whenE = π−1(p) is π∗(F )-invariant then

l(p, F ) = Z(E,F ) − 1,

whereZ(E,F ) denotes the sum of Poincaré–Hopf indices alongE of local holo-
morphic vector fields inducingF .

If σ is a composition of blow upsσi then cotangent line bundles of the transformed
foliation F onM and ofF onM are related by

T ∗
F

= σ ∗(T ∗
F ) ⊗ O

M

(
−

∑
i

(l(pi, F ) − 1) · Ei

)
, (2)

whereσ denotes the composition of blow upsσi andEi = σ−1(pi). Here we consider
the total transforms, i.e.,E2

i = −1 andEi · Ej = 0 if i 
= j .
Theconormal bundleN∗

F of F on a surfaceM can be determined by means of
the adjunction formula

T ∗
F ⊗ N∗

F = KM,

whereKM is the canonical divisor ofM. From this relation, the previous isomorphism
and the formula

K
M

= σ ∗(KM) ⊗ O
M

( ∑
i

Ei

)
,

we obtain for the normal bundle

N
F

= σ ∗(NF ) ⊗ O
M

(
−

∑
i

l(pi, F ) · Ei

)
.

On P2, thedegree d(F ) of a foliationF is defined as the number of tangencies
betweenF and a generic straight lineL, counted with multiplicities. There is the
following isomorphism:

T ∗
F = OP2(d(F ) − 1)),

and fromKP2 = O(−3) we obtain in the planeNF = O(d(F ) + 2)).
From the previous remarks and formulae, we can deduce the behavior of the

cotangent and normal bundles of foliations of the plane under any finite sequence of
blowing ups. Sincebirational transformations are compositions of blowing ups and
blowing downs, it is natural that along this paper an exceptional curveE = σ−1(p)

arises as strict transformC of some rational curveC ⊂ P2 under blowing upsσ ′, i.e.
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C = E. Also, in some cases the foliationσ ∗(F ) will be regarded as the transformed
foliation by σ ′ of another foliationG in the plane, i.e.σ ∗(F ) = G = (σ ′)∗(G). In
such a situation, for computing

l(p, F ) = tang(E, σ ∗(F )) + 2 = tang(C, G) + 2,

it will be necessary to know the following relation:

tang(C, G) = tang(C, G) − νp(C) · (νp(C) + l(p, G) − 1),

whereνp(C) is the algebraic multiplicity of the curve.

2.2.4. Sporadicity of modular foliations. In our approach, after determining the
numerical data of the foliations in the plane (i.e. degrees and multiplicities of singu-
larities) we explicitly determine the polynomial vector fields inducing the modular
foliations. What justifies the uniqueness of the foliations submitted to the numerical
data is thesporadicity property of modular foliations (cf. [13] and [12]). For the
reader’s convenience, we sketch below the proof of sporadicity, for further details see
[13]. This will complete the proof of Theorem 1.

Let M be a projective surface and denote by Fol(M, L) the set of foliations ofM
with foliated canonical bundle isomorphic toL, i.e., Fol(M, L) = PH 0(M, TM ⊗
L) . We call a foliationF sporadic if Fol(M, L) = {F }. We assert that ifF is a
reduced modular foliation, thenF is sporadic.

In fact, suppose, on the contrary, that Fol(M, T ∗
F ) 
= {F } and takeG 
= F ,

G ∈ Fol(M, T ∗
F ). Contractions of local holomorphic vector fields inducingF and

local 1-forms inducingG produce functions vanishing along atangency curve, which
is an algebraic curve (possibly with non-reduced components) denoted byDF G. In
equivalent terms we have the isomorphism of line bundlesO(−DF G) = TF ⊗ N∗

G.
Thus

T ∗
F ⊗ T ∗

G = O(DF G) ⊗ KM,

i.e., T ∗⊗2
F = O(DF G) ⊗ KM . As a consequence,K⊗2

M is not effective: otherwise
T ∗⊗4

F is effective, contradicting kod(F ) = −∞. On the other side,M has no (non-
trivial) global holomorphic 1-form (the existence would imply a global section either
of T ∗F or of the cotangent of the companion modular foliation). Thus we can apply
Castelnuovo’s criterion of rationality of surfaces, to conclude thatM is rational. Now
we arrive at a contradiction using the following fact from [15] (a proof is also given in
[13]): if D is a pseudo-effective divisor of the rational surfaceM, thenKM ⊗ O(D)

is pseudo-effective if and only if kod(KM ⊗ O(D)) ≥ 0. This concludes the proof.
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3. Projective models for modular foliations of Y(5, (2))

In this section we first recall Hirzebruch’s description ofY (5, (2)) as the blown upP2

at points inP2
R

⊂ P2 determined by the vertices and centers of faces of an Icosahedron,
cf. [9]. After this, we determine the modular foliations in the plane, using the concepts
of Section 2.

Next we express the natural involution of the modular surface as a Cremona
transformation changing one foliation into the other. We finish the section proving
the existence of other models in the plane where the involution is expressed as an
automorphism. In particular, for some plane models the modular foliations can have
the same degree.

3.1. Y(5, (2)) as Klein’s icosahedral surface. Along this section we freely use
material from Hirzebruch’s paper [9] in order to describe theanalytic isomorphism
betweenY (5, (2)) and the blown up projective plane.

Some fundamental facts from [9] are: i)H2/�2 is asmooth complex open surface;
ii) its compactificationH2/�2 is a projective singular surface, obtained by adding 5
cusps.

The induced action of SL2(O)/�2 onH2/�2 permutes cusps, and for this reason
the cusps have the same analytical structure. The minimal resolution of singularities
of each cusp introduces a cycle composed by three rational curves ofY (5, (2)) with
self-intersection number−3.

The diagonal{z1 = z2} of H2 becomes a smooth rational curveĈ of H2/�2,
passing through exactly 3 of the 5 cusps (remark thatĈ minus three points is hy-
perbolic). Let us denote byC the strict transform ofĈ in Y (5, (2)). There are 10
pairwise disjoint curves (includingC itself) arising fromC by the action induced
by SL2(O)/�2, which we call for short “diagonals” onY (5(2)). Each of these ten
diagonals has self-intersection number−1 in Y (5, (2)). If we label the cusps byci ,
i = 0, . . . , 4, then each “diagonal” can be identified asCij (= Cji), wherei, j refer
the pairci , cj of cusps that donot belong toCij . Denote the pairwise disjoint cycles
introduced by elimination of the cuspsci by Ai ∪ Bi ∪ Ci . The intersections of the
smooth rational curvesCij , Ai , Bi , Ci are the following:

a. Ai · Bi = Ai · Ci = Bi · Ci = 1 andA2
i = B2

i = C2
i = −3, for i = 0, . . . , 4;

b. Cij are pairwise disjoint withC2
ij = −1;

c. each curveAi , Bi , Ci intersects 2 curves among theCij and eachCij passes
through 3 components of (three) distinct cycles, as shown in Figure 4.

We also refer to the original paper for the computation of the Euler characteristic,
which verifiese(Y (5, (2)) = 19. The main fact is:
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Theorem 6 (Hirzebruch). Up to analytic isomorphism, Y (5, (2)) is the unique smooth
projective surface with Euler number 19 and having a configuration of 25 rational
curves with intersections described in a), b), c) and Figure 4.

Cm−1,m−2 Cm−1,m+2

Cm+1,m+2
Bm Cm

Cm+1,m−2

Am

Cm−1,m+1 Cm−2,m+2

Figure 4. Intersections between diagonalsCij and cycles, with integers taken modulo 5.

Now we recall Hirzebruch’s description of how to obtain such a configuration
of rational curves, as in items a), b), c) and Figure 4, by means of 16 blow ups
of the projective plane. Consider an icosahedronI in R3 (Figure 5) and denote

v11 v15

o1

o10
o2

v13
o5

v14

o3 o4o7

o8 v12
o6

o9

Figure 5. Vertices and centers of faces of an icosahedron.

by o1, . . . , o20 the points inR3 corresponding to the centers of the 20 faces ofI .
These points can be seen as the vertices of a dual DodecahedronD. Also denote by
v21, . . . , v32 the points inR3 corresponding to the 12 vertices ofI . Now identify
antipodal points among the pointso1, . . . , v32. Denote the 16 points obtained inP2

R

by o1, . . . , o10 andv11, . . . , v16. The 30 edges ofI determine 15 straight lines inP2
R

,
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denotedLAi
, LBi

, LCi
, wherei = 0, . . . , 4:

LA0 := v12v13, LB0 := v14v16, LC0 := v11v15,

LA1 := v12v15, LB1 := v11v14, LC1 := v13v16,

LA2 := v12v16, LB2 := v11v13, LC2 := v14v15,

LA3 := v12v14, LB3 := v13v15, LC3 := v11v16,

LA4 := v11v12, LB4 := v15v16, LC4 := v13v14,

Since 5 edges ofI intersect at each vertex ofI , 5 lines of the 15 linesLAi
, LBi

,
LCi

pass through each pointvi , i = 11, . . . , 16. Moreover, if 3 mutually orthogonal
edges ofI ⊂ R3 are prolonged they intersect at the center of a face ofI ; so we
conclude that 3 of the 15 lines pass through each pointoi . These intersections are
given in the tables below (we give the intersections in all details for further use along
the paper).

points intersection of lines
v11 LC0 · LB1 · LB2 · LC3 · LA4

v12 LA0 · LA1 · LA2 · LA3 · LA4

v13 LA0 · LC1 · LB2 · LB3 · LC4

v14 LB0 · LB1 · LC2 · LA3 · LC4

v15 LC0 · LA1 · LC2 · LB3 · LB4

v16 LB0 · LC1 · LA2 · LC3 · LB4

points intersection of lines points intersection of lines
o1 LA0 · LC2 · LC3 o2 LC1 · LC2 · LA4

o3 LB0 · LB3 · LA4 o4 LB0 · LA1 · LB2

o5 LA1 · LC3 · LC4 o6 LB2 · LA3 · LB4

o7 LC0 · LA2 · LC4 o8 LB1 · LA2 · LB3

o9 LA0 · LB1 · LB4 o10 LC0 · LC1 · LA3

We refer to this configuration of fifteen linesLAi
, LBi

andLCi
as theicosahedral

configuration of lines, which is represented in Figure 6.

