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Vanishing and non-vanishing for thefirst L?-cohomology
of groups

Marc Bourdon, Florian Martin and Alain Valette

Abstract. We prove two results on the firsilf’-cohomologyﬁ(lp)(l") of a finitely generated
groupr:

1)If N ¢ H c T is a chain of subgroups, witN non-amenable and normal I then
H}p)(r) = 0 as soon aﬁ(lp)(H) = 0. This allows for a short proof of a result of W. Lick:
if N < T, N is infinite, finitely generated as a group, andv contains an element of infinite
order, thenﬁ(lz)(r) =0.

2) If T acts isometrically, properly discontinuously on a proper CAT) spaceX, with at
least 3 limit points i X, then forp larger than the critical exponea(l’) of I' in X, one has

ﬁ(lp)(l“) # 0. As a consequence we extend a result of Y. Shalon@ le¢ a cocompact lattice
in arank 1 simple Lie group; i€ is isomorphic td", thene(G) < e(T').
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1. Introduction

LetI'" be a countable group. Assume first titahdmits akK (I", 1)-space which is a
simplicial complexX finite in every dimension. LeX be the universal cover of.
Fix p € [1, oo[. Denote by¢”C* the space op-summable complek-cochains on
X, i.e. thet?-functions on the sef* of k-simplices ofX. The L”-cohomology of I
is the reduced cohomology of the complex

di: £PCk — gpCFHL,
whered,, is the simplicial coboundary operator; we denote it by
HE, (T) = Kerdy/Tmdy 1.

As explained at the beginning of [Gro93], this definition only dependE.on
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Forp = 2,the spacéi("z)(l“) is a module over the von Neumann algebr& pdnd

its von Neumann dimension is tieth Z2-Betti number of T', denoted byb(, (I');
recall thatb’(‘z)(l“) = 0if and only if 17(’;)(1“) =0.

Fork = 1, it is possible to define the firét’-cohomology ofl" under the mere
assumption thar is finitely generated. Denote 7 (I") the space of all complex-
valued functions o, and byAr the left regular representationiofon £ (I'). Define
then the space gf-Dirichlet finite functions onr:

D,T)={feFT) | rr(g)f — f €l (T) foreveryg e I'}.

If §'is a finite generating set df, define a norm o, (I") /C by:

1715, =Y Iar@) f = £l

seS

Denote byi : ¢7(I') — D, (I") the inclusion. Théirst L”-cohomology of I" is
A} (T) = D,(I')/i(€P(I)) + C.

Let us recall briefly why this definition is coherent with the previous on€. dfimits

afiniteK (T, 1)-spaceX, we can choose one such that the 1-skeletoniisfa Cayley
graphg (T, S) of I'. This means tha$ is some finite generating subsetof that
C% =T, and thatC1 is the seffr of oriented edges:

Er ={(x,sx)|xeTI,s e S}
Thendp is the restriction ta? (I') of the coboundary operator

dr: ¥() = F(Er); [ [0 fO)—fOO]

SinceX is contractible, by Poincaré’s lemma any closed cochain is exact, i.e. any
element in Ker; can be written aglr f, for somef e D,(I') defined up to an
additive constant. This means that: D,(I") — ¢7(Er) induces an isomorphism

of Banach spaceb,(I')/C — Kerdz, which maps (¢7(I")) to Imdp. This shows

the equivalence of both definitions Elf(lp)(l“).
Our first result is:

Theorem 1. Let N € H C T beachain of groups, with H and I" finitely generated,
N infiniteand normal in T.
1) If H isnon-amenable and ﬁ(lp)(H) =0, then H(lp)(F) =0.

2) 1f by (H) = 0, then b, (") = 0.
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We donot know whether part 1) of Theorem 1 holds whéris amenable
As an application of part 2) of Theorem 1, we will give a very short proof of the
following result of W. Lick (Theorem 0.7 in [Lue97]):

Corollary 1. Let " beafinitely generated group. Assumethat I" contains an infinite,
normal subgroup N, which isfinitely generated asa group, and such that I'/ N isnot
atorsion group. Then b, (I') = 0.

Using his theory of_2-Betti numbers for equivalence relations and group actions,
D. Gaboriau was able to improve the previous result by merely assuming tivat
is infinite (see [Gab02], Théoréme 6.8). It is a challenging, and vaguely irritating
guestion, to find a purely group cohomological proof of Gaboriau’s result.

As shown by Gaboriau’s result, non-vanishinglié) is an obstruction for the
existence of finitely generated normal subgroups. We now present a non-vanishing
result. Its proof is based on an idea due to G. Elek (see [Ele97], Theorem 2).

