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Spectral convergence of manifold pairs

Karsten Fissmer and Ursula Hamenstädt∗

Abstract. Let (Mi,Ai)i be pairs consisting of a complete Riemannian manifold Mi and a
nonempty closed subset Ai . Assume that the sequence (Mi,Ai)i converges in the Lipschitz
topology to the pair (M,A). We show that there is a number c ≥ 0 which is determined by
spectral properties of the ends ofMi−Ai and such that the intersections with [0, c) of the spectra
of Mi converge to the intersection with [0, c) of the spectrum of M . This is used to construct
manifolds with nontrivial essential spectrum and arbitrarily high multiplicities for an arbitrarily
large number of eigenvalues below the essential spectrum.
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1. Introduction

In this note we investigate the spectrum of the Laplacian acting on square integrable
functions on a complete Riemannian manifold which is not necessarily of finite vol-
ume. Our main goal is to understand how this spectrum varies as we vary our manifold
continuously with respect to the Lipschitz topology for metric pairs.

Here we mean by a metric pair a pair (M,A) which consists of a metric space
(M, d) and a nonempty closed subspace A ⊂ M . For a number R > 0 denote by
B(A,R) the open R-neighborhood of A in M . The Lipschitz topology for metric
pairs is defined as follows (compare [G]).

Definition. A sequence of metric pairs (Mi,Ai) converges to the metric pair (M,A)
in the Lipschitz topology if there is a sequence of numbers Ri → ∞, a sequence
of numbers εi → 0 and for each i a (1 + εi)-bilipschitz homeomorphism Fi of
B(A,Ri) ⊂ M onto a neighborhood of B(Ai, Ri) in Mi which maps A to Ai . We
call the sequence {Ri}i convergence inducing.

∗Research partially supported by SFB 256 and by SFB 611.
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If the closed sets Ai ⊂ Mi and A ⊂ M consist of single points then we also
speak of the Lipschitz topology of pointed metric spaces and Lipschitz convergence
of pointed metric spaces (see [G]).

In the sequel we only consider metric pairs (M,A) consisting of a not necessarily
connected complete Riemannian manifold M and a closed subset A of M which
intersects every connected component of M . We call such a pair (M,A) a manifold
pair.

For every complete Riemannian manifold (M, g), the spectrum of the Laplacian�
acting on square integrable functions is a closed subset σ(M) of the half-line [0,∞).
The set σ(M) is the disjoint union of the essential spectrum σess(M) and the discrete
spectrum σdisc(M). The essential spectrum is a closed subset of σ(M). The discrete
spectrum consists of the eigenvalues of finite multiplicity; they are isolated points
in σ(M). If M is closed and connected then the essential spectrum of M is empty
and σ(M) consists of an increasing sequence 0 = λ1 < λ2 < · · · of nonnegative
numbers converging to ∞.

If (Mi, gi) are diffeomorphic closed Riemannian manifolds which converge as
i → ∞ in the Lipschitz topology to a closed Riemannian manifold (M, g) then
the spectra of Mi converge to the spectrum of M . However, spectra do not always
converge. Namely, consider a sequence (Mi, pi)i of pointed closed connected mani-
folds which converge in the pointed Lipschitz topology to a complete connected
non-compact manifold (M, p) of finite volume.

Let ν ≥ 0 be a lower bound for the essential spectrum of M and assume that
M admits at least k ≥ 0 eigenvalues counted with multiplicities which are smaller
than ν. In [CC1] and [CC2], Colbois and Courtois show that the first k eigenvalues
of Mi converge to the first k eigenvalues of M if and only if there is a convergence
inducing sequenceRi → ∞ and a sequence ri → ∞ such that for sufficiently large i
the smallest Rayleigh quotient ofMi−B(pi, Ri−ri) is not smaller than ν. Recall that
the smallest Rayleigh quotient μ1(�) of an open subset� of a Riemannian manifold
(M, g) is defined to be the infimum of all quotients R(f ) = ∫

g(df, df )/
∫
f 2 over

all nontrivial smooth functions f with compact support in �.
We adapt this idea to our more general situation using the following definition.

Definition. Let (Mi,Ai) be a sequence of metric pairs converging in the Lipschitz
topology to the metric pair (M,A) with a convergence inducing sequence Ri → ∞.
A family of open subsets �i ⊂ Mi − Ai is called escaping if there is a sequence
ri → ∞ such that �i contains Mi − B(Ai, Ri − ri).

We use here the notion of Colbois and Courtois in [CC2] even though our definition
slightly differs from theirs and our escaping sets do not necessarily “escape” in an
intuitive sense.

Denote by L2(M) the Hilbert space of square integrable functions on a Rieman-
nian manifold M and let H 1(M) be the Hilbert space of square integrable functions
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on M with square integrable differential. Let (Mi,Ai) be a sequence of manifold
pairs converging to (M,A) with convergence inducing sequence {Ri}i and
(1 + εi)-bilipschitz embeddings Fi of (B(A,Ri), A) into (Mi,Ai). We say that
a sequence of functions fi ∈ L2(Mi) converges effectively to a function f ∈ L2(M)

if
∫
Mi−B(Ai,Ri) f

2
i → 0 and if moreover

∫
B(A,Ri)

(fi � Fi − f )2 → 0 as i → ∞. We
show

Theorem A. Let (Mi,Ai) be a sequence of manifold pairs which converges in the
Lipschitz topology to the manifold pair (M,A). Let �i ⊂ Mi be an escaping family
of sets and let ν ≤ lim inf i→∞ μ1(�i). Then the sets σ(Mi) ∩ [0, ν) converge as
i → ∞ in the Hausdorff topology for closed subsets of [0, ν) to σ(M) ∩ [0, ν).
Moreover, every function f ∈ H 1(M) whose spectral measure is supported in [0, ν)
is an effective limit of functions fi ∈ H 1(Mi) whose spectral measures converge
weakly to the spectral measure of f .

For closed pointed Riemannian manifolds (Mi, pi)which converge to a complete
manifold (M, p) of finite volume we can combine our Theorem A with standard
compactness results for solutions of elliptic equations to conclude that up to passing to
a subsequence, eigenfunctions onMi for small eigenvalues converge to eigenfunctions
on M .

One can also ask about convergence properties for sequences of eigenfunctions
on our manifolds Mi for eigenvalues which are uniformly bounded but bigger than
ν = lim inf i→∞ μ1(�i) for every escaping family of sets �i ⊂ Mi . By the results
of Colbois and Courtois, such functions might not be visible in the spectrum of the
limit manifoldM . In some special cases, suitable renormalizations of these functions
viewed as functions on larger and larger subsets of M converge up to passing to a
subsequence locally uniformly to an eigenfunction onM which however is in general
not square integrable. In Section 3 we look at a rather special class of examples where
such a convergence can be deduced.

Namely, let N be a closed two-sided hypersurface in a closed manifoldM . Then
N has a tubular neighborhoodU which is diffeomorphic toN×(−1, 1).We consider
a family gs of Riemannian metrics on M which depend smoothly on s ∈ (0, 1] and
which are warped product metrics on U = N × (−1, 1). More precisely, we assume
that there is a smooth family hs (s ∈ [0, 1]) of smooth Riemannian metrics on N
and a smooth function ρ : (0, 1] × [−1, 1] → (0,∞) such that the restriction of gs
to N × (−1, 1) is of the form gs = 1

s2+t2 dt
2 + ρ(s, t)hs (s ∈ (0, 1]). As s ↘ 0

these metrics converge uniformly on compact subsets of N × ([−1, 0) ∪ (0, 1]) to
a complete metric g0. We assume that the metrics gs can be extended to smooth
Riemannian metrics on M − U which depend smoothly on s ∈ [0, 1]. We assume
moreover that ρ(s, t) ↘ 0 as (s, t) → (0, 0).

The following observation extends a result of Judge [J] with a similar but somewhat
shorter proof. For its formulation, we mean now by an eigenfunction a solution of
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the differential equation �− λ = 0 for some λ ∈ R which is not necessarily square
integrable.

Theorem B. Let si ⊂ (0, 1] be a sequence converging to 0 and let fi be an eigen-
function on (M, gsi ) with respect to an eigenvalue λi . If the sequence λi converges
to some λ ≥ 0 then after passing to a subsequence and possibly a renormalization
the functions fi converge uniformly on compact subsets of M − N to a nonzero
eigenfunction for g0 with respect to the eigenvalue λ.

