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Path-components of Morse mappings spaces of surfaces

Sergey Maksymenko∗

Abstract. Let M be a connected compact surface, P be either R
1 or S1, and F (M, P ) be the

space of Morse mappings M → P with compact-open topology. The classification of path-
components of F (M, P ) was independently obtained by S. V. Matveev and V. V. Sharko for
the case P = R

1, and by the author for orientable surfaces and P = S1. In this paper we give
a new independent and unified proof of this classification for all compact surfaces in the case
P = R, and for orientable surfaces in the case P = S1. We also extend the author’s initial proof
to non-orientable surfaces.
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1. Introduction

Let M be a smooth (C∞) connected compact surface with boundary ∂M (possibly
empty) and let P be a one-dimensional manifold, i.e. either the real line R

1 or the
circle S1. Consider the subspace F (M, P ) of C∞(M, P ) consisting of Morse map-
pings M → P . It is well-known that F (M, P ) is an everywhere dense open subset
of C∞(M, P ) in the compact-open topology of C∞(M, P ). The homotopy type of
this space is of great importance in differential topology and dynamical systems, see
e.g. [H], [I], [HT], [HH], [KE], [SV1], [M], [IS].

Recently, S. V. Matveev and V. V. Sharko [SV1] have obtained a full description
of path-components of the space F (M, R

1). Matveev’s proof is included and gen-
eralized in the paper [KE] of E. Kudryavtseva to numerated Morse functions. Their
proofs were independent and based on different ideas. The classification of path-
components of F (M, S1) for orientable surfaces was given in the author’s Ph.D.
thesis, see [M].

These results (which we will refer to as Main Theorem) can be summarized as
follows: two Morse mappings f, g : M → P belong to same path-component of
F (M, P ) if and only if they are homotopic as continuous maps and have the same

∗The author is partially supported by the grant of Government Fond of Fundamental Researches no. 1.7/132



656 S. Maksymenko CMH

number of critical points at each index and the same sets of positive and negative
boundary components (in the sense described below.)

In this paper we give a unified and independent proof of this theorem for all
compact surfaces in the case P = R. The case of Morse mappings M → S1 requires
information on the subgroup of the mapping class group of M preserving a given
element in the cohomology group H 1(M, Z). We also find the generators of this
group for orientable surfaces and extend the presented method to Morse mappings
from orientable surfaces into S1.

In fact, the proof given in [M] for this case almost literally extends to non-
orientable surfaces as well. Since [M] was never published in English, we give
this proof for all surfaces in the Appendix. Thus the Main Theorem is proved here
for all cases of M and P .

Our approach has a relation to the paper [HT] of A. Hatcher and W. Thurston, who
used deformations of Morse functions to construct a representation for the mapping
class group of a surface. In constrast to this approach, we exploit generators of this
group to find a deformation between Morse mappings in F (M, P ). The principal
observation is that “elementary diffeomorphisms” like Dehn twists, boundary and
crosscap slides generating mapping class groups of surfaces preserve certain Morse
functions.

2. Preliminaries

Let M be a compact surface. A surface obtained by shrinking every connected com-
ponent of M to a point will be denoted by M̂ . Thus M̂ is closed and is homeomorphic
with a connected sum of the form either S2 #

g
i=1 T 2 (orientable case, g ≥ 0) or #

g
i=1 P

2

(non-orientable case, g ≥ 1). In each of the cases the number g is called the germ
of M . All homology and cohomology groups will be taken with integer coefficients.
The term simple closed curve will be abbreviated to SCC. The circle S1 will be re-
garded as the subset {z ∈ C : |z| = 1} of the complex plane C. For a topological
space X let #[X] denote the number of its connected components.

2.1. Morse mappings. Let us fix, once and for all, an orientation of P . Consider
a smooth mapping f : M → P . A point z ∈ M is critical for f if df (z) = 0. A
critical point z of f is non-degenerate if the Hessian of f at z is non-degenerate.
Suppose that z is a non-degenerate critical point of f . Then by Morse lemma there
are embeddings p : R

2 → M and q : R
1 → P onto open neighborhoods of z and

f (z) respectively such that p(0, 0) = z, q(0) = f (z), q preserves orientation, and
q−1 � f � p(x, y) = ±x2 ± y2. The number of minuses in this representation does
not depend on a particular choice of such embeddings and is called the index of a
critical point z.

A C∞-mapping f : M → P is Morse if the following conditions hold:
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(1) all critical points of f are non-degenerate and belong to the interior of M;

(2) f is constant at each boundary component of M while its values on different
components may differ each from other.

The subspace of C∞(M, P ) consisting of Morse mappings will be denoted by
F (M, P ). We endow C∞(M, P ) with the compact-open topology. Then this topol-
ogy induces some topology on F (M, P ).

2.2. �-homotopies. Let f, g ∈ F (M, P ) be two Morse mappings and φ : [0, 1] →
C∞(M, P ) be a path between them in the space of Morse mappings. Thus φ is
continuous, φ(0) = f , φ(1) = g and φ(t) is Morse for all t ∈ [0, 1]. Then φ yields
a continuous mapping (homotopy) F : M × I → P such that F0 = f , F1 = g, and
Ft is Morse for all t ∈ I . In particular, F is C∞ in x ∈ M but may be just continuous
in t ∈ [0, 1]. Conversely, every such mapping F gives rise to a path between f and
g in F (M, P ).

We will call the mapping F a �-homotopy or �-deformation between f and g

and write f
Ft∼ g. The term f

�∼ g will also be used to indicate that f and g are
�-homotopic.

Remark 2.1. In [SV1], [KE], �-homotopies are called isotopies of Morse functions.
We will use another term in order to avoid confusions with isotopies of diffeomor-
phisms.

2.3. Invariants of �-homotopies. Let f ∈ F (M, P ). The objects (i) homotopy
class, (ii) number of critical points in each index, and (iii) positive and negative
boundary components are invariant under �-homotopies of f .

2.3.1. Homotopy class. First suppose that P = S1. Let ξ ∈ H 1(S1) be a generator
defining the chosen orientation of S1. If f : M → S1 is a continuous mapping,
then the correspondence f 	→ f ∗(ξ) ∈ H 1(M) yields a bijection between the set of
homotopy classes of mappings [M, S1] and the cohomology group H 1(M). Since
by our definition Morse mappings are constant at the connected components of ∂M ,
it follows that the set of homotopy classes of Morse mappings M → S1 is bijective
to the group H 1(M̂) for the corresponding closed surface M̂ .

Let g be a genus of M . A simple calculation shows that H 1(M̂) is isomorphic
with Z

r , where r is either 2g or g − 1 provided M is orientable or not. Let us fix a
basis for H 1(M̂). Then the homotopy class of f is an integer vector

(q1, . . . , qr) = f (ξ) ∈ H 1(M̂) = Z
r .

For P = R we will assume that (q1, . . . , qr) = (0, . . . , 0).
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2.3.2. Number of critical points in each index. Denote by ci(f ) = ci (i = 0, 1, 2)

the number of critical points of f of index i. Then by Morse equalities we have

c0(f ) + c1(f ) − c2(f ) = χ(M). (2.1)

2.3.3. Positive and negative components of ∂M . Let V be a component of ∂M ,
z ∈ V and let ξ ∈ T Mz be a tangent vector at z directed outward M . Denote by
εf (V ) the sign of the value df (z)ξ . Since f has no critical points on V , we see that
εf (V ) = ±1 and does not depend on a particular choice of a point z ∈ V and a
vector ξ ∈ T Mz as above. Thus we get a function εf : π0∂M → {±1}. We may also
think of εf as an element of {±1}b, where b is the number of connected components
of ∂M .

We will call V either f -positive or f -negative in accordance with εf (V ). Let
∂+M (resp. ∂−M) be the union of f -positive (resp. f -negative) boundary components
of ∂M , and let b+ (resp. b−) denote the numbers of these components.

The following collection of numbers

K(f ) = {q1, . . . , qr , c0, c1, c2, εf }
will be called the critical type of a Morse mapping f . It can be regarded as a point
in Z

r × N
3
0 × {±1}b belonging to the “hyperplane” defined by Eq. (2.1), where

N0 = N ∪ {0}. If we choose another orientation of P , then c0(f ) exchanges with
c2(f ), c1(f ) remains unchanged, εf and every qi change their signs.

Our aim is to give a new proof of the following theorem:

Main Theorem (Matveev [KE], Sharko [SV1], Maksymenko [M]). Two Morse map-
pings f, g : M → P belong to the same path-component of F (M, P ) if and only if
K(f ) = K(g), i.e. they are homotopic, have the same number of critical points in
each index, and the same sets of positive and negative components of ∂M .

The necessity is obvious therefore we confine ourself to the sufficiency. Let us
briefly review the known proofs of this theorem. First consider the case P = R

1.
Let f and g be two Morse functions with equal critical types. In both proofs [KE],
[SV1] the problem was reduced to minimal Morse functions with no critical points
of index 0 and 2.

Let F be a gradient-like vector field for a minimal Morse function f . Consider a
union of f -negative boundary components of M with trajectories of F that finish at
critical points of f . This set is called a spine of M . Matveev (see Kudryavtseva [KE])
notes that the space of Morse functions with isotopic spines is path-connected. He
further suggested elementary transformations of spines which induce �-homotopies
of Morse function and showed that any two spines can be connected by a finite
sequence of these transformations.
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Sharko [SV1] reduced the problem to minimal Morse functions on a surface M

with only one positive and only one negative boundary component.Such a surface
can be regarded as a “framed” chords diagram in which the union of all chords and
a negative boundary component constitute the spine of M . Notice that π1M is free.
Choose a basis of this group. Then the edges of any other chords diagram in M can
be written down as words in the terms of a given basis. These words also form the
basis of π1M and determine chord diagrams up to equivalence. Moreover, by the
well-known Nielsen theorem any two bases of a finitely generated free group are
related by a finite sequence of Nielsen transformations. Sharko proved that Nielsen
transformations yield �-homotopies between corresponding Morse functions, and
that Morse functions with equivalent diagrams are �-homotopic.

