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The macroscopic spectrum of nilmanifolds with an emphasis on
the Heisenberg groups

Constantin Vernicos∗

Abstract. Take a Riemannian nilmanifold, lift its metric on its universal cover. In that way one
obtains a metric invariant under the action of some co-compact subgroup. We use it to define
metric balls and then study the spectrum of the Dirichlet Laplacian. Using homogenization
techniques we describe the asymptotic behavior of the spectrum when the radius of these balls
goes to infinity. This involves the spectrum, which we call macroscopic spectrum, of a so called
homogenized operator on a specific domain. Furthermore we show that the first macroscopic
eigenvalue is bounded from above, by a universal constant in the case of the three dimensional
Heisenberg group, and by a constant depending on theAlbanese torus for the other nilmanifolds.
We also show that the Heisenberg groups belong to a family of nilmanifolds, where the equality
characterizes some pseudo-left-invariant metrics.
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1. Introduction and statement of the results

This article deals with geometric properties of large balls in periodic Riemannian
manifolds. A Riemannian manifold(Nn, g) is periodic if it possesses a discrete
group� of isometries with a compact fundamental domain. Givenx0 ∈ Nn, we are
interested in the asymptotic behavior of two geometric invariants of the metric ball,
Bg(x0, ρ), with radiusρ and centered atx0, asρ tends to∞:

• the Riemannian volume Volg(Bg(x0, ρ));

• the spectrum of the Dirichlet Laplacian onBg(x0, ρ).

Our approach consists in rescaling the metric, i.e., replacing the original Rieman-
nian metricg onN with gρ = 1/ρ2g, so thatBg(x0, ρ) becomesBgρ (x0,1), and
applying homogenization techniques to the family of Riemannian manifolds with
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boundaryNρ = (Bgρ (x0,1), gρ). There are several notions of convergence of met-
ric spaces (see [Gro81b], [Gro93]). It turns out that the ballsNρ converge, in the
Gromov–Hausdorff sense, to a compact metric space if and only if the group� con-
tains a finite index subgroup�′ that is nilpotent, torsion-free, and finitely generated.
This follows from a celebrated result of M. Gromov [Gro81a], characterizing finitely
generated groups of polynomial growth, completed by P. Pansu [Pan83] and Van den
Dries–Wilkie [vdDW84]. Therefore, actions of nilpotent groups seem to provide the
proper setting for application of homogenization techniques in Riemannian geome-
try. According to Malcev, such a group uniquely embeds into a simply connected
nilpotent Lie groupG, andG/� is called a nilmanifold. In the sequel, we assume
thatN = G is equipped with a�-invariant Riemannian metric. The manifoldNn

can be viewed as the Riemannian universal covering ofMn = G/� equipped with
the quotient metric.

Although the results presented here are geometric in nature, we use homogeniza-
tion techniques. Hence this article can be read under two different lights.

1.1. From the geometric point of view: The Riemannian volume and the Dirichlet
spectrum ofBg(x0, ρ) are linked by Weyl’s asymptotic formula, which states that if
λk(ρ) is the kth eigenvalue of the ball of radiusρ and Vol(ρ) is its volume, then as
k → ∞, there exists a universal constantc(n) such that

λk(ρ) ∼ c(n)
k2/n

Vol2/n(ρ)

One could expect that the asymptotic behaviors of the volume and the Dirichlet
spectrum when the radius of the balls increases would be related. This is not the case;
we shall see that they are described by two different limit metrics.

Problem 1. Make the asymptotic behavior of the volume of a ball with respect to its
radius, precise, and extract geometric information from it.

In the case of nilmanifolds there is a precise equivalent to the volume of balls
given by P. Pansu [Pan83], which depends on the algebraic structure. LetG1 = G,
andGi+1 = [Gi,G]; thendh = ∑∞

i=1 dimGi is called thehomogeneous dimension
of G, and

Vol(ρ) ∼ Asvol(g)ρdh .

The constant Asvol(g) is usually called theasymptotic volume. In the particular case
of tori, D. Burago and S. Ivanov [BI95] gave a lower bound on the asymptotic volume,
which is achieved if and only if the metric is flat (see also [Ver04] for an alternate
proof in dimension 2 using homogenization theory and [Bab91] for the first proof in
dimension 2).

To the nilpotent Lie groupG, we can associate its limit group at infinity,G∞,
which is nilpotent and graded. Furthermore, thanks to a theorem of K. Nomizu
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[Nom54],H1(M,R) can be identified with a subspace of the Lie algebra ofG∞,
hence to a left invariant distributionH of vector fields overG∞. Thus to any norm
onH1(M,R)we can associate a left-invariant sub-finslerian structure onG∞, hence,
thanks to Chow’s theorem on accessibility, a left-invariant distance onG∞. For a
Euclidean norm we obtain a left-invariant sub-Riemannian structure. The metricg

induces two important norms onH1(M,R). The first one, calledthe stable norm,
comes from the sup norm on the 1-forms overM, which induces a norm (usuallynot
Euclidean) onH 1(M,R), and by duality onH1(M,R). The second one, called the
Albanese metric, comes from theL2 normalized norm on 1-forms, which induces
a Euclidean norm onH 1(M,R), and by duality onH1(M,R). The two distances
induced by these two metrics onG∞ are often said to be ofCarnot–Carathéodory
type. We call them, respectively, the stable distance and the Albanese distance.

The following inequality, if not the best one, gives a hint of what we might expect
for all nilmanifolds.

Theorem 1. Let (Mn, g) be a nilmanifold. LetG∞ be the limit group at infinity
associated to the universal covering ofMn. Then the asymptotic volume ofMn

satisfies the following:

1. Asvol(g) ≥ Volg(M
n)
µ(Bal(1))

µ(DM)
;

2. in case of equality the stable norm coincides with the Albanese metric.

Here,µ is a Haar measure onG∞, Bal(1) is the unit ball of the Albanese distance
centered at the unit element, andDM is the image inG∞ of a fundamental domain
on the universal covering ofMn, by the canonical projection.