We also give an example which illustrates that the limit function is in general not
square integrable, even if the curvatures and the volumes of all the metrics gs are
uniformly bounded.

In Section 4 we construct manifolds of bounded nonpositive sectional curvature
and with controlled spectral properties.

Theorem C. For every n ≥ 2, k > 0,m > 0 there is a smooth Riemannian man-
ifold M of dimension n and curvature contained in [−1, 0] and with the following
additional properties.

(1) The essential spectrum σess(M) of M is not empty and M has infinitely many
eigenvalues below σess(M).

(2) For 2 ≤ j ≤ k the multiplicity of the j -th eigenvalue of the Laplacian is at
least m.

In the case n = 2 we can choose M to have constant curvature −1.

Our construction can also be used to obtain for any n ≥ 2 and for given k > 0,
m > 0 a compact n-dimensional manifold of nonpositive curvature with the property
that for 2 ≤ j ≤ k the multiplicity of the j -th eigenvalue is at least k. However, in
this case a much stronger result is due to Colin de Verdière [CV2]. He showed that
for every closed manifold M of dimension at least 3 and an arbitrary finite sequence
of nonnegative numbers of the form 0 = λ0 < λ1 ≤ · · · ≤ λm (m ≥ 0) there is a
Riemannian metric on M whose i-th eigenvalue (0 ≤ i ≤ m) is just λi .

2. Proof of Theorem A

This section is devoted to the proof of TheoremA. We continue to use the assumptions
and notations from the introduction. In particular, we denote by (M, g) a complete
Riemannian manifold and by A a nonempty closed subset of M .

For functions f, h on (M, g) denote by (f, h)2 = ∫
M
fh their L2-inner product

and let (∇f,∇h)2 = ∫
M
g(∇f,∇h) be theL2-inner product of their gradients. Write
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also ‖f ‖ = √
(f, f )2 and ‖∇f ‖ = √

(∇f,∇f )2.We denote by H 1(M) the Hilbert
space of square integrable functions on M with square integrable differential with
the inner product (f, h)2 + (∇f,∇h)2. For every nonzero function f ∈ H 1(M) the
Rayleigh quotient of f is defined by R(f ) = ‖∇f ‖2/‖f ‖2.

We begin our argument with a general estimate of Rayleigh quotients for suitably
chosen functions on M .

Lemma 2.1. For ε > 0 there is a number δ = δ(ε) > 0 with the following property.
Let M be a complete Riemannian manifold, let U,V be open subsets of M with
disjoint closures and let u, v be smooth functions on M with compact supports in
U,V . If R(u + v) < μ1(V ) − ε and |R(u + v) − R(u)| < δ then ‖v‖2 < ε‖u‖2

and ‖∇v‖2 < ε(‖∇u‖2 + 2ε‖u‖2).

Proof. Let u, v be as in the lemma. Since v is supported in V we have R(v) ≥
μ1(V ) > R(u+ v)+ ε.

Write
a = ‖∇u‖2, b = ‖u‖2, c = ‖∇v‖2, d = ‖v‖2.

Since the supports ofu and v are disjoint we have ‖u+v‖2 = b+d and ‖∇(u+v)‖2 =
a + c and consequently c

d
= R(v) > R(u+ v)+ ε = a+c

b+d + ε. This implies that

ε
‖v‖2

‖u‖2 = ε
d

b
<
a + c

b + d
− a

b
= R(u+ v)− R(u).

Thus if |R(u) − R(u + v)| < δ(ε) = ε2 then our above inequality shows that
‖v‖2 < ε‖u‖2.

Using again that the supports of u and v are disjoint we obtain from this that

R(u)+ ε2 > R(u+ v) >
‖∇u‖2 + ‖∇v‖2

(1 + ε)‖u‖2 = R(u)

1 + ε
+ ‖∇v‖2

(1 + ε)‖u‖2

and therefore

εR(u)+ ε2(1 + ε) >
‖∇v‖2

‖u‖2

and ‖∇v‖2 < ε‖∇u‖2 + ε2(1 + ε)‖u‖2. This shows the lemma. �

For a closed subsetA of a complete Riemannian manifoldM and a number r > 0
let as beforeB(A, r) be the open r-neighborhood ofA inM . In the sequel we always
assume without further mentioning that the boundaries of our setsB(A, r) are smooth.
This can be achieved with a small deformation of B(A, r) near its boundary. We also
write M = B(A,∞).

The next lemma is a technical tool which allows us to find for every function
f ∈ H 1(M) with controlled Rayleigh quotient a function f ′ ∈ H 1(M) which is
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close to f and to which Lemma 2.1 can be applied. In a less explicit form, this
lemma was used by Colbois and Courtois [CC2].

Lemma 2.2. For C > 0, ρ > 0 there is a number R0 = R0(C, ρ) > 0 as follows. If
f ∈ H 1(M) is such that ‖f ‖2 = 1 and R(f ) < C then there is a function u = u(f )

with the following properties.

(1) u has values in [0, 1] and |∇u| ≤ 1 pointwise.

(2) u = u1 +u2 where u1 is supported in B(A,R0) and the support of u2 is disjoint
from the support of u1 and contained in M − A.

(3) ∫
M

(
(f − f u)2 + ‖∇(f − f u)‖2) < ρ.

Proof. Using the notations from the lemma, choose a number k > 0 such that kρ/4 >
1+C. Notice that k only depends on ρ,C. Form ≤ k defineEm = {x | dist(x,A) ∈
[6m, 6m+ 6)}. Then B(A, 6k+ 6)−B(A, 6) is the disjoint union of the k spherical
shells Em.

Let f ∈ H 1(M) be such that ‖f ‖2 = 1 and ‖∇f ‖2 < C. Then
∫ ‖∇f ‖2 +f 2 <

C + 1 and therefore, by our choice of k, there is some m ∈ {1, . . . , k} such that∫
Em

‖∇f ‖2 + f 2 < ρ/4.

For this number m ≤ k, choose a smooth function ũ1 : R → [0, 1] which is
supported in (−∞, 6m+ 2), equals 1 on (−∞, 6m] and whose gradient is pointwise
bounded in norm by 1. Similarly, let ũ2 : R → [0, 1] be a smooth function which is
supported in (6m+ 4,∞), equals 1 on [6m+ 6,∞) and whose gradient is pointwise
bounded in norm by 1. Define ui = ũi(dist(A, ·)) and u = u1 +u2. ForR0 = 6k+6
the function u1 is supported in B(A,R0). The support of u2 is contained in M − A

and it is disjoint from the support of u1.
The function 1 − u is supported in the shell Em and it satisfies |1 − u| ≤ 1,

‖∇(1 − u)‖ ≤ 1 pointwise. Therefore we have∫
M

(f − f u)2 =
∫
Em

f 2(1 − u)2 ≤
∫
Em

f 2 < ρ/4

and ∫
M

‖∇(f − f u)‖2 =
∫
Em

‖(1 − u)∇f + f∇(1 − u)‖2

≤
∫
Em

‖∇f ‖2 + 2(1 − u)fg(∇f,∇(1 − u))+ f 2

< ρ/4 + 2
∫
Em

f ‖∇f ‖ ≤ 3ρ/4.
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In other words, our function u has the required properties. �

For an open subset� ofM with smooth boundary we denote byH 1(�) the closure
inH 1(M) of the space of smooth functions with compact support in�. ThenH 1(�)

is a closed linear subspace of H 1(M).
The self-adjoint extension of the Laplacian �� on � with Dirichlet boundary

conditions is the self-adjoint operator of the quadratic form (f, u) → (∇f,∇u)2.
The domain of �1/2

� is the Hilbert space H 1(�). We denote by σ(�) ⊂ [0,∞) the
spectrum of ��.

The next lemma is the key technical result needed for the proof of Theorem A.

Lemma 2.3. For ε > 0, C > 0, χ ∈ (0, ε/2) there is a numberR = R(ε, C, χ) > 0
and a number ν = ν(ε, C, χ) > 0 such that the following is satisfied. Let M be
a complete Riemannian manifold and let A ⊂ M be a closed set. Then there is a
continuous linear map L : H 1(M) → H 1(M) with the following properties.