The extension of the proof of [M] for P = S1 and all surfaces is given in the
Appendix.

2.4. Plan of the present proof. First the problem will be reduced to the case when
g = f �h, where h is a diffeomorphism of M and f is of a special “canonical” form.

It is convenient to say that a diffeomorphism h is f -admissible if f
�∼ f � h. Using

a special type of f , we will choose a system of generators for M(M) and show that
if P = R, then all of them are f -admissible. This will prove the Main Theorem for
this case.

For the case P = S1, M is orientable, and f is not null-homotopic we shall see
that one of the generators chosen above is not f -admissible. Nevertheless, since f

and f �h are homotopic, it will be possible to reduce the problem to the case when h

acts trivially on the homology group H1(M, ∂M), i.e. h belongs to the Torelli group
of M . Generators of this group are known from [P], [J], [MG]. This information will

allow us to show that f
�∼ f � h.

2.5. Structure of the paper. In Section 3 we prove some technical results con-
cerning Morse mappings to the circle. In Section 4 we recall the definition of the
Kronrod–Reeb graph of a Morse mapping and define “canonical” Morse mappings.
In Section 5 we reduce the Main Theorem to the case when f is canonical and g

differs from f by a diffeomorphism. This was done by Kudryavtseva in [KE] for
Morse functions. We consider the case P = S1. In Section 6 we show that elemen-
tary diffeomorphisms generating mapping class groups M(M) of M (Dehn twists,
boundary and crosscap slides) preserve certain Morse functions. In Section 7 we
recall the generators of mapping class groups for surfaces with boundary. Every
canonical Morse mapping gives a “canonical” set of such generators whose admis-
sibility (or nonadmissibility) for this map is almost obvious. We also complete the
Main Theorem for P = R (statement (i) of Lemma 7.3).

In Section 8 we give the plan of the proof of the Main Theorem for the case M is
orientable and P = S1. For this in Section 9 we consider the stabilizers of elements
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of Z
2g with respect to the action of the symplectic groups Sp2g(Z), in Section 10 we

study minimal Morse functions. Section 11 includes one technical lemma. Finally,
in Sections 12–14 we complete the proof.

3. Cutting M along a regular level-set of f

We prove here two lemmas which will be used in the proof of Proposition 5.2.
Let c be a regular value of a Morse mapping f : M → S1. Then f −1(c) is a

disjoint union of SCCs on M . Suppose that f −1(c) ∩ ∂M = ∅. We cut M along
f −1(c) and denote the new surface by M̃ = M̃(f, c). Similarly, we cut S1 at f (c) and
obtain [0, 1]. Let p : M̃ → M and q : [0, 1] → S1 be the corresponding factor-maps,
where q(t) = e2πit , t ∈ [0, 1]. Then there exists a Morse function f̃ : M̃ → [0, 1]
such that the following diagram is commutative:

M̃
f̃−−−−→ [0, 1]

p

⏐⏐� ⏐⏐�q

M
f−−−−→ S1.

(3.1)

Thus
f (x) = exp

(
2πif̃ (p−1(x))

)
for all x ∈ M. (3.2)

Denote B0 = f̃ −1(0), B1 = f̃ −1(1), and B = B0 ∪ B1. Then there is a natural
correspondence between �-homotopies f̃t of f̃ with respect to some neighborhood
of B and �-homotopies ft of f with respect to some neighborhood of γ . The
corresponding maps f̃t and ft are related by the commutative diagram (3.1).

SinceM is connected, it follows that every connected componentX of M̃ intersects
B non trivially. However, it is possible that X ∩ Bi = ∅ for some i = 0, 1. Thus the
components of M̃ can be divided into the following mutually disjoint sets

Q0 = Q0(f, c), Q1
0 = Q1

0(f, c), Q1 = Q1(f, c) (3.3)

consiting of those components that (respectively) have non-empty intersections only
with B0, with both sets B1 and B0, and with B1 only.

It follows that for every connected component X of Q1
0(f, c) and t ∈ [0, 1] we

have X ∩ f −1(t) �= ∅.

Lemma 3.1. (1) Let V be an f̃ -positive (resp. f̃ -negative) component of ∂M̃ and
v = f̃ (V ). Then for every w > v (resp. w < v) there exists a �-homotopy f̃t

changing f̃ only in an arbitrary small neighborhood of V and such that f̃1(V ) = w,
see Figure 3.1a).
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(2) Let X be a connected component of M̃ . For every w ∈ (0, 1) there exists
a �-homotopy f̃t : M̃ → [0, 1] such that f̃0 = f̃ , f̃t = f̃ on (M̃ \ X) ∪ B, and
f̃ −1

1

( 1
2

) ∩ X = f̃ −1(w) ∩ X, see Figure 3.1b).
(3) Let X be a connected component of M̃ . Then there exists a �-homotopy

f̃t : M̃ → [0, 1] with f̃0 = f̃ and f̃t = f̃ on (M̃ \X)∪B, such that f̃ −1
1

( 1
2

)∩X = ∅,

whenever X ⊂ Q0 ∪ Q1, and #[f̃ −1
1

( 1
2

) ∩ X] = 1, whenever X ⊂ Q1
0.

N

V

f̃t

N

V
w
v

a)

v

X

f̃t
1
2

b)

Figure 3.1

Proof. (1) Suppose that V is an f̃ -positive component of ∂M̃ . By definition, f̃

has no critical points on V . Then there exist an ε > 0, a neighborhood N of V ,
and a diffeomorphism h : S1 × (v − 2ε, v] → N such that h(S1 × {v}) = V and
f̃ � h(x, t) = t for (x, t) ∈ S1 × (v − 2ε, v].

Let Ht be an isotopy of R fixed on (−∞, v − ε] and such that H1(v) = w.
Then the �-homotopy f̃t defined by the formulas f̃t (x) = f̃ (x) for x ∈ M \ N and
f̃t (x) = Ht � f̃ (x) for x ∈ N satisfies the statement (1) of the lemma. The proof for
f̃ -negative components is similar.

(2) Notice that, for any v ∈ (0, 1), there exists an isotopy Ht of R
1 fixed near 0

and 1 and such that H1(s) = 1
2 . Then the �-homotopy f̃t : M̃ → [0, 1] defined by

the formulas f̃t = Ht � f̃ on X and f̃t = f̃ on M̃ \ X satisfies the statement (2) of
the lemma.

(3) It follows from the definition that for every connected component X of Q0∪Q1

there exists a number v ∈ (0, 1) such that f̃ −1(v) ∩ X = ∅. Therefore, if X ⊂
Q0 ∪ Q1, then our statement follows from (2).

Let X ⊂ Q1
0. If for some i = 0, 1 the intersection X ∩ Bi is connected, then for

every t in some neighborhood of i we have that X ∩ f̃ −1(t) is connected. By (1) of
the lemma we can choose t = 1

2 .
Suppose now that the intersections X ∩ Bi , i = 0, 1 are not connected. By (1)

and (2) we assume that

0 < f̃ (p−1(∂−M) ∩ X) <
1

4
< f̃ (�f̃ ∩ X) <

1

2
< f̃ (p−1(∂+M) ∩ X) < 1,
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where �f̃ is the set of critical points of f̃ . Thus all critical values of f̃ |X belong to( 1
4 , 1

2

)
; the values on f̃ -negative boundary components of X except for f̃ (X∩B0) = 0

are in
(
0, 1

4

)
; and the values on f̃ -positive boundary components of X except for

f̃ (X ∩ B1) = 1 are in
( 1

2 , 1
)
. In particular, 1

2 is a regular value of f̃ .

Denote n = #
[
f̃ −1

( 1
2

)]
and suppose that n > 1. Our object is to reduce n. Let

F be a gradient-like Morse–Smale vector field of X for the function f̃ |X. It follows
from Morse theory that the union of f̃ |X-positive boundary components ∂+X with
the set of trajectories that start at saddle critical points of f̃ |X and finish at ∂+X is
a strong deformation retract of X. Since X is connected, we see that there exists
a saddle critical point z of f̃ |X such that the trajectories starting from z finish at
different components of ∂+X. We denote these trajectories by ω1 and ω2.

Then (Milnor [MJ1], Theorem 4.1) there exists a �-homotopy f̃t of f̃0 = f̃ |X
that changes f̃ |X only in an arbitrary small neighborhood of (ω1 ∪ ω2) ∩ f̃ −1

(1
4 , 1

2

]
such that 1

2 < f̃1(z) < 1, but f̃1(z
′) < 1

2 for all other critical point z′ of f̃1. It follows
that 1

2 is a regular value for f̃1 and the level-set f̃ −1
1

( 1
2

)
has precisely n−1 connected

components. Now (3) follows by induction on n. �

Lemma 3.2. Every Morse mapping f : M → S1 is �-homotopic to a Morse mapping
g such that for some regular value c of g we have:

(A) if f is null-homotopic, then g−1(c) = ∅;

(B) otherwise, #[g−1(c)] is equal to the index of f∗(H1(M)) in H1(S
1).

Proof. Let c be a regular value of f such that f −1(c) ∩ ∂M = ∅ and let n =
#[f −1(c)]. We cut M and obtain the surface M̃ = M̃(f, c) and the function f̃ : M̃ →
[0, 1] as above.

By Lemma 3.1, if Q0 ∪Q1 �= ∅ or if for some connected component X of Q1
0 the

intersection X ∩ B0 has more than one component, then there exists a �-homotopy
f̃t of f̃ with respect to some neighborhood of B such that #

[
f̃ −1

1

( 1
2

)]
< n. As noted

above, this �-homotopy yields a �-homotopy ft of f = f0 to a Morse mapping
f1 with respect to some neighborhood of f −1(c) such that #[f −1

1 (c1)] < n, where
c1 = q

( 1
2

)
is a regular value of f1.

