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Vanishing and non-vanishing for the first Lp-cohomology
of groups

Marc Bourdon, Florian Martin and Alain Valette

Abstract. We prove two results on the firstLp-cohomologyH 1
(p)(�) of a finitely generated

group�:
1) If N ⊂ H ⊂ � is a chain of subgroups, withN non-amenable and normal in�, then

H 1
(p)(�) = 0 as soon asH 1

(p)(H) = 0. This allows for a short proof of a result of W. Lück:
if N � �, N is infinite, finitely generated as a group, and�/N contains an element of infinite
order, thenH 1

(2)(�) = 0.
2) If � acts isometrically, properly discontinuously on a proper CAT(−1) spaceX, with at

least 3 limit points in∂X, then forp larger than the critical exponente(�) of � in X, one has
H 1

(p)(�) �= 0. As a consequence we extend a result of Y. Shalom: letG be a cocompact lattice
in a rank 1 simple Lie group; ifG is isomorphic to�, thene(G) ≤ e(�).
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1. Introduction

Let � be a countable group. Assume first that� admits aK(�, 1)-space which is a
simplicial complexX finite in every dimension. Let̃X be the universal cover ofX.
Fix p ∈ [1, ∞[. Denote by�pCk the space ofp-summable complexk-cochains on
X̃, i.e. the�p-functions on the setCk of k-simplices ofX̃. TheLp-cohomology of �

is the reduced cohomology of the complex

dk : �pCk → �pCk+1,

wheredk is the simplicial coboundary operator; we denote it by

Hk
(p)(�) = Kerdk/ Im dk−1.

As explained at the beginning of [Gro93], this definition only depends on�.
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Forp = 2, the spaceHk
(2)(�) is a module over the von Neumann algebra of�, and

its von Neumann dimension is thek-th L2-Betti number of �, denoted bybk
(2)(�);

recall thatbk
(2)(�) = 0 if and only ifHk

(2)(�) = 0.

For k = 1, it is possible to define the firstLp-cohomology of� under the mere
assumption that� is finitely generated. Denote byF (�) the space of all complex-
valued functions on�, and byλ� the left regular representation of� onF (�). Define
then the space ofp-Dirichlet finite functions on�:

Dp(�) = {f ∈ F (�) | λ�(g)f − f ∈ �p(�) for everyg ∈ �}.
If S is a finite generating set of�, define a norm onDp(�)/C by:

‖f ‖p
Dp

=
∑
s∈S

‖λ�(s)f − f ‖p
p.

Denote byi : �p(�) → Dp(�) the inclusion. Thefirst Lp-cohomology of � is

H 1
(p)(�) = Dp(�)/ i(�p(�)) + C.

Let us recall briefly why this definition is coherent with the previous one. If� admits

a finiteK(�, 1)-spaceX, we can choose one such that the 1-skeleton ofX̃ is a Cayley
graphG(�, S) of �. This means thatS is some finite generating subset of�, that
C0 = �, and thatC1 is the setE� of oriented edges:

E� = {(x, sx) | x ∈ �, s ∈ S}.
Thend0 is the restriction to�p(�) of the coboundary operator

d� : F (�) → F (E�); f �→ [(x, y) �→ f (y) − f (x)].
SinceX̃ is contractible, by Poincaré’s lemma any closed cochain is exact, i.e. any
element in Kerd1 can be written asd�f , for somef ∈ Dp(�) defined up to an
additive constant. This means thatd� : Dp(�) → �p(E�) induces an isomorphism
of Banach spacesDp(�)/C → Kerd1, which mapsi(�p(�)) to Imd0. This shows

the equivalence of both definitions ofH 1
(p)(�).

Our first result is:

Theorem 1. Let N ⊂ H ⊂ � be a chain of groups, with H and � finitely generated,
N infinite and normal in �.

1) If H is non-amenable and H 1
(p)(H) = 0, then H 1

(p)(�) = 0.

2) If b1
(2)(H) = 0, then b1

(2)(�) = 0.
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We donot know whether part 1) of Theorem 1 holds whenH is amenable1.
As an application of part 2) of Theorem 1, we will give a very short proof of the

following result of W. Lück (Theorem 0.7 in [Lue97]):

Corollary 1. Let � be a finitely generated group. Assume that � contains an infinite,
normal subgroup N , which is finitely generated as a group, and such that �/N is not
a torsion group. Then b1

(2)(�) = 0.