Concerning the spectrum of the Laplacian on balls, a theorem of R. Brooks [Bro85]
(see also Sunada [Sun89]) states that the bottom of the spectrum on the universal cover
is zero if and only if the fundamental group is amenable. The first eigenvalue goes
to the bottom of the spectrum as the radius of the ball goes to infinity. R. Brooks’s
theorem implies, in our case, as the fundamental group is nilpotent hence amenable,
that the first eigenvalue goes to zero as the radius goes to infinity.

Problem 2. Make the speed of convergence to the bottom of the spectrum on the
universal cover with respect to the radius, precise, and extract more geometric infor-
mation from the spectrum of large balls.

To state our results to that problem, let us remark that to the Albanese metric we
can also associate a kind of Laplacian�∞ onG∞. �∞ is usually called theKohn
Laplacian. It is a dilation invariant hypoelliptic second order differential operator,
which is symmetric and without a constant term.
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Theorem 2. Let (Mn, g) be a nilmanifold, with universal cover̃M, and letx ∈ M̃.
LetBg(x, ρ) be the corresponding Riemannian ball of radiusρ and centerx ∈ M̃,
and letλ1(Bg(x, ρ)) be the first eigenvalue of the Laplacian for the Dirichlet problem
onBg(x, ρ). Then

1. limρ→+∞ ρ2λ1(Bg(x, ρ)) = λ∞
1 ≤ λ1(g,Alb);

2. in case of equality, the stable norm coincides with the Albanese metric, hence all
harmonic1-forms are of constant length.

Here,λ1(g,Alb) is the first eigenvalue of the Kohn Laplacian arising from the Al-
banese metric for the Dirichlet problem onBal(1), the unit ball of the Albanese
distance centered at the unit element. Furthermore, for tori this is a constant depen-
dent only on the dimension, and for the3-dimensional Heisenberg group it is also
independent of the metric.

In the case of a 2-step nilmanifold with a 1-dimensional center, we can determine
for which metrics equality holds. We call these metrics pseudo-left-invariant (see
Section 6 for the definition). One of their main properties being that they arise as
fiber metrics over a flat torus (i.e. the nilmanifold submerges onto a flat torus).

Theorem 3. In the case of a2-step nilmanifold whose center is one dimensional, the
Albanese metric and the stable norm coincide if and only if the metric is pseudo-left-
invariant.

Actually this behavior is shared by all the eigenvalues, and Theorem 2 is partially
a consequence of the following:

Theorem 4. Let (Mn, g) be a nilmanifold, with universal cover̃M, and letx ∈ M̃.
LetBg(x, ρ) be the corresponding Riemannian ball of radiusρ, and centerx ∈ M̃
and letλi(Bg(x, ρ)) be theith eigenvalue of the Laplacian for the Dirichlet problem
onBg(x, ρ).

Then there exists an hypoelliptic operator�∞ (the Kohn Laplacian of the Al-
banese metric), whoseith eigenvalue for the Dirichlet problem on the unit ball of the
stable distance(centered at the unit element) is λ∞

i , and such that

lim
ρ→∞ ρ

2λi(Bg(ρ)) = λ∞
i .

We call(λ∞
i )i∈N the macroscopic spectrum.

1.2. From the point of view of analysis, let

L = − ∂

∂xi
aij (x)

∂

∂xi
,
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be a uniformly elliptic differential operator onRn, and assume that the coefficients
aij are periodic, i.e.,aij (x+ k) = aij (x) for anyk ∈ Z

n andC∞. After rescaling we
get a family of operators

0< ε ≤ 1, Lε = − ∂

∂xi
aij

(
x

ε

)
∂

∂xi
.

We can associate, to this family of operators, a so-called homogenized operator,

L0 = −qij ∂
∂xi

∂

∂xj
.

Now, if D is a domain ofRn, then we can consider the Dirichlet problem for this
family of operators, and hence we have eigenvalues and eigenfunctions, denoted
respectively by

λε0 ≤ λε1 ≤ λε2 ≤ · · · and φε0, φ
ε
1, φ

ε
2, . . . .

We now have the following problem.

Problem 1′. Study the convergence ofλεi andφεi to λ0
i andφ0

i , respectively, as
ε → 0.

In the case ofRn, this is the subject of Chapter III of [OSY92], and Chapter 11
of [JKO94], and of [CD99].

The operatorsLε define Riemannian distancesdε . So another related problem is
the following:

Problem 2′. Study the relationship between the distancedε and the distanced0.

The papers [Dav93], [Nor94] and [Nor97] are related to this problem in conjunc-
tion with the existence of bounds on the heat kernel (see also [KS00] for a probabilistic
approach).

The present paper is concerned with the problem above, whenR
n is replaced by

a nilpotent Lie groupN andZ
n by a uniform lattice� of N . Homogenization in this

context, whenN is stratified (graded), has been the subject of [BBJR95], [BMT96]
and [BMT97].

However our paper differs in three ways from the previous work. First of all,
we are not dealing with a stratified group, hence we must not only homogenize the
operator, but also the space, by using its associated graded Lie group. Secondly we
begin by studying a family of elliptic operators, which happens to have an hypoel-
liptic homogenized operator. And finally, our domain moves with the operator. The
relationship with the long time asymptotics of the heat kernel is shortly studied in
Section 8.
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2. Geometry of nilmanifolds

2.1. Nilpotent Lie algebras. Let u be a Lie algebra. One says that it is nilpotent if
the sequence defined by

u1 = u, ui+1 = [ui , u],
is such that for somek ∈ N, uk+1 = {0}. Let r be the smallest of suchk; then we say
thatu is anr-step nilpotent Lie algebra.

A distinguished family of nilpotent Lie algebras consists of the graded ones. A
nilpotent Lie Algebrau is graded if it admits a decomposition:

u = V1 ⊕ · · · ⊕ Vr , (1)

such that

1. Vi is a complement ofui+1 in ui ;

2. [Vi, Vj ] ⊂ Vi+j .
It is quite important in our work that to such a graduation one can attach a one-

parameter group of automorphisms(τρ)ρ∈R+ called dilations such that:

τρ(x) = ρix for all x ∈ Vi.
In fact, the existence of such a family of dilations is equivalent to the existence of a
graduation. These dilations play the same role as the dilations in Euclidean space.