Repeating these arguments for f1 and c1, and using induction on n we will obtain
a Morse mapping fk and its regular value ck such that either (i) f −1

k (ck) = ∅

or (ii) Q0(fk, ck) = Q1(fk, ck) = ∅ and for every connected component X of
Q1

0 = M̃(fk, ck) the intersection X∩Bi(fk, ck) is non-empty and connected, whence
it is an SCC.

Suppose that fk is null-homotopic. Then fk lifts to a Morse function f̃k : M →
R

1 which must have a global minimum and maximum. Therefore, if f −1
k (ck) �=

∅ (case (ii)), then Q0(fk, ck) ∪ Q1(fk, ck) �= ∅, which contradicts (ii). Hence,
f −1

k (ck) = ∅. This proves (A).
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Suppose fk is not null-homotopic. For convenience we denote fk by f and ck

by c. We will now lift f onto the covering of S1 corresponding to the subgroup
f (H1(M)) of H1(S

1). Let m = #[M̃] and let pm : S1 → S1 be the m-sheet-covering
of S1 defined by the formula pm(e2πit ) = em2πit , t ∈ [0, 1].

First notice, that the set of connected components of M̃ admits a natural cyclic
ordering. Indeed, let X0 be any component of M̃ . If Xk , (k ≥ 0) is defined, then
there exists a unique connected component Xk+1 of M̃ such that p(Xk+1 ∩ B0) =
p(Xk ∩ B1). Since M is connected, it follows that every connected component of M̃

is numbered in this way.
Then the following formula defines a lifting f̄ : M → S1 of f onto the m-sheet

covering of S1:

f̄ (x) = exp
2πi

m

(
f̃ (p−1(x)) + k

)
, x ∈ p(Xk), k = 0, . . . , m − 1,

i.e. pm � f̄ = f .
Finally, let us prove that the homomorphism f̄∗ : H1(M) → H1(S

1) is onto. This
will imply that the index of f (H1(M)) in H1(S

1) is m. For every k = 0, . . . , m − 1
let ωk : [0, 1] → Xk be a simple arc which is transversal to level-sets of f̃ and
such that f̃ (ωk(t)) = t , p(ωk(1)) = p(ωk+1(0)) and p(ωm−1(1)) = p(ω0(0)).
Evidently, these arcs constitute an SCC ω on M such that the restriction f̄ |ω is a
homeomorphism, whence f̄∗ is onto. Thus (B) is proved. �

3.1. Orientation of level-sets of f . Suppose that M is orientable. Let c ∈ S1 be
a regular value of a Morse mapping f : M → S1, L = f −1(c) the corresponding
level-set of f , and F a gradient vector field for f taken in some Riemannian metric
on M . Then the orientation of M together with F yields an orientation of L so that
the homology class of an oriented cycle [f −1(c)] ∈ H1(M, ∂M) does not depend on
a particular choice of a regular value c and even on the homotopy class of f . For
every x ∈ L let vx be a tangent vector to L at x such that the pair (vx, gradf (x))

gives a positive orientation of M . Then the orientation of L defined by vx satisfies
the conditions of the previous sentence.

Let ξ ∈ H 1(S1) be a generator that defines the positive orientation of S1 and let ω

be an intersection form on H1(M, ∂M). Then for every oriented SCC γ : S1 → M ,
regarded as an element of H1(M), we have

f (ξ)(γ ) = 〈L, γ 〉 = deg(f |γ ). (3.4)

Since f is constant on boundary components of M and is not null-homotopic
it follows that f (ξ) �= 0 in H 1(M, ∂M). The intersection form ω on M yields an
isomorphism φ : H 1(M, ∂M) → H1(M, ∂M) which by Eq. (3.4) maps f (ξ) to the
homology class [L].
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In particular, if h : M → M is a diffeomorphism such that f � h and f are
homotopic, then it follows that h∗(f (ξ)) = f (ξ) in H 1(M, ∂M) and h∗([L]) = [L]
in H1(M, ∂M).

4. Kronrod–Reeb graph of a Morse mapping

Let f : M → P be a Morse mapping, c ∈ P , and γ a connected component of
f −1(c). We call γ regular if it contains no critical points of f ; otherwise γ is
critical.

Consider the partition of M by the connected components of level-sets of f . The
factor-space �f of M by this partition has the structure of a one-dimensional CW-
complex and is called the Kronrod–Reeb graph or KR-graph of f (see e.g. [KA],
[KE], [SV2]). There is a unique decomposition

f : M
f ∗

−−−−→ �f
f�−−−−→ P,

where f ∗ is a factor map and for every open edge e of �f the restriction f�|e is a
local homeomorphism. Notice that the orientation of P yields a unique orientation
of e preserved by f� . The mapping f� will be called KR-map associated with f .

The vertices of �f correspond to the critical components of level-sets of f and to
the boundary circles of M . The last type of vertices will be denoted on the KR-graph
by circles � (see e.g. Figure 4.1). Notice that for non-orientable surfaces, KR-graphs
can possess vertices of degree 2 (e.g. [KE]). We will denote these vertices by stars ∗.

Let f, g : M → P be Morse mappings. By an isomorphism between their KR-
graphs we will mean a homeomorphism �g → �f preserving orientations of edges
and the sets of �- and ∗-vertices.

We will say that their KR-maps f� and g� are equivalent provided there exist
a preserving orientation diffeomorphism φ of P and an isomorphism α : �g → �f

such that in the following diagram the right square is commutative:

M
g∗

−−−−→ �g
g�−−−−→ P

h

⏐⏐� α

⏐⏐� φ

⏐⏐�
M

f ∗
−−−−→ �f

f�−−−−→ P.

(4.1)

The mappings f and g are said to be equivalent provided there exists a diffeo-
morphism h of M such that f � h = φ � g. In this case there is a unique equivalence
α between KR-maps of f and g such that the whole diagram (4.1) is commutative.

A Morse mapping f is called generic if every level-set of f contains at most one
critical point. Let f be a generic Morse mapping. If M is orientable, then the degree
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of each vertex of �f is either 1 or 3. If M is non-orientable, then �f may possess
vertices of degree 2.

The following lemma is well-known. Its different variants can be found in [BF],
[KE], [K], [SV2].

Lemma 4.1. Two generic Morse mappings f and g having equivalent KR-maps are
equivalent. �

We say that a Morse mapping f is canonical if its KR-map is equivalent to that
drawn in Figures 4.1 or 4.2.

First consider the case P = R, see Figure 4.1. The part of KR-graph under the
rectangle corresponds to the following cases of M:

a) M is orientable.
b) M is non-orientable of odd genus g.
c) M is non-orientable of even genus g.
d) M is non-orientable, g ≥ 3 and is odd. In this case we will use two types of

canonical Morse functions shown in Figure 4.1. They are related by a �-homotopy,
see [KE]. For the case P = S1 a canonical Morse mapping f : M → S1 can be

a) b) c) d)

f ∗ f�

R′

Figure 4.1. KR-graphs and KR-maps of a canonical Morse function M → R.

described as follows: there is a regular value c of f such that γ = f −1(c) is an
SCC. Moreover, if we cut M along γ , then the restriction of f : M \ γ → S1 \ c

is a canonical Morse function. Its KR-graph is hidden behind the rectangle, see
Figure 4.2.

Notice also that a canonical Morse mapping is generic and the homomorphism
f∗ : H1(M) → H1(S

1) is onto.

Lemma 4.2. Let f, g : M → P be two canonical Morse mappings of the same
critical type K(f ) = K(g). Then they are equivalent.

Moreover, there is a �-homotopy of g to a canonical Morse mapping g1 such that
g1 = f � h, where h is a diffeomorphism of M .
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S′

Figure 4.2. KR-graphs and KR-maps of a canonical Morse mapping M → S1.

Proof. Evidently, KR-graph and KR-map of a canonical Morse mapping is deter-
mined by the numbers c0, c2, b+, b− and the (orientable or non-orientable) genus g

of M . Notice that c1 is related to these numbers via Euler characteristic.

Hence the condition K(f ) = K(g) implies that KR-maps of f and g are equiv-
alent. Then by Lemma 4.1, f and g are equivalent, i.e. p � g = f � h, where p is
a preserving orientation diffeomorphism of P and h is a diffeomorphism of M . It
follows that p is isotopic to idM . Let pt be an isotopy of p = p1 to idM = p0. Then
gt = pt � g is a �-homotopy of g = g0 to g1 = p1 � g = p � g = f � h. �

5. Reduction of the problem

Let f, g : M → P be two Morse mappings such that K(f ) = K(g). We have to

prove that f
�∼ g.

In this section we reduce the proof of the Main Theorem to the case when f and
g are canonical, and g = f � h, where h is a diffeomorphism of M . This was done
in [KE] for the case P = R. Let P = S1.

5.1. Step 1. It may be assumed that the homomorphism f∗ = g∗ : H1(M) →
H1(S

1) is surjective. In particular, f and g are not null-homotopic. This also implies
that M is neither a sphere nor a projective plane (with holes if ∂M �= ∅).

Indeed, suppose that the homomorphism f∗ = g∗ is not onto. Let p : S̃ → S1 be
the covering of S1 corresponding to the subgroup f∗(H1(M)) ⊂ H1(S

1) = π1(S
1)

and let f̃ , g̃ : M → S̃ be some liftings of f and g respectively which are evidently
Morse.

Lemma 5.1. f
�∼ g if and only if f̃

�∼ g̃. �

The proof is easy and is left to the reader. It can be found in [M].
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5.2. Step 2. We may assume that f and g are canonical due to the following state-
ment:

Proposition 5.2 ([KE]). Every Morse mapping f : M → P such that the homo-
morphism f∗(H1(M)) ⊂ H1(S

1) = π1(S
1) is onto is �-homotopic to a canonical

one.

It follows from this proposition that f
�∼ f1 and g

�∼ g1, where f1 and g1
are canonical Morse mappings of the same critical type K(f ) = K(g). Then by
Lemma 4.2 g1 = f1 � h, where h is a diffeomorphism of M .

