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Transcendental submanifolds of RP
n

Selman Akbulut and Henry King∗

Abstract. In this paper we give examples of closed smooth submanifolds ofRP
n which are

isotopic to nonsingular projective subvarieties ofRP
n but they can not be isotopic to the real

parts of nonsingular complex projective subvarieties ofCP
n.
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0. Introduction

Let j : R
n ↪→ RP

n be the canonical imbedding as a chart. Real algebraic sets in
R

n are not in general real algebraic sets inRP
n. The Zariski closure of the image

of an algebraic set (underj ) usually has extra components at infinity. An algebraic
subset ofRn which remains an algebraic set inRP

n is called aprojectively closed
algebraic set ([AK1]). Not every algebraic set is projectively closed. In general,
isotoping a submanifold of the projective spaceRP

n to an algebraic subset is a much
harder problem than the corresponding problem in the affine caseR

n. In this paper we
produce a transcendental submanifold ofRP

n in the sense of [AK5]. That is, we find
a smooth submanifold ofRP

n which is isotopic to a nonsingular projective algebraic
subset, but which can not be isotoped to the real part of any complex nonsingular
algebraic subset ofCP

n. This results generalizes the affine examples of [AK5] to
the projective case. We want to thank MSRI for giving us the opportunity to work
together.

1. Preliminaries

By a closed (sub)manifold we mean a compact (sub)manifold without boundary.
LetV be a real (or complex) algebraic set defined overR, and letR = Z2 (orR =

Z). Then we can define algebraic homology groupsHA∗ (V ; R) to be the subgroup
of H∗(V ; R) generated by the compact real (or complex) algebraic subsets ofV
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(cf. [AK1]). We defineH ∗
A(V ; R) to be the Poincaré duals of the groupsHA∗ (V ; R)

when defined. By the resolution of singularities theorem ([H]),HA∗ (V ; R) is also
the subgroup generated by the classesg∗([S]) whereg : S → V is an entire rational
function,S is a compact nonsingular real (or complex) algebraic set and[S] is the
fundamental class ofS. Therefore even whenV is real, we can defineHA∗ (V ; Z) to
be the subgroup generated byg∗([S]) whereg : S → V is an entire rational function
from an oriented compact nonsingular real algebraic set and[S] is the fundamental
class ofS.

Now letV ⊂ RP
n be a nonsingular projective real algebraic set of dimensionv,

and suppose its complexificationVC ⊂ CP
n is nonsingular. Letj : V ↪→ VC denote

the inclusion. DefineHA
2k(VC; Z) to be the subgroup ofHA

2k(VC; Z) generated by
irreducible complex algebraic subsets defined overR with k-dimensional real parts.
In other words it is generated by the complexification ofk-dimensional real algebraic
subsets ofV in VC. Again by the resolution theorem,HA

2k(VC; Z) is generated by
the classesg∗([LC]), whereLC is an irreducible nonsingular complex projective
algebraic set defined overR with nonempty real part andg : LC → VC is a regular
map defined overR. Let H 2k

A (VC; Z) denote the Poincaré dual ofHA
2v−2k(VC; Z).

Define
H 2k

C-alg(V ; Z) = j∗H 2k
A (VC; Z).

Let H 2k
C-alg(V ; Z2) to be the mod 2 reduction ofH 2k

C-alg(V ; Z) (under the obvious

coefficient homomorphismZ → Z2). Define the natural subgroup ofH 2k
A (V ; Z2)

Hk
A(V ; Z2)

2 = { α2 | α ∈ Hk
A(V ; Z2)}.

Recall that Theorem A (b) of [AK5] relates these groups to each other:

Theorem 1. For all k the following holds: H 2k
C-alg(V ; Z2) = Hk

A(V ; Z2)
2.

Let M ⊂ V be a closed smooth submanifold of a nonsingular algebraic setV .
The problem of whetherM is isotopic to a nonsingular algebraic subset ofV is an
old one. If we allow stabilization (replacingV by V × R

k for sufficiently largek)
the problem becomes solvable ([N] and [T] for the affine case, [K] for the projective
case, and [AK2] for the general case where there are obstructions).

If we don’t allow stabilization the problem becomes much harder, in which the
complexification ofV begins to play an important role. In [AK3] it was shown
that every closed smoothM ⊂ R

n can be isotoped to a nonsingular (topological)
component of an algebraic subset ofR

n. More generally in [AK4] it was shown that
any immersed submanifold ofR

n can be isotoped to a nonsingular algebraic subset
of R

n if and only if M is cobordant through immersions to an algebraic subset ofR
n.

Here we need a very special case of these theorems, the one which allows us to isotop
some submanifolds ofRP

n (the examples in the next section) to projectively closed
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algebraic subsets. Obviously the following lemmas hold in more general contexts,
but to make the examples of the main theorem in the next section transparent, we
chose to state them in this special form, which is enough to prove the theorem.

Lemma 2. Every closed codimension one submanifold of R
k can be C∞ approxi-

mated by a nonsingular projectively closed algebraic subset.

