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Optimal SL (2)-homomor phisms

George J. McNinch

Abstract. Let G be a semisimple group over an algebraically closed fieldresly good
characteristic foiG. In the context of geometric invariant theory, G. Kempf and — indepen-
dently — G. Rousseau have associated optimal cocharacteroatn unstable vector in a linear
G-representation. If the nilpotent elemexite Lie(G) lies in the image of the differential of

a homomorphism SL.— G, we say that homomorphism is optimal & or simply optimal,
provided that its restriction to a suitable torus of,S& optimal forX in the sense of geometric
invariant theory.

We show here that any two $Sthomomorphisms which are optimal f&rare conjugate under
the connected centralizer &f. This implies, for example, that there is a unique conjugacy class
of principal homomorphismi®r G. We show that the image of an optimal Shomomorphism
is acompletely reduciblsubgroup ofG; this is a notion defined recently by J.-P. Serre. Finally,
if G is defined over the (arbitrary) subfiekd of k, and if X € Lie(G)(K) is a K-rational
nilpotent element witkk [’ = 0, we show that there is an optimal homomorphismXorhich
is defined overK .
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1. Introduction

Let G be a semisimple group over the algebraically closed fielahd assume that
the characteristic of is very goodfor G. (Actually, we consider in this paper a
slightly more general class of reductive groups; see 82, where we also define
goodprimes).

Premet has recently given a conceptual proof of the Bala—Carter theorem using
ideas of Kempf and of Rousseau from geometric invariant theory. An elekhent
g = Lie(G) is nilpotent just in case the closure of its adjoint orbit contains O; such
vectors are said to be unstable. The Hilbert—-Mumford criteria says that an unstable
vector forG is also unstable for certain one-dimensional sub-toiirofThis result
has a more precise form due to Kempf and to Rousseau: there is a clastinudl
cocharacters of; whose images exhibit such one dimensional sub-tori. One of the
nice features of these cocharactersis thatthey each define the same parabolic subgroup
of G; for a nilpotent elemenX e g, this instability parabolic is sometimes called the
Jacobson—Morozov parabolic attachedto

In his proof of the Bala—Carter Theorem in good characteristic, Pommerening
constructed cocharacters associated with the nilpotent elekhentg; see [Ja04]
for more on this notion, and see 86 below. Using the results of Kempf, Rousseau,
and Premet, one finds (cf. [Mc04]) that the cocharacters associated with a nilpotent
X € g are optimal, and that any optimal cocharackefor X such thatX € g(¥; 2)
is associated witlX in Pommerening’s sense.

In this paper, we show that the notion of optimal cocharacters is important in the
study of subgroups of;. We say that a homomorphisgn SL, — G is optimal
provided that the restriction @fto the standard maximal torus of gis a cocharacter
associated to the nilpotent element

(8 9) e

More precisely, we say thgtis optimal forX.
We prove in this paper that any two optimal homomorphismsXoare con-
jugate byC¢ (X); cf. Theorem 44. This has an immediate corollary. A principal
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homomorphisny: SL, — G is one for which the image af¢ contains a regular
nilpotent element; the conjugacy result just mentioned implies that there is a unique
G-conjugacy class of principal homomorphisms.

Generalizing the notion of completely reducible representations, J.-P. Serre has
defined the notion of &-cr subgroupH of G: H is G-cr if wheneverH lies in
a parabolic subgroup df, it lies in a Levi subgroup of that parabolic. We show
in Theorem 52 that the image of any optimal homomorphis@i-isr. In a previous
paper [Mc03], the author showed the existence of ahomomorphism optimal fpr any
nilpotentX e g; such a homomorphism was essentially obtained (dp-tmnjugacy)
by base change from a morphism of group schemes defined over a valuation ring in
a number field. Suppose thatis defined over the arbitrary subfield of k. If X
is a K -rational p-nilpotent element, we show in this paper that there is an optimal
homomorphism for X which is defined oveK; for this we use the fact, proved in
[Mc04], that some cocharacter associated witis defined overk .

G. Seitz [Sei00] has studied homomorphisgns SL, — G with the property
that all weights of a maximal torus of Slon Lie(G) are< 2p — 2; he calls the
image of such a homomorphism a good (or restrictegubgroup. We give here a
direct proof that an optimal S-homomorphism is good: we show that the weights
of a cocharacter associated withpanilpotent elemenX € g are all< 2p — 2; see
Proposition 30. It follows from results of Seitz that all good homomorphisms are
optimal — we do not use this fact in our proofs.

We do use here a result of Seitz (see Proposition 34) to showAHatp, g) is a
tilting module for Sl wheng is the optimal homomorphism obtained previous by
the author [Mc03]; this fact is used to prove a unicity result Proposition 38 for certain
homomorphism&, — G which is crucial to the proof of Theorem 44; of course, in
the end one knows th&fd ¢, g) is a tilting module for any optimap.

Seitzloc. cit. proved a conjugacy result for good homomorphisms analogous to
the result proved here for optimal ones; he also proved that good homomorphisms
are G-cr, so in some sense our results are not new. On the other hand, our proofs
of conjugacy and of thé&-cr property for optimal homomorphisms are free of any
case analysis; we do not appeal to the classification of quasisimple groups at all.
Moreover, we believe that our results on optimal homomorphisms over ground fields
are new and that the ease with which they are obtained is evidence of the value of our
techniques.

As further application of the methods of this paper, we include in 89 an extension
of a result of Kottwitz; we prove that any nilpotent orbit which is defined over a
ground fieldK contains ak -rational point.

Finally, the appendix contains a note of Jean-Pierre Serre concerning Springer
isomorphisms.

I would like to thank Serre for allowing me to include his note on Springer iso-
morphisms as an appendix; | also thank him for some useful remarks on a preliminary
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version of this manuscript. Moreover, | would like to extend thanks to Jens Carsten
Jantzen, and to a referee, for several useful comments on the manuscript.

2. Reductive groups

We fix once and for all an algebraically closed figldk will be an arbitrary subfield
of k, andG will be a connected, reductive algebraic group (dgeawhich is defined
over the ground field& .

If G is quasisimple with root systeiR, the characteristip of k is said to be a
bad prime forR in the following circumstancesp = 2 is bad wheneveR # A,,
p=3isbadifR = Go, F4, E,, andp = 5is bad ifR = Eg. Otherwisep is good.
[Here is a more intrinsic definition of good primg:is good just in case it divides no
coefficient of the highest root iR].

If pis good, therp is said to be very good provided that eitheiis not of type
A, orthatR = A, andr # —1 (mod p).

If G is reductive, the isogeny theorem [Spr98, Theorem 9.6.5] yiald- not
necessarily separable —centralisogbf)y\G; xT — G where theG; are quasisimple
andT is a torus. The&5; are uniguely determined b up to central isogeny, and
p is good (respectively very good) fa@r if it is good (respectively very good) for
eachG;.

The notions of good and very good primes are geometric in the sense that they
depend only orG overk. Moreover, they depend only on the central isogeny class
of the derived groupG, G).

We record some facts:

Lemmal. (1) LetG be a quasisimple group in very good characteristic. Then the
adjoint representation of; onLie(G) is irreducible and self-dual.

(2) Let M < G be areductive subgroup containing a maximal torug;ofif p is
good forG, then it is good forM.

Proof. For the first assertions of (1), see [Hu95, 0.13]. (2) may be found for instance
in [MSO03, Proposition 16]. O

Considerk -groupsH which are direct products
(*) H=H xS,

where S is a K-torus andH7 is a connected, semisimplg-group for which the
characteristic is very good. We say that the redudkivgroupG is strongly standard
if there exists a group? of the form(x) and a separabl& -isogeny betwee and
a K-Levi subgroup ofH. Thus,G is separably isogenous #d = C (S) for some



Vol. 80 (2005) Optimal SL(2)-homomorphisms 395

K-subtorusS < H; note that we do not requir®f to be the Levi subgroup of a
K -rational parabolic subgroup.

We first observe that a strongly standard gra@ups standardin the sense of
[Mc04]; this is contained in the following:

Proposition 2. If G is a strongly standard< -group, then there is a separable-
isogeny betwee6 and G wheregG is a reductivek -group satisfying the Standard
hypothesesof [Ja04, §2.9] namely:

(1) the derived group of; is simply connected,
(2) pis good forG, and
(3) there is aG invariant nondegenerate bilinear form die(G).

Proof. Let H = Hy x S whererr1: Hi — Hi is the simply connected cover, and
letwr = 7 x id: H — H be the corresponding isogeny; of courégandr are
defined over [KMRT, Theorem 26.7]. By assumptioiG = Cy(S) for some
K-subtorusS < H. SinceS = 7 1($)° < H is agaln ak -torus, its centralizer
G = Cy (S) is a K-Levi subgroup ofH andn : G — G is an isogeny. Now,

Lie(G) is the O-weight space of on Lle(H) and Lig(G) is the 0-weight space of
S (andS) on Lie(H). Sincedr is anS-isomorphism, it restricts to an isomorphism
dn\Lle(G) Lie(G) — Lie(G); in other wordsyr is a separable isogeny.

SinceG is a Levi subgroup off, its derived groug is simply connected, so that
(1) holds. Sincep is good forH, it is also good forH and for the Levi subgroups
andG; see for instance [MS03, Proposition 16]. Thus (2) holdsGor

Finally, notice that Li¢H) is semisimple as &-module and that LigH") is a
self-dual, simpled’-module wheneveH’ is quasi-simple in very good characteristic.
It follows that there is a non-degener&ieinvariant bilinear form on LiéH). This
restriction of this form to the 0-weight space s again nondegenerate, and so (3)
holds. [Note that the same argument gives non-degenerate invariant formg Ai Lie
and LigG).] O

Remark 3. Suppose thaV is a finite dimensional vector space. Then the group
G = GL(V)isstrongly standard. Indeed, ifdith=£ 0 (mod p), thenG is separably
isogenous to SV) x G,,, andp is very good for SIV). If dimV = 0 (mod p),
then G is isomorphic to a Levi subgroup df = SL(V & k) and p is very good
for H.

On the other hand, SIV) is only strongly standard when dith £ 0 (mod p).