Using his theory ofL2-Betti numbers for equivalence relations and group actions,
D. Gaboriau was able to improve the previous result by merely assuming that�/N

is infinite (see [Gab02], Théorème 6.8). It is a challenging, and vaguely irritating
question, to find a purely group cohomological proof of Gaboriau’s result.

As shown by Gaboriau’s result, non-vanishing ofH 1
(2) is an obstruction for the

existence of finitely generated normal subgroups. We now present a non-vanishing
result. Its proof is based on an idea due to G. Elek (see [Ele97], Theorem 2).

Let X be a proper CAT(−1) space (see [BH99] for the definitions), and let� be
an infinite, finitely generated, properly discontinuous subgroup of isometries ofX.
Recall that thecritical exponent of � is defined as

e(�) = inf
{
s > 0 | ∑

g∈� e−s|go−o| < +∞}
,

whereo is any origin inX, and where| ·−·| denotes the distance inX. In many cases,
e(�) < +∞; in particular, this happens when the isometry group ofX is co-compact
(see Proposition 1.7 in [BM96]).

Theorem 2. Assume that e(�) is finite. If the limit set of � in ∂X has at least 3
points, then for p > max{1, e(�)} the Banach space H 1

(p)(�) is non zero.

When� is in addition co-compact, Theorem 2 was already known to Pansu and
Gromov (see [Pan89] and page 258 in [Gro93]).

Theorem 2 is optimal for the co-compact lattices in rank one semi-simple Lie
group: for thosep > e(�) if and only if H 1

(p)(�) �= 0, thanks to a result of Pansu
[Pan89]. Recall thate(�) = 1 for lattices� in SO(2, 1) (and exactly for those among
rank one lattices). SinceLp-cohomology of groups is an invariant of isomorphism,
by combining Pansu’s result with Theorem 2, we obtain the following generalisation
of a result of Shalom (Theorem 1.1 in [Sha00]):

Corollary 2. Let G be a co-compact lattice in a rank one semi-simple Lie group
(other than SO(2, 1)). Assume that G is isomorphic to a properly discontinuous
subgroup � of isometries of a proper CAT(−1) space X. Then e(G) ≤ e(�). �

1Whenp = 2 andH is amenable, we appeal to the Cheeger–Gromov vanishing theorem [CG86]; to the best
of our knowledge, there is no analogue of this result inLp-cohomology forp �= 2, although Gromov notices in
Remark(A2) of [Gro93], 8.A1, that it should be the case.
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Shalom established this by different methods in the special case whereX is the
symmetric space associated to SO(n, 1) or SU(n, 1); his result also holds for non-
cocompact lattices (when the Lie group is different from SO(2, 1)). In [BCG99] the
authors establish Corollary 2 in the case� is quasi-convex, this assumption simplifies
their proof but they do not really need it.

The equality case in Corollary 2, which leads to a rigidity theorem, is studied in
[Bou96] and [Yue96] and in [BCG99], when� is in addition quasi-convex. Again
methods of proofs developed in [BCG99] should apply without the quasi-convex
assumption.

2. Group cohomology; proof of Theorem 1

Let V be a topological�-module, i.e. a real or complex topological vector space
endowed with a continuous, linear representationπ : � ×V → V : (g, v) �→ π(g)v.
If H is a subgroup of�, we denote byV |H the spaceV viewed as anH -module for
the restricted action, and byV H the set ofH -fixed points:

V H = {v ∈ V | π(h)v = v for all h ∈ H }.
We now introduce the space of 1-cocycles and 1-coboundaries on�, and the

1-cohomology with coefficients inV :

• Z1(�, V ) = {b : � → V | b(gh) = b(g) + π(g)b(h) for all g, h ∈ �};
• B1(�, V ) = {b ∈ Z1(�, V ) | there existsv ∈ V such thatb(g) = π(g)v − v for

all g ∈ �};
• H 1(�, V ) = Z1(�, V )/B1(�, V ).

Suppose thatV is a Banach space. The spaceZ1(�, V ) of 1-cocycles is a
Fréchet space when endowed with the topology of pointwise convergence on�. The
1-reduced cohomology space with coefficients inV is

H 1(�, V ) = Z1(�, V )/ B1(�, V ).