Not all nilpotent Lie algebras are graded. But to each nilpotent Lie algebra, we
can associate a graded nilpotent one in the following way:

u∞ =
r∑
i=1

ui/ui+1,

the Lie bracket being induced. We will denote byπ̃ : u → u∞ the induced projection
and byτ̃ρ the dilations inu∞.

TheHomogeneous dimension ofu is the number

dh =
r∑
i=1

i dim(ui/ui+1).

There is another way to make that graded Lie algebra appear: start with a nilpotent
Lie algebrau, remark that for alli, ui+1 ⊂ ui , and build a basis(Xi)i of u by taking
independent vectorsXd1+···+di−1+1, . . . , Xd1+···+di−1+di such that the vector spaceVi
that they span is a complement ofui+1 in ui . Hence the direct sum (1) holds. We
shall denote by prVi the projection induced onVi by this direct sum. Now we define
a functionτρ : u → u by

τρ(Xp) = ρα(p)Xp,
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with α(p) = i if di−1 < p ≤ di , andd0 = 0.
We obtain a new Lie algebrauρ by modifying the Lie bracket in the following

way: for anyX andY in uρ , [X, Y ]ρ = τ1/ρ[τρX, τρY ]. Thusτρ becomes a Lie
algebra isomorphism fromuρ = (u, [ ·, ·]ρ) to (u, [ ·, ·]).

Now asρ goes to infinity,uρ goes tou∞, in the sense that fori, j = 1, . . . , n, we
have

[Xi,Xj ]∞ = prVα(i)+α(j)[Xi,Xj ].
Notice that alluρ have the same graded Lie algebra. We will denote byπ̃ρ the

projection fromuρ to u∞ (in fact we could avoid the subscript iñπρ , because we can
identify the Lie algebras as linear spaces).

Notice that if the Lie algebra is graded, then[X, Y ]ρ = [X, Y ], andτρ is a Lie
algebra automorphism. Otherwise, remark that for allX ∈ uρ

π̃(τρ(X)) = τ̃ρ(π̃ρ(X)).

2.2. Remarks on exponential coordinates. Let G be the simply connected Lie
group associated with the nilpotent Lie algebrau. For nilpotent Lie groups, the
exponential is a diffeomorphism between the Lie algebra and the Lie group, hence
thanks to the exponential coordinates, we can identifyG, as a differential manifold,
with someR

n:

φ : R
n → G, φ : x = (x1, . . . , xn) �→ expx1X1 . . .expxnXn.

LetX∗
i be the dual form ofXi .

Moreover, we denote byδρ the following family of dilations:

δρ(x1, . . . , xn) = (ρα(1)x1, . . . , ρ
α(n)).

Notice also thatdδρ = τρ . We define a family of group products∗ρ by setting

x ∗ρ y = δ1/ρ[δρ(x)δρ(y)].
Finally

x ∗∞ y = lim
ρ→∞ x ∗ρ y.

Thus we get a family of nilpotent Lie groupsGρ = (G, ∗ρ), 0 < ρ ≤ ∞, whose
Lie algebras are isomorphic, respectively, to the algebrasuρ , 0 < ρ ≤ ∞. We
also denote byπρ : Gρ → G∞ the function which sendsx ∈ Gρ to x ∈ G∞, i.e.,
πρ = φ∞ � φ−1

ρ (and to simplifyπ1 = π ).
Observe that for 1≤ j ≤ d1, thexj live onG/[G,G].
If e ∈ G is the unit element andX ∈ u, then forρ ∈ R, Xρ will be the∗ρ left

invariant field inGρ such thatXρ(e) = X(e). Thus to the basis(Xi) defined in 2.1,
we will associate the∗ρ left invariant fields(Xρi ). Notice also that

dδρ(X
ρ
i ) = τρ(X

ρ
i ) = ρα(i)Xi .
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We also define∇H by

∇Hf = (X∞
1 · f, . . . , X∞

d1
· f ).

3. Asymptotic behavior of the distance

3.1. The stable norm

3.1.a. Recall that(Mn, g) is a manifold whose universal covering is a simply con-
nected nilpotent Lie groupG. We shall denote bỹg the lifted metric onG. On the
graded nilpotent Lie groupG∞ associated toG, we obtain a natural distribution by
left multiplication ofV1 = u1/u2 ⊂ u∞. We shall call that distributionhorizontal
and denote it byH .

Let us remark that since the Lie algebrau∞ is generated byV1, a basis ofV1
satisfies the so called Chow (or Hörmander) condition in the Lie groupG∞. Let us
recall what thestable normis:

Definition 5. Let ‖ · ‖∗∞ be the quotient of the sup norm on 1-forms, arising from
the metricg, on the cohomologyH 1(Mn,R). Then its dual norm on the homology
H1(M

n,R), is called the stable norm and we denote it by‖ · ‖∞.

By a theorem of K. Nomizu [Nom54],H1(M
n,R) ≡ V1, thus we can transport

the stable norm onH . Now the Rashevsky–Chow theorem (see Theorem 2.4, p. 15, in
[BR96]) asserts that two points ofG∞ can be joined by a curve tangent toH (usually
called an admissible curve). For an admissible curveγ : [a, b] → G∞, we consider
its stable lengthl∞(γ ) = ∫ b

a
‖γ̇ (t)‖∞dt . Hence we can define a distanced∞, which

we call the stable distance, between two points ofG∞, by taking the infimum of the
stable lengths of admissible curves between these points. This kind of distance is
usually said to be of Carnot–Carathéodory type. We shall call the unit ball for the
stable distance centered at 0 the stable ball and denote it byB∞(1).