Consider now the inclusionP2
R

⊂ P2 and the 15 complex projective lines deter-
mined by the icosahedral configuration. Consider the complex surfaceM obtained
by blow up ofP2 at the 16 pointso1, . . . , o10, v11, . . . , v16. Thiscomplex surfaceM
is theKlein’s icosahedral surface. Since one blow up increases the Euler number by
one, we havee(M) = e(P2) + 16 = 19.
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Figure 6. The icosahedral configuration of lines.

Next, consider the strict transforms inM of the complex lines, denotedLAi
, LBi

,
LCi

. Since each complex line received 4 blow ups, we obtain inM:

LAi

2 = LBi

2 = LCi

2 = −3.

Denote now byCij the exceptional linesEk = σ−1(ok), for k = 1, . . . , 10, if ok does
not belong to lines in the icosahedral configuration indexed byi or j . The reader can
check that the 25 curvesLAi

, LBi
, LCi

, Cij have the intersection properties described

in items a), b), c) and Figure 4. Also we can check thatLAi
∪ LBi

∪ LCi
are five

disjoint cycles inM.

3.2. Numerical data of the foliations

Proposition 1. Let F ′ and G′ be the modular foliations in the plane producing the
modular foliations F and G of Y (5, (2)) under the 16 blow ups σ : Y (5, (2)) → P2

defining Y (5, (2)) as Klein’s icosahedral surface. Then F ′ and G′ have the following
properties:

(1) The degree of F ′ is 5 and the degree of G′ is 9.

(2) For every i ∈ {1, . . . , 10}, the algebraic multiplicities are

m(oi, F
′) = m(oi, G

′) = 1.

(3) For every i ∈ {11, . . . , 16}, m(vi, F
′) = 1 and m(vi, G

′) = 3.

(4) The oi are radial singularities for F ′ and G′.
(5) The vi are dicritical singularities eliminable by one blow-up for both F ′ and G′;

for F ′ the vi have Milnor number 1, while for G′ they have Milnor number 11.
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Proof. The singularities ofF andG at the corners of the cyclesAi ∪ Bi ∪ Ci ⊂
Y (5, (2)) are not affected by the blowing downs producingP2, see Figure 4. Such
singularities at corners are reduced, with Milnor number one. Plugging inA2

i =
B2

i = C2
i = −3 in Camacho–Sad’s formula the quotient of eigenvalues of the

singularities ofF andG is determined and turns out to be equal toλ = −3±√
5

2 .
These singularities sum 15 reduced singularities, for bothF ′ andG′, with the same
quotient of eigenvalues.

The 16 blow downs transformingM = Y (5, (2)) into P2 include the blowing
downs of 10 “diagonals”Cij . Since theCij are completely transverse to bothF and
G, cf. Figure 4, the transformed foliationsF ′ andG′ in the plane have radial points
atoi , with m(oi, F

′) = m(oi, G
′) = 1 for i = 1, . . . , 10.

The pointsv11, . . . , v16 are also obtained from the blow down of extra(−1)-
curves which are neitherF - norG-invariant and that do not pass through the corners
of the cycles inY (5, (2)), cf. Figure 4. Thusvi (i = 11, . . . , 16) are dicritical points
for bothF ′ andG′, with the extra property that the transformed foliations have no
singularities alongσ−1

i (vi).
The automorphism group ofY (5, (2)) permutes the cycles resolving the cusps,

therefore

m(v11, F
′) = · · · = m(v16, F

′) and m(v11, G
′) = · · · = m(v16, G

′).

Denoting the blow ups producingY (5, (2)) from P2 by σ := σ1 � . . . � σ16, we have,
cf. (2), the isomorphisms

T ∗
F = σ ∗OP2(d(F ′) − 1) ⊗ OM(−

( 10∑
i=1

Ei −
16∑

i=11

m(vi, F
′)Ei

)
,

T ∗
G = σ ∗OP2(d(G′) − 1) ⊗ OM(−

( 10∑
i=1

Ei −
16∑

i=11

m(vi, G
′)Ei

)
,

whereEi = σ−1(oi) for i = 1, . . . , 10 andEi = σ−1(vi) for i = 11, . . . , 16.
Remark that the 15 reduced singularities are not affected.

The rational invariant curves forF or G are the cycles, so theN-part forT ∗
F and

T ∗
G is empty, cf. Section 2. Therefore, since the numerical Kodaira dimension is one

for modular foliations, we haveT ∗
F · T ∗

F = 0 andT ∗
G · T ∗

G = 0, which can be written
as

(d(F ′) − 1)2 = 10+
16∑

i=11

m(vi, F
′)2 = 10+ 6 · m(F ′)2 (3)

and

(d(G′) − 1)2 = 10+
16∑

i=11

m(vi, G
′)2 = 10+ 6 · m(G′)2, (4)
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from which we haved(F ′) ≥ 5 andd(G′) ≥ 5.
The tangency locus ofF andG on M = Y (5, (2)) is thereduced (i.e. free of

multiple components) curve given by the union of the five cycles ofM = Y (5, (2)),
cf. [4], [12].

We can write

OM

( 4∑
i=0

Ai + Bi + Ci

)
= σ ∗OP2(15) ⊗ O

(
−

10∑
i=1

3Ei −
16∑

i=11

5Ei

)
,

sinceoi are triple points andvi are 5-uple points in the arrangement of 15 lines. Since
the tangency locus is described by a section ofT ∗

F ⊗ NG, cf. Section 2,

T ∗
F ⊗ NG = σ ∗OP2(15) ⊗ O

(
−

10∑
i=1

3Ei −
16∑

i=11

5Ei

)
.

Expanding the left hand side of the equation above in terms of the generatorsσ ∗OP2(1),
E1, . . . , E16 of Pic(M) we deduce thatd(F ′) + d(G′) = 14 and

m(vi, F
′) + m(vi, G

′) = 4, for all i = 11, . . . , 16.

Sinced(F ′), d(G′) ≥ 5, the unique possible positive solutions withd(F ′) ≤ d(G′)
are

(d(F ′), d(G′)) ∈ {(5, 9), (6, 8), (7, 7)}.
The possibilities(d(F ′), d(G′)) = (6, 8) or (7, 7) are excluded by (3) and (4). There-
fore (d(F ′), d(G′)) = (5, 9) and

m(v11, F
′) = · · · = m(v16, F

′) = 1 and m(v11, G
′) = · · · = m(v16, G

′) = 3.

To conclude observe that the sum of Milnor numbers forG′ is 92 + 9 + 1 = 91
(Darboux’s theorem) and that there are 15 reduced saddles and 10 radial points for
G′, thusµ(vi, G

′) = 11 for all i = 11, . . . , 16. �

Remark 1. We will show in Appendix A that there are Cremona maps transform-
ing the pair of modular foliations with degrees 5 and 9 given in this Proposition 1
into pairs of modular foliations with degrees(6, 8) and also(7, 7). But either the
Cremona transformations produce invariantconics or the transformed foliations have
singularities no longer eliminable by just one blow up.

3.3. Determining the vector fields. Taking in consideration Proposition 1, we de-
note byH5 andH9, respectively, the modular foliations of the plane of degree 5
and of degree 9. In order to explicitly determine polynomial vector fields inducing
the foliationsH5 andH9, we will first locate its dicritical singularities in the plane.
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These are the pointso1, . . . , o10, v11, . . . , v16 of Proposition 1. In order to construct
a plane model for this arrangement we follow [6] and take the coordinates inR3 of
the 12 vertices of an IcosahedronI (whose edge is 2):

(±1, 0, ±τ), (0, ±τ, ±1), (±τ, ±1, 0),

whereτ = 1−√
5

2 is thegolden ratio (recall the basic equationτ2 = τ + 1). The
coordinates of the vertices of the dual DodecahedronD (with edge 2τ−1) are

(0, ±τ−1, ±τ), (±τ, 0, ±τ−1), (±τ−1, ±τ, 0), (±1, ±1, ±1).

In the projectivization ofR3 to P2
R

, we determine

o1 = (0 : τ−1, τ ), o2 = (−1 : 1 : 1), o3 = (τ−1 : −τ : 0),

o4 = (τ−1 : τ : 0), o5 = (1 : 1 : 1), o6 = (1 : 1 : −1),

o7 = (τ : 0 : τ−1), o8 = (1 : −1 : 1), o9 = (0 : −τ−1 : τ),

o10 = (−τ : 0 : τ−1),

and from the vertices ofI the following points inP2
R

:

v11 = (−1 : 0 : τ), v12 = (0 : τ : −1), v13 = (0 : τ : 1),

v14 = (−τ : 1 : 0), v15 = (1 : 0 : τ), v16 = (τ : 1 : 0).

Let us determine convenientaffine coordinates for the singularities ofH5 andH9.
Take affine coordinates(x, y) := (X : Y : 1), for which the lineLB0 := v14v16 in
the icosahedral configuration becomes the line at infinity.

Soo3, o4, v14, v16 become points at infinity and this produces four parallel direc-
tions for some of the affine lines of the icosahedral configuration (Figure 6), which
now is represented in Figure 7.

From these affine coordinates(x, y) we obtain after a change of affine coordinates,
given by

(x, y) :=
(

τ τ + 1
−τ τ + 1

)
· (x, y),

the affine coordinates desired inR2, for which the lines in the arrangement are those
given in Figure 1 in the Introduction: four horizontal linesy = ±1 andy = ±(2τ +1)

and four vertical linesx = ±1 andx = ±(2τ + 1). The coordinates(x, y) for the
singular points are shown in Table 1.