(1) The range of L is contained in H 1(B(A,R)).

(2) L extends continuously to L2(M), and (Lα, β)2 = (α, Lβ)2 for all α, β ∈
L2(M).

(3) If λ < min{μ1(M − A) − ε, C}, r ∈ [R,∞] and if the spectral measure of
f ∈ H 1(B(A, r)) is contained in [λ− ν, λ+ ν] then ‖f −Lf ‖2 ≤ χ‖f ‖2 and
‖∇(Lf )− ∇f ‖2 < χ‖∇f ‖2.

Proof. Let M be a complete Riemannian manifold and let A ⊂ M be a closed set.
The proof of our lemma is divided into three steps.

Step 1. We claim that for every δ ∈ (0, 1), C > 0 there is a number β = β(δ, C) > 0
with the following property. Let f ∈ H 1(M) be a normalized function with R(f ) <
min{μ1(M − A),C} − δ. Let ρ ∈ (0, δ2 ) be an arbitrary number which is small

enough that C+ρ
1−ρ − C < δ/2 and let u = u1 + u2 be the function constructed in

Lemma 2.2 for f and the constants C, ρ/2 > 0; then
∫
(f u1)

2 ≥ β.

Namely, by Lemma 2.2 we have |‖f ‖2 − ‖f u‖2| + |‖∇f ‖2 − ‖∇(f u)‖2| < ρ

and therefore since f is normalized and u ≤ 1 we obtain that

R(f )− ρ = ‖∇f ‖2 − ρ

‖f ‖2 ≤ R(uf ) ≤ ‖∇f ‖2 + ρ

‖f ‖2 − ρ
.

By our choice of ρ and the fact that R(f ) < C we conclude that |R(uf )−R(f )| <
δ/2 and hence R(uf ) < min{μ1(M − A),C} − δ/2. Now

R(uf ) = ‖∇(u1f )‖2 + ‖∇(u2f )‖2

‖u1f ‖2 + ‖u2f ‖2
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and consequently since u2f is supported in M − A we obtain that

min{μ1(M − A),C} − δ/2 >
‖∇(u1f )‖2 + μ1(M − A)‖u2f ‖2

‖u1f ‖2 + ‖u2f ‖2

≥ μ1(M − A)‖u2f ‖2

‖u1f ‖2 + ‖u2f ‖2

and hence
‖u1f ‖2 ≥ δ‖u2f ‖2/2C.

The existence of a constant β = β(δ, C) as stated above now follows from the fact
that ‖u1f ‖2 + ‖u2f ‖2 ≥ 1 − ρ ≥ 1 − δ

2 by Lemma 2.2.

Step 2. Let ε > 0 and let χ < ε/2. Let C ≥ 1, let δ = δ(χ/2C) < χ/2 be as in
Lemma 2.1 and let β = β(δ, C) ≤ 1 be the constant from Step 1 above. Notice that
β only depends on ε, χ, C. Choose ρ ∈ (0,min{χ/2, δβ/4(3 + C)}) small enough
that C+ρ

1−ρ − C < δ/4. Let R0 = R0(C, ρ) be the constant from Lemma 2.2 for ρ;
notice that R0 only depends on ε, χ, C. Let r ∈ [R0 + 2,∞] and for simplicity write
� = B(A, r).

We use the spectral theorem in the following form (see [D]). There is a finite
measure μ on σ(�) × N and a unitary operator U : L2(�) → L2(σ (�) × N, dμ)

as follows. Define h(s, n) = s; then f ∈ L2(�) is contained in the domain of
�� if and only if hU(f ) ∈ L2(σ (�) × N, dμ), and if this is the case we have
U��U

−1(Uf ) = hU(f ). The spectral measure of such a function f is supported in
an interval [λ−κ, λ+κ] if and only if the functionUf is supported in [λ−κ, λ+κ]×N.
Since (u, q) → (∇u,∇q)2 is the quadratic form of �1/2

� this implies that for every
q ∈ H 1(�) we have

|(∇f,∇q)2 − λ(f, q)2| =
∣∣∣∣
∫
h(Uf )(Uq)dμ− λ

∫
(Uf )(Uq)dμ

∣∣∣∣
≤ κ

∣∣∣∣
∫
(Uf )(Uq)dμ

∣∣∣∣ = κ(f, q)2.

Using this inequality for u = f we obtain in particular that the Rayleigh quotient
of f is contained in the interval [λ − κ, λ + κ]. Moreover, if f and q are contained
in the domain of �� and if their spectral measures are supported on disjoint subsets
of σ(�) then we have (f, q)2 = (∇f,∇q)2 = 0.

Letλ < min{μ1(M−A),C}−ε and letf ∈ H 1(�) be a normalized function with
spectral measure contained in [λ− δ√β/4, λ+ δ√β/4]. Then the Rayleigh quotient
of f is not bigger than λ+ δ/4 < min{μ1(M −A),C} − 3δ/4. Let u = u1 + u2 be
the function for f as in Lemma 2.2; then as in Step 1 above we obtain that

‖∇f ‖2 − ρ

‖f ‖2 ≤ R(uf ) ≤ ‖∇f ‖2 + ρ

‖f ‖2 − ρ
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and therefore by our choice of ρ we have |R(uf )− R(f )| < δ/4 and, in particular,
R(uf ) ∈ [λ− δ/2, λ+ δ/2] ⊂ (0, μ1(M − A)− ε/2].

On the other hand, from the properties of the spectral measure for f and the fact
that f is normalized we infer that∣∣∣∣

∫
g(∇f,∇ψ)− λ

∫
ψf

∣∣∣∣ ≤ δ
√
β‖ψ‖/4

for every smooth function ψ on � with compact support. For ψ = u1f ∈ H 1(�)

and with the notation from the proof of Lemma 2.2 above this means that∣∣∣∣
∫

‖∇u1f ‖2 +
∫
Em

g(∇(f (1 − u1)),∇(u1f ))− λ

∫
u1f

2
∣∣∣∣ ≤ δ

√
β‖u1f ‖/4.

Moreover we have ‖u1f ‖ ≥ √
β by the choice of β and Step 1.

Now the intersection of the supports of u1 and 1 − u1 is contained in Em and
consequently | ∫ g(∇(f (1 − u1)),∇(u1f ))| ≤ ∫

Em
‖∇f ‖2 + f 2 + 2f ‖∇f ‖ ≤ 3ρ

and hence we conclude as in Step 1 that∣∣∣∣
∫

‖∇u1f ‖2 − λ

∫
(u1f )

2
∣∣∣∣ ≤ 3ρ + λ

∫
Em

(1 − u1)u1f
2 + δ

√
β‖u1f ‖/4

≤ (3 + λ)ρ + δ
√
β‖u1f ‖/4

≤ (3 + λ)ρ + δ‖u1f ‖2/4 ≤ δ

∫
(u1f )

2/2.

For the last of these inequalities, recall that λ < C, ρ < δβ/4(3 + C) and hence
(3 + λ)ρ < (3 + C)ρ < δβ/4 ≤ δ

∫
(u1f )

2/4 by the choice of β.
In particular, the Rayleigh quotient R(u1f ) is contained in [λ − δ/2, λ + δ/2]

and |R(u1f )− R(uf )| < δ.

Now we can apply Lemma 2.1 to the functions u1f and u2f and deduce that

‖uf − u1f ‖2 < χ‖u1f ‖2/2C < χ/2

and

‖∇(uf − u1f )‖2 < χ‖∇u1f ‖2/2C < χ/2

and therefore also ‖u1f − f ‖2 < χ and ‖∇(u1f − f )‖2 < χ . As a consequence,
we have

∫
M−B(A,R0)

f 2 < χ and
∫
M−B(A,R0)

‖∇f ‖2 < χ.

Step 3. Let v : M → [0, 1] be a smooth function with support in B(A,R0 + 2) and
which is constant 1 on B(A,R0). We may choose our function in such a way that its
gradient ∇v is pointwise bounded in norm by 1. For a function f ∈ H 1(M) define
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Lf = vf . Then L : H 1(M) → H 1(M) is clearly linear, extends continuously to
L2(M) and satisfies (Lα, β)2 = (α, Lβ)2 for all α, β ∈ L2(M). Since |v| ≤ 1 and
‖∇v‖ ≤ 1 pointwise the mapL is continuous. More precisely, we have ‖Lf −f ‖2 ≤∫
M−B(A,R0)

f 2 and

‖∇Lf − ∇f ‖2 ≤
∫
B(A,R0+2)−B(A,R0)

f 2 +
∫
M−B(A,R0)

‖∇f ‖2.