3.1.b. For anyx, y ∈ Gρ , let us introducedρ(x, y) = dg(δρx, δρy)

ρ
. Then the

work of P. Pansu [Pan83], implies that for anyx, y ∈ Gρ

lim
ρ→∞

d∞(πρ(x), πρ(y))
dρ(x, y)

= lim
ρ→∞

d∞(π � δρ(x), π � δρ(y))
dg(δρx, δρy)

= 1.

This implies the simple convergence of the functionalsx �→ dρ(0, π−1
ρ (x)) toward

x �→ d∞(0, x) onB∞(1)\∂B∞(1).
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3.1.c. Remark that the distancedρ is also given by the metricgρ onGρ , obtained
by rescaling the pull back of the metricg̃ onG in the following way:

gρ = 1

ρ2 (δρ)
∗g̃.

3.2. Gromov–Hausdorff convergence of balls

3.2.a. Recall that a family of spacesXn, endowed with metricsdn and measures
µn, is said to converge in the Gromov–Hausdorff Measured sense toward(X, d, µ) if
and only if there is a family(fn)n∈N, where for alln, fn is anµn measurable function
fromXn toX, and there is a sequence(εn), decreasing to 0, such that

1. theεn neighborhood offn(Xn) in X isX;

2. for anyx, y ∈ Xn, |dn(x, y)− d(fn(x), fn(y))| ≤ εn;

3. for any continuous functionu : X → R we have∫
Xn

u � fndµn →
∫
X

udµ.

3.2.b. Letµρ (resp.µg) denote the Riemannian volume associated togρ (resp.g),
and letµ∞ be defined as follows. LetD� be a fundamental domain inG andµ a
Haar measure onG∞, then (recall thatπ is the canonical projection fromG → G∞)

µ∞ = µg(D�)

µ(π(D�))
µ.

Adding to this that for any compact domainA inG∞, whose boundary is of Haar
measure 0, and any functionf ∈ L1(A,µ∞), we have

lim
ρ→∞

∫
π−1
ρ (A)

f (πρ(x))dµρ(x) =
∫
A

f dµ∞. (2)

Theorem 6. The family of metric spaces(Bρ(1), dρ, µρ) converges in the Gromov–
Hausdorff measure topology to(B∞(1), d∞, µ∞) asρ goes to infinity.

To prove the convergence (2) letA be a domain inG∞, thenπ−1
ρ (A) belongs to

Gρ andδρ � π−1
ρ (A) belongs toG. We will denote by∗ the law group ofG. Let

z1, . . . , zk andζ1, . . . , ζl be elements of� such thatζj ∗D� ∩ δρ � π−1
ρ (A) �= ∅ for

anyj , and ⋃
i

zi ∗D� ⊂ δρ � π−1
ρ (A) ⊂

⋃
j

ζj ∗D�.
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Let us notice that

µg(D�) = µg(D�)

µ(π(D�))
µ(π(D�)) = µ∞(π(D�)).

Then we get∑
i

inf
δρ�π−1

ρ (x)∈zi∗D�
f (x)µ∞(π(D�)) ≤

∫
δρ�π−1

ρ (A)

f (δ̃1/ρ � π(x))dµg(x)

≤
∑
j

sup
δρ�π−1

ρ (x)∈ζj∗D�
f (x)µ∞(π(D�)).

Dividing both sides byρdh (see 2.1), we get:∑
i

inf
x∈πρ�δ1/ρ(zi∗D�)

f (x)µ∞(δ̃1/ρ � π(D�)) ≤
∫
π−1
ρ (A)

f (πρ(x))dµρ

≤
∑
j

sup
x∈πρ�δ1/ρ(ζj∗D�)

f (x)µ∞(δ̃1/ρ � π(D�)).

Then the extremal terms are Riemann sums that converge toward
∫
A
f dµ∞.

3.2.c. We are now able to define and identify the asymptotic volume by

Asvol(g) = lim
ρ→∞

µg(Bg(ρ))

ρdh
= µ∞(B∞(1)).

3.3. Convergence of the elements of the set L2

3.3.a. For ρ ∈ R, L2
ρ = L2(Bρ(1), dµρ) will be the space of square integrable

functions over the ballBρ(1), which is a Hilbert space with the scalar product

(u, v)ρ =
∫
Bρ(1)

uv̄ dµρ .

Its norm will be denoted by| · |ρ .
Let L2 be the set of nets(uρ)ρ∈R+ such that for 1≤ ρ ≤ ∞, uρ ∈ L2

ρ . Thanks
to the Gromov–Hausdorff measured convergence of balls, we can give a meaning to
the sentence “the net(uρ)ρ∈R+ converges” in the following way.

Definition 7. Let (uρ)ρ∈R+ be an element ofL2, we say that it strongly converges
to u∞ if and only if there exists a net(vα) in C0(B∞(1)) strongly converging tou∞
in L2∞, and such that

lim
α

lim sup
ρ

|vα � πρ − uρ |ρ = 0.
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This allows us to introduce the weak convergence as follows.

Definition 8. Let (uρ)ρ∈R+ be an element ofL2. We say that it converges weakly
to u∞, if for every strongly convergent net(vρ)ρ∈R+ of L2, we have

lim
ρ→+∞(uρ, vρ)ρ = (u∞, v∞)∞.

For the properties of these convergences see our previous work [Ver04] and
[Ver01]. It suffices to say that they satisfy the usual properties of weak and strong
convergence inL2.

3.3.b. We shall say that a functionf is periodic with respect to� (the co-compact
subgroup) if for everyγ ∈ � andx ∈ G we havef (γ ∗ x) = f (x). Thus the metric
g̃ lifted fromMn toG is periodic with respect to�.

To finish this section remark, that it is not difficult to adapt the proof of the limit
(2) to obtain (see [BBJR95] page 431).

Lemma 9. Let h be a function that is periodic with respect to� onG. Let hρ be
defined onGρ byhρ(x) = h(δρx). Then(hρ)ρ∈R+ weakly converges inL2 toward

h∞ = 1

µg(D�)

∫
D�

hdµg.