The strategy now is to associate to the general polynomial vector fieldX =
X(x, y) of degree 5 a system of linear equations in its coefficients in such a way that
the solutions of this linear system correspond to foliations of degree 5 witho1, . . . , o10
andv11, . . . , v16 as radial singularities.
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Figure 7. The arrangement of lines induced by the icosahedron, with one line at infinity.

Table 1. Affine coordinates for the singularities, whereτ = 1−√
5

2 is thegolden ratio.

o1 = (1, 1) o2 = (1, 2τ + 1) o5 = (2τ + 1, 1)

o6 = (−2τ − 1, −1) o7 = (−2τ − 1, 2τ + 1) o8 = (−1, −2τ − 1)

o9 = (−1, −1) o10 = (−2τ − 1, 2τ + 1) v11 = (−1, 1)

v12 = (−2τ − 1, −2τ − 1) v13 = (2τ + 1, 2τ + 1) v15 = (1, −1),

Let G be a foliation corresponding to a solution of this linear system. LetL be
any line of the configuration. Suppose thatL is notG-invariant. Then, sinceG has 4
radial singularities onL, the order of tangency betweenG andL is at least 8. This is
in contradiction with the fact thatG has degree 5. Then any lineL of the configuration
must be invariant byG. From this we deduce thatG is also the unique solution, since
with any other solution the tangency locus ofG should have degree 11 and contains the
15 lines of the configuration. Hence to determineH5 we found the unique solution
of the linear system mentioned above, obtaining the result stated in Theorem 2. The
computations were carried out with the help of a computer algebra system.

To determineH9 we can repeat the same strategy, i.e., writing down the linear
system in the coefficients of the generic foliation of degree 9 whose solutions cor-
responds to foliations with radial singularities ono1, . . . , o10 and singularities with
algebraic multiplicity at least 3 onv11, . . . , v16. In order to reduce the number of
indeterminates we use the fact that any solution to our problem must be written in the
form

(x2 − 1)(x2 − (2τ + 1)2)P5
∂

∂x
+ (y2 − 1)(y2 − (2τ + 1)2)Q5

∂

∂y
,

whereP5 andQ5 are generic polynomials of degree 5. This follows from our choice
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of coordinates(x, y) for which the linesy = ±1, y = ±(2τ + 1) andx = ±1,
x = ±(2τ + 1) are invariant by the foliations.

Solving the linear system in the coefficients ofP5 andQ5 leads to the vector field
of degree 9 presented in the statement of Theorem 2.

3.3.1. The involution ofY(5, (2)) as a birational transformation of the plane. We
will describe the Cremonian transformationT of the plane to itself transformingH5
into H9, which expresses in the plane the automorphismI : Y (5, (2)) → Y (5, (2))

sending one modular foliation to the other. More precisely, we will show that, if
� : N → P2 denotes the blow up at the six vertices{v11, . . . , v16}, then there exists a
Cremonian transformationT such that� � I ��−1 = T , where by abuse of notation
I denotes the involution ofN sending one modular foliation to the other.

The definition of the involutionT as a birational transformation is the following
(cf. [14]). Let Ej ⊂ N be the exceptional lines of the blowing ups ofv11, v12, v13,
v14, v15, v16. Consider the 6 conicsCp1,...,p5 passing through exactly five vertices

pi ∈ {v11, v12, v13, v14, v15, v16}, . Therefore its strict transformsCp1,...,p5 ⊂ N are
(−1)-curves, because

C2
p1,...,p5

= C2
p1,...,p5

− 5 = −1.

The involutionI : N → N sends eachCp1,...,p5 to the uniqueEj which does not

intersect it. The six curvesCp1,...,p5 can be blown down to six points in a non-singular

surfaceN ′. Let Ej ⊂ N ′ denote the strict transforms of the exceptional linesEj

by such blow downs. Since exactly five conics among theCp1,...,p5 passes through

each vertexv1j , eachEj intersects exactly five curves among theCp1,...,p5, and we

conclude that the self-intersections ofEj in N ′ satisfy

E2
j = E2

j + 5 = 4.

Moreover, sinceN ′ is a rational surface ande(N ′) = e(N) − 6 = 3, thenN ′ = P2

andEj is a conic.
It is well known that the surfaceN obtained fromP2 by one blow up at each vertex

{v11, . . . , v16} is embedded in the projective 3-space as a smooth cubic surface. A
smooth cubic surface in 3-space has exactly 27 straight lines. Among these lines we
will find the strict transforms of the 15 lines in the icosahedral arrangement of lines.
The remaining 12 lines are given by the setEj , j = 1, . . . , 6 and the six curves

Cp1,...,p5.
In Appendix A we describeT as a degree 5 Cremonian transformationT = T5,

which factorizes as a composition of three quadratic birational transformations of the
plane:

T5 = Q3 � Q2 � Q1.
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The understanding of this factorization will enable us to give more models of modular
foliations, with degrees 6, 7, 8, starting fromH5.

3.4. A model where the involution is an automorphism of the plane. In the pre-
vious section we described the involutionT sending the modular foliationH5 to
H9 as a birational transformation. Now we show that we can obtain models in the
plane for the Hilbert modular foliations ofY (5, (2)) for which the involution is an
automorphism of the plane (in particular the pair of foliations has the same degree),
that is, we want to prove here Theorem 3 stated in the Introduction.

Let � : N → P2 be the blowing up at the six indetermination pointsv11, . . . , v16
of T and consider again the 6 conicsCp1,...,p5 passing through exactly five points
amongv11, . . . , v16. ThusI = �−1 � T � � is a non-minimal regular involution
in the sense of Bayle–Beauville [3]. This is due to the fact thatCp1,...,p5 is sent to
Ej and these(−1)-curves are disjoint. Our task now is to obtain fromI : N → N

a minimal involutionI of P1
C

× P1
C

and from this an automorphismL of the plane.
For this purpose we firstly describe the mapg and the birational mapE in the next
diagram, where� is the birational transformation stated in Theorem 3:

I � N
g ��

�

��

P1
C

× P1
C

� I

E

���
�
�

T � P2 � ������ P2 � L .

Consider again the linesLAi
, LBi

andLCi
of the icosahedral configuration, and

denote now byLAi
, LBi

andLCi
the strict transforms by�. Remark that these are

(−1)-curves ofN . Since the involution has order two and there are 5 curvesLAi
in

N , it can be proved [9] that the effect of the involution is described as

I (LA1) = LA1, I (LA0) = LA2, I (LA3) = LA4.

Consider now the blow down of the 5 curvesLAi
⊂ N to points denotedrAi

, i =
1, . . . , 5 of the resulting smooth surfaceW , denotedg : N → W . That is, we have
chosen to blow down one component of each triangleLAi

∪ LBi
∪ LCi

of N . In [9]
it is proven that the rational surfaceW , which is minimal (since its Euler number
is e(M) = 9 − 5 = 4), in fact is isomorphic toP1

C
× P1

C
. We can verify that the

transformed curves byg of LBi
andLCi

(we keep the same notation for the curves
in N) have self-intersection equal to 2 inW = P1

C
× P1

C
. For instance, inN we have

LB1

2 = −1, but the intersections inN are

LB1 · LA0 = LB1 · LA1 = LB1 · LA2 = 1
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(as we can check from the tables in Section 3.1), and so by blowing downLA0,
LA1, LA2, the intersection number of theLB1 in P1

C
× P1

C
is increased by 3. So

the transformed curves ofLBi
andLCi

are curves ofP1
C

× P1
C

with self-intersection
number 2; so they are curves of bi-degrees(1, 1). Besides the pointrAi

they intersect
along an extra pointq of P1

C
×P1

C
. The pointsrAi

are dicritical points for the foliations
and the extra-pointq is a saddle point for the foliations (see Figure 8).

LBi
LAi

LCi

LBi

LCi

Figure 8. Contraction producing the pointrAi
of P1

C
× P1

C
.

In coordinates ofP1
C

× P1
C

, the involution obtained can be written as

I (x, y) =
(

1

y
,

1

x

)
.

With τ = (1−√
5)

2 , following [9] we put

rA1 = (1, 1), rA1 = (0, 0), rA2 = (∞, ∞),

rA3 = (−τ, τ − 1), rA4 = (−τ + 1, τ ).

The singularities of the pair of foliationsF andG obtained inP1
C

×P1
C

are exactly:
a) 5 singularities atrAi

with Milnor number 9 and algebraic multiplicitym(rAi
) = 3

(since its blow up produces an invariant exceptional line with two radial points and
two reduced singularities) and b) 5 saddle points.

Denoting byH andV horizontal and vertical fibers, we write

T ∗
F

= O(d1(F )H + d2(F )V ),

N
F

= O((d1(F ) + 2)H + (d2(F ) + 2)V )

(analogously forG), and when combined with Darboux’s theorem
∑

µ(F , p) − e(P1
C × P1

C) = T ∗
F

· N
F
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we obtain

5 · 9 + 5 · 1 − 4 = 2d1(F ) · d2(F ) + 2(d1(F ) + d2(F )),

henced1(F ) · d2(F ) + d1(F ) + d2(F ) = 23.
Now we consider the Poincaré–Hopf formula applied to the transformed curve of

LBi
in P1

C
× P1

C
:

T ∗
F

· LBi
= T ∗

F
· (H + V )

= 1 + Z(rLAi
) + Z(rLAj

) + Z(rLAk
) − χ(LBi

)

= 3 · 3 + 1 − 2 = 8,

wherei 
= j 
= k ∈ {0, 1, 2, 3, 4}; so we conclude thatd1(F ) + d2(F ) = 8 and

d1(F ) · d2(F ) = 23− 8 = 15

from the previous relations. Easily we obtain that the unique solutions for the bi-
degree(d1(F ), d2(F )) are (3, 5) and (5, 3). If F has bi-degree(3, 5) then the
companion modular foliationG has bi-degree(5, 3), since they are related by the
involution of I : P1

C
× P1

C
�.