Let X be a proper CAT—1) space (see [BH99] for the definitions), andliebe
an infinite, finitely generated, properly discontinuous subgroup of isometri&s of
Recall that theritical exponent of I is defined as

e(I) =inf {s >0] der eslgo—ol —I—oo},

whereo is any origin inX, and wherg- — - | denotes the distance K1 In many cases,
e(I") < +o0; in particular, this happens when the isometry grou @ co-compact
(see Proposition 1.7 in [BM96]).

Theorem 2. Assume that e(I") is finite. If the limit set of " in 90X has at least 3
points, then for p > max{1, e(I")} the Banach space H(lp )(F) isnon zero.

WhenT is in addition co-compact, Theorem 2 was already known to Pansu and
Gromov (see [Pan89] and page 258 in [Gro93]).

Theorem 2 is optimal for the co-compact lattices in rank one semi-simple Lie
group: for thosep > ¢(I") if and only if 17(11))(1“) # 0, thanks to a result of Pansu
[Pan89]. Recall that(I") = 1 for latticesl" in SO(2, 1) (and exactly for those among
rank one lattices). Since”-cohomology of groups is an invariant of isomorphism,
by combining Pansu’s result with Theorem 2, we obtain the following generalisation
of a result of Shalom (Theorem 1.1 in [Sha00]):

Corollary 2. Let G be a co-compact lattice in a rank one semi-simple Lie group
(other than SO(2, 1)). Assume that G is isomorphic to a properly discontinuous
subgroup I" of isometries of a proper CAT(—1) space X. Then e(G) < e(I'). O

IWhenp = 2 andH is amenable, we appeal to the Cheeger—Gromov vanishing theorem [CG86]; to the best
of our knowledge, there is no analogue of this result fircohomology forp # 2, although Gromov notices in
Remark(A2) of [Gro93], 8 A1, that it should be the case.
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Shalom established this by different methods in the special case Whierthe
symmetric space associated to(@QL) or SU(n, 1); his result also holds for non-
cocompact lattices (when the Lie group is different from(&Q)). In [BCG99] the
authors establish Corollary 2 in the cdses quasi-convex, this assumption simplifies
their proof but they do not really need it.

The equality case in Corollary 2, which leads to a rigidity theorem, is studied in
[Bou96] and [Yue96] and in [BCG99], wheh is in addition quasi-convex. Again
methods of proofs developed in [BCG99] should apply without the quasi-convex
assumption.

2. Group cohomology; proof of Theorem 1

Let V be a topological’-module, i.e. a real or complex topological vector space
endowed with a continuous, linear representatiol” x V — V: (g, v) — 7w (g)v.

If H is a subgroup of", we denote by |y the spacé/ viewed as arif-module for

the restricted action, and By” the set ofH -fixed points:

Vvl —{veV|rnhw=vforalhe H).
We now introduce the space of 1-cocycles and 1-coboundarids, @md the
1-cohomology with coefficients iff:
o ZWI, V) ={b: T — V | b(gh) = b(g) +n(g)b(h) forall g, h € T};
e BYI', V) ={be ZXT, V) | there existy € V such thab(g) = 7 (g)v — v for
allg eT};
e HY(I', V)= ZYT, v)/BYT, V).

Suppose thaV¥ is a Banach space. The spaZé(l’, V) of 1-cocycles is a
Fréchet space when endowed with the topology of pointwise convergendteTdre
1-reduced cohomology space with coefficient¥irs

HY(T, v) = ZX(T, v)/ BL(T, V).

Recall thatV almost hasinvariant vectorsif, for every finite subsefF in I", and every

€ > 0, there exists a vectarof norm 1 inV, such that|z(g)v — v|| < € for every

g € F. The following result is due to Guichardet (Theorem 1 and Corollary 1 in
[Gui72]).2

Proposition 1. Let " be a countable group.

2strictly speaking, Guichardet proves this result for uni@mnodules; but his proof, only appealing to the
Banach isomorphism theorem, carries over without change to Banaobdules.
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1) Let V beaBanach I'-module with VI' = 0. The map

HYT, V) — HNT, V)

isan isomorphismif and only if V does not almost have invariant vectors.
2) Let p € [1, oo[. Assumethat T isinfinite. The map

Hl(F, o)) — f?l(F, 12400))
isan isomorphismif and only if T" is non-amenable. O
We will prove:

Proposition 2. Let p € [1,00[. Let N ¢ H C TI' be a chain of groups, where T’
finitely generated and N is infinite and normal in . If HX(H, ¢ (H)) = 0, then
HY(T, ¢P(I') = 0.