Remark 4. If G is strongly standard, there is alwaysymmetricinvariant non-
degenerate bilinear form on L(i€). Indeed, up to separable isogedy,is a Levi
subgroup ofl' x H whereH is semisimple in very good characteristic. If the result
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holds for H, then it holds forG; note that any nondegenerate form on (Zig is
invariant. Thus we assume th@tis semisimple in very good characteristic. For such
a group, the simply connected cover is a separable isogeny so we may also assume
G to be simply connected. But thef is a direct product of quasisimple groups,
hence we may as well suppose tliats quasisimple in very good characteristic. In
this case, the adjoint representation is a self-dual sir6plaodule. Ifp = 2, we
are done. Otherwise, one can argue as followss i denotes the split group over
Q with the same root datum a8, then the adjoint representation 6% is also
simple; identifying the weight lattice of a maximal torus@fand ofG ,, the adjoint
representations have the “same” highest weightSteinberg [St67, Lemma 79]
gives a condition on for the invariant form to be symmetric; since this condition is
independent of characteristic, and since the Killing form is symmetric ofGLig),

our claim is verified.

Proposition 5. If G is strongly standard, then each conjugacy class and each adjoint
orbit is separable. In particular, ifG is defined overX, and ifg € G(K) and
X € g(K), thenCg(g) andCg (X) are defined ovek.

Proof. Separabilityis[SS70, I.5.2and |.5.6]. The factthat the centralizers are defined
over K then follows from [Spr98, Proposition 12.1.2]. O

3. Parabolic subgroups

In this section,G is an arbitrary reductive group ovér The material we recall
here is foundational; the lemmas from this section will be used mainly for our
consideration of5-completely reducible subgroups of a reductive grayf. 8.4
below.

If Visanaffinevarietyand: G,, — Visamorphism,wewrite = lim,_.q f(¢),
and we say that the limit exists, ffextends to a morphisth: k — V with £(0) = v.
If y is any cocharacter afr, then

Pc(y) = P(y) ={x € G| lim,_oy()xy(t~1) existg

is a parabolic subgroup @ whose Lie algebra ig(y) = ) ;- g(y; i). Moreover,
each parabolic subgroup 6f has the formP (y) for some cocharacter; for all this
cf. [Spr98, 3.2.15 and 8.4.5].

We note thay “exhibits” a LevidecompositionoP = P(y). Indeed,P(y)isthe
semi-direct producZ (y)-U(y), whereU (y) = {x € P | lim;oy(H)xy(t~1) =1}
is the unipotent radical aP (y), and the reductive subgrof(y) = Cs (v (G)) is
a Levi factor inP(y); cf. [Spr98, 13.4.2].
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Lemma6. Let P be a parabolic subgroup af, and letT be a maximal torus of.
Then there is a cocharacter € X, (T) with P = P(y).

Proof. SinceP = P(y’) for some cocharacter’, this follows from the conjugacy
of maximal tori inP. O

For later use, we record:

Lemma?7. Let P = P(y) be the parabolic subgroup determined by the cocharacter
y € X4(G). Write L = Z(y) for the Levi factor ofP determined by the choice of
If : H — P is any homomorphism of algebraic groups, the rule

$() = lim y ()¢ )y (™

determines a homomorphi§/§n H — L of algebraic groups. Moreover, the tangent
mapd¢ is the composite

Lie(H) 2% Lie(P) % Lie(L) = Lie(P)(y: 0)
wherepr is projection on theéd weight space.
Proof. It was already observed th&t= L - U is a semidirect product; the map
x> lim y )y (7

is the projection o on L and is thus an algebraic group homomorphismpP — L.
The tangent map t@ is evidently given by projection onto the 0-weight space for
the image ofy, and the lemma follows. O

Remark 8. If the cocharactey is defined over the ground fieki, thenP = P(y)
is a K -parabolic subgroup, and the Levi factbr= Z(y) is defined ovelk. The
projectionP — L given byx — lim;_oy (s)xy(s~1) is of course defined ovet
as well.

4. Springer’sisomorphisms

If the characteristic of is zero, or is “sufficiently large” with respect to the groGp
(some sort of) exponential map defines an equivariant isomorphism./&éxg> U
between the nilpotent variety and the unipotent variet¢ oSimple examples show

the exponential to be insufficient in general, however, and in 1969, T. A. Springer
[Spr69] found (the beginnings of) a good substitute. See also the outline given in
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[SS70, 11 83]. The unipotentvariety is known always to be normal; to make Springer’s
work complete, one required also the normality of the nilpotent variety. Veldkamp
obtained that normality for “mostp, and Demazure proved it f@F satisfying our
hypothesis; cf. [Ja04, 8.5]. We summarize these remarks in the following:

Proposition 9 (Springer).Let G be a strongly standard -reductive group, wher&
is any subfield ok. There is aG-equivariant isomorphism of varieties: U — N
which is defined ovek .

Sketch.We just comment briefly on our assumptions@nFirst, note that i is the
direct product of a torus and a semisimple group in very good characteristic, there is
a separable isogeny — G whereG is the direct product of & -torus and a simply
connected semisimplé-group in (very) good characteristic. Moreover, the separable
isogeny is defined ovek and induces equivariari -isomorphismsil — U and
N — N (using some hopefully obvious notation); see [Mc03, Lemma 27]. Now,
Springer proved the proposition holds 16r- see the above references— and thus the
result forG is true in this case.

Repeating the above argument, we may replabg a separably isogenous group,
and thus we suppose that= Cg (S), whereS is aK -torus in aK -groupH as in(x)
of section §2; the above remarks show that there ig/a@quivariant isomorphism
Ag: Uy — Ny between the unipotent and nilpotent varieties for SinceU =
(Up)S andN = (Ng)S, itis clear thatA i |y, defines the required isomorphism for
the varieties associated with. O

Remark 10. Suppose thah: U — N is an equivariant isomorphism defined over
K. If P < G is aK-parabolic subgroup, Lemma 6 makes clear that the restriction
Ay : U — Lie(U) is aP-equivariantisomorphism. Similarly, If < G isaK-Levi
subgroup, them\ |y, : Uy — N is anL-equivariant isomorphism.

The isomorphismA of the proposition iqquite far from being unique; cf. the
appendix of J.-P. Serre below. We summarize the result of that appendix with the
following statements, which we make only in the “geometric” setting — i.e. bver
rather thank .

Proposition 11 (Serre).Let G be a strongly standard reductiegroup.

(1) Fix aregular nilpotentX € g. For each regular unipotent € Cs(X), there is a
uniqueG-equivariant isomorphism of varieties, : U — N with A, (v) = X.

(2) Any twoG-equivariant isomorphisma, A’: U — N induce the same map on
the finite sets of orbits.
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5. Frobeniustwists and untwists

Let K’ be a perfect field of characteristic > 0, and letKk’ c K be an arbitrary
extension ofK’. We fix an algebraically closed fieldcontainingk .

In this section, algebras are always assumed to be commutative. Consider a
K’-algebraA. Forr e Z, we may consider th&’-algebraA ") which coincides with
A as aring, but where eaéhe K’ acts onA") asbh?” does onA. For an extension
field K of K/, we WriteA(’)/K andA /k for the K -algebras obtained by base-change;
thuse.gA;x = A®g K.

Letr > 0 and lety = p”. There is ak’-algebra homomorphismi” : A" — A
given byx — x7. We writeA? = {f9 | f € A}; A9 is aK’-subalgebra ofi, and
the image off" coincides withA?.

Let A be aK’-algebra and an integral domain. We clearly have:

Lemma 12. If » > 0, andg = p’, thenF": A") — A7 is an isomorphism of
K’-algebras.

Write B = A k. Let us notice thaK[B?] = K[A“]. Forr > 0, consider the
algebra homomorphism7, : A"k — K[AY] C Ak given on pure tensors by

fQar fi-afor f e A anda € K. We have more generally

Lemma 13. For r > O, Fj: A"k — K[B] is an isomorphism, where again
g=7p".

Proof. We have observed already ti@t= K[B?] = K[A] is theK -algebra gener-
ated byA4. According to the previous lemma, the image of the restrictioﬁ/’g}f to

A" ®@1isthe set oK -algebra generators? of C; this implies thalF/’K is surjective.

SinceA is a domain, the homomorphishAi : A”) — A isinjective. This implies
the injectivity of F/rK sinceK is flat overK’. O

Lemma 14. Assume tha# is geometrically irreduciblei.e. thatA; is a domain.
Also assumd to begeometrically normal.e. thatA /; is integrally closed in its field
of fractionsE. Letg = p" forr > 0,and letf € A/x. Thenf e K[A7]if and only
if feFE9.

Proof. We have clearly the implication—>. Now suppose thaf < E?, say
f = g9 for g € E. The normality ofA,, shows then thag € A,,. We may find
a1,...,a, € k and elementsfy, ..., f, € A such thatg = > 7_; o fi; we may
assume as well thdtf; | 1 < i < n} is a K’-linearly independent set. Sind¢’
is perfect,{fl.q | 1 < i < n}is againK’-linearly independent. Sincg = g7 =
Yol f e Asg, it follows thata! € K for 1 < i < n and the proof ok= is
complete. O
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Remark 15. It can happen that  x is a normal domain, but that,; is not normal;
cf. [B098, exerc. V.8§1.23(b)].

Lemma 16. Let X andY be irreducible affing-varieties, and letf: X — Y be a
dominant morphism. Then the following are equivalent:

(a) there is a non-empty open sub$étc X such thatdf, # Ofor all x € W (k).
(b) f*(k(Y)) is not contained irk(X)?.

Proof. For an affinek-variety Z, let Q7 = Q71 be the module of differentials.
The mapf: X — Y determines a map: Qy — Qx of k[Y] modules and — since
f is dominam—a mapy : Qiy)/k = Su(x)/x Of k(Y)-vector spaces.

It follows from [Spr98, Theorem 4.3.3] that there are non-empty affine open
subsetsy of X andV of Y such thatf restricts to a morphisl — V, Qu is
a freek[U]-module of rank dimX, andQy is a freek[V]-module of rank din¥.
Now, ¢ restricts to a mapq, : Qv — Qg of k[V]-modules, and it is clear that
¢, = 0ifand only ify = 0 [use that2(x),x = k(X) @y Qu together with the
corresponding statement fii.