Recall thatV almost has invariant vectors if, for every finite subsetF in �, and every
ε > 0, there exists a vectorv of norm 1 inV , such that‖π(g)v − v‖ < ε for every
g ∈ F . The following result is due to Guichardet (Theorem 1 and Corollary 1 in
[Gui72]).2

Proposition 1. Let � be a countable group.

2Strictly speaking, Guichardet proves this result for unitary�-modules; but his proof, only appealing to the
Banach isomorphism theorem, carries over without change to Banach�-modules.
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1) Let V be a Banach �-module with V � = 0. The map

H 1(�, V ) → H 1(�, V )

is an isomorphism if and only if V does not almost have invariant vectors.

2) Let p ∈ [1, ∞[. Assume that � is infinite. The map

H 1(�, �p(�)) → H 1(�, �p(�))

is an isomorphism if and only if � is non-amenable. �

We will prove:

Proposition 2. Let p ∈ [1, ∞[. Let N ⊂ H ⊂ � be a chain of groups, where �

finitely generated and N is infinite and normal in �. If H 1(H, �p(H)) = 0, then
H 1(�, �p(�)) = 0.

The following link betweenH 1
(p)(�) andH 1(�, �p(�)) has been noticed by sev-

eral people – see e.g. Lemma 3 in [BV97] (forp = 2 and� non-amenable), or in
[Pul03] (in general). We give the easy argument for completeness.

Lemma 1. For finitely generated �, there are isomorphisms

Dp(�)/(i(�p(�)) + C) 	 H 1(�, �p(�)) and H 1
(p)(�) 	 H 1(�, �p(�)).

Proof. The mapDp(�) → Z1(�, �p(�)) : f �→ [g �→ λ�(g)f − f ] is contin-
uous, with kernel the spaceC of constant functions, and the image ofi(�p(�)) is
exactlyB1(�, �p(�)). Moreover this map is onto because of the classical fact that
H 1(�, F (�)) = 0. �

Before proving Proposition 2 (for which we will actually give two proofs), we
explain how to deduce Theorem 1 from it.

Proof of Theorem 1 from Proposition 2. 1) In view of Lemma 1, the assumption of

Theorem 1 readsH 1(H, �p(H)) = 0. SinceH is non-amenable, by Proposition 1
we haveH 1(H, �p(H)) = 0. By Proposition 2 we deduceH 1(�, �p(�)) = 0. By
Lemma 1 again, we get the conclusion.

2) If H is non-amenable, the result is a particular case of the first part. IfH is
amenable, then so isN , and the result follows from the Cheeger–Gromov vanishing
theorem [CG86]: if a group� contains an infinite, amenable, normal subgroup, then
all L2-Betti numbers of� are zero. �
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Important remark. Cheeger and Gromov [CG86] definedL2-Betti numbers of
a group� without any assumption on�, in particular not assuming� to be finitely
generated. Using their definition, D. Gaboriau has shown us (private communication)

a proof thatb1
(2)(�) = 0 always impliesH 1(�, �2(�)) = 0. As a consequence, part 2)

of Theorem 1 holdseven if H is not finitely generated.

Our first proof of Proposition 2 will require the following lemma, which is classical
for p = 2.

Lemma 2. Let p ∈ [1, ∞[. Let H be a countable group. Let X be a countable set
on which H acts freely. The following statements are equivalent:

i) H is amenable.

ii) The permutation representation λX of H on �p(X), almost has invariant vectors.

Proof. We recall (see [Eym72]) that a group� is amenable if and only if it satisfies
Reiter’s condition(Pp), i.e. for every finite subsetF ⊂ � andε > 0, there exists
f ∈ �p(�) such thatf ≥ 0, ‖f ‖p = 1, and‖λ�(g)f − f ‖p < ε for g ∈ F . In
particular�p(�) almost has invariant vectors.

So if H is amenable, then�p(X) almost has invariant vectors since it contains
�p(H) as a sub-module. This proves (i)⇒ (ii).