3.4.1. The birational map E. We will consider the birational mapE : P1
C

× P1
C

− −> P2, in order to obtain from the foliations with bi-degrees(d1(F ), d2(F )) =
(3, 5) and(d1(G), d2(G)) = (5, 3) a pair of foliations of the plane, both with degree 7.

Then the so-calledelementary transformation E is defined as follows: it is given
by blowing up a pointp and then contracting the strict transforms of the horizontal
and vertical fibers throughp.

We will compute the degree of foliations in the plane, denotedF ′ andG′, by using
the Poincaré–Hopf theorem applied to the straight lineL in the plane which is the
transform of the exceptional lineE = σ−1(p). Let us choosep = rA1 ∈ P1

C
× P1

C
,

a singularity of bothF andG (cf. previous section).
If h = col(H) andv = col(V ) are the dicritical points produced by the blow

downs of the transformed curves of the horizontal and vertical fibers,H andV in
Figure 9, then Poincaré–Hopf in the plane yields

d(F ′) − 1 =
∑
q∈L

Z(q,F ′) − χ(L) = 4 + m(h,F ′) + m(v,F ′) − 2,

where 4 is the contribution of two radial points and two reduced points. We can use
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V

V

H

E

col(V )

p
H

L = E

P1
C

× P1
C

P2 col(H)

Figure 9. Passing fromP1
C

× P1
C

to P2.

the remarks of Section 2.2.3 for the computation ofm(p, F ′), obtaining

d(F ′) − 1 = 4 + [tang(F , H) + 1] + [tang(F , V ) + 1] − 2

= 4 + [(d1(F ) − 3) + 1] + [(d2(F ) − 3) + 1] − 2

= d1(F ) + d2(F ) − 2,

thus d(F ′) − 1 = 6 as desired. Since we blow up a pointp belonging to 6 of
the invariant(1, 1)- curves, the pair of modular foliations obtained in the plane has
6 invariant straight lines besides the lineL and 4 invariant conics, images of the
(1, 1)-curves not blown up.

Of course, we could have chosen another pointp for the elementary transforma-
tion. For instance if we choose a point which is regular for both foliations, then the
pair of foliations in the plane would have degree 10.

4. Projective models for modular foliations of Y(5)

4.1. The quotient of P2 by the icosahedral group. We can regard the quotient in
the definition ofY (5) (cf. (1) in the Introduction) as

H2/ PSL2(OK) ∼= (H2/�2)/ PSL2(OK/(2)),

and it is known that PSL2(OK/(2)) ∼= PSL2(F4) ∼= A5, the icosahedral group.
Following the classical approach due to F. Klein, we describeY (5) as a birational
modification of the quotientS := P2/A5, whereA5 acts on the plane (which is the
blow down ofY (5, (2))). In other words, we consider the modular foliations ofY (5)

as the quotients ofH5 andH9 of Theorem 2 under their group of symmetriesA5.
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The facts described in detail in [11] that we use are the following. Letπ : Ŝ → S

be the minimal desingularization ofS = P2/A5. SinceA5 is finite, Ŝ is birationally
equivalent toP2. From Hirzebruch’s work we know that the Euler characteristic
of Y (5) is 14 andY (5) can be obtained from the planeP2 by means of 11 blow
ups, denotedf : Y (5) → P2. Denoting againσ : Y (5, (2)) → P2 the sixteen blow
ups of the Klein icosahedral surface (cf. previous sections), there is the following
commutative diagram:

Y (5)

f

��

Y (5, (2))
TK

��� � �

σ

��
P2

φ

���
�
� P2

��

Ŝ S = P2/A5 .
π−1

��� � � �

In what follows we exploit the mapf : Y (5) → P2, but we remark that the
explicit coordinates of the rational mapTK are known from Klein’s work on the ring
of invariants for the action ofA5 on the plane [11], and so the study ofTK could be
another way to get the modular foliations ofY (5).

The strict transform by the birational transformationφ : P2−−> Ŝ of the quotient
of the icosahedral arrangement of lines is an irreducible rational quintic curveQ ⊂ P2.
There are affine coordinates(x, y) of P2−L∞ for which the quintic isQ : −1728x5+
720x3y − 80xy2 + 64(5x2 − y)2 + y3 = 0; the line at infinityL = L∞ ⊂ P2 is the
strict transform byφ of a component of the exceptional divisor introduced byπ .

The eleven points to be blown up byf : Y (5) → P2 are the points that must be
blown up in order to obtain normal crossing between the strict transform ofQ by
f and the exceptional divisor of its resolution, see pages 635–636 of [11]. The
singularities of the quinticQ are at the points(0, 0), (1, 4),

(32
27,

1024
81

)
and at infinity

(0, 0) = (w, s) = (
x
y
, 1

y

)
. At (0, 0) and at infinity the quintic is locally given as

z2 − t5 = 0, at
(32

27,
1024
81

)
it is locally given asz2 − t3 = 0 and at(1, 4) Q has a

nodal point. The resolution process is done by means of four blow ups at(0, 0) (and
infinitely near points), four blow ups at infinity(0, 0) = (w, s) (and infinitely near
points) and three at

(32
27,

1024
81

)
(and infinitely near points), as shown in Figure 10.

Some remarks on Figure 10 are useful. We denote byEi the exceptional line of the
i-th blow upEi = σ−1

i (pi), for i = 1, . . . , 11. Then we denote byEi their strict
transforms by subsequent blow ups. For instance, according to Figure 10:E2

i = −1

for i ∈ {4, 8, 11}, E2
i = −2, for i ∈ {1, 3, 5, 7, 10} andL2 = −2, E2

i = −3 for
i ∈ {2, 6, 9}.

Denoting the sequence of eleven blow ups byf , the strict transform of the quintic
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)

Y (5)

E1

E1

E1

E2

E2
E4

E3

L

E10

E10

E11

E11

E9

E9

E9

E6

E6

E8

E5

E5

E5

E7

σ4 σ8

E3

L

L

L

E7

σ3 σ11 σ7

E2

E10

E6

σ2 σ10 σ6

E1

E9

E5

σ1 σ9 σ5

P2

(32/27, 1024/81)
(0, 0) = (x, y)

(1, 4)

L(0, 0) = (w, s)

Figure 10. The 11 blow ups composingf : Y (5) → P2.
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in Y (5), denotedQ, can be describedO(Q) in Pic(Y (5) as

f ∗OP2(5)⊗O(−2E1−2E2−E3−E4−2E5−2E6−E7−E8−2E9−E10−E11).

HenceQ is a rational nodal curve with self-intersection 52 − 26 = −1, as shown
in Figure 11. InY (5), Q corresponds to the desingularization of the unique cusp
introduced by compactification ofH2/ PSL2(OK).

(−1)

Figure 11.Q ⊂ Y (5) is a cycle introduced in the resolution of the cusp.

4.2. Numerical data and determination of vector fields. ConsideringY (5) as the
blown up plane byf , its pair of modular foliations, denotedH2 andH3 (the indices
2 and 3 will be justified), are the transformed foliations of foliations in the plane
denotedH2 andH3.

The pair H2 and H3 has as (reduced) tangency curve the following curves:
i) the strict transform of the quinticQ, denotedQ, ii) the strict transform of the
line at infinityL, denotedL and iii) the curvesEi , for i = 1, 2, 3, 5, 6, 7, 9, 10.

Remark thatE4, E8, E11 are notH2 or H3-invariant, since they intersect the
cycleQ and the unique singularities of these foliations along the cycle are at the node
of Q.

The strict transform of the line at infinityL in Y (5), denotedL, can be described
in Pic(Y (5)) as

O(L) = f ∗O(1) ⊗ O(−E1 − E2 − E3),

and we can easily writeEi in terms ofEi ’s, for instance

E1 = E1 − E2, E2 = E2 − E3 − E4,

etc. So the tangency curveDtang betweenH2 andH3 satisfies

O(Dtang) = f ∗O(6) ⊗ O(−2E1 − 3E2 − 2E3 − 3E4 − E5

− 2E6 − E7 − 3E8 − E9 − E10 − 3E11).

Recalling that the tangency divisorDtang verifiesO(Dtang) = T ∗
H2

⊗ N
H3

, we
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obtain

f ∗O(d(H2) + d(H3) + 1) ⊗ O
(

−
11∑
i

(l(H2, pi) − 1 + l(H3, pi) · Ei

)

= f ∗O(6) ⊗ O(−2E1 − 3E2 − 2E3 − 3E4 − E5

− 2E6 − E7 − 3E8 − E9 − E10 − 3E11).

From this isomorphism we obtain the following numerical equalities:

d(H2) + d(H3) = 5,

l(H2, pi) + l(H3, pi) = 3 for i = 1, 3, 6,

l(H2, pi) + l(H3, pi) = 4 for i = 2, 4, 8, 11,

l(H2, pi) + l(H3, pi) = 2 for i = 5, 7, 9, 10.

Now we determine the numerical data of both foliations:

Proposition 2. For H2 we have

d(H2) = 2, l(p1) = 1, l(p2) = 2, l(p3) = 1, l(p4) = 2, l(p5) = 1,

l(p6) = 1, l(p7) = 1, l(p8) = 2, l(p9) = 1, l(p10) = 1, l(p11) = 2,

and for H3

d(H3) = 3, l(p1) = 2, l(p2) = 2, l(p3) = 2, l(p4) = 2, l(p5) = 1,

l(p6) = 2, l(p7) = 1, l(p8) = 2, l(p9) = 1, l(p10) = 1, l(p11) = 2.

Proof. Both foliations,H2 andH3, admit as invariant algebraic curves the quintic
Q and the lineL∞. This is sufficient to determineH2. If there existsF of degree 2
leavingQ andL∞ invariant then the tangency locus ofF andH2 would have degree 5
and would containQ andL∞, thusF andH2 should coincide. We determinedH2
using the computer and after making its resolution, cf. Appendix B, we determined
l(pi), i = 1, . . . , 11, forH2.