Choosing bases of the free moduleés andQ2y, ¢/, is given onQy by a matrix
M with entries ink[U]. Forx € U (k), the mapify: T, U — Ty () V identifies with
the map

Homy 1 (Qu, kx) — HOMy v (v, kr(x))

deduced frompjn,,. The open subset di defined by the conditiod/, # O is
non-empty if and onlyp|q, # O; thus (a) is equivalent to the statement= 0.
Applying [Spr98, Theorem 4.2.2], one knows that the restriction mapping

Der (k(X), k(X)) — Den (f*k(Y), k(X))

is dual to the mapping : Qi v)/x = Qkx)/k; In particular, this restriction is 0 if
and only ifyr = O.

Now, it is proved for instance in [La93, VIII, Proposition 5.4] that k(X) is
contained ink(X)? if and only if D(z) = 0 for eachD € Der (k(X), k(X)). The
assertion (a)<= (b) follows at once. O

If X is an affineK’-variety andA = K'[X], then forr € Z we write X for the
K'-variety Spe¢A”). For an arbitrank’-variety X, one defines th&’-variety X )
by gluingtogetherthK’-varietiesUl.(’) from an affine open coverind/; | 1 <i < n}
of X; this construction is independent of the choice of the covering.

Letr > 0. WhenX is affine, ther-th Frobenius morphisnfy : X — X is
defined to have comorphisiit : A" — A. For an arbitraryk’ variety X, there is
a unique morphisnfy : X — X whose restriction to each affine open sutiget
of X is given by Fy;.

We write X ¢ for the base change of th¢'-variety X to K .
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Theorem 17. Let X and Y be geometrically irreducible& -varieties. Assume that

X is defined ovelk” and is geometrically normal — i.eX/ is normal. Suppose
that f: X — Y is a K-morphism whose image contains a positive dimensional sub-
variety of Y. There is a unique > 0 and a uniquek -morphismg: X x — ¥

such that

1) f=goFL,and

(2) there is a non-empty open subgebf X ) such thaidg, # 0forx € U (k).

Remark 18. (a) Of course, the image gf contains a non-empty open subgebf
its closuref (X) [Spr98, Theorem 1.9.5], so the dimension assumption made in the
theorem is equivalent td/ has positive dimension.

(b) The theorem has been known for a long time, but it seems to be difficult to
give a reference. It was used for instance by J.-P. Serre in his classification of the
inseparable isogenies of height 1 of a group variety (and especially of an abelian
variety), cf. Amer. J. Math. 80 (1958), pp. 715-739, Section 2.

Proof of Theoreni7. Notice that if the theorem is proved whé&handY are affine,
the unicity ofr andg shows that it holds as stated; we assume nowXhandY are
affine. The affine variety is defined oveK’, and the domaik [ X ] is geometrically
normal in the sense discussed previously.

Write Y’ for the closure of the image gf. ThenY' is defined ovek. Moreover,
if i: Y’ — Y denotes the inclusiow;, is injective for ally € Y'(k); see e.g. [Spro98,
Exercise 4.1.9(4)]. Sinc&’ is again geometrically irreducible, we may and shall
replaceY by Y’; thus we assume thgtis a dominant morphism. Since the tangent
maps ofF’y are all 0, it is clear that if a suitable> 0O exists, it is unique.

Assume thatif, = 0 for all smoothk-points of X; Lemma 16 then shows that
f*k(Y) C k(X)?. The assumption on the image pfmeans that the transcendence
degree oveK of K(Y) is > 1, sincek(X) is a finitely generated field extension of
k, it follows that we may choose > 1 such thatf*k(Y) c k(X)? for ¢ = p" but
not forg = p’+1.

Putg = p". We now apply Lemma 14toseeth&t(K[Y]) C K[A?]. Lemmal3
gives then aK -algebra isomorphismp: K[A9] — K[X)] inverse toF”, and we
defineg: X — Y to have comorphisnp o £*. Itis clear thatf = g o F and that
g is the unique morphism with this property.

The Frobenius map gives an isomorphigii: k(X)) — k(X)4. If h € K[Y],
and if g*h is a p-th power ink(X®) then f*h is ag’-th power ink(X), where
g’ = ptLl. Since f*k(Y) is not contained ink(X)7, g*(k(Y)) is not contained
in k(X")P. 1t then follows from Lemma 16 thalg, is non-0 for allx in some
non-empty open subset &f, and the result is proved. O
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Remark 19. Let X c A? denote the irreducible variety withpoints{(s, 1) | s? =

tP(r — 1)}, and lett = AL, Consider the morphisrfi: X — Y given onk-points by
f(s,t) =r—1. Sincer —1 = (s/1)? on the open subsét of X defined by # 0, we
havedf, = 0 for eachx € U (k). SinceX is overF, in an obvious way, we identify

X andX@; the Frobenius map': X — X is then justF (s, t) = (s?,t?). There is
auniqueg: U — Al with fiy = g o F; itis given onk-points by((s, ) +> s/1).
Moreover,dg, # 0 for eachx € U (k). However, there is no regular functignon

X such thatg|y = g; thusX is not normal, and the conclusion of the theorem does
not hold for 1.

Corollary 20. Let G and H be linear algebraicK -groups. Assume that is con-
nected, and thaG is defined over the perfect subfietd. Let¢: G — H be a
homomaorphism ok -groups such that the image ¢fis a positive dimensional sub-
group ofH. Thereis aunique integer> 1and a unique homomorphism&fgroups
¥: G,k — H such that

(1) ¢ = o Ff;, and
(2) the differentialdy = dyr1 is non-zero.

Proof. The K’-variety G is geometrically irreducible; sinc€ . is smooth,G is
geometrically normal. Hence we may apply Theorem 17; we find a umigu® and
a morphism ofK -varietiesy: G,k — H,x such thaty o F7, coincides with the
restriction of¢ and such thaty, is hon-zero fore in some non-empty open subset
of GM.

Since the Frobenius homomorphisi: G — G is bijective onk-points, it
is clear thatyr is a homomorphism of algebraic groups. Sinltle, £ O for some
x € G (k), the map induced by on left-invariant differentials imc(,>/k is non-0;
this implies thatiy1 # 0 and the proof is complete. O

6. Nilpotent and unipotent elements

We return to consideration of a strongly standard redudfivgroupG. LetX € g be
nilpotent. A cocharacte?: G,, — G is said to be associated wikhif the following
conditions hold:

(A1) X € g(\¥; 2), where for any € Z the subspacg(i) = g(\¥; i) is thei weight
space of the toru¥ (G,,) under its adjoint action og.

(A2) There is a maximal toru§ c Cg(X) such that¥(G,,) c (L, L) where
L = Cg(S).
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With the preceding notationy is a distinguishednilpotent element in the Lie
algebra of the Levi subgroup (see the discussion just before Proposition 22 for the
definition).

If W is associated t&, the parabolic subgroup = P (¥) is known variously as
the canonical parabolic, the Jacobson—Morozov parabolic, or the instability parabolic
(“instability flag”) associated wittk. Among other things, the following result shows
this parabolic subgroup to be independent of the choice of cocharacter assoclkated to

Proposition/Definition 21. LetX € g(K) be nilpotent.
(1) There is a cocharacte¥ associated witlX which is defined ovek .

(2) If W is associated t&X and P = P (W) is the parabolic determined by, then
Cg(X) C P. In particular, ¢g(X) C Lie(P).

(3) LetU be the unipotent radical of = C¢,(X). ThenU is defined oveK, and
is a K-split unipotent group. If the cocharactey is associated withX, then
L =CnNCg(¥(Gy)) is a Levifactor ofC; i.e. L is connected and reductive,
andC is the semidirect produdf - L.

(4) Any two cocharacter? and ® which are associated witi are conjugate by a
unique element € U. If ¥ and ® are each defined ovek, thenx € U(K).

(5) The parabolic subgroup® (V) for cocharactersl associated withX all coin-
cide; the subgroupP (X) = P (W) is called the instability parabolic oX.

See e.g. [Spr98, Chapter 14] for the notion & asplit unipotent group. We will
not need to explicitly refer to this notion here.

Proof. The assertion (1) in the “geometric case” (wh€n= k) is a consequence of
Pommerening’'s proof of the Bala—Carter theorem in good characteristic; a proof of
that theorem which avoids case-checking has been given recently by Premet [Pr02]
using results in geometric invariant [Ke78]. One can deduce the assertion from
Premet’s work — see [Mc04, Proposition 18]. Working over the ground f#&ld

(1) was proved in [Mc04, Theorem 26].

(2) is [Ja04, Proposition 5.9].

The first assertion of (3) is [Mc04, Theorem 28]; notice that assumption (4.1)
of loc. cit. holds for strongly standar@, by Proposition 5. The semidirect product
decomposition oiC may be found in [Ja04, Proposition 5.10 and 5.11]; see also
[Mc04, Corollary 29].

We now prove (4). By (3)C = C{(X) is the semidirect produet = U - L of
its unipotent radicall and the Levi factol. = C N Cg(¥(G,,)). One knows by
[Ja04, Lemma 5.3] thab = Int(g) o W for an elemeng € C. Write g = x - y with
x € U andy € L. Sincey centralizes¥, one sees thab = Int(x) o ¥ as well.
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SinceU N L = {1}, we see tha® andV¥ are indeed conjugate by thaiqueelement
xeU.

Assume tha® and® are defined ovek', and writeS = ¥ (G,,,) andS’ = ®(G,,);
thusS, S’ < C are tori defined ovek . We have just seen that the transporter

Nc(S,8)={geC|gSgt =15

is non-empty (it has geometric points); it follows from [Spr98, 13.3.1] Mats, S’)
is defined oveKK .

Choose a separable closukeep, C k of the ground fieldK'; [Spr98, Theo-
rem 11.2.7] shows thaWVc (S, S')(Ksep is dense inN¢ (S, S); we may thus find
g € Nc(S, §")(Ksep. SinceS andS’ are one dimensional, and since (it induces
an isomorphism between the respective groups of cocharacters of these tori, we must
have In{g) o ¥ = £®. Sinceg € C, the cocharacter Ig¢) o W is associated with
X; it follows that Int(g) o ¥ = ® e.g. sinceX € g(Int(g) o ¥, 2).