Proof. As noted above, this statement is proved in [KE] (Lemma 10) for closed
surfaces and P = R. The proof easily extends to surfaces with boundary. Suppose
that P = S1. Since f∗ is onto, it follows from Lemma 3.2, that f is �-homotopic
to a Morse mapping f1 such that α = f −1

1 (c) is an SCC, where c is a regular value
of f1. Cutting M along α as in Section 3 we obtain a surface M̃ and a function
f̃ : M̃ → [0, 1]. Then by the R-case of this proposition f̃ is �-homotopic with
respect to a neighborhood of B to a canonical Morse function. This �-homotopy
yields a �-homotopy of f to a canonical Morse mapping. �

6. Admissible diffeomorphisms and curves

Definition 6.1. Let f : M → P be a Morse mapping. A diffeomorphism h : M → M

will be called f -admissible provided f � h is �-homotopic to f . Notice that f -
admissibility implies that h preserves the sets of f -positive and f -negative compo-
nents of ∂M and that f and f � h are homotopic.

Let A(f ) ⊂ DM be the set of all f -admissible diffeomorphisms, let DidM be the
identity component of DM , and let C(f ) be the path-component of f in F (M, P ).

Lemma 6.2. A(f ) is a group consisting of full isotopy classes, i.e. DidM ⊂ A(f ).
Moreover, if g ∈ C(f ), then A(g) = A(f ).

Proof. Suppose that p, q ∈ A(f ) and let f

t∼ f � p and f

�t∼ f � q be �-
homotopies. Then p � q and p−1 ∈ A(f ). Indeed,

f
�t∼ f � q


t�q∼ f � p � q and f = f � p � p−1 
1−t�p−1

∼ f � p−1.

Thus A(f ) is a group.

If p
Ht∼ p1 is an isotopy, then the homotopy f


t�Ht∼ f � p1 is a �-homotopy.
Thus A(f ) consists of full isotopy classes.
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Finally, if f
�t∼ g is a �-homotopy, then g

�t∼ f

t∼ f � p

�1−t�p∼ g � p. Hence
p ∈ A(g), i.e. A(f ) ⊂ A(g). Similarly A(g) ⊂ A(f ). �

We will now consider three types of “elementary diffeomorphisms” and show that
they preserve certain simple Morse functions.

6.1. Dehn twists. Let γ be a two-sided oriented SCC in M . For the definition of
a Dehn twist along γ see e.g. [D], [L1]. This diffeomorphism is supported in some
neighborhood of γ and its effect on such a neighborhood is shown in Figure 6.1a).

γ
g

a) b)

Figure 6.1. Dehn twist.

Definition 6.3. Let γ be a two-sided SCC in M \ ∂M . We say that γ is f -admissible
if f is �-homotopic to a Morse mapping g such that γ is a connected component of
a regular level-set of g.

Lemma 6.4. Let γ ⊂ IntM be an f -admissible oriented SCC in M . Then a Dehn
twist tγ along γ is f -admissible.

Proof. Let f
F∼ g be a �-homotopy such that γ is a connected component of a

regular level-set of g. We will construct a Dehn twist tγ along γ such that g = g � tγ .
Then tγ is g-admissible, whence by (1) of Lemma 6.2 tγ is also f -admissible.

Since γ is a regular component of a level set of g, there is a regular neighborhood
of γ which is diffeomorphic to S1 × I and such that the function g is the projection
to I , see Figure 6.1b). Then there is a Dehn twist tγ along γ that preserves the sets
of the form S1 × {t}. They are level-sets of g, whence tγ preserves g. �

6.2. Boundary slides. Let A be an annulus and let C0, C1 be the connected compo-
nents of ∂A. Divide C1 into four arcs of equal length l1, . . . , l4 so that l1 is opposite
to l3 and l2 to l4. Let us identify the opposite points of l1 and l3. Then the quotient is
a Möbius strip B with the hole C′

1 = l2 ∪ l4.
Let τ : A → A be a half-Dehn twist along C1, which exchanges l1 with l3 and l2

with l4 and is the identity near C0. Then τ yields a certain diffeomorphism ν of B

that “rotates C′
1 by π and fixes C0”, see Figure 6.2a).
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Suppose that B is embedded into M so that C1 is mapped onto a connected
component C of ∂M . Then ν extends by the identity on all of M . This diffeomorphism
is called a boundary slide of C along B.

Notice that our description of boundary slide differs from ones given in [KM],
[SB]. The advantage is an evidence of the symmetry of ν.

Now it is easy to see that there is a Morse function f : B ′ → [0, 1] having a
unique critical point of index 1 and such that f −1(0) = C0, f −1(1) = C′

1. Its critical
level sets and the KR-graph are shown in Figure 6.2b).

C0

l1

l4

l3

l2

a) b)

Figure 6.2. Boundary slide.

The following lemma is obvious.

Lemma 6.5. f : M → P be a Morse mapping on a non-orientable surface M .
Suppose that the KR-graph of f has an edge e such that one of its vertices, v1, has
degree 2 and another one, v2, corresponds to the boundary component of M , see
Figure 6.2b). Let N be a neighborhood of e containing no vertices of �f but ∂e.
Then B = f −1

� (N) ⊂ M is a Möbius band with hole and there exists a boundary
slide ν : M → M of f −1

� (v2) along B such that f � y = f . �

6.3. Crosscap slides. This type of diffeomorphisms was introduced byW. B. R. Lick-
orish [L2] and called a Y -diffeomorphism. In [KM], [SB] the term crosscap slide
is used. We recall the definition of this diffeomorphism (given in [BC]) via oriented
double coverings.

Let K be a Klein bottle with two holes and let p : T → K be its oriented double
covering, where T is a torus with 4 holes. We can assume that T is embedded into
R

3 so that it is symmetrical with respect to the origin 0. In other words it is invariant
under the involution ξ(x, y, z) = (−x, −y, −z) of R

3, see Figure 6.3a).
Let V1, . . . , V4 be the connected components of ∂T numbered so that ξ(V1) = V2

and ξ(V3) = V4. Then there is a diffeomorphism ỹ : T → T which is fixed near
V3 ∪ V4, coincides with ξ near V1 ∪ V2 and such that ỹ � ξ = ξ � ỹ. Thus y can be
described as a ”rotation” of T with respect to the z-axis by π with fixed boundary
components V3 and V4. For example, in Figure 6.3a) an arc and its image under ξ

are shown. It follows that ỹ induces some diffeomorphism y of K fixed near ∂K .
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Suppose that K ⊂ M is embedded into M . Then y extends by the identity to a
diffeomorphism of M . Such a diffeomorphism of M is called Y -diffeomorphism or
crosscap slide based in K .

Notice that there is a Morse function f̃ : T → R with 4 critical points such that
f̃ � ỹ = f̃ , see Figure 6.3a), where the critical level-sets of f̃ are shown. Then f̃

yields a unique Morse function f : K → R having 2 critical points and such that
f � y = f . The KR-graphs �f̃ and �f of f̃ and f are shown in Figure 6.3b).

V3V3

V4
V4

V1V1

V2V2

�
f̃

�f

a) b)

Figure 6.3. Crosscap slide on the orientable covering.

Lemma 6.6. Let f : M → P be a Morse mapping on a non-orientable surface M .
Suppose that the KR-graph of f has an edge e with vertices of degree 2. Let N be a
neighborhood of e containing no vertices of �f but ∂e. Then K = f −1

� (N) ⊂ M is
a Klein bottle with two holes and there exists a Y -diffeomorphism y : M → M based
in K such that f � y = f . �

7. Mapping class group of a surface with boundary

Let M̂ be a closed connected surface and let X = {x1, . . . , xn} be a set of mutually
distinct points of M̂ . The extended mapping class group Mn(M) of M is defined to
be the group of isotopy classes of diffeomorphisms of M̂ which take X to itself. The
pure extended mapping class group PMn(M) of M is the group of isotopy classes of
diffeomorphisms of M̂ which take X point-wise. The groups M0(M̂) and PM0(M̂)

will be denoted by M(M̂) and PM(M̂) respectively.
Let M be a connected surface with boundary ∂M consisting of n connected com-

ponents V1, . . . , Vn. Regarding these components as punctures, we can identify the
groups M(M) and PM(M) with Mn(M̂) and PMn(M̂).

We recall the sets of generators of M(M) and PM(M) given in [B2], [G] for
orientable surfaces and in [KM] for nonorientable ones.
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7.1. Orientable case. Suppose that M is orientable. Consider the following 3 types
of diffeomorphisms of M:

(1) Let O be a reversing orientation diffeomorphism of M .
(2) Let αi , βi , γi , δi , εi be the SCC shown in Figures 7.1a), where the bold points

denote connected components of ∂M divided into two parts (positive and negative
components). We will refer to them as SCCs of configuration C. Denote by tαi

, tβi
,

tγi
, tδj

, tεi
the corresponding Dehn twists.

(3) For every pair i < j = 1, . . . , n let σij be an SCC that separates M into
two connected components so that one of them is a sphere S with 3 holes whose
boundary components are σij and the connected components Vi and Vj of ∂M , see
Figure 7.1b). Let bij be a diffeomorphism of M with support in S which permutes
boundary components Vi and Vj and preserves all others. Evidently, b2

ij is a Dehn
twist tσij

along σij .

Theorem 7.1 ([B2], [G]). The group M(M) is generated by

(i) {O, bij : i, j = 1, . . . , n} if g = 0;

(ii) {tl, O, bij : l ∈ C, i, j = 1, . . . , n} if g ≥ 1.

The group PM(M) is generated by

(i) {O, b2
ij = tσij

: i, j = 1, . . . , n} if g = 0;

(ii) {tl, O : l ∈ C, i, j = 1, . . . , n} if g ≥ 1.

ε1

εk

α1

β1

δ1

γ1

α2

β2

γ2

αg−1

βg−1

γg−1

αg

βg

δg−1
γg

εb

εk+1

Vj

σij

Vi

a) b)

Figure 7.1. The configuration C. Orientable case.

7.2. Generators for M(M). Non-orientable case. Suppose that M is non-orien-
table of genus g, see Figure 7.2, where the interiors of the shaded disks are removed
and then the antipodal points on each boundary component are to be identified.