This together with Step 2 above shows the second and the third part of our lemma.
We are left with showing that the image of H 1(M) under the map L is contained

in H 1(B(A,R0 + 2)). For this observe that for every smooth function f on M with
compact support the functionLf is smooth and compactly supported inB(A,R0+2).
Since compactly supported smooth functions are dense in H 1(M) and since L is
continuous, functions with compact support in B(A,R0 + 2) are dense in the range
of L. This shows the lemma. �

Corollary 2.4. For ε > 0,C > 0 and δ < ε/2 there are numbers ρ = ρ(ε, C, δ) > 0
and κ = κ(ε, C, δ) < δ/2 such that for every complete Riemannian manifoldM and
every closed subset A ⊂ M the following holds.

(1) Let λ ∈ [0,min{μ1(M−A),C}− ε]∩σ(M) and let f ∈ H 1(M) be a function
whose spectral measure is supported in [λ− κ, λ+ κ]. Then there is a function
f̃ ∈ H 1(B(A, ρ)) with spectral measure supported in [λ− δ, λ+ δ] and such
that ‖f − f̃ ‖2 < δ‖f ‖2.

(2) Let λ ∈ [0,min{μ1(M − A),C} − ε] ∩ σ(B(A, ρ)) and let f ∈ H 1(B(A, ρ))

be a function whose spectral measure is supported in [λ− κ, λ+ κ]. Then there
is a function f̃ ∈ H 1(M) with spectral measure supported in [λ− δ, λ+ δ] and
such that ‖f − f̃ ‖2 < δ‖f ‖2.

Proof. Let ε ∈ (0, 1], δ < ε/2 and let C ≥ 1. Define κ = δ3/(C + 1) and let
ρ = R(ε/2, C, κ2) be as in Lemma 2.3. Denote by L : H 1(M) → H 1(B(A, ρ)) the
linear map from Lemma 2.3.

Let ν = ν(ε/2, C, κ2) < κ/2 be as in Lemma 2.3 and let λ ∈ σ(M) ∩
[0,min{μ1(M − A),C} − ε]. Let f be a normalized function on M with spectral
measure supported in [λ− ν, λ+ ν]. Then the Rayleigh quotient of f is not bigger
than λ+ν < min{μ1(M−A),C}−ε/2. Moreover, since f is normalized we obtain
that ∣∣∣∣

∫
g(∇f,∇u)− λ

∫
uf

∣∣∣∣ ≤ 2ν‖u‖
for every smooth function u on M with compact support.

By construction of the operator L, the function Lf lies in the domain of�B(A,ρ).
Moreover by Lemma 2.3 we have ‖Lf − f ‖2 < κ2‖f ‖2 and ‖∇(Lf − f )‖2 <
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κ2‖∇f ‖2. Using the spectral theorem for the operator�B(A,ρ) acting onL2(B(A, ρ))

with Dirichlet boundary conditions we obtain that the function Lf admits an L2-
orthogonal decomposition Lf = α + ϕ + β where the spectral measure of α is
supported in [0, λ− δ2], the spectral measure of β is supported in [λ+ δ,∞) and the
spectral measure of ϕ is supported in [λ− δ2, λ+ δ]. Since ‖Lf − f ‖2 < κ2‖f ‖2

by construction, for the first part of our lemma it is enough to show that the square
norms of α and β are bounded from above by a fixed multiple of δ.

For an estimate of ‖α‖2, observe that

‖α‖2 =
∫
α(Lf ) =

∫
αf +

∫
α(Lf − f ) ≤

∫
αf + κ‖α‖

since f is normalized by assumption and therefore using the fact that R(f ) =
‖∇f ‖2 < C we obtain

(λ− δ2)‖α‖2 ≥ ‖∇α‖2 =
∫
g(∇α,∇(Lf )) ≥

∫
g(∇α,∇f )− κ‖∇α‖‖∇f ‖

≥ λ

∫
αf − κ(‖α‖ + √

C‖∇α‖) ≥ λ‖α‖2 − κ‖α‖(λ+ 2 + C).

This shows that ‖α‖ ≤ 2κ(C+1)/δ2 < δ by our choice of κ and the fact that λ ≤ C.
On the other hand, the square norm of β can be estimated as follows. By con-

struction and Lemma 2.3 we have

(1 + κ2)(λ+ κ) ≥ (1 + κ2)‖∇f ‖2 ≥ ‖∇(Lf )‖2

= ‖∇α‖2 + ‖∇ϕ‖2 + ‖∇β‖2

≥ (λ− δ2)‖ϕ‖2 + (λ+ δ)‖β‖2.

Since ‖ϕ‖2 + ‖β‖2 = ‖Lf ‖2 − ‖α‖2 ≥ 1 − κ2 − ‖α‖2 ≥ 1 − 2δ2 we obtain from
this that

(1 + κ2)(λ+ κ) ≥ (1 − 2δ2)(λ− δ2)+ δ‖β‖2

and hence δ‖β‖2 ≤ κ + κ2(λ+ κ)+ δ2 + 2δ2(λ− δ2) and ‖β‖2 ≤ δ(3 + 2λ). This
estimate concludes the first part of our corollary.

To show the second part of the corollary, notice that we may always increase
ρ without changing our estimates and therefore we may assume that the first part
of our corollary is valid for ρ and the constants ε > 0, C > 0, δ2 > 0. Let κ =
κ(ε, C, δ2) < δ4/8 be the constant from the first part of our corollary. Let λ ∈
σ(B(A, ρ))∩[0,min{μ1(M−A),C}−ε] and let f ∈ H 1(B(A, ρ)) be a normalized
function with spectral measure supported in [λ−κ, λ+κ]. Then f as a function from
H 1(M) admits an orthogonal decomposition f = α + ϕ + β such that the spectral
measure of α is supported in [0, λ − 2δ2], the spectral measure of ϕ is supported in
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[λ− 2δ2, λ+ δ] and the spectral measure of β is supported in [λ+ δ,∞). As above
it is now enough to control the square norms of α and β.

For this we use our above strategy and show first that‖β‖2 ≤ 3δ+‖α‖2(λ−2δ2)/δ.
Namely, notice that the functions α, ϕ, β are L2-orthogonal and also orthogonal with
respect to the inner product of H 1(M). Thus the Rayleigh quotient R(f ) of our
function f can be estimated as

λ+ κ ≥ R(f ) = ‖∇α‖2 + ‖∇ϕ‖2 + ‖∇β‖2 ≥ (λ− 2δ2)‖ϕ‖2 + (λ+ δ)‖β‖2.

Since 1 − ‖α‖2 = ‖ϕ‖2 + ‖β‖2 we obtain from this that

λ+ κ ≥ (1 − ‖α‖2)(λ− 2δ2)+ δ‖β‖2

and hence δ‖β‖2 ≤ κ+2δ2+(λ−2δ2)‖α‖2 from which our above claim is immediate
(recall that κ ≤ δ4 by assumption).

We are left with estimating ‖α‖2. For this let L : H 1(M) → H 1(B(A, ρ)) be the
operator as in Lemma 2.3. Since the spectral measure for f as a function on B(A, ρ)
is contained in [λ− κ, λ+ κ] we deduce from Lemma 2.3 that ‖Lf − f ‖2 < δ2.

The function α can be decomposed into a finite orthogonal sum of functions with
spectral measure supported in a subinterval of [0, λ− 2δ2] of length smaller than κ .
We apply the first part of our corollary to these functions and obtain a decomposition
Lα = ζ1 +ζ2 where the spectral measure of ζ1 is supported in [0, λ−δ2] and we have
‖ζ2‖2 = ‖Lα − ζ1‖2 < δ2‖α‖2. However the spectral measure of f as a function
in H 1(B(A, ρ)) is supported in [λ − κ, λ + κ] and therefore ζ1 is orthogonal to f .
Thus (Lα, f )2 = (ζ2, f ) ≤ δ‖α‖. On the other hand, (Lα, f )2 = (α, Lf )2 =
(α, f )2 + (α, Lf − f )2 ≥ ‖α‖2 − δ‖α‖. Together with the above this shows that
2δ‖α‖ ≥ ‖α‖2 which is only possible if ‖α‖2 ≤ 4δ2. Then ‖β‖2 ≤ δ(4 + λ) which
finishes the proof of the corollary. �

Now we are ready to show the main result of this section.