I.e. for anyuρ → u∞ strongly inL2, we have∫
Bρ(1)

uρhρdµρ → h∞
∫
B∞(1)

u∞dµ∞.

4. Behavior of the eigenvalues: setting

4.1. The Albanese metric

4.1.a. Let D� be a fundamental domain for the action of� onG. Let χi be the
unique solution (up to an additive constant) of

�χi = �xi onD�, for 1 ≤ i ≤ r,

that is periodic with respect to�.
Let us define the operator�∞ by

�∞f = − 1

Volg(M)

∑
1≤i,j≤d1

(∫
D�

gij −
n∑
k=1

gikXk · χj dµg
)
X∞
i ·X∞

j f (3)

= −
∑

1≤i,j≤d1

qijX∞
i ·X∞

j f . (4)
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Remark thatηj (x) = χj (x)− xj is a harmonic function onG, and by construction
so are the 1-formsdηi on the nilmanifold. It is not difficult to show the following.

Proposition 10. Let 〈·, ·〉2 be the scalar product induced on1-forms by the Rieman-
nian metricg. Then

qij = 1

Vol(g)
〈dηi, dηj 〉2 = qji .

Thus�∞ is an Hypoelliptic operator.

4.1.b. Recall that thanks to Nomizu’s work [Nom54],H1(M
n,R) ≡ V1, hence by

duality we get that the dimension ofH 1(Mn,R) isd1. Remark that(qij ) is the matrix
of theL2 normalized scalar product on harmonic 1-forms, written in the basis(dηi),
hence onH 1(Mn,R) by Hodge’s theorem (whose norm will be written‖ · ‖2). By
duality it gives a scalar product onH1(M

n,R) (whose norms will be written‖ · ‖∗
2).

The norm‖ · ‖∗
2 induces another Carnot–Carathéodory metric, which we shall

call the Albanese metric and denote bydal, as follows. Take onHe ≡ H1(M,R)

(the horizontal subspace of the tangent space at the unit element) an orthonormal
basisY1(e), . . . , Yd1(e) for ‖ · ‖∗

2. It induces a left-invariant orthonormal frame
field on H , and for any admissible curveγ : [a, b] → G∞, we have thaṫγ (t) =∑d1
i=1αi(t)Yi(γ (t)). Then theAlbanese length ofγ is lal(γ ) = ∫ b

a

(∑d1
i=1α

2
i (t)

)1/2
dt ,

and the Albanese distance between two points is the shortest Albanese length among
all admissible curves joining them. A comparison of theL2 norm and theL∞ norm
gives the following

Proposition 11. For every1-formα andγ ∈ H1(M
n,R) we have

‖α‖2 ≤ ‖α‖∗∞ and ‖γ ‖∞ ≤ ‖γ ‖∗
2. (5)

In other words the unit ballBal(1) of the Albanese metricdal is included inB∞(1).

Proof. Forα a 1-form we have

‖α‖2 =
(

1

Volg(M)

∫
M

|α|2dµg
)1/2

≤ sup
x∈M

|α(x)| = ‖α‖∗∞.

Hence our proposition follows, first by passing to the quotient and by duality, and
finally by integrating over admissible paths. �

4.2. The eigenvalues, at last! All the balls considered here, will be centered at a
fixed pointx0 of the universal covering ofMn = (G/�, g). We study the eigenvalues
of the Dirichlet problem onBg(ρ), the geodesic ball of radiusρ:{

�φ = λφ onBg(ρ);
φ = 0 on∂Bg(ρ).
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It is well known that the eigenvalues are a discrete family accumulating at infinity.
We shall denote them byλ1(ρ) ≤ λ2(ρ) ≤ · · · ≤ λi(ρ) . . . .

R. Brooks’s theorem [Bro85] on the first eigenvalue of the whole group implies
that asρ goes to infinity,λ1(ρ) → 0. We are going to estimate how fast it converges
in our case.

4.2.a. On eachGρ (see 3.1.c), we pulled back the lifted metric ofMn onG, g̃, and
rescaled it in the following way

gρ = 1

ρ2 (δρ)
∗g̃.

This gives a net of Riemannian manifolds(Gρ, gρ)ρ∈R+ . Let Bρ(1) be the unit
geodesic ball for the metricgρ , and consider the Dirichlet problem for�ρ the Lapla-
cian associated togρ , i.e., {

�ρφ = ψ onBρ(1);
φ = 0 on∂Bρ(1).

To a functionf from Bg(ρ) to R let us associate a functionfρ on Bρ(1) by
fρ(x) = f (δρ ·x). Then it is an easy calculation to see that for anyx ∈ Bρ(1),

ρ2(�f )(δρ ·x) = (�ρfρ)(x).

This implies that the eigenvalues of�ρ onBρ(1) are exactly the eigenvalues of
� onBg(ρ) multiplied byρ2.

Enlightened by what happens on tori we would like to show that the net of re-
solvents of the Laplacians(�ρ)ρ∈R+ compactly converges towards the resolvent of
�∞, which implies the convergence of the spectrum towards the spectrum of�∞ for
the Dirichlet problem onB∞(1) (see Theorem 15, 17 and 21 of [Ver04]).

4.3. Upper bound on the eigenvalues, lower bound on the asymptotic volume
and the equality cases. Recall thatBal(1) is the unit ball for the Albanese metric
on G∞, centered at the unit element. LetD be a bounded domain ofG∞, and
denote byλ∞

i (D) theith eigenvalue of�∞ onD for the Dirichlet problem. Then by
Proposition 11, we haveB∞(1) ⊃ Bal(1). Thus by the min-max property, for anyi,
we obtain

λ∞
i (B∞(1)) ≤ λ∞

i (Bal(1)). (6)

Following the maximum principle (see J.-M. Bony [Bon69]), equality holds if and
only if the two balls coincide, and thus the norms in Proposition 11 also coincide.
The same argument also shows that we have equality in the following estimate if and
only if the stable norm and the Albanese metric coincide.
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Proposition 12. Let (Mn, g) be a nilmanifold. LetG∞ be the limit group at infinity
associated to the universal covering ofMn. Then the asymptotic volume ofMn

satisfies the following inequality:

Asvol(g) ≥ µg(M
n)
µ(Bal(1))

µ(π(D�))
.