Consider the following 4 types of diffeomorphisms of M:
(1) Let y be a crosscap slide of M . If g ≥ 3, then we additionally assume that

y2 is a Dehn twist along a two-sided separating SCC both components of whose
complement are non-orientable.
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(2) and (3) Similarly to the oriented case we define the configuration C of SCCs
αi, βi, γi, δi, εi shown in Figure 7.2, SCCs σij , the corresponding Dehn twists and
diffeomorphisms bij .

(4) Let νi denote the boundary slide obtained by sliding the boundary component
Vi along the loop μ if g is odd and along μ1 if g is even, see Figure 7.3. Also if g is
even, denote by ωi the boundary slide obtained by sliding Vi once along the loop μ2.

Theorem 7.2 ([KM]). The group M(M) is generated by

(i) {νk, bij : i, j, k = 1, . . . , n, i < j} if g = 1;

(ii) {tβ0, y, νk, bij : i, j, k = 1, . . . , n, i < j} if g = 2;

(iii) {tl, y, νk, bij : l ∈ C, i, j, k = 1, . . . , n, i < j} if g ≥ 3 is odd;

(iv) {tl, y, νk, ωk, bij : l ∈ C, i, j, k = 1, . . . , n, i < j} if g ≥ 4 is even.

Replacing every bij by b2
ij = tσij

we obtain generators for PM(M).

ε1εk

α1

β1

δ1

γ1

α2

β2

γ2

αr−1

βr−1

γr−1

αr

βr

δr−1

γr

εb

εk+1

ε1εk

α1
β1

δ1

γ1

α2

β2

γ2

αr−1

βr−1

γr−1

αr

βr

δr−1

γr

εb

εk+1

β0

δ0

Figure 7.2. The configuration C for g = 2r + 1 and g = 2r + 2. Non-orientable case.

μ

Vj
Vi μ1

Vj

μ2
Vi

Figure 7.3. Boundary slides for g = 2r + 1 and g = 2r + 2.
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7.3. Generators of M(M) for canonical Morse mapping. Given a Morse map-
ping f , denote by Mf (M) the subgroup of M(M) consisting of diffeomorphisms
that preserve the sets of f -positive and f -negative components of ∂M . Evidently,
A(f ) ⊂ Mf (M).

Lemma 7.3. Let f : M → P be a canonical Morse mapping. In the case P = S1

assume that M is orientable. Then there is a “canonical” set of generators for
Mf (M) such that

(i) for the case P = R
1 all of them are f -admissible, i.e. A(f ) = Mf (M), whence

the Main Theorem holds for this case;

(ii) for P = S1 (and orientable M) all but one of them are also f -admissible.

Remark 7.4. Recall that we do not give the proof of the Main Theorem (by the new
method) for the case that M is non-orientable and P = S1. Therefore we also do not
consider this case in Lemma 7.3 since it is more complicated and due to the length
of the paper, see also the last paragraph of this section.

Proof. Let f be a canonical Morse mapping. We will construct a set of generators
for M(M) described in Theorems 7.1 and 7.2 such that their f -admissibility is rather
evident.

First suppose M that is orientable and embedded into R
3 as it is shown in Fig-

ure 4.1. Then the canonical Morse mapping f is just the projection onto the vertical
line.

(1) Let O be a diffeomorphism of M that is a symmetry with respect to the plane
of this sheet. Then O reverses orientation of M and preserves f , i.e. f = f � O.
Thus O is f -admissible.

(2) Comparing Figures 4.1 and 7.1 we see that αi and γi are regular components
of regular level-sets of f , whence the Dehn twists tαi

and tγi
are admissible. In

Figure 7.4 an f -admissibility of twists tβi
, tδi

and tεi
is shown.

βi
�

βi

γi

δi

αi

� δi
εi

�
εi

Figure 7.4. f -admissibility of configuration C.

(3) Let Vi and Vj be two f -positive components of ∂M . Then f is �-homotopic
to a Morse mapping f1 such that the KR-graph �f1 of f1 includes a subgraph �1
shown in Figure 7.5a). Let σij be an SCC corresponding to a point s ∈ �1. Then
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there exists a diffeomorphism bij of M1 that exchanges Vi and Vj , preserves f1 and
b2
ij is a Dehn twist along σij . Then bij and σij are f -admissible.

Now let Vi be f -positive and Vj be f -negative. In this case a diffeomorphism
bij permuting Vi and Vj is not f -admissible, since it does not preserve the sets of
f -positive and f -negative boundary components. Nevertheless we will now show
that its square b2

ij = tσij
is f -admissible. Consider two cases.

(a) Suppose that f has at least one critical point of index either 0 or 2 or a boundary
component different from Vi and Vj . Then f is �-homotopic to a Morse mapping f1
whose KR-graph �f2 includes a subgraph �2 shown in Figure 7.5b). Then we define
σij to be an SCC corresponding to a point s ∈ �2. Hence σij is f -admissible.

(b) Otherwise, f has no local extremes and ∂M = V1 ∪ V2. Let σ12 be an SCC
that intersects every γi non trivially but no other SCCs of configuration C, separates
M in two components M1 and M2 such that M1 is disk with two holes V1 and V2, see
Figure 7.5c).

We claim that σ12 is not f -admissible. Otherwise the restriction of f to M2 must
have extremes, which could be taken only on boundary components different from
V1 and V2 or at critical points of indices 0 and 2. But all of them are absent on M2.

Nevertheless, it is well-known that a Dehn twist tσ12 is a product of Dehn twists
along SCCs of configuration C except for γi . Hence a Dehn twist tσ12 is f -admissible.

Vi Vj

σij

�1

s

Vi

σij

Vj

�2

s

V1

M1

V2

M2

σ12

a) b) c)

Figure 7.5. f -admissibility of bij and σij .

Suppose that M is non-orientable of genus g (see Figure 7.2) and let f be a
canonical Morse mapping as in Figure 4.1. Again we define the generators of M(M)

associated with f .
(1) For the case g ≥ 2 we will now define an f -admissible crosscap slide. If g is

odd then �f has an edge e with vertices of degree 2. Otherwise, f is �-homotopic
to a Morse function f1 whose KR-graph has such an edge, see Figure 4.1d). Then by
Lemma 6.6, there exists a crosscap slide y such that f = f � y or f1 = f1 � y in the
second case. Hence y is f -admissible.

Definition and f -admissibility of generators of types (2) and (3) are similar to
the orientable case. We need to verify the admissibility of β0 and δ0 for the case
g = 2r ≥ 2.

Let N be a neighborhood of e defined just above containing no vertices of �f

but ∂e. Then K = f −1
� (N) ⊂ M is a Klein bottle with two holes. Let p : T → K .
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Then T is a torus with four holes. We can assume that the function f̃ = f �p : T → R

coincides with the one defined in Section 6.3, see Figure 6.3. Since β0 and δ0 are two
sided, their inverse images β̃0 = p−1(β0) and δ̃0 = p−1(δ0) in T consist of pair of
disjoint SCC. They are shown in Figure 7.6a).

It is shown in Figure 7.6b) that β̃0 is a regular level-set of f̃ . This figure also shows
a symmetrical �-homotopy of f̃ fixed near ∂T which makes δ̃0 a regular level-set.
Hence β̃0 and δ̃0 are f̃ -admissible, whence β0 and δ0 are f -admissible.

β̃0 δ̃0
β̃0 � �

δ̃0

a) b)

Figure 7.6. f -admissibility of β0 and δ0.

(4) It remains to construct f -admissible boundary slides νi and ωi . Let Vi be a
connected component of ∂M and zi ∈ �f be the corresponding �-vertex.

First suppose that g is odd, so �f has a unique vertex x of degree 2. Then f is
�-homotopic to a Morse function f1 such that zi and x will be the vertices of the
same edge, see Figure 7.7 for the cases when zi is f -negative or f -positive. Then
by Lemma 6.5, there exists a boundary slide νi of Vi preserves f1. Whence νi is
f -admissible.

If g is even, then �f has two vertices x1 and x2 of degrees 2. As in the previous
case we define f -admissible boundary slices νi for Vi and x1, and ωi for Vi and x2.

x x

zi

zi

Figure 7.7

Consider now the case P = S1. Let c ∈ S1 be a regular value of f and α1 =
f −1(c) such that the restriction of f to M \α1 is a canonical Morse function to S1 \c.

Suppose that M is orientable. Then the definition of the configuration C associated
with f is shown in Figure 7.8, where f is the “projection” to β1. Similarly to the
previous case we can define a diffeomorphism O, Dehn twists along the SCCs of
configuration C, and permutations of boundary components bij . The same arguments
as in the case P = R show that all of them are admissible, except for β1, since f and
f � tβ1 are not even homotopic.
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If M is non-orientable, then the surface M \α1 can be orientable or non-orientable
as well. We do not consider this case, see 7.4. �

γ1

α2

α3

β2

δ1

β3

βg

αg

ε1

γ2

γ3

γg

β1

α1

εk+1

εk

Figure 7.8. Configuration C if M is orientable and P = S1.

8. Proof of the Main Theorem

The case P = R is proved in statement (i) of Lemma 7.3. Before processing with
the case P = S1 we recall the definition of the Torelli group and its generators.

8.1. Torelli group T (M). Let M be a closed orientable surface. Then the Torelli
group of M is a subgroup T (M) of PM(M) = M(M) consisting of diffeomorphisms
of M acting trivially on the homology group H1(M). Evidently, T (M) is a normal
subgroup in PM(M).

Suppose now that ∂M �= ∅. Let us glue every connected component of ∂M by a
2-disk and denote the obtained closed surface by M̂ . Then we obtain an epimorphism
j : PM(M) → PM(M̂) induced by the inclusion M ⊂ M̂ , see [B2]. Define the
Torelli group T (M) ⊂ PM(M) of M to be the inverse image j−1(T (M̂)).

The following theorem describes the generators of ker j .