Writing ¢ = y - x with x € U andy € L, we havey = lim,_o W (r)gW (™ 1).
By Remark 8,y € C(Ksep), SO thatx = y~1g € U(Ksep. Thusx € U(Ksep is the
unique element o/ for which Int(x) c W = ®. LetI" = Gal(Ksep/ K) be the Galois
group. Sincel and® arel'-stable, ify € T', we see that

Int(y (x)) o ¥ = ®;

the unicity ofx shows thatt = y (x) and we deduce thate U(K) as required.
To see (5), lel and® be cocharacters associated wkh Since we havé/ <

C < P(¥) by (2), it follows from (4) that the parabolic subgroupg¥) and P (®)

are equal. O

Recall that a nilpotent elemefit € g is said to balistinguishedf the connected
center ofG is a maximal torus o€ (X). A parabolic subgroup < G is said to be
distinguished if

dimP/U =dimU/(U,U) +dimZ

whereU is the unipotent radical aP, andZ is the center oG.
Proposition 22. Assume thaX € g is a distinguished nilpotent element. Then the

instability parabolicP = P(X) is a distinguished parabolic subgroup, afdies in
the denséRichardson orbit of P onLie(R, P).

Proof. [Mc04, Proposition 16]. O
Remark 23. Fixing an equivariant isomorphisstv: U — N defined overkK, we

may say that a cocharactér is associated with the unipotent elemang G if it
is associated witl\ (u). The analogous assertions of the proposition then hold for
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unipotent elements of;. Note that, with this definition, the notion of cocharacter
associated with a unipotent elemeepends on the choice af If W is a cocharacter
associated witlk = A (u) andif A’ is a second Springerisomorphism, easy examples
show thatA’(u) need not be a weight vector far. On the other hand, i’ is
associated withX’ = A’(u), then P(¥) = P(¥’). To see this, note that and

X' have the same centralizer. Fix a maximal tofusf this centralizer and write

L = Cg(S); since bothA and A’ restrict to isomorphism#(; — N (see Remark
10), we may as well suppose thétand X’ are distinguished. Since e.§! restricts

to an isomorphisn/ — Lie(U) whereU = R, (P (¥)), it follows thatX andX’ are
both Richardson elements f&(¥). ThusWw and¥’ are conjugate by an element of
P(¥) and it is then clear thaP(¥) = P(¥'). In fact, it is even clear tha¥ and

W’ are conjugate by an element of the unipotent radicadt @F); this shows thatv

is anoptimal cocharactefor X’ (in the sense of [Ke78]) even though it need not be
associated t&’.

7. Theorder formulaand a generalization

Throughout this sectiorG is a strongly standard reductivegroup defined ovek .
Let P be a parabolic subgroup 6f, we may fix representativese U = R, (P) and
X € Lie(U) for the dense (Richardsom®-orbits onU and LigU).

Recall that if the nilpotence class bfis < p, then LigU) may be regarded as
an algebraid -group using the Hausdorff formula; cf. [Sei00, 85].

Proposition 24. Assume thap is adistinguishegarabolic subgroup. The following
conditions are equivalent:

(1) u has orderp,

(2) xtrl =,

(3) g(W¥;i) = Oforall i > 2p and someany) cocharacterd associated ta: or
to X,

(4) the nilpotence class df is < p.

Proof. The equivalence of (1) and (2) follows e.g. from [Mc03, Theorem 35]. The
equivalence of (2), (3) and (4) is [Mc02, Theorem 5.4] — note that there is a mis-
statement (“off by 1 glitch”) concerning the nilpotence class in [Mc02] which is
explained and corrected in the footnote to [Mc03, Lemma 11]. O

Remark 25. Let X be a distinguished nilpotent element wkt¥! = 0, and let be
the unipotent radical of the instability parabolicXf The proposition shows that the
nilpotence class df < p. Thisis nottrue in general for nilpotent elements which are
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not distinguished. For example, I6t= GLs, and letX e g be a nilpotent element
with partition (3, 2). ThenX is distinguished in Li€L), whereL is a Levi subgroup
whose derived group is Slx Sby. If ¥ € X, (L) is associated t&, thenPg (V) is

a Borel subgroup o6. In particular, ifp = 3, X[P1 = 0 but a Richardson element
Y for Pg(¥) hasy!?! 0.

Proposition 26. Let P be adistinguishedparabolic subgroup. If the equivalent
conditions of Propositio24 hold, and ifP is defined oveKk, then:

(1) there is a uniqueP-equivariant isomorphism of algebraic groups
¢: Lie(U) - U

such thatdeg: Lie(U) — Lie(U) is the identity.
(2) ¢ is defined oveK.
(3) Any homomorphisra, — U overK has the form

s> £(sX0) - e(sPX1) - £(sP Xp) - - - £(s”" X,,)

for some elementXo, X1,..., X, € Lie(U)(K) with [X;, X;] = 0 for all
0<i,j<n.

Proof. Since the conditions of Proposition 24 hold, the unipotent radicad R, P
has nilpotence class p. In 85 of [Sei0Q— a section contributed by J.-P. Serre —one
now finds the necessary results. (1) and (2) follow from Proposition S@&cotit.,
while (3) is Proposition 5.4 dbc. cit. a

Remark 27. Recall from Remark 10 that the restrictioneafy Springer isomorphism

N — U gives aP-equivariantisomorphism Li¢/) — U. If p > h, there is always

a Springer isomorphism whose restrictiorrislt does not seem to be clear (to the
author, at least) whether a suitable analogue of this statement is true if one weakens
the assumption op.

Recall that we may regar@ . as arising by base change from a split reductive
group schemé& 7 overZ. Write T,z for a split maximal torus o6 /7.

Lemma28. LetX < g, letL be a Levisubgroup a¥ with X € Lie(L) distinguished,
and let¥ e X,(L) be associated witlk. We may find a number fielel > Q, a
valuation ring A C F whose residue field embedsiina standard Levi subgroup
M,z of Gz, a cocharactelV’ € X, (T/z), and an element, € Lie(M;5)(V'; 2)
suchthaty, M, V) = g.(X, L, V) forsomeg € G, whereY = Y, ® 1. Moreover,
we may arrange thaly = Y5 ® 1 is also a Richardson element for the parabolic
subgroupPyy, . (¥') < M.
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Proof. L is evidently conjugate to some standard Levi subgrétypwhich we may
regard as arising from the Levi subgroup schevhe,. ReplacingX, L, and¥ by

a G-conjugate we may thus supposed thais standard. ReplacingX, L, V) by

an L-conjugate, we may then assume tlais a Richardson element for a standard
distinguished parabolic of.. The remainder of the lemma is now essentially the
content of [Mc02, Lemma 5.2]. O

Proposition 29 (Spaltenstein)Let A C F be a valuation ring in a number field, as
in the previous lemma. L&t € X, (T/p), let X € g/a(¥; 2), and assume tha¥
is associated t&; and toX . Then

dim cg(Xy) = dim Cg/p(XF)-

Proof. This is essentially [Mc02, Proposition 5.2] whéhis semisimple in very
good characteristic. As observedlat. cit, it was proved by Spaltenstein for such

G. Alook at the proof of Spaltenstein in [Spa84] shows that the result remains valid
for strongly standard reductive groups [the only conditiong&/amsed in the proof in
[Spa84] are: the validity of the Bala—Carter theorem and the separability of nilpotent
orbits]. a

Proposition 30. LetX e g satisfyX!?! = 0. If ¥ is a cocharacter associated with
Xandif g(¥;n) #£0,then—2p+2<n<2p-—2

Remark 31. The analogue of the proposition for unipotent elements of opdeas
essentially observed by G. Seitz [Sei00] and is crucial to the proof of the existence
of good A1-subgroups iroc. cit. It is proved for the classical groups in [Sei00,
Proposition 4.1], and for the exceptional groups it is observed in the proof of [Sei00,
Proposition 4.2] that it follows either from an explicit calculation with the associ-
ated cocharacter (“labeled diagram”) of each nilpotent orbit, or from some computer
calculations of R. Lawther.

Proof of Propositior30. It is enough to verify the proposition for@-conjugate of
¥ andX. Lemma 28 shows that, after replacing the d&fd., ¥ by aG-conjugate,
we may assume, as in thatlemma, thiaL., andW¥ are “defined ove\” for a suitable
valuation ringA. We write X 5 for the element ofj, 5 giving rise toX; = X by base
change, and we writd r = X ® 1r € g,F; note thatl is a cocharacter both of
G,r and of G /;, andV¥ is associated to botk and X .

We now contend that ifi(¥; n) # 0 for somen > 2p — 1, then adX;)” # 0;
this implies the proposition. The proofis essentially like that of [Mc02, Theorem 5.4]
except that we must also deal with the fact that the (in general, not distinguished)
orbit of X may not be “even”.

LetL = @B, _19/a(V; i), andLT = ;.1 g/a(V; i). Since we may embed
Xr in ansly(F)-triple normalized by the image oF, the representation theory of
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slo(F) implies that adXr): LF — DC}; is surjective, where the subscript indicates
“base change” —e.gfr = £ ®, F. In view of Proposition 29 and Proposition 21,
one knows that the kernels of the mapsX¥g : L — £,j andadXp): L — £’;

have the same dimension. We may therefore argue as in [Mc02, Proposition 5.1] and
see thatadXy): £ — £ is also surjective, hence that@)"/2 # 0if n is even,

and that adx;)"*+1/2 £ 0 if n is odd, whence our claim and the proposition.O

8. Optimal SL -homomor phisms

Throughout this sectionG will denote a strongly standard reductikegroup. We
first ask the reader’s patience while we fix some convenient notation far Ble
choose the standard basis §by:

01 1 O 00
X1=<0 O), H1=(0 _1>, and Y]_=<1 0).

x1(t) = (é ;) and yi(¢t) = G :(L)) fort €k,
and writeX = {x1(¢) | t € k} andX~ = {y1(¢) | t € k}. Finally, write

o 2yrer)

for the standard maximal torus of &L

We fix once and for all one of the two isomorphis&s, ~ 7, so that if
¢: SL, — G is a homomorphism, it determines a cocharadtet ¢ € X.(G)
by restriction to7™; explicitly, ¥ is given by the rule

V(1) = ¢( (6 t91>> fort e k™.

Definition 32. The homomorphisnp: SL, — G is anoptimalSLo-homomorphism
if the cocharacte® = ¢,5 is associated to the nilpotent element= d¢ (X1) € g.
Briefly, we say that is optimal forX.