From this data we obtain that

T ∗
H2

= σ ∗O(1) ⊗ O(−E2 − E4 − E8 − E11).

Since the tangency locus ofH2 andH3 is given by the formula

O(Dtang) = T ∗
H2

⊗ N
H3

we obtain

T ∗
H3

= σ ∗O(2) ⊗ O(−E1 − E2 − E3 − E4 − E6 − E8 − E11).
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Observe that this determinel(pi), i = 1, . . . , 11, forH3. Therefore we can translate
these conditions into an algebraic system of equations in the coefficients of the degree
3 vector fields. Solving this system with the help of a computer algebra system we
can find the polynomial vector field of degree 3 with the numerical data prescribed
(degrees and multiplicities along the resolution). In Appendix B we give in detail the
reduction of singularities ofH3 and also that ofH2. �

4.2.1. Canonical line bundles of �H2 and �H3. We describe the canonical line bun-
dles of the modular foliations ofY (5). These line bundles are explicit examples with
numerical Kodaira dimension 1 and Kodaira dimension−∞.

Remark, from the previous subsection, that

T ∗
H2

2 = T ∗
H3

2 = −3.

From the Zariski decompositionT ∗
H2

= PH2 + NH2 andT ∗
H3

= PH3 + NH3 we

conclude thatN2
H2

= N2
H3

= −3. But the sporadicity property of the modular
foliations imply thatNH2 
= NH3. The rational coefficients of each componentNi

of theN -part ofT ∗
H2

andT ∗
H3

are easily computed, provided we use the property of

Zariski decomposition
T ∗

H
· Ni = N · Ni,

combined with the fact that eachNi is H2-invariant (McQuillan’s theorem from
Introduction) and Poincaré–Hopf theorem.

For this we need to know how many singularities exist over eachEi and their
Poincaré–Hopf indices. This is provided by the study of the reduction of singularities
in Appendix 2 (see Figures 17 and 18). We obtain

N
H2

= 3

5
E1 + 1

5
E2 + 2

3
E3 + 1

3
L + 1

5
E5 + 2

5
E6 + 1

2
E7 + 1

3
E9 + 1

2
E10

and

N
H3

= 1

5
E1 + 2

5
E2 + 1

3
E3 + 2

3
L + 1

5
E5 + 3

5
E6 + 1

2
E7 + 1

3
E9 + 1

2
E10

which satisfyN2
H2

= N2
H3

= −3.

5. Projective models for modular foliations of Y(5, (
√

5))

5.1. Y(5,
√

5) as a double covering of the plane. In this section we address The-
orem 5 of the Introduction. The description ofY (5,

√
5) in [10] places it as an
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icosahedral-equivariant 2-fold ramified covering of the plane (blow up at 6 points).
So in order to prove Theorem 5, our first task is to show how to obtainY (5,

√
5) from

the planejust using blowing ups and blowing downs, which is not explicitly described
in [10].

Known facts aboutY (5,
√

5) from [10] are: i)H2/�√
5 is a smooth open surface,

ii) its compactificationH2/�√
5 is done by adding six cusps. Each one of the 6

cusps ofY (5, (
√

5)) is desingularized as a cycle of two rational curvesAi ∪ Bi , with
intersection−3.

(−3)

(−3)

Figure 12. Cycles composed by two components onY (5, (
√

5)).

Also it is known from [10] that the smooth rational curve which extends the
diagonal inH2 to Y (5, (

√
5)), denoted byC, has self-intersection 2. The action of

SL2(O)/�√
5 onY (5, (

√
5)) carriesC to itself, andC passes through each one of the

six cyclesAi ∩ Bi at the nodal points (see Figure 13).

C

A0

B0

A5

B5

Figure 13. The resolution of cusps ofY (5, (
√

5)).

The extension of the involutionI : H2 �, I (x, y) = (y, x), is denoted also by
I : Y (5, (

√
5) � and obviouslyI (C) = C. Consider the quotientY (5, (

√
5))/I and

the 2-fold covering

p : Y (5, (
√

5)) → Y (5, (
√

5))/I

ramified alongC. It was also proven by Hirzebruch thatY (5, (
√

5))/I is isomorphic
to P2 blown up at the six points. These points arev11, . . . , v16 given in Section 3
as associated to the vertices of the icosahedron. The ramification curve becomes in
the plane (so after six blow downs) Klein’s curve of degree 10, which is a rational
curve, having singularities atv11, . . . , v16 which are double cusps, invariant under
the action of the Icosahedron in the plane.
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Figure 14. Double cusps of Klein degree 10 curve at the pointsvi , i = 11, . . . , 16.

p Y(5, (
√

5))

P2 Y (5, (
√

5))/I

σ

σ

v

v

Figure 15. The 2-fold covering ofY (5, (
√

5)) over the blown up plane.

Remark that each cycle has self-intersection(Ai + Bi)
2 = −3 − 3 + 4 = −2

which is coherent with the fact that the cycle covers an exceptional lineE = σ−1(vi)

(that is,−2 = 2 ·E ·E). Remark also that after 6 blow ups atvi , the self-intersection
of the degree 10 plane curve becomes equal to 102 − 6 · 42 = 4 (sinceν(C, vi) = 4)
and after covering it becomes equal to 2.

5.2. Y(5,
√

5) as a modification of P2 and the minimal involution. The fact that
the surfaceY (5, (

√
5)) is arational surface follows from the fact that there is a smooth

rational curve with positive self-intersection, namelyC with C2 = 2. Our aim now
is to obtain it from the plane by means of blowing ups and blowing downs.

Consider inP2 the six conicsCi1,...,i5 passing through 5 among the 6 vertices
v11, . . . , v16. After the blow ups, these conics becomes(−1)-curvesCi1,...,i5 in
Y (5, (

√
5))/I . We claim thatCi1,...,i5 does not intersect the transformed curve ofC.

In factCi1,...,i5 andC intersect at 5 among the 6 verticesvij at whichν(C, vij ) = 4.
Thus the local intersection at each of these points is at least 4 and it is greater than
4 if, and only if,Ci1,...,i5 intersects the strict transform ofC. Since we have 5 such
points andC · Ci1,...,i5 = 20, the claim follows.



276 L. G. Mendes and J. V. Pereira CMH

Therefore, taking the 2-fold covering, there are 12 pairwise disjoint(−1)-curves,
which are the pre-images of the curvesCi1,...,i5. Each curveAi andBi of the cycles
intersects 5 of these 12(−1)-curves (see Figure 16)

   
C

(1)
i1,...,i5

C

C
(2)
i1,...,i5

Y (5, (
√

5))

Figure 16. CurvesC(1)
i1,...,i5

andC
(2)
i1,...,i5

are pre-images ofCi1,...,i5.

Now we consider the maph : Y (5, (
√

5)) → W , which corresponds to the blow
down of all the 12 exceptional lines described inY (5, (

√
5)).

Then it is clear that the Euler characteristic ofW is e(W) = e(Y (5, (
√

5))−12. It
is proven in [10] thate(Y (5, (

√
5)) = 16. So the rational surfaceW with e(W) = 4

is a Hirzebruch surface�n. Also we see that the transformed curves ofAi andBi

in S have self-intersection−3 + 5 = 2. Now, using that these rational curves have
self-intersection 2 in the surfaceW = �n, see [9], we can show thatW = P1

C
× P1

C
.

5.3. Numerical data of the foliations. In order to find the numerical data of the
modular foliations inW = P1

C
× P1

C
, let us apply the tangency formula to the image

of C in W = P1
C

× P1
C

, whose self-intersection 2 has not changed by the map
h : Y (5, (

√
5)) → W . We have

T ∗
F · C = tang(C, F ) − C2 = 12− 2

since the twelve reduced singularities along the cyclesAi ∪ Bi belong toC. Then
d1(F ) + d2(F ) = 10 (alsod1(G) + d2(G) = 10 ). The tangency curve of the pair of
modular foliations inP1

C
× P1

C
is then composed by 12 curves of bi-degrees(1, 1),

images of the components of cycles byh. If we denote again byF andG the foliations
in P1

C
× P1

C
then the tangency along these curves produces the relations

d1(F ) + d2(G) + 2 = d2(F ) + d1(G) + 2 = 12.

Let us now determine the Milnor numbers of the 12 dicritical singularitiesri ,
introduced by the blowing downs. For computing this, we use Darboux’s theorem in
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P1
C

× P1
C

, taking into consideration the twelve saddle singularities alongC:

12+
12∑
i=1

µ(ri) − 4 = T ∗
F · NF .

Then

12∑
i=1

µ(ri, F ) = 2 · (d1(F ) · d2(F ) + d1(F ) + d2(F )) − 8

= 2d1(F ) · d2(F ) + 12

and so, for eachri ,

µ(ri, F ) = d1(F ) · d2(F )

6
+ 1.

The unique solution of this equation for (non-zero) bi-degrees (whose sum we know
is 10) isd1(F ) = 4, d2(F ) = 6 (or vice-versa) andµ(ri, F ) = 5. After we know
the Milnor numbers, the invariantsl(ri, F ) are easily computed: they are equal to 3
for all i = 1, . . . , 12.

Now, by an elementary transformationE : P1
C

× P1
C

− −> P2 (cf. Section 3.4.1)
we get foliations in the plane with the same degrees. As remarked in that section, these
transformations are defined by blowing up a pointp and subsequent contraction of the
transformed curves of horizontal and vertical lines, denotedH andV . For instance,
if we blow up a regular pointp for the foliations, we get foliations in the plane
whose degrees are both equal to 12. On the other hand, if we choose the elementary
transformation which blows up one dicritical pointp = ri , we get degree 9 for both
modular foliations. In this model, the algebraic curves invariant by the modular
foliations are 5 straight lines and 7 conics. The lines are images in the plane of the
(1, 1)-curves passing throughp = ri , whose self-intersection decreases by one by
the blow up atp and which are not affected by the contraction ofH andV . The
conics correspond to the(1, 1)-curves not affected by the blow up atp but whose
self-intersection 2 is increased by 2 under the contractions ofH andV .