Proposition 2.5. Let (Mi,Ai) be a sequence of manifold pairs which converges in the
Lipschitz topology to the manifold pair (M,A) with convergence inducing sequence
Ri → ∞. Assume that there is an escaping family of sets �i ⊂ Mi such that
lim inf i→∞ μ1(�i) ≥ c > 0. Let σ(Mi) ⊂ [0,∞) be the spectrum of Mi and let
σ(M) be the spectrum of M . Then the following is satisfied.

(1) The sets σ(Mi) ∩ [0, c) converge in the Hausdorff topology for closed subsets
of [0, c) to σ(M) ∩ [0, c).

(2) Every function f ∈ H 1(M) with spectral measure supported in [0, c) is an
effective limit of a sequence of functions fi ∈ H 1(Mi) with spectral measures
supported in [0, c).
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(3) For every λ ∈ [0, c) ∩ σdisc(M) and every eigenfunction f with eigenvalue
λ there is a sequence of eigenfunctions fi on Mi with respect to eigenvalues
λi ∈ σdisc(Mi) ∩ [0, c) which converge effectively to f .

Proof. With the assumptions in the statement of the proposition, let Ri → ∞
be a convergence inducing sequence for our convergent sequence (Mi,Ai) of
manifold pairs. We choose an escaping family of sets �i with the property that
lim inf i→∞ μ1(�i) ≥ c > 0. Furthermore, there is a sequence ri → ∞ such that
�i ⊃ M − B(Ai, Ri − ri).

For eachR > 0 the Laplacian acts on the Hilbert spaceH 1(B(A,R)). AsR → ∞
its spectrum σ(B(A,R)) converges in the Hausdorff topology for closed subsets of
[0,∞) to the spectrum σ(M) of M . Since there is a (1 + εi)-bilipschitz map Fi of
B(A,Ri) onto a neighborhood of B(Ai, Ri) in Mi , this means that as i → ∞ the
spectrum of the Laplacian on B(Ai, Ri) converges in the Hausdorff topology to the
spectrum of M .

Let ε > 0 and for δ > 0 let ρ = ρ(ε/2, c, δ) be as in Corollary 2.4. If i is
sufficiently large then we have μ1(�i) ≥ c−ε/2 andRi − ri ≥ ρ. By Corollary 2.4,
the intersectionσ(Mi)∩[0, c−ε] is contained in the δ-neighborhood ofσ(B(Ai, Ri)),
and σ(B(Ai, Ri)) ∩ [0, c − ε] is contained in the δ-neighborhood of σ(Mi). Since
ε > 0 and δ > 0 were arbitrary we conclude that as i → ∞ (and possibly after
passing to a subsequence) the spectrum of Mi converges in the Hausdorff topology
to a closed subset B of [0,∞) with the property that B ∩ [0, c) = σ(M) ∩ [0, c).
This shows the first part of our proposition.

To show the second part, let f be a function onM with spectral measure supported
in [0, c − ε]. We have to show that f is an effective limit of functions on Mi whose
spectral measures converge to the spectral measure of f . But this follows once again
from Corollary 2.4. Namely, every function f onM with spectral measure contained
in [0, c − ε] can be approximated in H 1(M) by functions supported on B(A,R) for
larger and largerR and with spectral measure as elements ofH 1(B(A,R)) supported
in [0, c−ε/2]. On the other hand, for every κ > 0, every function onB(A,R)whose
spectral measure is supported in [0, c − ε/2] admits an orthogonal decomposition
into finitely many functions whose spectral measures are supported on intervals of
length smaller than κ . If ϕ ∈ H 1(B(A,R)) is such a function and if i > 0 is large
enough that Ri > R then we can apply Corollary 2.4 to the function ϕ � F−1

i on Mi

to obtain the required approximation.
We are left with showing the third part of our proposition. For this let f be an

eigenfunction on M with eigenvalue λ ∈ [0, c). Then there is a number δ > 0 such
that the space of functions with spectral measure supported in [λ− δ, λ+ δ] is finite
dimensional. Our above argument immediately implies that for sufficiently large i
the dimension of the space of functions on Mi with spectral measure supported in
[λ−δ/2, λ+δ/2] is finite as well. This completes the proof of our proposition. �
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For an integer k ≥ 1 and a nonempty open subset � of a Riemannian manifold
the k-th Rayleigh quotient μk(�) of � is defined to be the infimum of all numbers
a > 0 with the following property. There are k smooth functions f1, . . . , fk with
compact support in � which are orthonormal with respect to the L2-inner product
(f, h)2 = ∫

M
fh on M and such that their gradients ∇fi satisfy the inequality

R(fi) =
∫

‖∇fi‖2/

∫
f 2
i < a.

As an immediate consequence of Proposition 2.5 we obtain

Corollary 2.6. Let (Mi,Ai) be a sequence of manifold pairs converging to the
manifold pair (M,A) and let �i ⊂ Mi − Ai be a sequence of escaping sets. If
lim inf i→∞ μ1(�i) ≥ min σess(M) then μk(Mi) → μk(M) for every k ≥ 1.

Proof. Let ν0 ∈ [0,∞] be the minimum of the essential spectrum of M . If ν0 = ∞
then our corollary is immediate from Proposition 2.5, so we may assume that ν0 < ∞.

Using again Proposition 2.5 it is enough to show that lim supi→∞ μk(Mi) ≤ ν0 for
every fixed k > 0. Since ν0 is contained in the essential spectrum of M there is for
every k and every ε > 0 an orthonormal family f1, . . . , fk of functions in L2(M)

with support in a fixed compact ball B ⊂ M and Rayleigh quotients R(fj ) <
ν0 + ε. For i sufficiently large the set B is contained in the domain of our (1 + εi)-
bilipschitz map Fi . Since εi → 0 (i → ∞) this means that for large i we can find
an orthonormal family f i1 , . . . , f

i
k of functions on Mi with R(f ij ) < ν0 + 2ε. This

shows that lim supi→∞ μk(Mi) ≤ ν0. �

We conclude this section with an example which illustrates how our Proposi-
tion 2.5 can be applied. We consider non-elementary torsion free Kleinian groups,
i.e. finitely generated torsion free discrete subgroups of the isometry group PSL(2,C)
of hyperbolic 3-space H

3 which do not contain an abelian subgroup of finite index.
The limit set� of such a Kleinian group � is the smallest closed �-invariant subset of
the ideal boundary of H

3. The closure in H
3 of the convex hull of� is invariant under

the action of � and projects to the convex core C(M) of M = H
3/�. A sequence

{�i}i of Kleinian groups converges algebraically to a Kleinian group � if for almost
every i there is an isomorphism ρi : � → �i such that ρi(ζ ) → ζ for every fixed
ζ ∈ �. The sequence {�i} converges geometrically to � if the quotient manifolds
Mi = H

3/�i converge in the pointed Lipschitz topology to M = H
3/�. The se-

quence {�i} converges strongly to � if they converge algebraically and geometrically
to �.

A torsion free Kleinian group � is called geometrically finite if the volume of the
one-neighborhood of the convex core of H

3/� is finite. We then call the quotient
manifold H

3/� geometrically finite as well. Generalizing earlier work of Comar and
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Taylor [CoT], Canary and Taylor show in [CT] that the bottom of the spectrum of
geometrically finite hyperbolic 3-manifolds is continuous with respect to the strong
topology. We state a slight extension of their main result as a corollary and show how
it can be deduced from Proposition 2.5 and an observation of McMullen.

Corollary 2.7. Let {�i} ⊂ PSL(2,C) be a sequence of Kleinian groups which con-
verges strongly to a geometrically finite Kleinian group �. Then the intersection
with (0, 1) of the spectrum of H

3/�i converges in the Hausdorff topology to the
intersection with (0, 1) of the spectrum of H

3/�.