Now put

We first recall that the main result of [Mc03] shows that optimal homomorphisms
always exist. More precisely, l&f e g with X!? = 0, and let¥ be a cocharacter
associated wittX. If S is a maximal torus o€y, thenX is distinguished in LiéL)
whereL = Cg(S). We may apply Proposition 26 tB; (V); lete: Lie(U) — U
be the isomorphism of that proposition, where we have writfefor the unipotent
radical of P, (¥). Now the main result of [Mc03] says the following:
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Proposition 33. There is an optimaBL,-homomorphism for X with the following
properties:

() o =V, and
(2) ¢ (x(2)) = e(tX) for eachr € k.

We wish to see that(r X) is independent of the choice of the maximal tofusf
Cy. For this, we will use the following result due to Seitz; the result is essentially
[Sei00, Proposition 4.2].

Proposition 34 (Seitz). Let A C F be a valuation ring in a number field whose
residue field is embedded inlet .£ be aA lattice, and leto/ 5 : SLo/a — GL(L)
be a representation ovex. Assume that

(1) all weights of the standard maximal-torus 7, on£ are < 2p — 2,
(2) the representatiop . of SLy/ is self-dual,

(3) the dimension of the fixed point space gf= p, ¢ <<é 1)) onLr isthe same

as the dimension of the fixed point spaca ot p/k<<(l) D) on L.

Then the representatiom, «, L) is atilting modulefor SLy .

Proof. One decomposes the gl.-module.L; according to the blocks of Sl. In
view of the assumption on the weightsGf; on L, the blocks that can conceivably
occur are those of the simple modulggd) with 0 < d < p. The summand
corresponding to the block fat = p — 1 is isomorphic ta. (d)*? for some integer
v(d) > 0. Otherwise, the summand corresponding to a block wita p — 1 is
isomorphic to a module of the form

T(ca) D @ W) P ® (W(ea)) D ® Lica)" P @ L(d)'?

wherec; = 2p —2—d and where the exponent&l), s(d), 1 (d), u(d), v(d) are non-
negative integers. [We are using Seitz’s notation fog girepresentationsiv (d) is
the Weyl module with high weight, andT (d) is the indecomposable tilting module
with high weightd; cf. [Sei00, 82].]

The assumption (2) implies thetd) = ¢(d) forall0 < d < p — 1. Asin [Sei00,
Proposition 4.2], one now expresses the dimensions of the fixed point spages of
andu g in terms of the exponents and finds thatl) = s(d) = t(d) = 0 for all d.
ThusLy is the direct sum of various simple tilting module&?) for0 < d < p, and
various indecomposable tilting modulB¢c;,) = T(2p —2—d)forO<d < p—1,
so indeed£, is a tilting module. O
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Proposition 35. With notation as above, we have
(1) C&(X) = Cf(e(X)); in particular, W(G,,) normalizesCg, (e(X)).
(2) CL(e(X)) = CL(e(tX)) for eachr € k™.

Proof. If X is distinguished, (1) holds sinaeis P = P(W¥) equivariant, since
e(X) € R,(P) is again a Richardson element, and siggg X), Cs(e(X)) < P by
Proposition 21. [In factCs (X) = C(e(X)) always holds in this case.] It remains
to prove (1) whenX is no longer distinguished; we essentially follow the proof in
[Sei00, Lemma 6.3].

By the unicity ofe, it is enough to prove the result with, ¥, and X replaced
by aG-conjugate. We will regard: = G« as arising by base change from the split
reductive group schem@,z overZ; let T,z be aZ-split maximal torus oG 7.

According to Lemma 28, we may find a suitable valuation ring in a number field
A C F and assume that the Levi subgralupgontains’, and arises by base change
from a standard split reductive Levi subgroup schedmg < G,z containing7)z,
thatw e X, (T/z), and that the nilpotent elemekty e Lie(L,5)(¥; 2) givesX on
base change.

After possibly enlarging\ and F, [Mc03, Theorem 13] gives a homomorphism

f: Skoa = Gya

such that the restriction of to the subgroup schen(% i) of SLy/ is given

byt — e(tXa), WwhereX, € g/5 gives X upon extension of scalars to(recall
from [Sei00, Prop. 5.1] thatis indeed defined oveZ,) hence over\). Moreover,
the restriction off to the standard maximal torus of §ls gives the cocharactelr
of T/A.

SinceG is strongly standard, its adjoint representation is self-dual. Together with
Proposition 29, this shows that we may apply Proposition 34 to the representation
Adof: SLy)a — GL(Lie(G,p)). Thus the Sk-representatiotAd o f/«, g) is a
tilting module, and it follows from [Sei00, Lemma 2.3(d)] that

cg(e(tX)) = ¢g(X)

for eachr € k*. The orbits ofe(r X) and X are separable by Proposition 5; thus we
know that LieCs(e(tX)) = Lie Cg(X). In particular,Cs(X) andCg(e(X)) have
the same dimension; assertion (1) will follow if we show tBgt(X) < C¢ (e(X)).

For any connected linear group, we write H; for the subgroup generated by the
maximal tori in H. Applying [Spr98, 13.3.12], to the groui = C{(X), we find
that H is generated by, andCg (S), whereS is our fixed maximal torus off; i.e.

(%) H = (H;, Cy(9)).
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Working for the moment inside the Levi subgrolip= C(S) of G, the “distin-
guished” case of part (1) of the proposition meanschatS) = Cr(X) = Cr(e(X));
in particularCg (S) centralizess(X). So according to«), the containmenH <
C¢(e(X)), and hence (1), will follow if we just show thatX) is centralized by each
maximal torusl’ of Cg (X). Sincecy(e(X)) = ¢g(X) = Lie Cg(X), one knows that
&(X) centralizes Li€T). We claim that(x) Cs(T) = Cg(Lie(T)); this shows that
T centralizes (X) as desired.

Write M = Cg(T). SinceT is a maximal torus o€, (X), it follows thatT is
a maximal torus of the center @f. Thus(x) is a consequence of the next lemma
(Lemma 36), and (1) is proved. For (2), notice thafif= 7, we have by (1) that

Co(e(X)) = W(s)CGE(XNW(s™h) = C&(e(Ad(¥(5)X)) = C&(e(tX)). O

Lemma 36. Let G be a strongly standard reductive group, [Et< G be a torus,
and writeM = Cq(T). If T is a maximal torus of the center 81, thenCqs(T) =
Cg(Lie(T)).

Proof. We essentially just reproduce the proof of [Sei00, Lemma 6.2].Thdte a
maximal torus ofG containing?. Denote byR C X*(Tp) the roots ofG and by
R; C R the roots ofL. Choose a systewmn, ..., a, € X.(Tp) of simple roots for
G such thatry, ..., «, is a system of simple roots fad = Cg(T) (sot < r). If

we write U, < G for the root subgroup correspondingdoe R, thenU, < L for

o € Ry, moreover,

Co(T) =(To; Uy | oy = 1), and Cq(Lie(T)) = (To; Uy | dajLiery = 0).

We have alway<g(T) < Cg(Lie(T)). If the lemma were not true, there would
be some roop of G such thatfjr # 1 butdpjLiecry = 0. We may writef =
o+ Z;:t«l»l cia; With o € Ry. Sincep is good, the:; are integers with &< ¢; < p
[SS70,1.4.3]. Sincg|r # 1, itfollowsthatc; is non-zeroirk forsomer+1 < j <r.

SinceG andM are strongly standard, [SS70, Corollary 1.5.2] implies gtg) =
Lie Z(G) and3(m) = Lie Z(M) (where3(?) denotes the center of a Lie algebra,
and Z(?) that of a group). We thus have difn= dimj;(g) + (r — 1). It follows
that{da; 1, --- , da,} is a linearly independent subset of [1®" (the dual space of
Lie(T)). In particular, there is\ € Lie(T) such that

dotl' (A) = Si,j-

But thendp(A) = ¢; # 0, contradicting the choice ¢f. This completes the proof.
O

Remark 37. If §, §’ < Cy are maximal tori, let us writ&/ andU’ for the unipotent
radicals of the distinguished parabolic subgroups¥) < L and P/ (¥) < L'
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whereL = Cg(S) andL’ = Cg(S). If ¢: Lie(U) — U andé¢’: Lie(U') —
U’ are the isomorphisms of Proposition 26, th&nX) = ¢'(tX) for eachr € k.
Indeed, we may choose € C4 (X) with gSg=! = §'. Itis then clear thal’ =
gUg~1 and the uniqueness statement of Proposition 26 shows'teatnt(g) o ¢ o
Ad(g™1): Lie(U') — U'. Letr € k*. Proposition 35 shows that centralizes
&(tX) in addition toX. So indeed

g'(tX) = Int(g) o e 0 Ad(g™H)(1X) = Int(g) 0 e(tX) = (1 X)
as asserted.

Now let¢: G, — G be an injective homomorphism of algebraic groups with
X =d¢ (1), and assume that the cocharacskeassociated t& has the property that

V() (s)V () = ¢(r%s) foreachr € k* ands € k.

Since¢ is injective, the cocharacteb is non-trivial; this means in particular that
X # 0 and sad¢ is non-zero.

We remark that the homomorphisin G, — G given byr — e(tX) is injec-
tive. Indeed, as in the proof of Proposition 35, there is an optimal homomorphism
f: SLo — G such thati(s) = f(x1(s)) for s € G,. The group Sk is almost
simple; its unique normal subgroup is contained in each maximal torus. In particular,
kerh is trivial as asserted.

Fix now a maximal torus of Cs(X) centralized by the image o, and hence
a Levi subgroupg. = Cg(S) such thatv (G,,) < L andX € Lie(L).

Proposition 38. With¢ andW as above, we havg(t) = (¢ X) for eachr € k, where
¢: Lie(U) — U is the isomorphism of Propositid® for the unipotent radical/ of
the distinguished parabolic subgroup, (¥) < L. In particular, ¢ (G,) < L.

Proof. Notice thaty (s) € CZ(X) for all s € G,. According to Proposition 35 this
shows that (s) € CZ (e(¢X)) for all t € k*, hence that

s> e(—sX)-¢p(s)

is a homomorphismp1: G, — G. Moreover, ¥ (1)¢1(s)¥ (1) = d1(12s) for
t € k* ands € k, and a quick calculation showfg1 to be trivial.