Here,µ is a Haar measure onG∞, Bal(1) is the unit ball for the Albanese distance
andD� a fundamental domain on the universal covering ofMn.

Proof. From 11, for any Haar measureµ, one gets the following inequality:

µ(Bal(1)) ≤ µ(B∞(1)).

We can conclude by taking the Haar measureµ∞ for µ (see Section 3.2), giving the
asymptotic volume. �

5. Homogenization and proof of Theorem 4

The first step consists in showing the convergence of the metric geodesic balls with
respect to the Gromov–Hausdorff measure topology (completed in 3.2).

5.1. Asymptotic compactness

5.1.a. Let us now define the various functional spaces involved. Recall (see 3.3.a)
that for ρ ∈ R

+
, L2

ρ = L2(Bρ(1), dµρ) is the Hilbert space of square integrable
functions over the ballBρ(1) with the norm| · |ρ .

5.1.b. Following the usual nomenclature, we will be interested in the following
spaces, for anr-step nilmanifold (see Section 2.1):

H 1
ρ (Bρ(1)) = {

v | v,Xρi · v ∈ L2(Bρ(1), dµρ), 1 ≤ α(i) ≤ r
}

(7)

(resp. H 1∞(B∞(1)) = {
v | v,X∞

i · v ∈ L2(B∞(1), dµ∞), 1 ≤ i ≤ d1
}
). (8)

These spaces become Hilbert spaces when endowed with the quadratic forms
‖ · ‖ρ , defined by

‖v‖2
ρ = |v|2ρ +

∑
1≤α(i)≤r

‖Xρi · v‖2
ρ (9)

(resp. ‖v‖2∞ = |v|2∞ +
∑

1≤i≤d1

‖X∞
i · v‖2∞). (10)
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We will denote byH 1
ρ,0(Bρ(1)) the closure inH 1

ρ (Bρ(1)), with respect to the norm
‖ · ‖ρ , of the space ofC∞(Bρ(1)) functions with compact support inBρ(1).

5.1.c. We can define a self adjoint operator onL2
ρ , whose resolvent will beRρλ

forλ ∈ R, thanks to the Friedrichs extension of the Laplacian (sub-Laplacian for
�∞) defined onH 1

ρ,0(Bρ(1)), endowed with the following quadratic form

‖v‖2
ρ,0 = |v|2ρ + (v,�ρv)ρ .

Now for a bounded net in
(
H 1
ρ,0(Bρ(1))

)
ρ∈R+ with respect to these quadratic forms

we have the following Lemma.

Lemma 13. Let (uρ)ρ∈R+ be a net withuρ ∈ H 1
ρ,0(Bρ(1)) for everyρ ≥ 1, and

assume the existence of a constantC such that for everyρ ≥ 1, we have

‖uρ‖ρ,0 ≤ C.

Then there is sub-net which is strongly convergent inL2.

Proof. LetB be a compact set such that
⋃
ρ∈R+ πρ(Bρ(1)) ⊂ B ⊂ G∞. We are going

to show that the strong convergence inL2(B,µ∞) implies the strong convergence in
L2. Then the compact embedding ofH 1∞(B) in L2(B,µ∞) will conclude the proof.

Let us first notice that the periodicity with respect to�, and the co-compactness
of � gives the existence of two constantsα andβ such that (we suppose the norms
are defined onB, and identifyB andπ−1

ρ B)

α|v|∞ ≤ |v|ρ ≤ β|v|∞ .

Let us start by taking a net(vρ), strongly converging inL2(B,µ∞) to v∞. We also
assumevρ � πρ ∈ H 1

ρ,0(Bρ(1)) for everyρ and is zero outsideBρ(1) (because it is
all we need).

First we will prove thatv∞ ∈ L2∞ (we mean that, outsideB∞(1), v∞ can be
considered equal to zero), indeed, the strongL2 convergence implies the existence of a
subnet of(vρ)which simply converges almost everywhere tov∞. Hence the Gromov–
Hausdorff convergence implies thatv∞ is zero almost everywhere onB\B∞.

Thus, let us takecp ∈ C∞
0 (B∞(1)), p ∈ N, such that(cp)p∈N is a sequence of

functions strongly converging tov∞ in L2∞. We have

|cp � πρ − vρ � πρ |ρ ≤ β|cp − v∞|∞ + γ |v∞ − vρ |∞.

Now letε > 0. Then forp large enough,β|cp − v∞|∞ ≤ ε. We fixp large enough,
and takeρ large enough for the second term to converge to 0, which gives us the
strong convergence we needed (see Definition 7).
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Now to conclude, observe that from the assumptions, the net(uρ �π−1
ρ ) (if need be

we extend this function by zero outsideBρ(1)) is bounded inH 1∞(B), hence using the
compact embedding ofH 1∞(B) in L2(B,µ∞) (with the right regularity assumption
on the boundary ofB), we can extract a strongly converging net inL2(B,µ∞) and
by what we just did inL2. �

5.2. Compact convergence of the resolvents. Forλ > 0 andρ > 1, letaρλ (u, v) =
(�ρu, v)ρ + λ(u, v)ρ andGρλ be the operator fromL2

ρ toH 1
ρ,0 ⊂ L2

ρ such that

a
ρ
λ (G

ρ
λf, φ) = (f, φ)ρ for all φ ∈ H 1

ρ,0. (11)

For anyu, v ∈ H 1∞,0, let

a∞
λ (u, v) =

∫
B∞(1)

qij X∞
i u X

∞
j v dµ∞ + λ(u, v)∞.

Then we defineGλ : L2∞ → H 1∞,0, by

a∞
λ (GλF,�) = (F,�)∞ for all � ∈ H 1∞,0. (12)

The aim of this part is the following theorem, after noticing thatR
ρ
λ = −Gρ−λ and

R∞
λ = −G−λ.