Proof. Let �i, � be as in the corollary. We write Mi = H
3/�i and M = H

3/�.
Let C(Mi) be the convex core of Mi , and for ε > 0 let M<ε

i denote the ε-thin part
of Mi where the injectivity radius is less than ε. The truncated core is defined by
Cε(Mi) = C(Mi)−M<ε

i . The truncated core of every geometrically finite manifold
is compact.

Now if �i → � strongly and if � is geometrically finite then the same is true
for almost all of the groups �i [T]. Moreover, by Theorem 4.1 of [MM], for each
ε > 0 the truncated cores Cε(Mi) of the manifolds Mi converge strongly to the
truncated convex core Cε(M) of M . This means that for the (1 + εi)-bilipschitz
homeomorphisms Fi : B(x,Ri) ⊂ M → Fi(B(x, Ri)) ⊂ Mi as in the definition of
geometric convergence and for large enough i the truncated coreCε(Mi) is contained
in the εi-neighborhood of Fi(Cε(M)).

Now it is well known (and explicitly explained in [H]) that for sufficiently small ε
and for every δ > 0 there is a number R > 0 such that for every geometrically finite
manifold N the smallest Raleigh quotient of N − B(Cε(N,R)) is not smaller than
1 − δ. Thus we can apply Proposition 2.5 for A = Cε(M) and deduce that indeed
the intersection of the spectrum of Mi with (0, 1) (which consists of finitely many
eigenvalues, compare [H]) converges in the Hausdorff topology to the intersection
with (0, 1) of the spectrum of M . In particular, the bottom of the spectrum of Mi

converges as i → ∞ to the bottom of the spectrum of M . �

3. Development of cusps

In this section let alwaysM be a closed manifold of dimension n ≥ 2 and letN ⊂ M

be a smooth closed 2-sided hypersurface inM . Then there is a tubular neighborhood
U of N which is diffeomorphic to N × [−1, 1].

For s ∈ [0, 1] choose a smooth Riemannian metric hs on N which depends
smoothly on s and let ρ : (0, 1] × [−1, 1] ∪ {0} × ([−1, 0) ∪ (0, 1]) → (0,∞) be
a smooth function. Using the metrics ρ(s, t)hs on N we define for each s > 0
a smooth metric gs on N × [−1, 1] by gs = 1

t2+s2 dt
2 + ρ(s, t)hs. As s ↘ 0 these
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metrics converge uniformly on compact subsets ofN×([−1, 0)∪(0, 1]) to a complete
metric g0. We assume that the metrics gs can be extended to smooth Riemannian
metrics on M − U which depend smoothly on s ∈ [0, 1]. We denote these metrics
again by gs , and we write Ms for the manifold M with the metric gs (for s = 0 we
replace M by M −N). We allow M −N to be disconnected.

Lemma 3.1. The manifold pairs (Ms,Ms − U) converge as s → 0 to the manifold
pair (M0,M0 − U).

Proof. By construction, the distance in M0 between the subsets M0 − U and N ×
([−δ, 0) ∪ (0, δ]) goes to infinity as δ ↘ 0. Since by our hypothesis the metrics
ρ(s, t)hs on N converge as s ↘ 0 locally uniformly in t ∈ [−1, 0) ∪ (0, 1] to the
metrics ρ(0, t)h0 our lemma follows. �

Example 3.2. Let M be a smooth connected noncompact orientable n-dimensional
hyperbolic manifold of finite volume. ThenM has a finite number k ≥ 1 of standard
cusps. These cusps are given by a two-sided closed embedded hypersurface N ⊂ M

which consists of k connected components and divides M into a manifold M̄ and
the cusps E1, . . . , Ek . The metric h on N induced from the hyperbolic metric is flat
and therefore N is a finite quotient of a collection of k tori of dimension n− 1. The
union ∪ki=1Ei of our endsE1, . . . , Ek is diffeomorphic toN ×[0,∞) and carries the
warped product metric dt2 + e−2t h.

Choose a fixed smooth convex function α : R → (0,∞) with the property that
α(t) = e−t for t ≤ 0, α(t) = e−1 for large t and such that α′ ≥ −α and α′′ ≤ α. For
each fixed s ∈ (0, 1] define a new metric gs on N × [0,∞) by gs = dt2 + s2α(t +
log s)2h. Then the metric gs coincides with the hyperbolic metric onN×[0,− log s]
and extends to a complete smooth metric on all of M which coincides with the
hyperbolic metric on M̄ . We denote this metric again by gs . The sectional curvature
ofgs is contained in [−1, 0]. There is a number τ0 > 0 not depending on s such that the
restriction of gs toN×[− log s+τ0/2,∞) is the flat product metric e−1s2h×[0,∞).

Write Es = N × (− log s + τ0,∞). We can glue two copies of M − Es along
the boundary with the natural isometry between the two boundary manifolds N ×
{− log s+τ0} to obtain a compact connected Riemannian manifoldMs . This manifold
contains two isometric copies of M̄ and a totally geodesic embedded flat hypersurface
which corresponds to the boundary components of the endsEs . If we denote byAs the
union of our two copies of M̄ inMs then as s↘ 0 the manifold pairs (Ms,As) converge
in the Lipschitz topology to the disconnected hyperbolic manifold pair (M0, A0)

which consists of two copies of the pair (M, M̄). We call such a converging sequence
of manifolds a standard cusp convergence. With respect to a suitable parametrization
of the cylinders Ms − As in Ms our family of metrics can be represented as a 1-
parameter family of warped product metrics of the above form.
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Recall that the bottom of the spectrum of a standard hyperbolic cusp of dimension
n equals (n − 1)2/4. From Proposition 2.5 we therefore obtain that as s ↘ 0 the
intersection with (0, (n− 1)2/4) of the spectrum ofMs converges to the intersection
with (0, (n − 1)2/4) of the spectrum of M0. Since M0 is disconnected and each of
its two components is of finite volume, the eigenvalue 0 ofM0 has multiplicity 2 and
therefore the second eigenvalue of the manifolds Ms converges as s↘ 0 to 0.

Assume from now on that the second eigenvalue of the metric ρ(s, t)hs onN goes
to ∞ as (s, t) → (0, 0). Since the metrics hs are defined for every s ∈ [0, 1] this is
equivalent to requiring that our function ρ extends continuously to 0 at (0, 0). Notice
that the volume of M0 may be infinite.

Let νs(t) be the volume element of the metric ρ(s, t)hs on N . For s ∈ [0, 1] let
Ws ⊂ H 1(Ms) be the closure in H 1(Ms) of the space of smooth functions f on Ms

which satisfy
∫
N×{t} f dνs(t) = 0 for all t ∈ [−1/2, 1/2]. Denote by μs the volume

element of the metric gs on M . In the sequel we write
∫ ‖∇f ‖2dμs to denote the

integral of the square norm of the differential of f with respect to the metric gs .

Lemma 3.3. For every ε > 0, c > 0 there exists a number δ = δ(ε, c) > 0 with the
following property. Let s ≤ δ and let f ∈ Ws be a function with∫

N×[−1/2,1/2]
‖∇f ‖2dμs < c

∫
f 2dμs.

Then we have ∫
N×[−δ,δ]

f 2dμs < ε‖f ‖2.

In particular, the Hilbert space Ws ⊂ H 1(Ms) is compactly embedded in L2(Ms).

Proof. Let μ2(s, t) be the second Rayleigh quotient of the metric ρ(s, t)hs on N .
By our assumption we have μ2(s, t) → ∞ as (s, t) → (0, 0) and therefore for every
k > 0 there is a number τ = τ(k) ∈ (0, 1/2) such that μ2(s, t) > k for all s < τ ,
all t with |t | < τ .

Now if f ∈ Ws then for every t ∈ [−1/2, 1/2] the restriction of f to N × {t} is
orthogonal to the constant functions. Moreover the measure μs can be represented
in the form dνs(t)× α(s, t)dt for a smooth function α ≥ 1. Consequently for s < τ

we have ∫
N×[−1/2,1/2]

‖∇f ‖2dμs ≥
∫ 1/2

−1/2

(∫
N×{t}

μ2(s, t)f
2dνs(t)

)
dt

≥ k

∫
N×[−τ,τ ]

f 2dμs.