At last, a remark on the canonical line bundles is in place. IfF denotes a reduction
of singularities of the modular foliation inP1

C
× P1

C
, obtained from 12 blow ups at

dicritical points, thenT ∗
F

is nef (theN -part is empty) and

T ∗
F

= O(4H + 6V ) ⊗ O
(

−
12∑
i=1

2Ei

)

givesT ∗
F

· T ∗
F

= 0. Also T ∗
G

· T ∗
G

= 0 holds for the companion foliation, since

T ∗
G

= O(6H + 4V ) ⊗ O
( − ∑12

i=1 2Ei

)
.
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A. Factorization of the Cremonian involution

In this section we construct the involutionT in the plane associated to the involution
of Y (5, (2)) (which sendsH5 toH9 in Theorem 2) as a composition of three quadratic
transformations of the plane:

T = Q3 � Q2 � Q1.

The transformationT is a degree five Cremonian transformation with six inde-
termination points and is described by Godeaux [8] as a degenerated case of aGeiser
involution (in general a degree eight involution with seven indetermination points).
In this particular case, the 2-net of rational curves definingT is composed by degree
five curves with double points at the six indetermination points. According to [8], in
this case, there is a non-empty fixed part of degree 3 in the 2-net of curves of degree
8 defining the general Geiser involution.

Moreover, in this section we construct birational modifications ofH5, denoted
Hk, k = 6, 8, 9 of degrees 6, 8, 9, respectively, given as follows:H6 = (Q−1

1 )∗(H5),
H8 = ((Q2 � Q1)

−1)∗(H5) andH9 = ((Q3 � Q2 � Q1)
−1)∗(H5). With this factor-

ization process we are also led to a better understanding of the effect ofT = T5 on
the foliations and on the configuration of lines.

The standard quadratic transformation of the plane,Q : P2 − −> P2, is given
in homogeneous coordinates byQ(x0 : x1 : x2) = (x1 · x2 : x0 · x2 : x0 · x1). It
factorizes as the blow up ate1 := (1 : 0 : 0), e2 := (0 : 1 : 0), e3 := (0 : 0 : 1), with
Ei = σ−1

i (ei), followed by the blow downs of the strict transformsLk of the three
linesLk := ei · ej to pointsqk, k = 1, 2, 3. The strict transforms ofEi are three lines
E′

i ⊂ P2 connecting two points amongqk.

Lemma 1. Let Q : P2 − −> P2 be the standard quadratic transformation (keeping
the previous notations). If C is a degree d = d(C) curve, then the degree of the strict
transform Q(C) is 2·d(C)−∑3

i=1 νei
(C), where νei

(C) is the algebraic multiplicity.
Moreover

νqk
(Q(C)) = d(C) − νei

(C) − νej
(C), i 
= j 
= k ∈ {1, 2, 3}.

If H is a foliation of degree d = d(H), then the degree of the foliation Q∗(H)

(with isolated singularities) is equal to 2 · d(H) + 2− ∑3
i=1 l(ei, H). Furthermore

l(qk, Q∗(H)) = d(H) + 2 − l(ei, H) − l(ej , H), i 
= j 
= k ∈ {1, 2, 3}.
Proof. The assertion on curves in this lemma is well known from classical books on
algebraic curves.

The assertion on the degrees of foliations can be proven if we remark that by
definition,d(Q∗(H)) is the sum of tangencies with a generic straight lineL; but L
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is the strict transform byQ of a conicC passing throughe1, e2 ande3. So the proof
follows easily from the formula for the variation of order of tangencies under blow
ups (at the end of Section 2.2.3) and from the formula

tang(C, H) = NH · C − χ(C) = 2 · d(H) + 2.

As explained in Section 2.2.3, the computation ofl(qk, Q∗(H)) depends on the sum
of tangencies along the exceptional lineLk (if it is not invariant by the foliation) or
on the sum of Poincaré–Hopf indices alongLk and is easily done. �

Let us start the definition ofT = Q3 � Q2 � Q1.

Definition of Q1. By a linear transformation of the plane we can put three vertices
as

e1 = v11, e2 = v13, e3 = v15,

and take forQ1 the standard transformation based on these points. So the strict
transforms ofLB2 = v11v13, LB3 = v13v15 andLC0 = v11v15 by the blow ups done
by Q1 will be contracted, producing again the projective plane.

By Lemma 1, the transforms ofLB0 = v14v16, LA2 = v12v16 andLA3 = v12v14
(cf. Section 3) under the Cremonian transformation are conics passing through the
points introduced by contraction of the strict transforms ofLB2, LB3 andLC0, which
we denoteqB2, qB3 and qC0, respectively. All other linesLAi

, LBi
, LCi

in the
configuration are transformed into straight lines, because each one has received one
blow up at one point from{v11, v13, v15}.

LetH ′
5 denote the transformed foliation(Q−1

1 )∗(H5) (with isolated singularities).
By Lemma 1,d(H ′

5) = 2 · 5 + 2 − 3 · 2 = 6 and its singular set is the following:

i. H ′
5 has singularities at the images ofo1, o2, o5, o9, v12, v14 andv16 by Q1 that

are isomorphic to those ofH5, that is, are radial points.

ii. There are degenerate singularities ofH ′
5 at qB2, qB3 andqC0. The reduction of

singularities ofqB2 is as follows: one blow up produces an invariant exceptional
line E with two radial points, isomorphic to the radial pointso6 ando4 (which
need to be blown up again) and two more reduced singularities isomorphic to the
singularitiesLA2 ∩ LB2 andLC2 ∩ LB2 of F . The picture is like that of Figure 8
in Section 3.4 (see page 266).
In order to compute the algebraic multiplicity ofH ′

5 atqB2, qB3 andqC0, we use
the known formula∑

p∈E

µ(σ ∗(H ′
5), p) = µq − mq(H ′

5) · (mq(H ′
5) − 1) + 1,

which gives

4 =
∑
p∈E

µp(σ ∗(H ′
5)) = µqB2

(H ′
5) − mqB2

(H ′
5) · (mqB2

(H ′
5) − 1) + 1
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and, summing up for the three points,

mqB2
· (mqB2

− 1) + mqB3
· (mqB3

− 1) + mqC0
· (mqC0

− 1) + 9

= µqB2
(H ′

5) + µqB3
(H ′

5) + µqC0
(H ′

5)

= [62 + 6 + 1 − (52 + 5 + 1 − 3 − 3 · 4)]
= 27;

from the homogeneity in the definition ofqB2, qB3, qC0 we obtain

mqB2
= mqB3

= mqC0
= 3.

At this point we can verify directly that the numerical Kodaira dimension ofH ′
5

is one, exemplifying the birational invariance of this concept; we have

(d(H ′
5) − 1)2 = (m(qB2, H

′
5) − 1)2 + (m(qB3, H

′
5) − 1)2

+ (m(qC0, H
′
5) − 1)2 +

∑
p 
=qB2,qB3,qC0

m(p, H ′
5)

2,

where in ∑
p 
=qB2,qB3,qC0

m(p, H ′
5)

2

we include the contribution of the blow ups of radial points along the exceptional
introduced by blow up ofqB2, qB3, qC0, that is, we have the equality 25= 3 · 4+ 13.

We conclude thatH ′
5 is a degree 6 modular foliation, denotedH6 = (Q1)∗(H5).

Definition of Q2. Now consider the pointsQ1(v12), Q1(v14), Q1(v16). They are
not collinear and we can take a linear transformation putting

e1 = (1 : 0 : 0) = Q1(v12),

e2 = (0 : 1 : 0) = Q1(v14),

e3 = (0 : 0 : 1) = Q1(v16),

and we defineQ2 as the standard quadratic transformation with base points at these
points. SinceH6 haslei

(H6) = 2, we obtain from Lemma 1

d((Q2)∗H6) = 2 · 6 + 2 − 3 · 2 = 8,

lqk
((Q2)∗H6) = 6 + 2 − 2 · 2 = 4.

Remark that the linesLk := eiej arenot H6-invariant. Sinceei andej are radial
points forH6, tang(Lk, ei) + tang(Lk, ei) = 4 and the pointsqk introduced by the
blow downs of (the transforms of)Lk are dicritical and we havelqk

((Q2)∗H6) = 4.
So we have obtained that(Q2)∗H6 = (Q2 � Q1)∗H5 is a modelH8 of degree 8.
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Definition of Q3. In order to complete the construction of the Cremonian transforma-
tion T = Q3 �Q2 �Q1, let us defineQ3. For doing this, take a linear transformation
of the plane such that

e1 = (1 : 0 : 0) = Q2(Q1(v11)),

e2 = (0 : 1 : 0) = Q2(Q1(v13)),

e3 = (0 : 0 : 1) = Q2(Q1(v15)).

Now again by Lemma 1,

d((Q3)∗H8) = 2 · 8 + 2 − 3 · 3 = 9,

lqk
((Q3)∗H8) = 8 + 2 − 2 · 3 = 4

andqk are dicritical points eliminable by one blow up, sinceQ3 has blown up all
singular points ofH8 that needed more that one blow up in its reduction. In this way
we have obtained the model of degree 9 in the pair(H5, H9) asH9 = T∗(H5).

The compositionT = Q3�Q2�Q1 of three quadratic transformations has degree
five as a birational transformation (the degree of the composition isnot eight, because
the base points of the quadratic transformation in the composition are not disjoint).
In order to see this, consider the image of the 2-dimensional linear system of curves
of degree 5 passing doubly throughv11, . . . , v16. If C denotes one of these curves,
the degrees of its strict transforms are computed, by means of the previous lemma as

d(Q1(C)) = 2 · 5 − 3 · 2 = 4, νqk
(Q1(C)) = 1

and
d(Q2(Q1(C)) = 2 · d(Q1(C)) − 3 · 2 = 2.