To prove (ii)⇒ (i), we assume that�p(X) almost has invariant vectors and prove
in 3 steps thatH satisfies Reiter’s property(P1), so is amenable. So fix a finite subset
F ⊂ H , andε > 0; findf ∈ �p(X), ‖f ‖p = 1, such that‖λX(h)f − f ‖p < ε

2p
for

h ∈ F .
1) Replacingf with |f |, we may assume thatf ≥ 0.

2) Setg = f p, so thatg ∈ �1(X), ‖g‖1 = 1, g ≥ 0. Forh ∈ F , we have:

‖λX(h)g − g‖1 =
∑
x∈X

|f (h−1x)p − f (x)p|

≤ p
∑
x∈X

|f (h−1x) − f (x)|(f (h−1x)p−1 + f (x)p−1)

≤ p
( ∑

x∈X

|f (h−1x) − f (x)|p
) 1

p
( ∑

x∈X

(f (h−1x)p−1 + f (x)p−1)
p

p−1

) p−1
p

≤ p‖λX(h)f − f ‖p

(
2

1
p−1

∑
x∈X

(f (h−1x)p + f (x)p)
) p−1

p

= 2p‖λX(h)f − f ‖p < ε

where we have used consecutively3 the inequalities

3The expert will recognize here the argument to pass from property(Pp) to property(P1), as in [Eym72].
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• |ap − bp| ≤ p|a − b|(ap−1 + bp−1) for a, b > 0,

• Hölder’s inequality,

• (a + b)
p

p−1 ≤ 2
1
p (a

p
p−1 + b

p
p−1 ) for a, b > 0,

and the fact that‖f ‖p = 1.

3) Let (xn)n≥1 be a set of representatives for the orbits ofH in X. Define a
function gn on H by gn(h) = g(hxn), and setG = ∑∞

n=1 gn. ThenG ≥ 0 and
‖G‖1 = ∑

h∈H

∑∞
n=1 g(hxn) = ∑

x∈X g(x) = 1. Moreover, forh ∈ F :

‖λH (h)G − G‖1 =
∑
γ∈H

∣∣∣
∞∑

n=1

(g(h−1γ xn) − g(γ xn))

∣∣∣ ≤ ‖λX(h)g − g‖ < ε

by the previous step. This establishes property(P1) for H . �

First proof of Proposition 2 (homological algebra)

Claim. H 1(H, �p(�)|H ) = 0. Choosing representatives for the right cosets ofH in
�, we identify�p(�)|H in anH -equivariant way with the�p-direct sum⊕�p(H) of
[� : H ] copies of�p(H). Since cohomology commutes with finite direct sums, the
claim is clear if[� : H ] < ∞. So assume that[�, H ] = ∞. If b ∈ Z1(H, �p(�)|H ),
write b = (bk)k≥1 wherebk ∈ Z1(H, �p(H)) for everyk ≥ 1. By assumption, for
eachk, there is a functionfk ∈ �p(H) such thatbk(h) = λH (h)fk − fk for every
h ∈ H . Set

BN(h) = (λHf1 − f1, . . . , λN(h)fN − fN, 0, 0, . . .)

so thatBN ∈ B1(H, �p(�)|H ) andBN converges tob pointwise onH , for N → ∞.

This already shows thatH 1(H, �p(�)|H ) = 0. Notice now that, by Proposition 1 (2),
the assumptionH 1(H, �p(H)) = 0 implies thatH is non-amenable. By Lemma 2
applied toX = �, this means that�p(�)|H does not almost have invariant vectors.
By Proposition 1 (1), we getH 1(H, �p(�)|H ) = 0, proving the claim.

Recall from group cohomology (see e.g. 8.1 in [Gui80]) that, for any�-module
V , there is an exact sequence

0 → H 1(�/N, V N)
i∗→ H 1(�, V )

RestN�−−−−→ H 1(N, V |N)�/N

wherei : V N → V denotes the inclusion. In particular, ifV N = 0, then the restriction
map

RestN� : H 1(�, V ) → H 1(N, V |N)

is injective. We apply this withV = �p(�) (noticing thatV N = 0 asN is infinite).
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Consider then the composition of restriction maps

H 1(�, �p(�))
RestH�−−−−→ H 1(H, �p(�)|H )

RestNH−−−−→ H 1(N, �p(�)|N);
this composition is RestN

� , which is injective as we just saw. On the other hand, by
the claim this composition is also the zero map. SoH 1(�, �p(�)) = 0, as was to be
established. �

Second proof of Proposition 2 (geometry). This proof works under the extra as-
sumption thatH is finitely generated. Fix finite generating setsT for H , S for �,
with T ⊂ S, and consider the Cayley graphG(�, S) and its coboundary operator
d� : F (�) → F (E�). ThenDp(�) = {f ∈ F (�) : d�f ∈ �p(E�)}. Similarly, let
dH be the coboundary operator associated with the Cayley graphG(H, T ).