Theorem 8.1 ([B1], [B2]). Let αi and βi be the curves of configuration C on M . For
every component Vj of ∂M let αik (βik) be an SCC which together with αi (βi) bounds
in M a cylinder with a hole Vi . Then the kernel of j is generated by the following
diffeomorphisms: sik = αi � α1

ik and rik = βi � β1
ik .

Theorem 8.2 ([B3], [P], [J], [MG]). The Torelli group T (M) of M is generated by
the following types of diffeomorphisms:
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(a) Dehn twists along SCC separating M (if g = 2 then these diffeomorphisms
generate all the group T (M), [MG]);

(b) products of Dehn twists of the form tγ1 � t−1
γ2

, where the SCCs γ1 and γ2 are
oriented, disjoint, and homologous.

Proof. This theorem was proved for closed surfaces [P] and surfaces with one bound-
ary component [J]. In fact it holds for arbitrary oriented surfaces.

Let t ∈ T (M). Since M̂ is closed, we have that j (t) is generated by diffeomor-
phisms of types (a) and (b). Notice that we can choose the corresponding curves
so that they belong to M , whence j (t) yields some diffeomorphism t1 of surf such
that t−1

1 � t ∈ ker j . By Theorem 8.1, this diffeomorphism is also generated by
diffeomorphisms sik and rik which evidently are of type (b). �

8.2. Proof of the Main Theorem for orientable M and P = S1. It suffices to
establish the following statement using the notations of Lemma 7.3.

Proposition 8.3. Let h ∈ Mf (M) be a diffeomorphism such that the Morse map-
pings f and f � h : M → S1 are homotopic. Then h is isotopic to a product of
diffeomorphisms of the form p � c � t, where

(1) p is generated by O and those bij that belong Mf (M);

(2) c is generated by Dehn twists along the SCCs of configuration C but tβ1;

(3) t ∈ T (M).

Diffeomorphisms of types (1)–(3) are f -admissible, whence so is h.

Proof. Evidently h can be represented as a product p � h1, where h1 ∈ PM(M)

and preserves orientation of M and p is of type (1). Then, by Theorem 7.1, h1 is
generated by the Dehn twists along the curves of configuration C.

Notice that f and f � h1 are homotopic. This condition will allow us to remove
tβ1 from the generators of h1 and replace this twist by diffeomorphisms of type (3).

Lemma 8.4. Let h1 be a diffeomorphism of M generated by the Dehn twists along the
SCCs of configuration C and such that f and f �h1 are homotopic. Then there exists
an f -admissible diffeomorphism c generated by the Dehn twists along the SCCs of
configuration C except for tβ1 such that the diffeomorphism t = c−1 � h1 belongs to
T (M).

Hence it remains to establish that every diffeomorphism t ∈ T (M) is f -admis-
sible. By Theorem 8.2 it suffices to prove this for diffeomorphisms of type (a) and
diffeomorphisms of type (b).
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Theorem 8.5. Let f : M → S1 be a Morse mapping.
(i) Let γ ⊂ M be an SCC and let tγ be a Dehn twist along γ . Then tγ is f -ad-

missible if and only if the restriction f |γ is null-homotopic. If γ separates M , then
f |γ is null-homotopic, whence every diffeomorphism of type (a) is f -admissible.

(ii) Every diffeomorphism of type (b) is f -admissible.

Thus in order to complete our proposition, and therefore the Main Theorem, it
remains to prove Theorem 8.5 (Sections 12 and 13) and Lemma 8.4 (Section 14).

9. Symplectic group

For the proof of Lemma 8.4 we need a description of generators of stabilizers in the
symplectic group Sp2g(Z). The representation of the group Sp2g(Z) is given in [B3].
We will also use the ideas from [OM].

Let Z
2g be a free 2g-module with basis

α1, . . . , αg, β1, . . . , βg, (9.1)

let I be the unity g × g-matrix, and let eij be a g × g-matrix, whose (i, j)-element
(the intersection of i-th row and j -th column) is equal to 1 and all other entries are
zeros.

Let also ω be a skew-symmetric 2-form whose matrix in the basis (9.1) is the
following: (

0 I

−I 0

)
. (9.2)

Thus ω (αi, βi) = 1 and ω(αi, αj ) = ω(βi, βj ) = ω(αi, βj ) = 0 for i, j = 1, . . . , g.
The group of all linear isomorphisms of Z

2g preserving ω is denoted by Sp2g(Z) and
is called symplectic.

9.1. Transvections. For every γ ∈ Z
2g the following automorphism tγ of Z

2g de-
fined by the formula

tγ (x) = ω (γ, x) · γ + x for all x ∈ Z
2g (9.3)

is called the transvection along γ . It is easy to see that tγ ∈ Sp2g(Z) and

t−1
γ (x) = −ω (γ, x) · γ + x for all x ∈ Z

2g.

Define the following elements of Sp2g(Z):

μij = tαi
� tαj

� t−1
αi+αj

, ηij = tβi
� tβj

� t−1
βi+βj

,

νij = tαi
� tβj

� t−1
αi+βj

.
(9.4)
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Lemma 9.1. The following formulas hold true for i �= j = 1, . . . , g:

tαi
=

∥∥∥∥ I eii

0 I

∥∥∥∥ , tβi
=

∥∥∥∥ I 0
−eii I

∥∥∥∥ , tαi+βj
=

∥∥∥∥ I − eij eii

−ejj I + eji

∥∥∥∥ ,

tαi+αj
=

∥∥∥∥ I eii + ejj + eij + eji

0 I

∥∥∥∥ ,

tβi+βj
=

∥∥∥∥ I 0
−eii − ejj − eij − eji I

∥∥∥∥ ,

μij =
∥∥∥∥ I −eij − eji

0 I

∥∥∥∥ , ηij =
∥∥∥∥ I 0

eij + eji I

∥∥∥∥ ,

νij =
∥∥∥∥ I + eij 0

0 I − eji

∥∥∥∥ .

Moreover, the matrices tαi
, tβi

, μij , ηij , and νij (i �= j = 1, . . . , g) generate Sp2g(Z).

Proof. The lemma can be established by direct calculations. The fact that these
matrices generate Sp2g(Z) can be easily deduced from [OM, Ch. 2, §2.2.] or [B3].

�

For each x ∈ Z
2g denote by T (x) the subgroup in Sp2g(Z) generated by transvec-

tions along elements of Z
2g that are ω-orthogonal to x, i.e.

T (x) = 〈tγ | γ ∈ Z
2g, ω (γ, x) = 0〉. (9.5)

Also, let St(x) be the stabilizer of x in Sp2g(Z), i.e.

St(x) = {h ∈ Sp2g(Z) | h(x) = x}.
It easily follows from (9.3) that T (x) ⊂ St(x).

Proposition 9.2. T (α1) = St(α1). Moreover, this group is generated by the following
matrices:

tαi
, tβi

, μij , ηij , νij , (9.6)

except for tβ1, η1i = ηi1 and νi1 (i �= j = 1, . . . , g).

Proof. Evidently, the matrices (9.6) belong to T (α1). Let h ∈ St(α1). We will show
that h is generated by (9.6). The proof consists of two steps.

Step 1. We will find an element h1 ∈ Sp2g(Z) such that h · h−1
1 is generated

by (9.6) and h1(β1) = β1. Let

h(β1) = a1 α1 + b1 β1 + a2 α2 + b2 β2 + · · · ,
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for some ai, bi ∈ Z, (i = 1, . . . , g). Since h preserves the form ω and h(α1) = α1,
we get

b1 = ω (α1, h(β1)) = ω (h(α1), h(β1)) = ω (α1, β1) = 1.

Consider now the effect of action of μ1j and ν1j on h(β1), j = 2, . . . , g. Let
t ∈ Z. Then it is easy to verify that for j > 1 we have:

(μ1j )
t � h(β1) = (a1 − tbj ) α1 + β1 + · · · + (aj − t) αj + bj βj + · · · ,

(ν1j )
t � h(β1) = (a1 + taj ) α1 + β1 + · · · + aj αj + (bj − t) βj + · · · ,

where the coefficients at other basis elements are not changed.
Define now h1 ∈ Z

2g by the formula

h1 = (tα1)
−a′ ·

g∏
j=2

(ν1j )
bj ·

g∏
i=2

(μ1j )
aj · h,

where

a′ = a1 −
g∑

j=2

ajbj .

We claim that h1(β1) = β1.
Indeed, the product of μ1j reduces the coefficients at αj and the product of ν1j

reduces the coefficients at βj for every j = 2, . . . , g. This also makes the coefficient
at α1 equal to a′. Since

tα1(α1) = α1 and (tα1)
t (β1) = (a1 + t) α1 + β1,

we obtain that the multiple (tα1)
−a′

reduces this coefficient.
Step 2. Consider the following submodules of Z

2g:

P = 〈α1, β1〉 and Q = 〈αi, βi | i = 2, . . . , g〉.
They are orthogonal with respect to the form ω and h1|P = id. Since h1 preserves
ω, it follows that h1(Q) = Q. Thus h1 can be regarded as an element of the group
Sp2g−2(Z) ⊂ Sp2g(Z) consisting of isomorphisms that are the identity on P .

By Lemma 9.1 the group Sp2g−2(Z) is generated by matrices (9.6) for i �= j =
2, . . . , g. In particular, they generate h1. �

10. Minimal Morse maps

For the proof of Theorem 8.5 we need the notion of minimal Morse mappings. Let
M be a compact surface, orientable or not. We say that a Morse map f : M → P
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is minimal if the number c0(f ) + c1(f ) + c2(f ) of critical points of f is minimal
among all possible Morse maps M → P having the same sets of positive and negative
boundary components as f . Let b+ and b− be the number of f -positive and f -
negative boundary components of M . The following lemma is easy to prove:

Lemma 10.1. A Morse mapping f : M → P is minimal if and only if for every
connected component X of M the restriction f |X is minimal. A Morse function
f : M → R

1 on a connected surface M is minimal if and only if the following two
relations hold true:

c0(f ) =
{

1, if b− = 0,

0, if b− > 0,
c2(f ) =

{
1, if b+ = 0,

0, if b+ > 0.
(10.1)

Let f : M → S1 be a Morse mapping which is not null-homotopic. Then f is minimal
if and only if c0(f ) = c2(f ) = 0. �

We admit now that M may be not connected. Let f : M → [0, 1] be a Morse
function such that 1

2 ∈ [0, 1] is its regular value. Denote

V0 = f −1 [0, 1/2] , V1 = f −1 [1/2, 1] .