742 K. Fissmer and U. Hamenstädt CMH

If
∫
N×[−1/2,1/2] ‖∇f ‖2dμs < c

∫
f 2dμs for some c > 0 then we deduce from this

that
∫
N×[−τ,τ ] f

2dμs <
c
k

∫
f 2dμs which shows the first part of our lemma. Com-

pactness of the embedding Ws ⊂ H 1(Ms) → L2(Ms) then follows from standard
compactness results. �

The following proposition generalizes an earlier result of Judge [J] and shows our
Theorem B. Its proof uses the ideas of Judge [J], with our simple Lemma 3.3 as the
main new ingredient. We include the (rather short) proof for the sake of completeness.
In contrast to Section 2 we now mean by an eigenfunction a solution of an equation
�− λ = 0 for some λ ∈ R which is not required to be square integrable.

Proposition 3.4. Assume that ρ(s, t)↘ 0 as (s, t) → 0. Let c > 0 and let {si}i ⊂
(0, 1] be a sequence converging to 0. Let fi be an eigenfunction onMsi with respect
to an eigenvalue λi ≤ c. Then up to passing to a subsequence and renormalization,
the functions fi converge locally uniformly on M − N to a nontrivial eigenfunction
f on M0 with respect to the eigenvalue λ0 = limi→∞ λi.

Proof. Define a linear projection Ps : L2(U ⊂ Ms) → L2(U ⊂ Ms) by

Psf (x, t) =
∫
N×{t}

f dνs(t).

In other words, Psf is the function which is obtained by integration of f along the
manifolds M × {t} with respect to the volume form of the metric ρ(s, t)hs .

For i ≥ 0 let fi be an eigenfunction on Msi with respect to the eigenvalue λi .
We assume that these eigenvalues are bounded from above by some c > 0. Let
δ = δ(1/2, 2c) be as in Lemma 3.3. Using an idea of Judge [J] we define

f̃i(x, t) =
{
fi(x, t), if |t | ≥ δ,

(fi − Psi fi)(x, t), otherwise.

To simplify our notation we assume that the functions f̃i are normalized; this only
depends on the normalization of fi .

Let α : (−1, 1) → [0, 1] be a smooth function supported in [−3/4, 3/4] with
α(t) = 1 for t ∈ [−5/8, 5/8] and define ui(x, t) = fi(x, t) − α(t)Psi fi(x, t). By
our normalization assumption the L2-norm of the function ui is not bigger than 1,
moreover ui is contained in Wsi .

We claim that the L2-norm of the gradient of ui is bounded independent of i. To
see this recall that our metrics gs are warped product metrics on N × [−1, 1] and
therefore for each fixed s ∈ (0, 1], t ∈ (−1, 1) and every smooth function ϕ on Ms

we have
∫
N×{t} gs(∇(ϕ − Psϕ),∇(Psϕ))dνs(t) = 0. Namely, since our metric is

a warped product the normalized volume forms of the metrics ρ(s, t)hs on N are
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independent of t ∈ (−1, 1). This implies that the gradient ∇(Psϕ) of Psϕ is of the
form ∇(Psϕ)(x, t) = ζ(t) ∂

∂t
where ζ only depends on t and ∇(ϕ−Psϕ) = X+χ ∂

∂t

where
∫
N×{t} χdνs(t) = 0 andX is tangent to the first factor foliation ofN×[−1, 1].

Let β : (−1, 1) → [0, 1] be a smooth function with compact support which equals
1 on [−3/4, 3/4]. Define vi(x, t) = β(t)(fi − Psi fi)(x, t); then ‖vi‖2 ≤ 1. Since
fi is an eigenfunction with respect to the eigenvalue λi , by the definition of vi and
the above we have

λi ≥ λi

∫
viuidμsi = λi

∫
vifidμsi =

∫
gsi (∇vi,∇fi)dμsi

≥
∫
N×[−3/4,3/4]

‖∇(fi − Psi fi)‖2dμsi ≥
∫
N×[−5/8,5/8]

‖∇ui‖2dμsi .

(1)

Notice that this estimate relies in a crucial way on the fact that the normalized volume
element of ρ(s, t)hs is independent of t .

On the other hand, let β̃ : [−1, 1] → [0, 1] be a smooth function supported in
[−1, 1/2] ∪ [1/2, 1] which is constant 1 on [−1,−5/8] ∪ [5/8, 1]. Write ṽ(x, t) =
β̃(t)fi(x, t). As before we deduce that

λi ≥ λi

∫
ṽifidμsi ≥

∫
M−N×[−5/8,5/8]

‖∇fi‖2dμsi .

Now for 5/8 ≤ |t | ≤ 1 we have

∇ui(x, t) = ∇fi(x, t)− α′(t)Psi fi
∂

∂t
− α(t)∇(Psi fi)

and therefore there is a constant a > 0 not depending on i such that∫
M−N×[−5/8,5/8]

‖∇ui‖2dμsi

≤ a

∫
M−N×[−5/8,5/8]

‖∇fi‖2dμsi + a

∫
N×[−1,−5/8]∪[5/8,1]

f 2
i dμsi .

From this and inequality (1) above we conclude that the L2-norm of the gradient of
ui is bounded independent of i.

We claim that after passing to a subsequence the functions ui converge in the
space of locally square integrable functions on M0 to a function u0 with ‖u0‖2 =
limi→∞ ‖ui‖2 ≤ 1. This is obvious if the L2-norms of the functions ui converge to
0 as i → ∞, so assume that there is some c > 0 such that ‖ui‖2 ≥ c for all i. Since
the L2-norm of the gradient of ui is bounded independent of i, the Raleigh quotients
of ui are bounded independent of i. Lemma 3.3 then shows that after passing to a
subsequence we may assume that the functions ui converge locally in L2(M0) to a
function u0 with ‖u0‖2 = limi→∞ ‖ui‖2.
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Next we observe that after passing to a another subsequence we may assume
that the restrictions to N × ([−1,−δ] ∪ [δ, 1]) of the functions f̃i − ui converge in
L2(M0) to a function χ . Again this is obvious if the L2-norm of f̃i − ui tends to
0 with i. Otherwise observe that the function f̃i − ui can be viewed as a function
on [−1,−δ] ∪ [δ, 1]. Its L2-norm with respect to a measure which is uniformly
equivalent to the standard Lebesgue measure is at most 1. Our above consideration
implies that the L2-norms of the derivatives of f̃i −ui are bounded independent of i.
Thus we obtain convergence from compactness of the embedding H 1(I ) → L2(I )

for a compact interval I ⊂ R. In particular, the functions f̃i converge in L2(M0) to
the function u0 + χ .

Consider again inequality (1) above. By Lemma 3.3 and our choice of δ we
either have ‖ui‖2 < 1/2 or

∫
N×[−δ,δ] u

2
i dμsi <

∫
u2
i dμsi /2 for all sufficiently large

i. In both cases we conclude that
∫
N×[−δ,δ] u

2
i dμsi ≤ 1/2 for large i. Thus our

function u0 necessarily satisfies
∫
N×[−δ,0)∪(0,δ] u

2
0dμ0 ≤ 1/2. Since the function χ

is supported in M −N × [−δ, δ] and ‖χ + u0‖2 = 1 we conclude that after passing
to a subsequence the restrictions toM −N × [−δ, δ] of the functions fi converge in
L2(M0) to a function f0 with ‖f0‖2 ∈ [1/2, 1].

The function fi is a solution of an elliptic equation with smooth coefficients.
With respect to the reference metric g0 on M − N × (−δ/2, δ/2) the C2-norms of
these coefficients are uniformly bounded. Since the L2-norms of the restrictions to
Msi −N×[−δ, δ] of the functions fi are uniformly bounded as well, standard elliptic
theory implies that for every ε > 0 there is a constant c(ε) > 0 which bounds the
C2-norm of the restriction of fi to M −N × [−δ − ε, δ + ε]. Thus after passing to
a subsequence the functions fi converge locally uniformly on M − N × [−δ, δ] to
f0. This implies that for λ0 = limi→∞ λi the function f0 is a nontrivial solution of
the differential equation �0 − λ0 = 0.