Fix f ∈ Dp(�); the goal is to show thatf ∈ �p(�) + C. Let (gi)i∈I be a set of
representatives for the right cosets ofH in �, so that� = ∐

i∈I Hgi . For i ∈ I , set
fi(x) = f (xgi) (x ∈ H). Then

‖dH (fi)‖p
p =

∑
x∈H

∑
s∈T

|f (sxgi) − f (xgi)|p

≤
∑
x∈�

∑
s∈S

|f (sx) − f (x)|p

= ‖d�f ‖p < ∞,

i.e.fi ∈ Dp(H). Using our assumption and Lemma 1, we may write

fi = hi + ui

wherehi ∈ �p(H) andui ∈ C. Define functionsh andu on � by h(xgi) = hi(x)

andu(xgi) = ui (x ∈ H).

First claim. h ∈ �p(�). Indeed, sinceH is non-amenable (by Proposition 1), there
exists a constantC > 0 (depending only onp, H , T ) such that for everyi ∈ I :

‖hi‖p ≤ C‖dH (hi)‖p.

Then summing overi we obtain

‖h‖p
p =

∑
i∈I

‖hi‖p
p

≤ Cp
∑
i∈I

‖dH (fi)‖p
p = Cp

∑
i∈I

∑
x∈H

∑
s∈T

|hi(sx) − hi(x)|p

= Cp
∑
i∈I

∑
x∈H

∑
s∈T

|fi(sx) − fi(x)|p = Cp
∑
x∈�

∑
s∈T

|f (sx) − f (x)|p
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≤ Cp
∑
x∈�

∑
s∈S

|f (sx) − f (x)|p

= Cp‖d�(f )‖p
p < ∞.

Second claim. u is constant. Indeed, sincef = h + u, andd�(f ), d�(h) ∈ �p(E�),
we haved�(u) ∈ �p(E�). In particular this implies, for fixed indicesi, j ∈ I :

∞ >
∑
x∈N

|u((gjg
−1
i )xgi) − u(xgi)|p =

∑
x∈N

|u((gjg
−1
i )xgi) − ui |p

=
∑
x∈N

|u(x(gjg
−1
i )gi) − ui |p

sinceN is normal in�. The latter sum is equal to

∑
x∈N

|uj − ui |p < ∞.

SinceN is infinite, this forcesui = uj , i.e.u is constant.
The first and the second claim together prove Proposition 2. �

3. Some results of W. Lück

The following result was obtained by Lück in [Lue94], Theorem 2.1. We recall his
short, elegant argument.

Lemma 3. Let N be a finitely generated group, and let α be an automorphism of N .
Let H = N �α Z be the corresponding semi-direct product. Then b1

(2)(H) = 0.

Proof. The proof depends on two classical properties of theL2-Betti numbers for a
finitely generated group�:

• b1
2(�) ≤ d(�), whered(�) denotes the minimal number of generators of�;

• if 	 is a subgroup of finite indexd in �, thenbk
(2)(	) = d · bk

(2)(�).

Let thenp : H → Z denote the quotient map; forn ≥ 1, setHn = p−1(nZ), a
subgroup of indexn in H . Then:

n · b1
(2)(H) = b1

(2)(Hn) ≤ d(Hn) ≤ d(N) + 1.

Since this holds for everyn ≥ 1, the lemma follows. �
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Proof of Corollary 1. Since�/N is not a torsion group, we find a subgroupH of �,
containingN , such thatH/N is infinite cyclic. SinceN is finitely generated, we have
b1
(2)(H) = 0, by Lemma 3. The result follows then immediately from Theorem 1.