Theorem 14. For everyλ < 0, the net of resolvents(Rρλ )ρ∈R+ of the net of Laplacians
(�ρ)ρ∈R+ converges compactly toR∞

λ , the resolvent of�∞ from the homogenized
problem, i.e, for any net(uρ)ρ∈R+ of L2 weakly converging, the net(Rρλ · uρ)ρ∈R+
of L2 strongly converges toR∞

λ · u∞.

The proof is an adaptation of Tartar’s method of oscillating test functions (see
Chapter 8 of [CD99] for the classical method).

Proof. First step: Let fρ be a weakly convergent net tof in L2. Then up to subnets

uρ = G
ρ
λfρ → ũλ strongly inL2; (13)

Pρ = (gijρ )∇Gρλfρ → P̃λ weakly inL2. (14)

One obtains (13) because the net(fρ)ρ∈R+ is uniformly bounded inL2, and for
all ρ ∈ R, fρ is also bounded inH−1

ρ , the dual space ofH 1
ρ,0. Thus thanks to

equality (11) and Lemma 13, we can extract a strongly converging net inL2 from
the uniformly bounded net(Gρλfρ)ρ∈R+ (with respect to the norms(‖ · ‖ρ,0)ρ∈R+).
To get (14), simply remark that(Pρ)ρ∈R+ is also bounded inL2.
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Now for anyφ∞ ∈ L2∞, by passing to the limit in equation (11), we obtain∫
B∞(1)

P̃λ ·∇Hφ∞ dµ∞ + λ(u∗
λ, φ∞)∞ = (f, φ∞)∞. (15)

Before passing to the next step, remark thatP̃λ is horizontal. Indeed denoting by
P iρ andP iλ the coordinates ofPρ andP̃λ, we have

P iρ = (gijρ )∇Gρλfρ = ρ2−α(i)−α(j)(gij (δρx))∇Gρλfρ .

So if α(i) ≥ 2, then this net of coordinates strongly converges to 0 inL2, because
(gij (δρx))∇Gρλfρ is also bounded for anyρ ∈ R

+.

Second step: This step consists in showing̃Pλ = (qij )∇H ũλ onB∞(1), as it induces
ũλ = Gλf .

We just give the ingredient needed to copy the classical proof (see also [Ver04],
section 4.3).

Considerχk(y) (see 4.1.a) such that its mean value on a fundamental domain is
zero, and for everyk = 1, . . . , d1, define the oscillating function

wkρ(x) = xk − 1

ρ
χk(δρx). (16)

Then we have

wkρ → xk strongly inL2. (17)

Using the usual trick in Tartar’s method, we obtain for everyϕ ∈ C∞
0 (B∞(1))

and forρ large enough, for the support ofϕ to be inπρ(Bρ(1)):∫
Bρ(1)

gijρ
(
X
ρ
j uρ(X

ρ
i (ϕ � πρ))wρ −X

ρ
j wρ(X

ρ
i (ϕ � πρ))uρ

)
dµρ

=
∫
Bρ(1)

fρ wρ ϕ � πρ dµρ − λ

∫
Bρ(1)

ϕ � πρ uρ wρ dµρ .
(18)

To pass to the limit in this identity, we use the following facts:

Fact1. (Xρi (ϕ � πρ))wkρ strongly converges to(X∞
i ϕ)xk in L2 because, writing the

left multiplication byx in Gρ aslρx , we have

X
ρ
i (ϕ � πρ)|x = dϕπρ�lρx (e) � dπρ |lρx (e) � dlρx ·Xρi (e).

Now by definitionlρx → l∞x andπρ → idG∞ , which explains why

X
ρ
i (ϕ � πρ) → X∞

i ϕ

pointwise (and weaklyL2 from the claim in the proof of Section 3.2).
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Fact2. For 1 ≤ i, j ≤ d1, gijρ X
ρ
i w

k
ρ is periodic with respect toδ1/ρ� and weakly

converges inL2, by Lemma 9, towards its mean value

qjk = 1

µg(D�)

∫
D�

(
gij (y)(δik −Xiχ

k(y))
)
dµg.

Fact3. Forα(i)+α(j) > 2,gijρ X
ρ
i w

k
ρ = ρ2−α(i)−α(j)gij (δρx)Xρi wkρ , thus this term

weakly converges inL2 towards 0.

Hence the identity (18) becomes∫
B∞(1)

(P̃
j

λxk − qjkũλ)X
∞
j ϕdµ∞ =

∫
B∞(1)

f xk ϕ dµ∞ − λ

∫
B∞(1)

ϕ ũλ xkdµ∞.

(19)

Furthermore, if we putφ∞ = ϕxk into equation (15) and subtract the result from
the equality (19), then we obtain the following identity in terms of distribution.

−
d1∑
j=1

X∞
j (P̃

j
λ xk − qjkũλ) = −

d1∑
j=1

X∞
j P̃

j
λ xk ⇐⇒ P̃ kλ =

d1∑
j=1

qjk X∞
j ũλ. �

5.3. Conclusion. Theorem 14 gives the compact convergence of the resolvents.
Hence we can use Theorem 21 in [Ver04], which states that if the resolvents are
compact, and they converge compactly, then the net ofkth eigenvalues converges to
thekth eigenvalue of the limit operator.

6. Emphasis on the Heisenberg Groups in the equality case

The aim of this part is to characterize metrics for which the inequality (6) is an
equality (see also Theorem 2) for a class of nilmanifolds that contains the Heisenberg
nilmanifolds. The first thing to remark, which is always true, is that equality holds
if and only if the stable norm and the Albanese metric are equal. In that case, all
harmonic 1-forms are of constant pointwise norm (same proof as in [Ver04]). Now
let us introduce the pseudo-left-invariant metrics.