Assume that the proposition is not true, hence ¢hag 1; it has positive dimen-
sional image and so by Corollary 20 there is a homomorphismG, — G and
an integer > 1 such thatpy = ¢, o F", whereF denotes the Frobenius morphism
for SLp, and such tha#¢o, # 0. On the additive groupF is given bys — s”, so
we know thatpi(s) = ¢o(s?") for s € k. [Notice we have used the fact th@t, is
defined oveff,, so thatG,, identifies withGEf) forr > 0]
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Observe that if1(sg) = 1 for somesg # 0, then 1= ¢1(sg) = £(—s0X)¢ (sg) SO
thate(soX) = ¢ (so); applying In{W(¢)) for ¢ € k>, we see that(sX) = ¢ (s) for
all s € k, so thatp; = 1. Thus if¢1 # 1, theng; is an injective map on the points
of G,. Itis then clear thaps, is injective as well [sinc@ ¢, is non-zerog, is even
an injective homomaorphism of algebraic groups].

Since¥(G,,) normalizes the image @f, we havel (1) ¢ (s)W (1 1) = ¢o(1"s)
for somen € Z. Let nowr € k* ands € k. Then

P1(t%) = W) pr()W (™Y = W(O) (s W (™) = da(t"s”);

since¢1 and¢y are injective, we havér?s)?” = "s?" forall r € k* ands € k. It
follows thatn = 2p".

Denoting by 0 Y an element in the image d@fp,, it is clear that AdW (¢))Y =
127"y so thaty e g(W; 2p"). Sincer > 1, sinceV is associated witkX, and since
x!Pl = 0, this contradicts Proposition 30; hengg= 1 and¢(s) = ¢(sX) for all
s € k as asserted. O

Remark 39. Assume thalp > h, where#h is the Coxeter number af. Then the
nilpotence class of the unipotent radidalof a Borel subgroupB of G is < p.
Thus there is a&-equivariant isomorphism: Lie(U) — U as in Proposition 26.
Fix a regular nilpotent elemer < Lie(U) and writeu = ¢(X). According to
Proposition 11, there is a unique Springer isomorphtsml — N with A(u) = X.
Itis then clear by the unicity cﬁthatA‘T_ile(U) = ¢ for the unipotent radicdl of any
Borel subgroup o;. Since the unipotent radic&l of any parabolic subgroup of
G is contained in that of some Borel subgroup, it is then cIearAhzi’qLie(v) is the
isomorphism of Proposition 26 (of course, the nilpotence clads of < p). This
permits for thesg a simple proof of Proposition 35 and hence of Proposition 38 (i.e.
a proof independent of the tilting module considerations of Proposition 34)

8.1. Conjugacy of optimal SL, homomorphisms. The goal of this paragraphis to
show that any two optimal S-homomorphisms foX are conjugate by an element
of CZ(X).

Let ¢ be an optimal Sk-homomorphism foiX e g with cocharactel = ¢,
Choose a maximal torus < Cy, so thatX is distinguished in Li€L), whereL =
C¢(S) is a Levi subgroup o5. If ¢ is defined ovelk, then the maximal toru$ —
and so alsd. — may be chosen ove¥.

We will write P, = P (W) for the parabolic subgroup df determined by the
cocharacte®s, andU for the unipotent radical oP,. Denote bys: Lie(U) —» U
the uniqueP, -equivariant isomorphism of Proposition 26.

Proposition 40. (1) The torusS centralizesp (X); in particular, ¢(X) C U.
(2) p(x1(2)) = e(t X) for eachr € k.
(3) For eacht € k™, C¢(X) = Cg(uy)) whereu; = ¢(x1()).
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Proof. We apply the result of Proposition 38; that proposition shows ¢hat =
e(tX). (1) and (2) are then immediate, and (3) follows from Proposition 35. O

Proposition 41. The image ofp lies in the derived group of the Levi subgroup
L =Cqg(S).

Proof. Since Sl is equal to its own derived group, we only must see that the image
of ¢ liesinL.
Now write

Y=d¢p(Y1)eg and u, =¢(y1(t)) € G fort ek.

Since Slp is generated by the subgroufsandX —, it suffices to show that;, u, €
L = Cg(S) forallt € k*. Fixt € k*. It was proved in Proposition 40(1) that
u; € L.

Now, there isg € ¢(SLp) with gu;g~* = u;” and Adg)X = Y. Together with
Proposition 40, this implies thaty, (u, ) = Cg(Y) fort € k*. So the proof is
complete once we show théit< Cg(Y).

SinceS and the image o commute g(¥; —2) is S-stable and is thus a direct
sum of S-weight spaces

gV -2 = Y g(¥;-2),.

yeX*(5)

Hence, we may writd € g(¥; —2) as a sum of-weight vectors:

Y=>"Y, withy, € g(¥;-2),.
14

We need to show that = Y, or equivalently that,, = 0 for y # 0.

AsV isassociated t& , it follows from Proposition 21 that, (X) € ) ;.o g(V; 0).
Sinces centralizesX, it follows that ad X) : g(¥; 2) — g(¥; 0) is an injective map
of S-representations. Writingl = dW (1) € g, we have adX)Y = [X, Y] =H €
g(¥; 0)o. Since adX)Y, e g(¥; 0),, the injectivity of adX) implies thatY,, = 0
unlessy = 0, as desired. Thug = Yy and the proof is complete. O

Proposition 42. Let X e g satisfy X[?1 = 0. If ¢1 and ¢» are optimal SL,-
homomorphisms fok and if g1+ = ¢2/7, thengs = ¢2.

Proof. Combined with Proposition 41, the hypotheses yield a maximal tSrgs
C¢(X) suchthattheimage @ liesinL = Cg(S)fori = 1, 2. Thus we may replace
G by the strongly standard reductive grol@nd so suppose thatis distinguished
Proposition 40 shows that (x1(1)) = e(tX) = ¢2(x1(¢)) forall ¢ € k. It follows
that¢, andg, coincide on the Borel subgroup = 7 X of SL,. Using this, we argue
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that¢1 and¢2 coincide on all of Sk. Indeed, consider the morphism of varieties
SLp, — G given by
g — d1()pa(g™h).

Since theg; are homomorphisms, this morphism factors through the flag variety
SL, /B = P! (the projective line); sinc®! is an irreducible complete variety, and
sinceG is affine, this morphism must be constant. The proof is complete. O

Corollary 43. If ¢ is an optimal homomorphism, let as usual= d¢(X1) and
¥ = ¢7. Then the centralizer @f(SLy) is Cy = C6(X) N C6 (¥ (Gp)).

Proof. This is just a restatement of the previous proposition. O

Theorem 44. Suppose thaf is strongly standard, and thaf e g satisfiesy[”! = 0.
Then any two optimebL,-homomorphisms fak are conjugate by a unique element
of the unipotent radical of'¢; (X).

Proof. Let ¢1, ¢2 be optimal Sl.-homomorphisms foX, and writew; = bi|r for

the corresponding cocharacters. According to Proposition 21, the cocharégters
andW¥, associated witlX are conjugate by a unique element of the unipotent radical
U of CZ(X). Replacingp, by aU-conjugate, we may thus suppose that= Ws.

It then follows from Proposition 42 that, = ¢». O

8.2. Uniqueness of a principal homomorphism. Suppose thak € g is adistin-
guishednilpotent element. Then any cocharacere X.(G) with X € g(¥; 2)
is associated tX. In particular, if¢: SL, — G is any homomorphism with
d¢(X1) = X, then¥ = ¢ 5 is a cocharacter associated wixh thus¢ is opti-
mal.

An application of Theorem 44 now gives:

Proposition 45. If ¢1, ¢2: SLy, — G are homomorphisms such thé#1(X1) =
d¢2(X1) = X is a distinguished nilpotent element, thgnand¢, are conjugate by
an element o€'¢, (X).

A principal homomorphismp: SL, — G is one for whichd¢ (X1) is a regular
nilpotent element. Since a regular nilpotent element is distinguished, we have:

Proposition 46. A principal homomorphism is optimal. Any two principal homo-
morphisms are conjugate id.

8.3. Optimal homomor phisms over ground fields. Recall thatk is an arbitrary
ground field. The following theorem gives both an existence result and a conjugacy
result for optimal homomorphisms over the ground fi&d If X € g(K), write
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C = CZ(X) for its connected centralizer; recall by Proposition 21 that the unipotent
radical ofC is defined oveKk .

Theorem 47. Let G be a strongly standard reductiviE-group, and letX € g(K)
satisfyXrl = 0.

(1) There is an optimaEL-homomorphisng for X which is defined ovek .

(2) LetU be the unipotent radical af' = C¢ (X). Any two optimaBL,-homomor-
phism forX defined oveK are conjugate by a unique elementldgk).

Proof. To prove (1), we need first to quote a more precise form of Proposition 33.
The proof of that Proposition given in [Mc03] shows that there is a nilpotent element
X" in the orbit of X which is rational over the separable closéfgpof K in k and
an optimal Sk-homomorphismy” for X” defined overKsep Since the orbit ofX
is separable, one can mimic the proof of [Spr98, 12.1.4] to seeXttatd X" are
conjugate by an element rational ovEgep Indeed, let® be the orbit ofX and
let u: G — O be the orbit mags(g) = Ad(g)X. The separability of the orbi®
means that/u1: T1(G) — Tx(0O) is surjective, and it follows for each € G that
dug: Te(G) — Tad(e)x(O) is surjective. It follows from [Spr98, 11.2.14] that the
fiber u=1(X”) is defined oveKsep SO that by [Spr98, 11.2.7] there ikaerational
pointg inthis fiber. It follows thaty’ = Int(g)o¢” is an optimal Sk-homomorphism
for X which is defined oveKgep

According to Proposition 21, we can find a cocharackeassociated with¥
which is defined ovek'. Writing C = C{ (X), that same proposition shows that the
cocharacter® and¥’ = ¢f7 are conjugate by an elemeite C(Ksep [in fact, 2
can be chosen to beksegrational element of the unipotent radical ©f.

It now follows that¢ = Int(h~1) o ¢’ is an optimal Sk-homomorphism for
X which is defined oveKsep We argue that is actually defined ovek. Let
y € Gal(Ksep K). Theng, = yo¢o y~1: SL, — G is another optimal Sj-
homomorphism forX; sincew = ¢s is defined overk, ¢z = ¢, ;. Thus
Proposition 42 shows that= ¢,,. Sinceg is defined oveKsep Galois descent (e.g.
[Spr98, Cor. 11.2.9]) shows thatis defined oveK .