The following link betweerﬁ(lp)(l“) andHL(T", ¢7(I")) has been noticed by sev-

eral people — see e.g. Lemma 3 in [BV97] (fer= 2 andI" non-amenable), or in
[Pul03] (in general). We give the easy argument for completeness.

Lemma 1. For finitely generated I, there are isomorphisms
D,(D)/(i(€7(T)) + C) = HXT, 7(T)) and H} (T) ~ HA(T, £ (I).

Proof. The mapD,(T") — ZNT, eP(T)): f +— [g — Ar(g)f — f1is contin-
uous, with kernel the spadé of constant functions, and the imageigt” (I")) is
exactly BL(I", £7(I")). Moreover this map is onto because of the classical fact that
HYT, F(I')) = 0. o

Before proving Proposition 2 (for which we will actually give two proofs), we
explain how to deduce Theorem 1 from it.

Proof of Theorem 1 from Proposition 2. 1) In view of Lemma 1, the assumption of

Theorem 1 read&/1(H, ¢’ (H)) = 0. SinceH is non-amenable, by Proposition 1
we haveH1(H, ¢P(H)) = 0. By Proposition 2 we deducg(T", ¢7(I")) = 0. By
Lemma 1 again, we get the conclusion.

2) If H is non-amenable, the result is a particular case of the first pa#. if
amenable, then so 1§, and the result follows from the Cheeger—Gromov vanishing
theorem [CG86]: if a group’ contains an infinite, amenable, normal subgroup, then
all L?-Betti numbers of” are zero. a



382 M. Bourdon, F. Martin and A. Valette CMH

Important remark. Cheeger and Gromov [CG86] definéd-Betti numbers of

a groupl” without any assumption of, in particular not assuming to be finitely
generated. Using their definition, D. Gaboriau has shown us (private communication)
aproofthab(lz)(r) = Oalways implies 1(T", ¢2(I")) = 0. As a consequence, part 2)

of Theorem 1 holdsven if H isnot finitely generated.

Ouir first proof of Proposition 2 will require the following lemma, which is classical
for p = 2.

Lemma 2. Let p € [1, oo[. Let H be a countable group. Let X be a countable set
on which H acts freely. The following statements are equivalent:

i) H isamenable.
i) Thepermutation representation L x of H on £ (X), almost hasinvariant vectors.

Proof. We recall (see [Eym72]) that a grouipis amenable if and only if it satisfies
Reiter’'s condition(P,), i.e. for every finite subsef C I" ande > 0, there exists
f etPT) suchthatf > O, | fll, =1, and|lAr(g)f — fll, <eforg e F. In
particularé? (I') almost has invariant vectors.

So if H is amenable, thehd” (X) almost has invariant vectors since it contains
£P(H) as a sub-module. This proves £ (ii).

To prove (ii)= (i), we assume that” (X) almost has invariant vectors and prove
in 3 steps thaH satisfies Reiter's propertyP1), so is amenable. So fix a finite subset
F C H,ande > 0;find f € £7(X), || fll, = 1,suchthafixx(h) f — fll, < i for
hekF.

1) Replacingf with | f|, we may assume thgt > 0.

2) Setg = f7, so thatg € £1(X), |gllr = 1,¢ > 0. Forh € F, we have:

Ix(g — gl =Y 1f ()P — f(x)?]

xeX

<p Y If) = FOI 0P+ F)P ™

xeX
1 ="
=p( 10— for) (Y ttort 4 )
xeX xeX
p—1
< plax(f = £1,(27F Y (F0r + £on)

xeX

=2plax() f — fllp <€

where we have used consecutivellge inequalities

3The expert will recognize here the argument to pass from propeptyto property(P1), as in [Eym72].
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e |aP —bP| < pla — bl(a?~1 + bP~ 1) fora,b > 0,
o Hodlder’s inequality,
1 p
o (a+b)it<2v(@ri4brtyfora,b >0,
and the fact that /||, = 1.
3) Let (x,),>1 be a set of representatives for the orbits/bfin X. Define a

function g, on H by g,(h) = g(hx,), and setG = Y °2;g,. ThenG > 0 and
IGlI1=>jhen Lome1 8hxn) =Y .cx 8(x) = 1. Moreover, forh € F:

Ia(m)G = Gl1= > \ > (@ tyxn) — g(yxn))| < lAx(h)g — gl <€
yeH n=1

by the previous step. This establishes propéry) for H. O

First proof of Proposition 2 (homological algebra)