Definition 15. Let Nn+1 = �\G be a nilmanifold such thatG is 2-step nilpotent
with one dimensional kernel. Letp be a submersion ofNn+1 onto a flat torusTn. Let
(α1, . . . , αn) be the lift of an orthonormal basis of harmonic 1-forms over the torus,
and choose a 1-formϑ of Nn+1 such thatdϑ = p∗b, whereb is a closed 2-form
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over the torus (in other words we chose a connection). Letgϑ be the Riemannian
metric such that the dual basis of(α1, . . . , αn, ϑ) is orthonormal. Thusp becomes a
Riemannian submersion. We will call such a metric pseudo-left-invariant or bundle-
like.

The idea is that if the 2-formb has constant coefficients, thenϑ can be chosen
so that the above construction gives a left invariant metric. Thus this pseudo-left-
invariant metric can be seen as a perturbation of a left invariant metric, obtained by
perturbing a left invariant basis of vector fields.

We are now able to give our precise claim.

Lemma 16. Let (H2n+1, g) be the2n+ 1-dimensional Heisenberg group, equipped
with a periodic metric. Then its stable norm coincides with its Albanese metric if and
only if g is pseudo-left-invariant.

Remark also that in the case of the 3-dimensional Heisenberg group, the function
λ1(g,Alb) inTheorem 2 is actually a constant that does not depend on the metric. This
is due to the fact that, up to isometries, there is only one left-invariant sub-Riemannian
metric in that case (see chapter IV of [Ver01]). Hence in that case, the theorem has
a similar form as the theorem for tori (see [Ver04]), for which the function is also
constant because up to isometries there is only one Euclidean metric onR

n.
Actually, we have a result that is slightly more general than Lemma 16. We focus

on 2-step nilmanifolds, whose Lie algebras have a 1-dimensional center.

Lemma 17. Let (Mn+1, g) be a2-step nilmanifold whose center is of dimension1.
Then its stable norm and its Albanese metric coincide if and only if the metric is
pseudo-left-invariant.

As the Albanese metric and the stable norm coincide if and only if all harmonic
1-forms are of constant norm, Lemma 17 is a consequence of the main theorem in
[NV04]:

Theorem 18 (P.-A. Nagy, C. Vernicos [NV04]).Let (Mn+1, g) be a Riemannian
manifold with first Betti number equal ton, all of whose harmonic1-forms are of
constant norm. Then(Mn+1, g) is a2-step nilmanifold whose center is of dimension1,
andg is pseudo-left-invariant.

7. Graded nilmanifolds with totally geodesic fibers over a torus

There is one last particular case we would like to study, the case where the nilmanifold
is graded (i.e. its algebra is nilpotent and graded as defined in Section 2.1), and the



312 C. Vernicos CMH

metric on(Mn, g) is as follows. We suppose that the first Betti numberb1(M
n) = k,

and we recall thatH is the horizontal distribution coming fromV1 (see Sections 3.1.a
and 2.1). Moreover we assume that we have the following Riemannian submersion,
with totally geodesics fibers and with a metric equivariant on the fibers:

[M,M] ↪→ (Mn, g)
p−→ (Tk, ǧ),

wheredpx is an isometry (we writêg = g|H ) from (Hx, ĝx) to (Tp(x)Tk, ǧp(x)).
Then, in the case of equality in Theorems 1 and 2, the Albanese map is a Rieman-

nian submersion, which implies thatǧ is flat. Which in turn, using our assumptions
implies that the metricg is left invariant (indeed see Chapter 9 Section F in [Bes87]).
In other words:

Proposition 19. Let(M, g) satisfy the above assumptions. The Albanese metric and
the stable norm coincides if and only if the metric is left invariant.

In other words, we could say heuristically that for sub-Riemannian metrics the
equality case in Theorem 2 (which holds in that context too, see [Ver01] for the
convergence of the spectrum) characterizes the left-invariant sub-Riemannian metrics.

8. On the long time asymptotics of the heat kernel

Let (G/�, g) be a nilmanifold and(G, g̃) its universal cover with the lifted metrics.
Recall that we associated to this Lie group the net(Gρ, gρ) of Riemannian manifolds.
Let us focus on the heat kernel:{

∂u
∂t

+�u = 0 in ]0,+∞[×G;
u(0, x) = uo(x).

(20)

Let us introduce the rescaled functions onGρ ,

uρ(t, x) = ρdhu(ρ2t, δρx), ρ > 0.

Then an easy computation shows thatu is a solution of (20) if and only ifuρ is a
solution of {

∂uρ
∂t

+�ρuρ = 0 in ]0,+∞[×Gρ ;

uρ(0, x) = ρdH u0(δρx).
(21)

Thus the study ofu(t, ·) ast goes to infinity is related to the study ofuρ(1, ·) as
ρ → ∞. We can imitate the proof of Theorem 14 to obtain:

Theorem 20. The net of resolvent(Rρλ ) weakly converges to the resolvent(R∞
λ ) of

�∞ onG∞.
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Imitating the proof of Theorems 4 and 6 in [ZKON79], as in [BBJR95], we get
the following theorem (letdal(e, x) = |x| be the Albanese distance between the unit
element andx).

Theorem 21. The fundamental solutionk(t, x, y)of(20)has the following asymptotic
expansion

k(t, x, y) = k∞(t, π(x), π(y))+ t−
dh
2 θ(t, x, y).

Herek∞(t, x, y) is the fundamental solution of

∂u∞
∂t

+�∞u∞ = 0 in ]0,+∞[×G∞,

andθ(t, x, y) → 0 uniformly ast → ∞ on |x|2 + |y|2 ≤ at , for any fixed constant
a > 0.

The next theorem follows by integrating the previous one.

Theorem 22. Letu0 ∈ L1(G) ∩ L∞(G). Thenu(t, x), the solution of(20), has the
following asymptotic expansion:

u(t, x) = c0t
− dh

2

∫
G

u0(y)dy + t−
dh
2 θ(t, x),

andθ(t, x) converges uniformly to0 for |x| < R, whereR is a positive constant, and
c0 depends on�∞.

Acknowledgments. Many thanks to the referees for their careful reading and im-
provements. Thanks to F. Newberger the cats seats, and the dog stands!
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