Proof. This for example is proven in [K] (also Theorem 2.8.2 of [AK1]), but can
also be seen from Seifert’s original proof [S] by noting that the highest degree terms
of the polynomial he constructs are a constant times|x|2n (clearly the zeros of such
polynomials are projectively closed algebraic sets). �

Lemma 3. Let Mm ⊂ Ym+1 be closed smooth manifolds with M separating Y .
Let f : Y → R

k be a smooth imbedding. Then f (M) is isotopic to a nonsingular
projectively closed subvariety of R

k . In particular, by viewing f (M) as a submanifold
of RP

k via the natural inclusion R
k ⊂ RP

k , f (M) is isotopic to a nonsingular
projective algebraic subvariety of RP

k .

Proof. By [AK3] we can isotopf (Y ) to a nonsingular topological componentY ′
of a real algebraic subvariety ofR

k. Let W ⊂ Y be one of the codimension zero
components ofY − M, and letQk−1 ⊂ R

k be the boundary of a small tubular
neighborhood off (W) in R

k. By Lemma 2 above we can isotopQ to a projectively
closed nonsingular algebraic subvarietyQ′ of R

k which is C1 close toQ. Then
V := Y ′ ∩ Q′ gives the desired variety.V is isotopic tof (M) by transversality.V
is projectively closed sinceQ′ is projectively closed. �

Qf (M)

f (W)

f (Y )

2. Transcendental submanifolds

In [AK5] we constructed smooth submanifoldsM ⊂ R
n which are isotopic to nonsin-

gular algebraic subsets ofR
n, but not isotopic to the real parts of nonsingular complex

algebraic subsets ofCP
n. So, this means that either every algebraic model ofM in R

n

develops extra components at infinity when its Zariski closure is taken inRP
n (i.e. it
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is not projectively closed), orM admits nonsingular algebraic models inRP
n but the

complexifications all such models necessarily contain singular points inCP
n. The

following theorem eliminates the first possibility, hence it gives genuine topological
obstructions to moving smooth submanifolds ofRP

n to nonsingular algebraic sets in
the strong sense (i.e. no singularities in complexification).

Theorem 4. There are closed smooth submanifolds M ⊂ RP
n which can be approx-

imated (via a small isotopy) by nonsingular subvarieties of RP
n, but they can not

be isotoped to the real parts of nonsingular complex algebraic subvarieties of CP
n

defined over R.

Proof. By [MM] for any s there is anm such that we have an imbeddingRP
m ⊂

R
2m−s . Let M = RP

m × S1 ⊂ R
2m−s × R

3 = R
2m+3−s ⊂ RP

n, wheren =
2m + 3 − s. Let Y = RP

m × S2 in RP
n, so by Lemma 2 aboveM can be isotoped

to a nonsingular projectively closed algebraic subsetV v of RP
n wherev = m + 1.

We claim that whens ≥ 3 whenm is even, ands ≥ 5 whenm = 4k+1,V can not
be the real part of a nonsingular complex algebraic subsetVC of CP

n (defined over
R). Suppose such aVC exists. By a version of the Lefschetz hyperplane theorem due
to Larsen [Hr], fori ≤ 2v − n = s − 1, the restriction induces an isomorphism

Hi(CP
n; Z)

∼= �� Hi(VC; Z) .

In particular wheni ≤ s −1, the groupHi
C-alg(V ; Z) lies in the image ofHi(RP

n; Z)

under restriction. But sinceV lies in a chartRn of RP
n, from the diagram

Hi(VC; Z2)
j∗

�� Hi(V ; Z2)

H i(CP
n; Z2)

∼=
��

j∗
�� Hi(RP

n; Z2)

��

we conclude thatHi
C-alg(V ; Z2) = 0 for 0 < i ≤ s − 1. On the other hand by [AK1]

the Stiefel–Whitney classes ofV are represented by real algebraic subsets sinceV is
a nonsingular real algebraic set. Hence, whenm is evenw1(V ) = α × 1 is algebraic,
also whenm = 4k + 1 thenw2(V ) = α2 × 1 is algebraic, whereα is the generator
of H 1(RP

m; Z2). So whenm is even ands ≥ 3, or whenm = 4k + 1 ands ≥ 5 we
get a contradiction to Theorem 1 above, for example whenm is even

0 �= α2 × 1 = w2
1(M) ∈ H 1

A(V ; Z2)
2 = H 2

C-alg(V ; Z2) = 0.

We should point out that the above mentioned theorem of [MM] actually implies
that there are imbeddingsRP

m ⊂ R
2m−s for the pairs(m, s) with m even ands ≥ 3,

or m = 4k + 1 ands ≥ 5. This is what is used in the proof. �
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Remark 5. Recall that on any nonsingular real algebraic variety structureV of a
smooth manifoldM, the Stiefel–Whitney classes, and mod 2 reductions of Pontryagin
classes ofM are algebraic inV ([AK1], [AK5]). So the examples in the above theorem
generalize in many directions. For example we can takeMv to be any closed smooth
manifold which admits a separating imbedding into a closed manifoldY v+1, such
thatY v+1 ⊂ R

2v−q with 2i ≤ q, andα ∈ Hi(M : Z2) such thatα2 �= 0 andα lies in
the subring of the cohomology group generated by Stiefel–Whitney and Pontryagin
classes.

We thank the referees for helpful comments.
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