Finally d(Q3(Q2(Q1(C))) = 2 · d(Q2(Q1(C)) − 3 · 1 = 2 · 2 − 3 = 1 which
gives a 2-dimensional system of lines, that isP2. The birational transformation
T : P2 − −> P2 = N ′ can be given asT (x0 : x1 : x2) = (P0 : P1 : P2) where
P0, P1, P2 is a basis of theC-vector space of polynomials of degree 5 vanishing with
order two at the five pointsv11, . . . , v16.

At last, let us explain how the transformationT = Q1 � Q2 � Q3 does preserve
the configuration of 15 linesLAi

, LBi
, LCi

, although this isnot the case for any of
the quadratic transformationsQi , i = 1, 2, 3.

For showing this, let us divide the set of 15 lines into three subsets; a) lines that
do not pass throughv11, neither byv13, nor v15; b) lines that pass through exactly
one point in{v11, v13, v15}; and c) lines that pass through a pair of points from
{v11, v13, v15}.

In case a), for fixing ideas, take the lineLB0 = v14v16. The strict transform
Q1(B0) is a conic. SinceB0 does not containv12, the transformationQ2 operates on
Q1(B0) by means of two blow ups atQ1(v14), Q1(v16) and sod(Q2(Q1(C0))) =
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2 · 2− 2 = 2, andQ2(Q1(B0)) also is a conic. Now sinceQ1(B0) containsqC0, qB3,
qB2, we conclude thatd(Q3(Q2(Q1(B0)))) = 2 · 2 − 3 = 1 and we obtain a line as
desired.

In case b), if a line in the configuration contains just one point from{v11, v13, v15},
for fixing ideas let us suppose this point isv11. ThenQ1(L) is also a line, passing
through just one of the pointsqC0, qB3, qB2, namely byqB3, becauseLB3 = v13v15.

But any line in the configuration of 15 lines must contain 2 verticesvij . Nowv11 ∈
L, v13, v15 
∈ L, henceL contains exactly one point from{v12, v14, v16}. So when
applyingQ2 exactly one point ofQ1(L) (a line) is blown up andd(Q2(Q1(L))) =
2 · 1 − 1 = 1. When applyingQ3 we blow upQ2(pB3); sod(Q3(Q2(Q1(L)))) =
2 · 1 − 1 = 1 and again we have a line.

Finally, in the case c), if a line in the configuration contains a pair of points from
{v11, v13, v15} it does not contains the third one (they are not collinear). But thenL

is blown down byQ1 and re-introduced as one of the three lines created byQ3.

B. Reduction of singularities of the plane models of Y(5)

Here we give a detailed reduction of singularities for the modular foliations in the
plane associated toY (5), given in Proposition 2. Figures 17 and 18 present all the
reduction processes, composed each by eleven blowing upsf : Y (5) → P2. Remark
that the reduced singularities which are not at the corners of the exceptional divisors
are denoted respectively byqi , qL andri in these figures.

B.1. Resolution of H2. We begin with the reduction of singularities ofH2 at infinity
in the plane. The foliationH2 is induced in affine coordinates(x, y) of the projective
plane by

� = (80y − 60xy − 80x2)dx − (y + 32x − 36x2)dy = 0.

In the chart(u, v) = ( 1
x
,

y
x

)
there is a reduced singularity atqL := (

0, −10
3

) = (u, v)

(with Camacho–Sad index−3
2 relative to the line at infinity ), as can be easily verified.

The foliationH2 is induced at the point at infinityp1 := (0, 0) = (w, s) = (
x
y
, 1

y

)
by

�(w, s) = (80s2 − 60ws − 80w2s)dw + (s − 48ws + 24w2 + 80w3)ds = 0,

wheres = 0 is an affine equation of theH2-invariant line at infinity. The blowing up
σ1 atp1 is written in local charts as

σ1(x1, t1) = (x1, x1t1) = (w, s), σ1(u1, y1) = (u1y1, y1) = (w, s),

and

σ ∗
1 �(w, s) = x1 · [(−36x1t1+ t2

1 +32x1t
2
1)dx1+(x1t1+24x2

1 −48x2
1t1+80x3

1)dt1],
that is,l(H2, p1) = 1.
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The unique singularity of the transformed foliation alongE1 := σ−1
1 (p1) is at

(0, 0) = (x1, t1), as is easily verified. The blowing upσ2 at p2 := (0, 0) = (x1, t1)

is written in local charts as

σ2(x2, t2) = (x2, x2t2) = (x1, y1), σ2(u2, y2) = (u2y2, y2) = (x1, y1),

and

σ ∗
2 [(−36x1t1 + t2

1 + 32x1t
2
1)dx1 + (x1t1 + 24x2

1 + 80x3
1 − 48x2

1t1)dt1]
= x2

2 · [(−12t2 − 16x2t
2
2 + 80x2t2 + 2t2

2)dx2

+ (24x2 + t2x2 + 80x2
2 − 48x2

2t2)dt2],
that is,l(H2, p2) = 2.

The non-reduced singularity of the transformed foliation alongE2 is at(0, 0) =
(x2, t2). There are also two reduced singularities, one atq2 := (0, 6) = (x2, t2)

(with Camacho–Sad index−5
2 relative toE2) and the other is at infinity(0, 0) =

(u2, y2) = E1 ∩ E2 (with Camacho–Sad index−1
2 relative toE2).

The blowing upσ3 atp3 := (0, 0) = (x2, t2) is written in local charts as

σ3(x3, t3) = (x3, x3t3) = (x2, y2), σ3(u3, y3) = (u3y3, y3) = (x2, y2),

and

σ ∗
3 [(−12t2 − 16x2t

2
2 + 80x2t2 + 2t2

2)dx2 + (24x2 + t2x2 + 80x2
2 − 48x2

2t2)dt2]
= x3 · [(24x3 + 80x2

3 − 47x2
3t3+)dt3

+ (12t3 + 160x3t3 + 3x3t
2
3 − 64x2

3t2
3)dx3],

that is,l(H2, p3) = 1.
There is a reduced singularity at(0, 0) = (x3, t3) which is the crossing point

E3 ∩ L (with Camacho–Sad index−2 relative toE3). The point at infinityp4 :=
(0, 0) = (u3, y3), p4 = E3∩E2, is a non-reduced singularity, where the transformed
foliation is induced by

(12u3+3u3y3+160u2
3y3−64u2

3y
2
3)dy3+(−12y3+2y2

3+80u3y
2
3−16u3y

3
3)du3 = 0,

which clearly is a dicritical point of radial type, that is,l(H , p4) = 2.
Let us now consider the reduction ofH2 atp5 := (0, 0) = (x, y) in the projective

plane. The blowing upσ5 atp5 is written in local charts as

σ5(x5, t5) = (x5, x5t5) = (x, y), σ5(u5, y5) = (u5y5, y5) = (x, y),
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and

σ ∗
5 ((80y − 60xy − 80x2)dx − (y + 32x − 36x2)dy)

= x5 · [(−32x5 − x5t5 + 36x2
5)dt5 + (48t5 − 80x5 − 24x5t5 − t2

5)dx5],
that is,l(H2, p5) = 1.

The singularities of the transformed foliation alongE5 := σ−1
5 (p5) are a reduced

singularity atq5 := (0, 48) = (x5, t5) (with Camacho–Sad index−5
3 relative toE5)

and a non-reduced singularity at(0, 0) = (x5, t5).
The blowing upσ6 atp6 := (0, 0) = (x5, t5) is written in local charts as

σ6(x6, t6) = (x6, x6t6) = (x5, y5), σ6(u6, y6) = (u6y6, y2) = (x5, y5),

and

σ ∗
6 [(−x5t5 − 32x5 + 36x2

5)dt5 + (48t5 − 24x5t5 − 80x5 − t2
5)dx5]

= x6 · [(−80+ 16t6 + 12t6x6 − 2x6t
2
6)dx6 + (−32x6 + 36x2

6 − t6x
2
6)dt6],

that isl(H2, p6) = 1.
There is a reduced singularity at(0, 0) = (u6, y6) which is the intersectionE5∩E6

(with Camacho–Sad index−1
3 relative toE5). The non-reduced singularity of the

transformed foliation alongE6 is at(0, 5) = (x6, t6).
After the linear change of coordinates(x6, t6) �→ (x6, t6−5), the foliation around

p7 is induced by

(16t6 + 10x6 − 8x6t6 − 2x6t
2
6)dx6 + (−32x6 + 31x2

6 − x2
6t6)dt6 = 0.

The blowing upσ7 atp7 is written in local charts as

σ7(x7, t7) = (x7, x7t7) = (x6, y6), σ7(u7, y7) = (u7y7, y7) = (x6, y6),

and

σ ∗
7 [(−2x6t

2
6 − 8x6t6 + 10x6 + 16t6)dx6 + (−x2

6t6 + 31x2
6 − 32x6)dt6]

= x7 · [(10− 16t7 + 26x7t7 − 2x2
7t7 − x2

7t2
7)dx7

+ (−32x7 + 31x2
7 − x3

7t7)dt7],
that isl(H2, p7) = 1.

There is a reduced singularity atq7 := (
0, 5

8

) = (x7, t7) (with Camacho–Sad
index−2 relative toE7). The non-reduced singularity of the transformed foliation is
at (0, 0) = (u7, y7) ∈ E7, where the foliation is induced by

(−16u7 + 10u2
7 − 3u2

7y
2
7 + 23u2

7y
2
7)dy7 + (16y7 + 10u7y7 − 8u7y

2
7 − 2u7y

3
7)du7,
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which is clearly a dicritical singularity of radial type; that is,l(H2, p8) = 2.
Now let us reduce the singularity ofH2 in the projective plane at

(32
27,

1024
81

) =
(x, y). The blowing upσ9 at p9 = (32

27,
1024
81

)
produces two singularities along

E9 = σ−1
9 (p9); a reduced singularity atq9 := (

0, 80
3

) = (x9, t9) with index −3
relative toE1 and a non-reduced singularity at

(
0, 320

9

) = (x9, t9). It can be easily
verified thatl(H2, p9) = 1.