Claim. HY(H, ¢P(I')| ) = 0. Choosing representatives for the right cosetd of

I, we identify£?(I')| g in an H-equivariant way with thé?-direct sumd£? (H) of

[T : H] copies oft? (H). Since cohomology commutes with finite direct sums, the
claimisclearifI" : H] < oo. So assume th@F, H] = co. If b € Z1(H, €7 () |y),
write b = (by)x>1 Whereb, € ZY(H, ¢P(H)) for everyk > 1. By assumption, for
eachk, there is a functiory; € ¢P(H) such thaty(h) = Ay (h) fi — fi for every

h € H. Set

By(h) = (Agf1— f1,....An(W) fv — fn,0,0,...)

so thatBy € B1(H, ¢”(I')|y) and By converges td pointwise onH , for N — oo.
This already shows th& 1(H, ¢7(I')| ) = 0. Notice now that, by Proposition 1 (2),
the assumptiof *(H, €7 (H)) = 0 implies thatH is non-amenable. By Lemma 2
applied toX = T, this means that” (I")|y does not almost have invariant vectors.
By Proposition 1 (1), we gell 1(H, ¢7(I')|r) = 0, proving the claim.

Recall from group cohomology (see e.g. 8.1 in [Gui80]) that, for Bayodule
V, there is an exact sequence

i Res
0— HYT/N, VN 5 HYT, V) —‘y> HY(N, V)TN

wherei : VY — V denotestheinclusion. Inparticularyf¥ = 0, then the restriction
map
Resf: HY(T, V) - HY(N, VIy)

is injective. We apply this wittV = £7(I') (noticing thatV" = 0 asN is infinite).
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Consider then the composition of restriction maps

1 Resf 1 Resf) 1
H(T, ¢P(I')) —— H~(H, £ (I')|g) —— H(N, P ()|n);
this composition is Regt which is injective as we just saw. On the other hand, by
the claim this composition is also the zero map.HSJqF, £P(I')) = 0, as was to be
established. O

Second proof of Proposition 2 (geometry). This proof works under the extra as-
sumption thatH is finitely generated. Fix finite generating s&tdor H, S for T,
with T C 8, and consider the Cayley graghT’, S) and its coboundary operator
dr: F(T') — F(Er). ThenD, () = {f € F(T') : dr f € £7(Er)}. Similarly, let
dy be the coboundary operator associated with the Cayley ggaphT).

Fix f € D,(I'); the goal is to show that € ¢7(I") + C. Let(g;);c; be a set of
representatives for the right cosetsifin I, so thatl" = [ [,.; Hgi. Fori € I, set
fi(x) = f(xgi) (x € H). Then

iel

ldu(flly = D D 1 f (sxgi) — fxgn)l?

xeH seT

<D D Ifx) = f@IP

xel’ ses§
= |ldr f1I” < oo,

i.e. fi € D,(H). Using our assumption and Lemma 1, we may write
fi = hi +u;

whereh; € ¢7(H) andu; € C. Define functions: andu onT" by h(xg;) = h;(x)
andu(xg;) = u; (x € H).

First claim. & € ¢7(I"). Indeed, sincéd is non-amenable (by Proposition 1), there
exists a constar® > 0 (depending only o, H, T) such that for every € I:

hillp < Clidu hi)ll p-
Then summing oveir we obtain
Al =" lihilly
iel

<CPY (Ml =CPY Y lhilsx) = hi(x)|”

iel iel xeH seT

=CPY S NS0 — H@IP=CPY Y fsx) = f)I7

iel xeH seT xel seT
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<CPY Y Ufsx) = f()IP

xel’ ses§

= C?lldr (P} < 0.

Second claim. u is constant. Indeed, singé= h + u, anddr (f), dr (h) € £ (Er),
we havedr (1) € ¢ (Er). In particular this implies, for fixed indicesj € I:

00> Y |u((gjg; Hxgi) —uxgl” =Y |u((gjg; Hxgi) — uil”

xeN xeN

=D lulx(gjg; e —uil”

xeN
sinceN is normal inI". The latter sum is equal to
Z |l/tj —I/t,'|p < Q.

xeN

SinceN is infinite, this forces:; = u;, i.e.u is constant.
The first and the second claim together prove Proposition 2. O

3. Someresultsof W. L iick

The following result was obtained by Lick in [Lue94], Theorem 2.1. We recall his
short, elegant argument.

Lemma 3. Let N be afinitely generated group, and let o be an automorphism of N.
Let H = N x4 Z bethe corresponding semi-direct product. Then b(lz)(H) =0.