B0 = f −1(0), B1 = f −1(1), Z = f −1(1/2).

Lemma 10.2. Suppose that

(1) B0, B1 and Z are nonempty, the union B0 ∪B1 is included in ∂M and intersects
every connected component of M non trivially;

(2) the restriction f |Vi
is a minimal Morse function for i = 0, 1;

(3) for every connected component X of M such that X∩Z �= ∅ we have X∩Bi �= ∅

for both i = 0, 1.

Then f is a minimal Morse function on M .

Proof. Let X be a component of M . We will show that f |X is a minimal Morse
function. Denote Xi = X ∩ Vi (i = 0, 1).

If X ∩ Z = ∅, then X is a connected component of either one of the sets V0 or
V1. Then the restriction of f onto X is minimal.

Suppose that X ∩ Z �= ∅. Then X ∩ Bi �= ∅ for i = 0, 1 by (3). Evidently, the
components of the intersection X ∩ Z �= ∅ are negative for the restriction f |X1 and
positive for the restriction f |X0 . Therefore, by Lemma 10.1, we have

c2(f |X0) = c0(f |X1) = 0. (10.2)
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Similarly, the intersection X ∩ B0 (resp. X ∩ B1) consists of some negative (resp.
positive) components of f |X and f |X0 (resp. f |X1). Then from Lemma 10.1, we also
get

c0(f |X0) = c2(f |X1) = 0.

Combining this with (10.2), we obtain

ci(f |X) = ci(f |X0) + ci(f |X1) = 0, i = 0, 2.

Hence by Lemma 10.1 f |X is minimal. �

11. Minimization of intersections with a level-set

Let M be a compact surface (orientable or not), let f : M → S1 be a Morse mapping,
and let γ1, . . . , γm ⊂ M be disjoint SCCs.

Lemma 11.1. f is �-homotopic to a Morse mapping g such that for some level-set
L of g and for every i = 1, . . . , m the curve γi does not pass through the critical
points of g and

(i) if the restriction f |γi
is not null-homotopic, then γi transversely intersects every

level-set of g;

(ii) otherwise γi ∩ L = ∅.

Proof. Let c ∈ S1 be a regular value of f . Set

� =
m⋃

i=1

γi, n = #[f −1(c) ∩ �], and d =
m∑

i=1

| deg f |γi
|.

Then #[f −1(c) ∩ γi] ≥ deg f |γi
for i = 0, 1, whence n ≥ d. Moreover, n = d if

and only if #[f −1(c) ∩ γi] = deg f |γi
.

Claim 11.2. Suppose that n > d. Then f is �-homotopic to a Morse map f1 such
that #[f −1

1 (c1) ∩ �] < n for some regular value c1 of f1.

Proof. We will exploit the notations and the construction of Section 3. Cutting M

along f −1(c) we obtain the surface M̃ and the Morse function f̃ : M̃ → [0, 1]. Let
also p : M̃ → M be the factor-map, Bi = f̃ −1(i) for i = 0, 1, and B = B0 ∪ B1 =
p−1(f −1(c)).

Let L = p−1(�) and let l1, . . . , lk be the connected components of L. Then
the intersection lj ∩ B is either empty (whence lj is an SCC) or consists of two
points (whence lj is a simple arc with ends in B). Let us divide L into four groups
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L∅, L0, L1
0, L1 consisting of arcs that respectively do not intersect B, have non-

empty intersections only with B0, with both sets B1 and B0, and with B1 only. Thus
L = L∅ ∪ L0 ∪ L1

0 ∪ L1. Notice that #[L ∩ B0] = #[L ∩ B1] = n, #[L0] = #[L1],
and the sets L0 and L1 are non-empty if and only if n > d.

Let Q1
0 ⊂ M̃ be the union of those connected components of M̃ which intersect

both sets B0 and B1 non trivially. Consider the set

G = Q1
0 ∩ (B0 ∪ L0).

By definition, G∩ (L∅ ∪L1) = ∅. Then there exists a regular neighborhood W of G

which does not intersect L∅ ∪ L1 and such that the boundary Z = ∂W transversely
intersects every component of L1

0 at a unique point. Hence, Z ∩ L = Z ∩ L1
0.

Evidently, Z separates M̃ between B0 and B1. Moreover, #[Z ∩ L1
0] < n.

We will now construct a Morse function g̃ : M̃ → [0, 1] which coincides with f̃ in

some neighborhood of B ∪∂M̃ , has the critical type of f̃ , and such that g̃−1
( 1

2

) = Z.
Let g̃0 : V0 → [

0, 1
2

]
and g̃1 : V1 → [ 1

2 , 1
]

be two minimal Morse functions such
that

g̃−1
0 (0) = B0, g̃−1

0 (1/2) = g̃−1
1 (1/2) = Z, g̃−1

1 (1) = B1,

and the Morse function g̃ : M̃ → [0, 1] defined by g̃|Vi
= g̃i (i = 0, 1) is C∞, has

the same sets of positive and negative components as f̃ , and coincides with f̃ in some
neighborhood of B ∪ ∂M̃ .

We claim that g̃ is minimal. Indeed, let X be a component of M̃ such that
X ∩ Z �= ∅. Since Z = ∂W ⊂ Q1

0, we obtain that X ⊂ Q1
0. Denote Xi = X ∩ Vi ,

then X ∩ Bi = Xi ∩ Bi �= ∅, by the definition of Q1
0. It follows from Lemma 10.2

that g̃ is minimal.
Adding critical points to g̃ outside of B ∪ Z we can change its critical type to

the critical type of f̃ . Let us denote this new function by f̃1. Then f̃1 satisfies the
statement of our claim.

Indeed, denote c1 = q
( 1

2

)
. By the case P = R

1 of the Main Theorem we obtain

that f̃
�∼ f̃1 with respect to some neighborhood of B ∪ ∂M̃ . This �-homotopy

induces a �-homotopy (with respect to f −1(c) ∪ ∂M) of f to a Morse mapping f1
such that #[f −1

1 (c1) ∩ �] < n. �

We now proceed with the proof of Lemma 11.1. By Claim 11.2 we can assume that
n = d. As noted above this is equivalent to the statement #[f −1(c)∩ γi] = deg f |γi

.
In particular, if the restriction f |γi

is null-homotopic, then #[f −1(c) ∩ γi] = 0, i.e.
γi ∩ f −1(c) = ∅, whence (ii) holds true.

Let us assume that li is given by an embedding li : [0, 1] → M̃ so that li ∩ lj = ∅

for j �= i. To establish (i) we prove that following claim:
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Claim 11.3. Suppose that li(0) ∈ B0, li(1) ∈ B1, and that the intersection li ∩ B

is transversal for each i = 1, . . . , k. Then f̃ is �-homotopic to a Morse function g̃

such that li is transversal to level-sets of g̃.

It follows that a �-homotopy of this claim yields a �-homotopy f
�∼ g with

respect to f −1(c) such that every γi is transversal to level-sets of g. This will complete
Lemma 11.1.

Proof of Claim 11.3. We will construct a Morse function f̃1 and a gradient-like vector
field F for f̃1 such that for every i = 1, . . . , m the arc li is a trajectory of F . Then
adding or canceling the proper number of pairs of critical points of f̃1 outside of⋃

i li we obtain a Morse function g̃ having the critical type of f̃ and such that F is a
gradient-like for g̃.

For every i = 1, . . . , m let φi : [0, 1] × [−1, 1] → M be a smooth embedding
such that the image Vi = Imφi is a neighborhood of li , φi(t, 0) = li(t) for t ∈ [0, 1],
φ−1(Bs) = {s} × [−1, 1] for s = 0, 1. Since the li are mutually disjoint, we can
assume that so are the Vi . Denote V = ⋃m

i=1 Vi and define a function g̃ : V → [0, 1]
by the formula g̃(x) = p2 �φ−1

i (x) for x ∈ Vi , where p2 : [0, 1]×[−1, 1] → [−1, 1]
is the natural projection.

Slightly changing g̃ outside some neighborhood of
⋃

i li we can extend g̃ over all
of M̃ . Moreover, this extension may be assumed Morse whose positive and negative
boundary components coincide with the ones of f̃ though the number of critical
points of g̃ and f̃ may be different. Now we show how to change the critical type

K(f̃ ) of g̃ by adding or canceling pairs of critical points outside of
⋃

i li .
Recall that a vector field F on a manifold M̃ is gradient-like for a function

f̃ : M̃ → R
1 if df̃ (F )(x) > 0 at each regular point x of f̃ .

Let � be any gradient-like vector field for the function g̃ on M̃ and let 
̃ be the
gradient vector field for the function p2 on [0, 1] × [−1, 1], i.e. 
̃(s, t) = (0, 1).
Using φi we transfer 
̃ to Vi . This gives us a vector field 
 on V such that li is a
trajectory of 
 for i = 1, . . . , m.

Finally, we glue � and 
. Let V ′ be a neighborhood of
⋃

i li such that V ′ ⊂ V

and let W = M̃ \ V ′. Then V ∪ W = M̃ .
Let μ1, μ2 : M̃ → [0, 1] be a partition of unity corresponding to the open covering

{V, W } of M̃ , i.e. supp μ1 ⊂ V , supp μ2 ⊂ W , and μ1 + μ2 ≡ 1. Define a vector
field F on M̃ by the formula

F(x) = μ1(x) · 
(x) + μ2(x) · �(x), x ∈ M̃.

Evidently, F is gradient-like for g̃ and coincides with 
 near
⋃

i li . In particular,
every li is a trajectory of F , whence li transversely intersects level-sets of g̃.