We now give the proof of (2), which is the same as the proof of Theorem 44.
If ¢ andyr are optimal Sk-homomorphisms foX, each defined ovek, then by
Proposition 21, th& -cocharacter® = ¢+ and¥ = 7 associated witlX are
conjugate by aunique elementid{K ). Thus we may replacg by aU (K)-conjugate
and suppose thg{> = 7. Proposition 42 then shows that= v and the proof is
complete. O

Remark 48. In the case of dinite ground fieldK, Seitz [Sei00, Proposition 9.1]
obtained existence and conjugacy oiefor good A1 subgroupgsee §8.5 below for
their definition).
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8.4. Complete reducibility of optimal homomorphisms. Let G be any reductive
group. Generalizing the notion of a completely reducible representation of a group,
J.-P. Serre has introduced the following definition. A subgréug G is said to
be G-completely reducible (for shortG-cr) if for every parabolic subgroup of G
containingH there is a Levi subgroup a? which also containgf. See [Ser04] for
more on this notion.

We are going to prove that the image of an optimal homomorphisgids. We
establish some technical lemmas needed in the proof. First, we show that a suitable
generalization of Proposition 35 is valid.

Lemmad49. LetV € X, (G)andsupposetha = P (V) isadistinguished parabolic
subgroup with unipotent radicdl = R, P. Suppose that the nilpotence clasdbf
is < p,and let

¢: Lie(U) - U

be the isomorphism of Propositid26. If Xg € g(¥;n) for somen > 1, then
Xo € Lie(U) andC{(Xo) = C¢(e(Xo)).

Proof. Let N(Xp) = {g € G | Ad(g)Xo € kXo} < G. By assumption, the torus
W (G,,) is contained inV (Xp); in particular, this torus normalizes; (Xo). We may
choose a maximal torusof C (Xp) centralized by (G,,); thusS' = S - W (G,,) is

a maximal torus ofV (Xg). According to [Mc04, Lemma 25], there is a cocharacter
A € X.(§8") which is associated t&y. Let T be a maximal torus of; containing

S’; thusT lies in the centralizer ol (G,,,), of S, and of¥ (G,,).

Since a Richardson orbit representat¥efor the denseP-orbit on U satisfies
x!Pl = 0, we have aIS(X([)”] = 0. Now consider the Levi subgroup= Cg;(S); the
nilpotent elemenkj is distinguished in Li€L). LetQ = P;(A),and letV = R, 0
be the unipotent radical @d. Proposition 26 gives a unique isomorphism

g’ Lie(V) - V,

and we know from Proposition 35 th@f, (Xo) = C¢(¢'(Xo)). Thus our lemma will
follow if we show thats (Xg) = ¢/ (Xp).

Notice thatT is contained in the Levi factorgs (W) of P andZ; (A) of Q, so
thatT normalizes the connected unipotent subgrdup= (U N V)? of G. Since the
nilpotence class oW is < p, [Sei00, Proposition 5.2] gives a unique isomorphism
of algebraic groups

¢’ Lie(W) - W

whose tangent map is the identity and which is compatible with the action of the
connected solvable group- W by conjugation. On the other hand, the tangent maps
of the restrictions Lie(w) ande|, ;i are the identity, and these maps are compatible
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with the action ofr" - W; we thus have

eltiew) = &" = &|Lieqw)-
This implies thakt(Xg) = ¢/(Xp) as desired, and the proof is complete. O

We now show that a suitable deformation of an optimal homomorphism remains
optimal.

Lemmab0. Let¢: SLo — G be an optimaSL,-homomorphism, and suppose that
¢ takes its values in the parabolic subgroip

(1) There is a cocharactey € X, (P) such thaty (G,,) centralizesp(7") and such
that? = P(y).

(2) Denoting byL = Z(y) the Levi factor ofP determined by, writeg: SLy — L
for the homomorphism

x = lim oy (0 (0 ()
t—
of Lemmay. Then$is an optimalSL>-homomorphism as well.

Proof. Since¢ (7) lies in some maximal torus af, (1) follows from Lemma 6.

Let us prove (2). LeX = d¢(X1) as usual, and writ&s for the cocharacter
¢|7; it is associated witlX. Denoting byCy the corresponding Levi factor of the
centralizer ofX, we may choose a maximal torfis< Cy and Proposition 41 implies
that¢ takes its values in the Levi subgrodjg; (S). We may evidently replac€é by
L and so assume that is distinguished.

NowletX = Xo+ X', Y = Yo+ Y’ with Xo, Yo € Lie(L) = g(y; 0) and with
X', Y e Lie(R, P). Lemma 7 shows thaigb(Xl) = Xo andd¢(Y1) = Yo.

To shows thatt) is optimal forXg, itis enough to show thaitakes valuesin some
Levi subgroupM of L such thatXg € Lie(M) is distinguished. Indeed, since Sis
its own derived group, this will imply thal = ¢ takes its values M, M), so
thatW is indeed associated witki.

Note that the torus (G,,) normalizesC; (Xg). Since¥(G,,) lies in a maximal
torus of the semidirect product @f; (Xo) and ¥(G,,), it is clear that there is a
maximal torusS of Cy (Xo) centralized by (G,,). TakingM = C(S), we claim
that¢ takes its values iv.

Notice that

$0x(1)) = M y ()t X)y (™) = M (1(Xo + Ad(y (9))X")) = (1 X0)

for eachr € k, Similarly, ?ﬁ(yl(t)) = ¢(tYp) for eachr € k.
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Since S is contained in the centralizer df, it is contained in the instability
parabolicPy for X by Proposition 21. Thusis S-equivariant. Since Slis generated
by X andX~, this equivariance shows that we are dong défentralizes bottXo and
Yo — of course S centralizesXq by assumption.

Write H = dW¥(1); since¥ andy commute,&ﬂf = V. Now, adXp)Yy =
[Xo, Yo] = H. As in the proof of Proposition 41, we writgy = erx*(S) Yo.a
as a sum of weight vectors for the torfis SinceW(G,,) commutes withS, H is
centralized byS, and so we havEXy, Yp,] = 0 wheni # 0; we want to conclude
thatYp, = 0. We do not know tha¥ is associated witlXg, so we can not simply
invoke Proposition 21. However, sind®g; € g(¥; —2), the general theory of
SLp-representations shows: ¥, # 0, thenp(x1(#)) = &(tXo) acts non-trivially
on Yp, for somet € k*. On the other hand, according to Lemma 49 we have
C7 (Xo) = C7(e(tX0)), so thatYp . € cLiez)(X0) = cLie)(e(tX0)). Thus indeed
Yo, = 0 for each non-zera, as required. Thu¥y = Yg,0 SO thatS centralizesro;
the proof is now complete. O

Lemma 51. Let X € g be any nilpotent element, let € X,(G) a cocharacter
associated withX, and letL = Cg (¥ (G,,)) be the Levi factor in the instability
parabolic determined by .

(1) TheL orbit VvV = Ad(L)X is a Zariski open subset gfy'; 2).

(2) LetY € g be nilpotent. Then is a cocharacter associated withif and only if
YeV.

Proof. To prove (1), note that the orbit map
y=>AdW)X: L — gy 2)

has differential adX): Lie(L) = g(y; 0) — g(y; 2); if we know that the differen-
tial is surjective, then the orbit map is dominant and separable and (1) follows. To
see the surjectivity, we argue as follows. Recall from Proposition 21cflat) is
contained i) ;. g(¥; i); in particular,g(y; —2) Neg(X) = 0. According to [Ja04,
Lemma 5.7] this last observation implies (in fact: is equivalent to) the statement
lg(y; 0), X] = g(y; 2); this proves the required surjectivity (note that [Ja04, 5.7]
is applicable since the Lie algebra of a strongly standard reductive group has on it a
nondegenerate, invariant, symmetric, bilinear form — cf. Proposition 2).

For (2) note first that/ is evidently associated to arty € V. Conversely, ifyr
is associated t&’, thenY e g(v; 2), and (1) shows that Ad.)Y is also open and
dense ing(y; 2). Thus AdL)X NAd(L)Y # @, sothaty e Ad(L)X = V. O

Theorem 52. Let G be strongly standard, and lét: SLp, — G be an optimalSL;
homomorphism. Then the imageyois G-cr.
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Proof. LetX = d¢(X1) as usual, and writé for the cocharactef|s; it is associated
with X. Denoting byCy the corresponding Levi factor of the centralizerXofwe
may choose a maximal torus < Cy and Proposition 41 implies that takes its
values in the Levi subgroup = Cg(S). Applying [Ser04, Proposition 3.2], one
knows thatg (SLp) is G-cr if and only if it is L-cr. We replaces by L, and thus
suppose thaX is distinguished.

Let P be a parabolic subgroup ¢f and suppose that the imagedlies in P.
We claim that sinceX is distinguished, we must hav® = G; this will prove the
theorem.

To prove our claim, first notice that by Lemma 50(1) we may chgogeX , (P)
with P = P(y) and such thaf (G,,) commutes with¥ (G,,).

Let us writeX = ), o X; with X; € g(y;i). Consider the homomorphism
5: SL, — Z(y) constructed in Lemma 50; according to (2) of that lemmas
optimal for Xg, so that the cocharactdr is associated t& as well as taX.

We now claim tha andXg are conjugate. This will show th&t is distinguished
in G, hence thaG = Z(y) so that alsaP = G as desired. Lel. = Cq (¥ (G,)).
Then Lemma 51 implies thafg is contained in the orbiv = Ad(L)X C g(V¥; 2),
proving our claim. O

8.5. Comparison with good homomor phisms. According to Seitz [Sei00], an SL
homomorphisng : SL, — G is calledgood(orrestricted provided that the weights
of a maximal torus of Sk.on Lie(G) are all< 2p — 2.

Proposition 53. Let¢: SLp — G be a homomorphism, whei@ is a strongly
standard reductive group. Thenis good if and only if it is optimal foX = d¢ (X1).

In particular, all good SLo-homomorphisms whose image contains the unipotent
elementy are conjugate by’¢; (v).