Proof. The proof depends on two classical properties offtRéBetti numbers for a
finitely generated group:

. b%(l“) < d(I'), whered (I'") denotes the minimal number of generator§ of
« if A is a subgroup of finite index in T, thenb’gz)(A) =d- b’(‘z)(r).

Let thenp: H — Z denote the quotient map; far > 1, setH, = p~1(nZ), a
subgroup of index in H. Then:

n by (H) = by (Hy) < d(Hy) < d(N) + 1.

Since this holds for every > 1, the lemma follows. O
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Proof of Corollary 1. Sincel’/N is not a torsion group, we find a subgrofpof I,

containing¥, such that /N is infinite cyclic. SinceV is finitely generated, we have

b(lz)(H) = 0, by Lemma 3. The result follows then immediately from Theorem 1.
O

Example 1. We point out that Lemma 3 has no analogud.frcohomology, with

p # 2. To see it, letM be a 3-dimensional, compact, hyperbolic manifold which
fibers over the circle. Denote [, the fiber of that fibration: thisis a closed Riemann
surface of genug > 2. Then the fundamental grodp = 71(M) admits a semi-
direct product decomposition = 71(%,) x Z, SO thatﬁ(lz)(r‘) = 0 by Lemma 2.
However

inf{p>1:H} (I)#0} =2,

as was proven by Pansu [Pan89].

4., Proof of Theorem 2

Denote byd X the (Gromov) boundary of. Let A = To N dX be the limit set of”
in X (the closure of o is taken in the compact s&tU 9 X).

SinceX is a CAT(—1) space, its boundary carries a natural medricalled a
visual metric) which can be defined as follows (see [Bou95], Théoréeme 2.5.1); for
every& andn in 0X:

dE, n) = e—(é\ﬂ)’

where(- | -) denotes the Gromov product X based o, namely

_ 1
&l = (xyyl)@@’n) E(Io x[+lo—=yl—=lx—=yD.

Observe that there exists a constBmguch that for everyg € I' there is a point
& in 90X with d(go, [0, §)) < B. Indeed this property does not depend on the choice
of the origino. So we choose on a bi-infinite geodesi¢y1, n2). Thengo belongs
to (gn1, gn2). Now sinceX is Gromov-hyperbolic, one of the two poirgg; or gn»
satisfies the claim.

Let u be a Lipschitz function ofd X, d) which is non-constant om ; such
functions do exist sinca is not reduced to a point. Following G. Elek [Ele97], let
f be the function o” defined byf (g) = u(&,), wheres, is a point ind X such that
d(g~2o, [0, &)) < B.
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Claim. f € D,(I') for p > max{1, e(T")}. Indeed we have

1F1D, =D D 1fG8) = f@IF =YY lulEse) —ulEe)l”

seS gel seS gel
<CY D ldGg &P =C Y Y e Pl
seS gel gel' seS§
<D Ze_plg_lo_ol < +o0,
gel

whereC, D are constants depending only ®nB andS. The details for the first in-
equality in the last line are the following. Observe thag) 10— g 1o| = |s~To—o|
is bounded above by an absolute constant. This implies thasifidx,, respectively
denote the points g, &,) and|o, &,) whose distance fromis equal tog 1o —ol,
then|x, — x| is bounded above by an absolute constant. Now with the triangle
inequality

[x =yl < |x _xsg| + |xsg _xg| + |xg =yl

and from the definition of the Gromov product, it follows that

1
(gsg|€g) = §(|0 _xsgl +lo — )Cg| — Ixsg —xg|),

so that(¢,|£,) is bounded below byg 1o — o| plus an absolute additive constant.
This proves the claim.

Since A has at least 3 points, the grolipis non-amenable (namely it is well-
known thatA is a minimal set, and that an amenable group stabilises one or two
points ind X). So by Proposition 1 and by Lemma 1, we must prove fhdbes not
belong tai (¢7(I')) + C. Assume it does, thefi(g) tends to a constant number when
the length ofg in T tends to+oo. This contradicts the fact thatis non-constant
onA. 0

Acknowledgements. We thank G. Courtois, A. Karlsson, G. Mislin and M. Puls for
useful comments on the first draft of this paper.

Note added in proof. The following example, suggested by F. Paulin, shows that
Corollary 2 fails for lattices in S, 1). Start with the free grouf, on two gen-
erators. Embed it as a lattiee in SO(2, 1), so thate(G) = 1. On the other hand,
let X, be the regular tree of degree 4, with edge lengtk 0. This is a proper
CAT(-1) space. LeF; act as a properly discontinuous groDf isometries ofX;,

by viewing X, as the Cayley tree d,. Thene(I") = '0%3, which is less than 1 for

A large enough.
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