It remains to show that g̃ can be changed outside of
⋃

i li to have the critical type
of f̃ . First we show how to make g̃ a minimal Morse function.
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Suppose that g̃ has a critical point z0 either of index 0 or 2. Since the sets of
positive and negative boundary components of g̃ are non-empty, there exists a critical
points z1 of index 1 and a trajectory ω of F with ends at z0 and z1. This trajectory
does not intersect

⋃
li . Hence g̃ can be changed in some neighborhood N of ω to

have no critical points in N (see [HM], [MJ1]). Thus the number of critical points is
reduced. By a similar procedure we can add pairs of critical points outside of

⋃
i li .

Therefore we can change the critical type K(f̃ ) of g̃ leaving li transversal to level-sets
of g̃. �

12. Proof of (i) of Theorem 8.5

Let γ ⊂ M be a simple closed curve and let tγ be a Dehn twist along γ .
Necessity. Suppose that tγ is f -admissible. Then f and f � tγ are homotopic.

We should show that deg f |γ = 0. We can assume that there is a regular value c of
f such that α = f −1(c) is an SCC. Denote α′ = tγ (α).

Since f and f � tγ are homotopic, we obtain from the last paragraph of Section 3.1
that [α′] = [α] in H1(M, ∂M), i.e. tγ fixes [α]. Then by Eq. (9.3) for the action of
Dehn twists in H1(M, ∂M) we get

[α] = tγ ([α]) = ω ([γ ], [α]) · [γ ] + [α] = deg f |γ · [γ ] + [α],
whence deg f |γ = 0.

Sufficiency. Suppose that f |γ is null-homotopic. By Lemma 11.1, f is �-
homotopic to a Morse mapping g such that g−1(c)∩ γ = ∅ for some regular value c

of g. We now apply the construction of Section 3. Cutting M along g−1(c) we obtain
a surface M̃ = M̃(g, c), a Morse function g̃ : M̃ → [0, 1], and an SCC γ̃ ⊂ M̃

corresponding to γ . From the case P = R
1 of the Main Theorem, tγ̃ is g̃-admissible.

Then tγ is g-admissible and therefore f -admissible. �

13. Proof of (ii) of Theorem 8.5

Let f : M → S1 be a Morse mapping, let γ1, γ2 be disjoint oriented homologous
simple closed curves in M , and let t = tγ1 � t−1

γ2
be the product of Dehn twists along

these curves. We must prove that t is f -admissible.
Since these curves are homologous, it follows that the restrictions of f to them

are homotopic. If these restrictions are null-homotopic, then by the case (i) of this
theorem t is f -admissible. Therefore we will assume that f |γ1 �∼ 0.

By Lemma 11.1 we can also assume that γi transversely intersects each level-set
of g. Then the statement (ii) of Theorem 8.5 is a direct corollary of the following
lemma:
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Lemma 13.1. Let f : M → S1 be a Morse mapping, let γ1, γ2 be two disjoint
homologous SCCs in M , and let t = tγ1 � t−1

γ2
. Suppose that both of the γi transversely

intersect every level-set of f . Then f
�∼ f � t .

Proof. Let X ⊂ M be the closure of one of the connected components of M\(γ1∪γ2)

bounded by the curves γ1 and γ2. Since γk (k = 1, 2) transversely intersects level-
sets of g, there exists an embedding φk of S1 × [−2, 2] onto some neighborhood Nk

of γk such that

φk(S
1 × {0}) = γk, φk(S

1 × [0, 2]) ⊂ X, (13.1)

and the following diagram is commutative:

S1 × [−2, 2] φk−−−−→ Nk ⊂ M

p1

⏐⏐� ⏐⏐�g

S1 σ−−−−→ S1.

(13.2)

Here p1 is a projection onto the first coordinate and σ is a covering mapping of degree
d = deg f |γ1 = deg f |γ2 defined by the formula σ(z) = zd . Thus

g � φk(z, t) = zd . (13.3)

We can also assume that N1 ∩ N2 = ∅. To simplify notation, for each pair a, b ∈
[−2, 2] we denote

N
[a,b]
k = φk(S

1 × [a, b]).
Let μ : [−2, 2] → [0, 1] be a C∞ function such that μ[−2, −1] = 0 and

μ[1, 2] = 1. Then the Dehn twist tγk
along γk can be defined so that t = tγ1 � t−1

γ2
will have the form

t (z, t) =
{

x, x ∈ M \ (N1 ∪ N2),

(ze2πiμ(s), s), x = φk(z, s) ∈ Nk, k = 1, 2.
(13.4)

Now a �-homotopy G : M × [0, 1] → S1 between g and g � t can be defined by
the formula

G(x, t) =

⎧⎪⎨⎪⎩
g(x) e2πidt , x ∈ X \ (N

[0,1]
1 ∪ N

[0,1]
2 ),

g � φk(z e2πiμ(s)·t , s), x = φk(z, s) ∈ Nk, k = 1, 2,

g(x), x ∈ M \ (X ∪ N
[−1,0]
1 ∪ N

[−1,0]
2 ).

Remark 13.2. A geometrical meaning of this formula is that the mapping G “moves”
d times the part X between the curves γ1 and γ2 “around S1” leaving the the com-
plement M \ X fixed.
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Let us verify, that G is in fact a �-homotopy connecting g with g � t .

Proof. It is clear that G0 = g. Moreover, it follows from (13.1) and (13.2) that φ1
preserves orientation of S1 × [−2, 2] while φ2 reverses it. Hence by (13.4) we get
G1 = g � tγ1 � t−1

γ2
.

Evidently, the continuity of G will imply its smoothness. To prove that G is
continuous we should verify that the second formula coincides with the first one on
N

[1,2]
1 ∪ N

[1,2]
2 and with the third one on N

[−2,−1]
1 ∪ N

[−2,−1]
2 .

Let x = φk(z, s) ∈ N
[1,2]
k for k = 1, 2, then μ(s) = 1, whence, using (13.3), we

get
g � φk(z e2πiμ(s)·t , s) = zd e2πidt = g(x) e2πidt .

Let now x = φk(z, s) ∈ N
[−2,−1]
k for k = 1, 2, then μ(s) = 0, whence

g � φi(z e2πiμ(s)·t , s) = g � φi(z, s) = g(x).

Notice that for every point x ∈ M there exists a neighborhood on which Gt differs
from g by a diffeomorphism of either S1 or M . Hence Gt is Morse for all t ∈ [0, 1],
i.e. G is a �-homotopy. �

14. Proof of Lemma 8.4

Suppose that h ∈ PM(M) is generated by {tl : l ∈ C} and such that the mappings f

andf � h are homotopic. We have to prove thath is in fact generated by {tl : l ∈ C\β1}.
Recall that H1(M, ∂M) is a free module generated by homology classes of

α1, . . . , αg, β1, . . . , βg . Moreover, the matrix of ω in this basis has the form (9.2).
Since h∗ preserves this ω we may suppose that h∗ ∈ Sp2g(Z).

Notice that h∗[α1] = [α1], since α1 is a level-set of f , whence h∗ belongs to the
stabilizer St([α1]) of α1 in Sp2g(Z).

Let tγ be a Dehn twist along a simple closed curve γ . Then it acts on H1(M, ∂M)

by the following formula:

(tγ )∗(x) = ω ([γ ], x) · [γ ] + x for all x ∈ H1(M), (14.1)

thus it is a transvection along [γ ], see Eq. (9.3).
Hence the products of transvections μij , ηij , νij defined by Formula (9.4) can

be realized by products of Dehn twists. It follows from Theorem 8.5 that all these
diffeomorphisms except for η1i = ηi1 and νi1 are f -admissible.

On the other hand, by Proposition 9.2, h∗ is generated by the linear isomorphisms
tαi

, tβi
, μij , ηij , νij , except for tβ1 η1i = ηi1 and νi1, where i �= j = 1, . . . , g.

Hence, there exists an f -admissible diffeomorphism c of M which induces the
same isomorphism of H as h∗. Then t = c−1 � h belongs to T (M). �
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Appendix. Proof of the Main Theorem. Case P = S1

We extend here our proof of the Main Theorem given in [M] to the case when M is
arbitrary and P = S1.

Let f, g : M → S1 be two Morse mappings of the same critical type, let c be
their common regular value, α = f −1(c), and let γ = g−1(c). By Lemma 5.1 we
can assume that the homomorphism f∗ = g∗ : H1(M) → H1(S

1) is onto and by
Lemma 3.2 that α and γ are connected, i.e. SCCs.

Let us cut M along α and denote the obtained surface by M̃ . Let also p : M̃ → M

be the factor-mapping, f̃ : M̃ → [0, 1] the corresponding Morse function induced by
f , B0 = f̃ −1(0), B1 = f̃ −1(1), and B = B0 ∪B1 (we use the notations of Section 3).

Claim 14.1. If α = γ , then f
�∼ g.

Proof. Since f and g are homotopic, we can assume (by small �-homotopy) that they
coincide near α. Then g also yields a Morse function g̃ : M → [0, 1] which coincides

near B with f̃ and K(f̃ ) = K(g̃). By the R-case of the Main Theorem f̃
�∼ g̃ with

respect to a neighborhood of B. Then this �-homotopy yields a �-homotopy between
f and g with respect to a neighborhood of α. �

Suppose that α �= γ . Since f and g are homotopic, it follows that the restriction
f |γ is null-homotopic. Then by Lemma 11.1 we can additionally assume that α∩γ =
∅.

In this case γ̃ = p−1(γ ) separates M̃ between B0 and B1. Using the method of
Claim 11.2 we can construct a Morse function f̃1 : M̃ → [0, 1] which coincides with
f̃ near B0 ∪B1, has the critical type of f̃ , and such that f −1

1

( 1
2

) = γ̃ . Then f̃1 yields
a Morse mapping f1 : M → S1 which coincides with f̃ in a neighborhood of α and

such that f −1
1

(
p
( 1

2

)) = γ . Thus α and γ are level-sets of f1. Then by Claim 14.1

we get f
�∼ f1

�∼ g. �
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