Proof. That an optimal homomorphism is good follows from Proposition 30. Choose
a Springer isomorphism : U — V. If u is a unipotent element of order, choose
a Levi subgroup. in which « is distinguished; this just means thét= A(u) € g
is distinguished. It follows from Proposition 24 th&t?! = 0. Choose an optimal
homomorphismg’ for X; we know thatp’ takes values irl. (Proposition 41), and if
v = ¢'(x(1)), itis clear from Proposition 40 thatandu are Richardson elements in
the same parabolic subgroup bfthusv andu are conjugate. This proves thats
in the image of some optimal homomorphigm

To prove that good homomorphisms are optimal, we use a result of Seitz. Since
¢ is optimal, we just observed that it is good, and Seitz proved [Sei00, Theorem 1.1]
that any good homomorphism within its image is conjugate bg/; (1) to ¢. Thus,
any good homomorphism is indeed optimal. O
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9. Rational elements of a nilpotent orbit defined over a ground field

In this section, we extend a result first obtained by R. Kottwitz [Ko82] in the case
whereK has characteristic 0. We give here a proof which is also valid in positive
characteristic (under some assumptions@n For the most part, we follow the
original argument of Kottwitz.

Theorem 54. LetK be any field, and letr be a strongly standard connected reductive
K -group which isK -quasisplit. If the nilpotent orbi®® c V is defined oveK, then
O has aK -rational point.

Proof. If K is a finite field, the theorem is a consequence of the Lang—Steinberg
theorem; cf. [St68, §10] and [St65]. Suppose nkwo be infinite.
We fix a Borel subgrou@B of G which is defined ovek, and a maximal torus
T c BwhichisalsooveK. Theroots ofz in X*(T) which appear in the Lie algebra
of the unipotent radical oB are declared positive, and we will wri@ c X.(T) for
the positive Weyl chamber determined By

C = {u | (a, n) > 0 for all positive roots of G in X*(T)}.

If W = Ng(T)/T denotes the Weyl group @f, then eacl € X, (T) is W-conjugate
to a unique pointirC. We also writd™ = Gal(Ksep/ K) for the absolute Galois group
of the fieldK.

The K -variety © has a pointX’ rational over the separable closufgepof K in
k (e.g. by [Spr98, 11.2.7]). According to Proposition 21, there is a cochardtter
associated wittX’ and defined oveKsep Let 7’ be a maximal torus of; defined
over Ksepwhich contains the image @’

Fory e T, the cocharactew’” is associated with the nilpotett’”. Since®
is defined ovelk, X'V and X’ are conjugate. Henc&’ andW¥’” are conjugate by
another application of Proposition 21.

According to [Spr98, Proposition 13.3.1 and 11.2.7] we may find G (Ksep
such thatgT’g~1 = T; the same reference shows that any elemenf the Weyl
group of T may be represented by an elemént Ng(T) rational overKsep, We
have thatl = Int(g) o ¥’ € X, (T) is defined oveKsep Replacingd by Int(w) o ¥
for a suitablew in the Weyl group ofl’, we may suppose that € C C X.(T)
and is defined oveKsep Of course,V is associated with the nilpotent element
X = Ad(wg)X'.

SinceB andT areTI'-stable,y permutes the positive roots Xi*(7). Thus,y
leavesC invariant; in particular¥” e C. We knowW andW¥” to be conjugate in
G. SinceT is a maximal torus of the centralizer of bodnG,,) and of WY (G,,),
we may suppose that” = Int(w)¥ for somew in the Weyl group off. ButC is a
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fundamental domain for th# -action onX,(7T'), so we see thay = ¥”. Since¥
is defined oveKsepand isI"-stable, W is defined ovek [Spr98, 11.2.9].

This shows in particular that the subspgc®; 2) is defined ovek. According
to Lemma 51, there is a Zariski open subsej©@F ; 2) consisting of elements i@.
SinceK is infinite, the K -rational points ofg(W¥; 2) are Zariski dense ig(\¥; 2).
Hence there is & -rational point in® and the proof is complete. O

Corollary 55. LetG be a strongly standard reductivé-group which isk -quasisplit.
There is a regular nilpotent element € g(K). In particular, there is an optimal
homomorphisng: SLp — G defined oveK withd¢ (X1) = X.

Proof. SinceG is split over a separable closukaep of K, there is aKseprational
regular nilpotent element. Thus the regular nilpotent orbit is definedkygy Since
this orbit is clearly stable under G&sey/ K), it is defined ovelk. So the theorem
shows that there is & -rational regular nilpotent elemei. The final assertion
follows from Theorem 47. O

Remark 56. With G as in the theorem, there is a Springer isomorpisnil — N
defined overk. Thus a unipotent conjugacy class defined aenas ak -rational
point.

10. Appendix: Springer isomor phisms (Jean-Pierre Serre, June 1999)

Let G be a simple algebraic group in char, which | assume to be “good” fai.
| also assume the ground fietdto be algebraically closed. Call the variety of
unipotent elements @ andg” the subvariety of = Lie(G) made up of the nilpotent
elements.

Springer has shown that there exist algebraic morphisms

f:GY— g"
with the following properties:
a) f is compatible with the action af by conjugation on both sides.
b) f is bijective.

In fact, it was later shown that these properties imply (at least wherivery good”,
which is always the case @ is not of typeA):

b') f is anisomorphism of algebraic varieties.

Despite the fact that there areany sucly’s (they make up an algebraic variety of
dimensior¢, wheret is the rank ofG), one often finds in the literature the expression
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“the Springer isomorphism” used — and abused —, especially to conclude that the
G-classes of unipotent elements Gfand nilpotent elements gf are in a natural
correspondence, namely “the” Springer correspondence.

It might be good for the reader to consider the casé e SL,, (or rather PGl,,
if one wants an adjoint group). In that case a Springer isomorphism is of the form

1+er> aje+ - +ap_1" L,
wheree”" = 0 (sothait = 1+¢is unipotent), and the are elements dfwith a1 # 0.
Every such familya = (aq, ..., a,_1) defines a unique Springer isomorphigin
and one gets in this way every Springer isomorphism, once and only once. This
example also shows that the Springer isomorphisms can be quite different: e.g., for
some one may havgu™) = m.f(u) for all u and allm € Z ( such anf exists if
and only if p > n), and for some one does not even hgf\(e‘l) =—f(u)!

In what follows, | want to repair this unfortunate mix-up by showing that all the
different Springer isomorphisms gitlee samévijection between th&-classes o6
and theG-classes ofj", so that one can indeed speak (in that cas¢h@Springer
bijection.

I have to recall first how the Springer isomorphisms are defined.@4lihe set
of regular unipotent elements 6f; it is an open dense set &"; same definition for
g"in g = Lie(G). Choose an elementin G'" and letC () be its centralizer. Itis
known thatC («) is smooth, connected, unipotent, commutative, of dimen&i@n
rankG). Letc(u) = Lie C(u) be its Lie algebra. Choose an elem&nof ¢(x) which
is regular. Thenits centralizerd3(«), and the Springer construction shows that there
is auniqueSpringer isomorphisnt = f, x which has the property that(u) = X.
Let us fix X; then it is clear that every Springer isomorphism is equaf,tg for
somev € C(u)", whereC ()" = C(u) N GY"; moreovery is uniquely defined by .
Hence we have ane-to-one parametrization of the Springer isomorphisms by the
elements of C(u)".

The next step consists in showing that this parametrization is “algebraic”. The
precise meaning of this is the following:

Proposition. There exists an algebraic morphisfit C ()" x GY — g" such that
F(v,z) = fy.x(z) for everyv € C(u)" andz € GY.

Proof. Call N, the normalizer ofC(«) in G. Since all regular unipotents are con-
jugate,N, acts transitively orC ()", so that one can identify the algebraic variety
C (u)" with the coset spack¥,/C(u). Similarly, one may identifyGY" with G/ C (u).
Let us now define an algebraic map

F':N,xG — g"

by the formula
F'(n,z) = Ad(zn™1).X
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(i.e. the image ofX € g by the inner automorphism defined by~1). It is clear
that F/(n, z) depends om only mod. C (1), and that it depends analso modC (u).
HenceF’ factors out and gives a map df,/C(u) x G/C (u) into g". If we identify
N,/ Cu) with C(u)" andG/C (1) with GY", we thus get a map

Fo: C(w)' x G — ¢g".

Itis well-known thatG" is a normal variety and th&" — GY" has codimensios 1
in GY. Hence the same is true for(u)" x G' in C(u)" x G". Sinceg" is an affine
variety, the mapFy extends uniquely to an algebraic map C(u)" x GY — g".
One checks immediately that for every fixede C(u)", the mapz — F(v, z) has
the following properties: a) it commutes with the action@f b) it mapsv to X.
(Property a) is checked o@'" first; by continuity, it is valid everywhere.) This
shows thatF is the map we wanted. O

Coroallary. The bijection
G-classes oz — G-classes of"

given by a Springer isomorphisphis independent of the choice ¢f
This is easy. One uses the following elementary lemma:

Lemma. LetY, Z be twoG-spaces. Assume has finitely many orbits in each. Let
T be a connected space, afd T x Y — Z a morphism such that, for evene T,
the mapy — F (¢, y) is aG-isomorphism ot on Z.

Then, for every € Y, the pointsF (¢, y), t € T, belong to the samé&-orbit.

Proof by induction on dint = dim Z. The statement is clear in dimension zero,
because of the connexity @f. If dim Y > 0, there are finitely many open orbits in
Y (resp.Z); call Yo and Zg their union. It is clear that, for eveny the isomorphism
F;: y = F(t,y) mapsYp into Zg. Moreover, the connexity df implies that the
F;’s map a given connected componentgfinto the same connected component of
Zp. And the induction hypothesis appliesXo— Yp andZ — Zo.

The corollary follows from the lemma, applied with = C(»)", Y = G and
Z=g"

Note. The structure ofv,/C (u) seems interesting. If | am not mistaken, it is the
semi-direct product o5, by a unipotent connected grodp of dimension¢ — 1;
moreover, the action di,, on LieV has weightsequal o — 1, ks — 1, ..., k; — 1,
where thek;’s are the exponents of the Weyl group.

Another interesting (and related) question is the behaviour of a Springer isomor-
phism f when one restrictg to C (u). The tangent map t@ is an endomorphism of
c(u) = Lie C(u). Is it always a non-zero multiple of the identity?

J.-P. Serre, June 1999
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