Next, the blow upσ10 at p10 := (
0, 320

9

) = (x9, t9) produces two singularities
alongE10 = σ−1

10 (p10). One is a reduced singularity atq10 := (0, 105) = (x10, t10)

with index−2 relative toE10 and the other is a non-reduced singularity at infinity
(0, 0) = (u10, y10). It is easily verified that alsol(H2, p10) = 1. At last, it can be
verified thatp11 := (0, 0) = (u10, y10) is a dicritical point of radial type, that is,
l(H2, p11) = 2.

Finally, at the point(1, 4) = (x, y) in the projective plane,H2 has a reduced
singularity. The quotient of eigenvalues of the linear part of a vector field inducing it

is equal to−3+√
5

2 .

B.2. Resolution of H3. We begin with the singularity at infinity in the projective
plane, which has the more involved resolution.

The foliationH3 is induced in affine coordinates(x, y) of the plane by

� =
(

− 5
4
y2 + 20xy − 60x3

)
dx +

(
− y + 3

4
xy + x2

)
dy = 0.

In the chart at infinity(u, v) = ( 1
x
,

y
x

)
there is no singularity, as can be easily verified.

The foliationH3 is induced atp1 := (0, 0) = (w, s) = (
x
y
, 1

y

)
by

�(w, s) =
(

− 5
4
s2 + 20ws2 − 60w3s

)
dw +

(
1
2
ws − 21w2s + 60w4 + s2

)
ds = 0,

wheres = 0 is an affine equation of theH3-invariant line at infinity.
The blowing upσ1 atp1 is written in local charts as

σ1(x1, t1) = (x1, x1t1) = (w, s), σ1(u1, y1) = (u1y1, y1) = (w, s),

and

σ ∗
1 (�(w, s)) = x2

1 ·
[(

− 3
4
t2
1 −x1t

2
1 +t3

1

)
dx1+

(
1
2
x1t1−21x2

1t1+60x3
1 +x1t

2
1

)
dt1

]
,

that is,l(H3, p1) = 2.
The singularities of the transformed foliation alongE1 := σ−1

1 (p1) are at(0, 0) =
(x1, t1) and

(
0, 3

4

) = (x1, t1). The pointr1 := (
0, 3

4

) = (x1, t1) is a reduced singu-
larity (with CS index equal to−5

3 relative toE1).
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The blowing upσ2 atp2 := (0, 0) = (x1, t1) is written in local charts as

σ2(x2, t2) = (x2, x2t2) = (x1, y1), σ2(u2, y2) = (u2y2, y2) = (x1, y1),

and

σ ∗
2

[(
− 3

4
t2
1 − x1t

2
1 + t3

1

)
dx1 +

(
1
2
x1t1 − 21x2

1t1 + 60x3
1 + x1t

2
1

)
dt1

]

= x2
2 ·

[(
60x2t2 − 1

4
t2
2 − 22x2t

2
2 + 2x2t

3
2

)
dx2

+
(

1
2
x2t2 − 21x2

2t2 + 60x2
2 + x2t

2
2)dt2

]
,

that isl(H3, p2) = 2.
The non-reduced singularity of the transformed foliation alongE2 is at(0, 0) =

(x2, t2). Also there is a reduced singularity at infinity(0, 0) = (u2, y2) = E2 ∩ E1

(with CS index−1
3 relative toE1).

The blowing upσ3 atp3 := (0, 0) = (x2, t2) is written in local charts as

σ3(x3, t3) = (x3, x3t3) = (x2, y2), σ3(u3, y3) = (u3y3, y3) = (x2, y2),

and

σ ∗
3

[(
60x2t2 − 1

4
t2
2 − 22x2t

2
2 + 2x2t

3
2

)
dx2 +

(
1
2
x2t2 − 21x2

2t2 + 60x2
2 + x2t

2
2

)
dt2

]

= x2
3 ·

[(
60x3 + 1

2
x3t3 − 21x2

3t3 + x3
3t2

3

)
dt3

+
(
120t3 + 1

4
t2
3 − 43x3t

2
3 + 3x2

3t2
3

)
dx3

]
,

that is,l(H3, p3) = 2.
There is a reduced singularity atr3 := (0, −480) = (x3, t3) ∈ E3 and a reduced

singularity at(0, 0) = (x3, t3) which is the crossing point withL (with Camacho–Sad
index−2 relative toL). The point at infinity inE3, that is,p4 := (0, 0) = (u3, y3)

is a non- reduced singularity, where the foliation is induced by(−1
4

y3+60u3y3−22y2
3u3+2u3y

2
3

)
du3+

(
1
4
u3−43u2

3y3+3u2
3y

2
3+120u2

3

)
dy3 = 0,

which clearly is a dicritical point of radial type, that is,l(H3, p4) = 2.
Let us now reduce the singularity ofH3 in the projective plane atp5 := (0, 0) =

(x, y). The blowing upσ5 at (0, 0) is written in local charts as

σ5(x5, t5) = (x5, x5t5) = (x, y), σ5(u5, y5) = (u5y5, y5) = (x, y),

and, sinceH3 is given by

�(x, y) =
(

− 5
4
y2 + 20xy − 60x3

)
dx +

(
− y + 3

4
xy + x2

)
dy = 0,
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we have

σ ∗
5 (�(x, y)) = x5 ·

[(
x2

5 + 3
4
x2

5t5 − x5t5

)
dt5 +

(
21x5t5 − 1

2
x5t

2
5 −60x2

5 − t2
5

)
dx5

]
,

that isl(H3, p5) = 1.
The singularity of the transformed foliation alongE5 := σ−1

5 (p5) is just(0, 0) =
(x5, t5). The blowing upσ6 atp6 := (0, 0) = (x5, t5) is written in local charts as

σ6(x6, t6) = (x6, x6t6) = (x5, y5), σ6(u6, y6) = (u6y6, y2) = (x5, y5),

and

σ ∗
6

[(
x2

5 + 3
4
x2

5t5 − x5t5

)
dt5 +

(
21x5t5 − 1

2
x5t

2
5 − 60x2

5 − t2
5

)
dx5

]

= x2
6 ·

[(
− 60+ 22t6 + 1

4
x6t

2
6 − 2t2

6

)
dx6

+
(
x6 + 3

4
x2

6t6 − x6t6

)
dt6

]
,

that is l(H2, p6) = 2. There is a reduced singularity atr6 := (0, 6) = (u6, y6)

(with Camacho–Sad index−5
2 relative toE6). Also there is a reduced singularity

at the intersection(0, 0) = (u6, y6) = E5 ∩ E6 (with Camacho–Sad index−2
relative toE5). Also there is a non-reduced singularity of the transformed foliation
at (0, 5) = (x6, t6) ∈ E6.

After the linear change of coordinates(x6, t6) �→ (x6, t6 − 5)), the foliation is
induced by

η :=
(
2t6 + 25

4
x6 + 1

4
x6t

2
6 − 2t2

6 + 10
4

x6t6

)
dx6

+
(

− 4x6 − x6t6 + 75
4

x2
6 + 3

4
x2

6t2
6 + 30

4
x2

6t6

)
dt6.

The blowing upσ7 atp7 := (0, 5) = (x6, t6) is written locally as

σ7(x7, t7) = (x7, x7t7) = (x6, y6), σ7(u7, y7) = (u7y7, y7) = (x6, y6),

and

σ ∗
7 η = x7 ·

[(
15
4

− 2t7 + 75
4

x7 + 3

2
x7t7 + 31

4
x2

7t2
7 − 2x7t

2
7 + 3

4
x3

7t3
7

)
dx7

+
(

− 4x7 + 75
4

x2
7 − x2

7t7 + 30
4

x3
7t7 + 3

4
x4

7t2
7

)
dt7

]
,

that is,l(H3, p7) = 1.
There is a reduced singularity at

(
0, −25

8

) = (x7, t7) (with Camacho–Sad index
−2 relative toE7). The non-reduced singularity of the transformed foliation is at
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(0, 0) = (u7, y7), where the foliation is induced by

(
− 2u7 − 3u7y7 + 50

4
u2

7 + 85
4

u2
7y7 + 3

4
u2

7y
3
7 + 31

4
u2

7y
2
7

)
dy7

+
(
2y7 − 2y2

7 + 25
4

u7y7 + 10
4

u7y
2
7 + 1

4
u7y

3
7

)
du7,

which is clearly a dicritical singularity of radial type; that is,l(H3, p8) = 2.
Let us reduce the singularity ofH3 in the projective plane at

(32
27,

1024
81

) = (x, y).
The blowing upσ9 at p9 = (32

27,
1024
81

)
produces two singularities alongE9 =

σ−1
9 (p9); a reduced singularity atr9 := (0, 0) = (x9, t9) with index −3 relative

to E1 and a non-reduced singularity at
(
0, 320

9 ) = (x9, t9
)
. It can be easily verified

thatl(H3, p9) = 1.
Next, the blow upσ10 at p10 := (

0, 320
9

) = (x9, t9) produces two singularities
alongE10 = σ−1

10 (p10). One is a reduced singularity at(0, 25) = (x10, t10) with
index −2 relative toE10, the other a non-reduced singularity at infinity(0, 0) =
(u10, y10). It is easily verified thatl(H3, p10) = 1. At last, it is easily verified that
p11 := (0, 0) = (u10, y10) is a dicritical point of radial type, that is,l(H3, p11) = 2.

At the point(1, 4) = (x, y) in the projective plane,H3 has a reduced singularity.
The quotient of eigenvalues of the linear part of a vector field inducing it is given

by −3+√
5

2 .
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