�

Example 1. We point out that Lemma 3 has no analogue inLp-cohomology, with
p �= 2. To see it, letM be a 3-dimensional, compact, hyperbolic manifold which
fibers over the circle. Denote by
g the fiber of that fibration: this is a closed Riemann
surface of genusg ≥ 2. Then the fundamental group� = π1(M) admits a semi-
direct product decomposition� = π1(
g) � Z, so thatH 1

(2)(�) = 0 by Lemma 2.
However

inf {p ≥ 1 : H 1
(p)(�) �= 0} = 2,

as was proven by Pansu [Pan89].

4. Proof of Theorem 2

Denote by∂X the (Gromov) boundary ofX. Let 	 = �o ∩ ∂X be the limit set of�
in ∂X (the closure of�o is taken in the compact setX ∪ ∂X).

SinceX is a CAT(−1) space, its boundary carries a natural metricd (called a
visual metric) which can be defined as follows (see [Bou95], Théorème 2.5.1); for
everyξ andη in ∂X:

d(ξ, η) = e−(ξ |η),

where( · | · ) denotes the Gromov product on∂X based ono, namely

(ξ |η) = lim
(x,y)→(ξ,η)

1

2
(|o − x| + |o − y| − |x − y|).

Observe that there exists a constantB such that for everyg ∈ � there is a point
ξ in ∂X with d(go, [o, ξ)) ≤ B. Indeed this property does not depend on the choice
of the origino. So we chooseo on a bi-infinite geodesic(η1, η2). Thengo belongs
to (gη1, gη2). Now sinceX is Gromov-hyperbolic, one of the two pointsgη1 or gη2
satisfies the claim.

Let u be a Lipschitz function of(∂X, d) which is non-constant on	 ; such
functions do exist since	 is not reduced to a point. Following G. Elek [Ele97], let
f be the function on� defined byf (g) = u(ξg), whereξg is a point in∂X such that
d(g−1o, [o, ξg)) ≤ B.
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Claim. f ∈ Dp(�) for p > max{1, e(�)}. Indeed we have

‖f ‖p
Dp

=
∑
s∈S

∑
g∈�

|f (sg) − f (g)|p =
∑
s∈S

∑
g∈�

|u(ξsg) − u(ξg)|p

≤ C
∑
s∈S

∑
g∈�

[d(ξsg, ξg)]p = C
∑
g∈�

∑
s∈S

e−p(ξsg |ξg)

≤ D
∑
g∈�

e−p|g−1o−o| < +∞,

whereC, D are constants depending only onu, B andS. The details for the first in-
equality in the last line are the following. Observe that|(sg)−1o−g−1o| = |s−1o−o|
is bounded above by an absolute constant. This implies that ifxg andxsg respectively
denote the points on[o, ξg) and[o, ξsg) whose distance fromo is equal to|g−1o−o|,
then |xg − xsg| is bounded above by an absolute constant. Now with the triangle
inequality

|x − y| ≤ |x − xsg| + |xsg − xg| + |xg − y|,
and from the definition of the Gromov product, it follows that

(ξsg|ξg) ≥ 1

2
(|o − xsg| + |o − xg| − |xsg − xg|),

so that(ξsg|ξg) is bounded below by|g−1o − o| plus an absolute additive constant.
This proves the claim.

Since	 has at least 3 points, the group� is non-amenable (namely it is well-
known that	 is a minimal set, and that an amenable group stabilises one or two
points in∂X). So by Proposition 1 and by Lemma 1, we must prove thatf does not
belong toi(�p(�))+ C. Assume it does, thenf (g) tends to a constant number when
the length ofg in � tends to+∞. This contradicts the fact thatu is non-constant
on	. �

Acknowledgements. We thank G. Courtois, A. Karlsson, G. Mislin and M. Puls for
useful comments on the first draft of this paper.

Note added in proof. The following example, suggested by F. Paulin, shows that
Corollary 2 fails for lattices in SO(2, 1). Start with the free groupF2 on two gen-
erators. Embed it as a latticeG in SO(2, 1), so thate(G) = 1. On the other hand,
let Xλ be the regular tree of degree 4, with edge lengthλ > 0. This is a proper
CAT(−1) space. LetF2 act as a properly discontinuous group� of isometries ofXλ,
by viewingXλ as the Cayley tree ofF2. Thene(�) = log 3

λ
, which is less than 1 for

λ large enough.
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