Our above argument also shows that the function f0 is the restriction toM−N ×
[−δ, δ] of an eigenfunction onM0 which is a locally uniform limit of a subsequence
of our functions fi . Namely, for k > − log δ + log 2 define

f̃i,k(x, t) =
{
fi(x, t), if |t | ≥ 2−k ,
(fi − Psi fi)(x, t) otherwise

and write ai,k = 1/‖f̃i,k‖. For each fixed i the sequence {ai,k}k is monotonously
decreasing. As before we conclude that after passing to a subsequence the restrictions
of ai,kfi,k to M −N × [2−k, 2−k] converge locally uniformly to a solution f̄0,k �≡ 0
of the equation �0 − λ0 = 0. Its restriction to M − N × [−2−k, 2−k] necessarily
coincides with a nonnegative multiple of f̄0,k−1. Since no nontrivial solution of the
equation �0 − λ0 = 0 can vanish on a nontrivial open set the restriction of our
function to M − N × [−2−k, 2−k] is in fact a positive multiple of f̄0,k−1. With a
standard diagonal sequence argument we conclude from this that after passing to a
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subsequence our eigenfunctions fi converge locally uniformly to an eigenfunction
f0 on M0. �

The following example shows that the limit function obtained in Proposition 3.4
is in general not square integrable, even if the curvature of all our manifolds as well
as their volumes are uniformly bounded.

Example 3.5. Consider a closed hyperbolic surface S of genus 2 which consists of
two bordered tori T1, T2 glued at the boundary. Choose a simple closed geodesic γ
on T1 which cuts T1 into a pair of pants. We denote by gs the hyperbolic metric on
S which we obtain by leaving the torus T2 and the twist parameters for the glueings
fixed and replacing the torus T1 by a torus for which the length of the geodesic γ
equals s. For a fixed point q ∈ T2 the pointed surfaces ((S, gs), q) degenerate as
s ↘ 0 to a twice punctured hyperbolic torus (S0, g0) with two finite volume cusps.
The essential spectrum of S0 is bounded from below by 1/4 and the second Rayleigh
quotient μ2(S0) of S0 is positive. The metrics gs are warped product metrics in a
tubular neighborhood of γ .

Choose a number k > 0 such that there is a smooth nontrivial compactly supported
function f on the interval (0, k) satisfying

∫ k
0 f = 0 and

∫ k
0 (f

′)2 < μ2(S0)
∫ k

0 f
2/2.

For a > 0 and τ ∈ [0, k] denote by Ca,τ the cylinder S1 × [0, τ ] with the metric
a2ds2 +dt2 (where ds2 is the length element of total length 1 on S1). For every a > 0
the function f can be viewed as a function on the cylinderCa,k which only depends on
the second coordinate. We have

∫
Ca,k

f = 0 and
∫
Ca,k

‖∇f ‖2 < μ2(S0)
∫
Ca,k

f 2/2
for all a > 0.

For s ∈ (0, 1] and τ ∈ [0, k] we replace the metric gs near γ by a metric g̃s,τ
which is obtained from gs by cutting S open along γ and inserting the cylinder Cs,τ .
We slightly modify the resulting metric near the boundary of Cs,τ in such a way that
we obtain a smooth metric g̃s,τ depending smoothly on s, τ and such that g̃s,0 = gs .
We may assume that there is an tubular neighborhood Z ∼ S1 × [−1, 1] about γ in
S such that the restrictions of the metrics g̃s,τ to Z are warped product metrics. The
metrics can be constructed in such a way that their curvature is contained in [−1, 0]
and that their volumes are uniformly bounded.

For fixed s > 0, the second Rayleigh quotient of g̃s,τ depends continuously on
τ ∈ [0, k]. For τ = k this Rayleigh quotient is not bigger than μ2(S0)/2. Moreover,
if s is sufficiently small then the second Rayleigh quotient of g̃s,0 equals at least
3μ2(S0)/4 [CC2]. Thus there is some τ(s) ∈ [0, k] such that this Rayleigh quotient
equals exactly μ2(S0)/2. We may assume that τ(s) depends continuously on s.
Define hs = g̃s,τ (s). Then there is an eigenfunction ϕs on (S, hs) with respect
to the eigenvalue μ2(S0)/2. Moreover the metrics hs satisfy the assumptions in
Proposition 3.4.

By Proposition 3.4, after renormalization and passing to a subsequence we may
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assume that the eigenfunctions ϕs converge uniformly on compact sets to an eigen-
function ϕ on S0 with respect to the eigenvalue μ2(S0)/2. But then ϕ can not be
square integrable.

Remark. The considerations in Example 3.5 can also be used to construct for every
noncompact hyperbolic surface S of finite volume and every λ ∈ (0, μ2(S)) an
eigenfunction ϕ on S with respect to the eigenvalue λ. This function ϕ is not square
integrable.

4. Manifolds with controlled spectral properties

In this section we apply the results from Section 2 to construct complete Riemannian
manifolds of an arbitrary dimension n ≥ 2, with curvature in the interval [−1, 0],
infinite volume, nonempty essential spectrum, infinitely many eigenvalues below
the essential spectrum and with arbitrarily large multiplicities of an arbitrary finite
number of eigenvalues. In the case n = 2 we can choose our manifolds to be of
constant curvature −1.

Our manifolds will be constructed from building blocks which consist of complete
manifolds of curvature contained in [−1, 0] with a fixed even number 2k ≥ 2 of
standard constant curvature cusps as in Example 3.2. We describe these building
blocks in the next lemma which is a modified version of Example 4.1 of [BCD].

Lemma 4.1. For every n ≥ 2, k ≥ 1 there is a complete n-dimensional Riemannian
manifold X of infinite volume with the following properties.

(1) The curvature of X is contained in [−1, 0].
(2) X has 2k standard cusps of curvature −1 which are mutually isometric.

(3) The essential spectrum σess(X) ofM is not empty, and there are infinitely many
different eigenvalues below σess(X).

Proof. Let � ⊂ SO(n, 1) be a non-uniform lattice. Then V0 = H
n/� is a hyperbolic

manifold of finite volume with at least one end C. This end is a standard cusp.
The group � is residually finite and therefore there is a finite covering V1 of V0

such that the cuspC has at least 2k preimages in V1. We choose 2k of these preimages
and label them byC1, . . . , C2k . IfC1, . . . , C2k are the only cusps ofV1 then we define
N0 = V1.

Otherwise, i.e. if V1 has additional cusps, then we modify the metric on each of
these additional cusps as in Example 3.2. These cusps then become flat cylinders
which we cut along a totally geodesic hypersurface. We obtain a manifold V ′

1 with 2k
cusps and a finite number of totally geodesic boundary components. Choose a second
copy V ′′

1 of V ′
1 and glue V ′′

1 to V ′
1 along corresponding boundary components. The
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resulting manifold V2 is connected, its curvature is contained in the interval [−1, 0]
and it has precisely 4k mutually isometric ends which are the cusps C1, . . . , C2k of
V1 and the corresponding cusps C′′

1 , . . . , C
′′
2k of V ′′

1 . Since the cusps C′′
i are mutually

isometric we can replace them as before by isometric cylindrical ends which we cut
and glue in pairs to k compact handles. We obtain a manifold N0 with precisely 2k
ends. It carries a complete Riemannian metric of finite volume with curvature in the
interval [−1, 0] in such a way that each of its ends is isometric to a fixed standard
cusp of constant curvature −1.

Let Fk be the free group with k generators γ1, . . . , γk . We label each of the
2k ends of N0 by one of elements γ1, . . . , γk, γ

−1
1 , . . . , γ−1

k of Fk . For s > 0
replace the standard cusps of N0 by a compact end with boundary equipped with
the metric gs from Example 3.2. The resulting manifold Ns has 2k totally geodesic
boundary components which we label as before by the generators of Fk . Choose
one copy of Ns for every element of Fk and label it by this group element. Glue
the boundary component with label γi of the copy of Ns with label ψ ∈ Fk to the
boundary component with label γ−1

i of the copy ofNs with label γiψ with the obvious
isometry. We obtain a smooth manifold M with a complete Riemannian metric gs
of curvature contained in [−1, 0] and which depends smoothly on s ∈ (0, 1]. The
free group Fk acts freely and properly discontinuously on M by right translations
on the labels of our basic building blocks. The metrics gs are invariant under this
action. The quotient (M, gs)/Fk is compact and can be obtained fromNs by glueing
pairwise the boundary components.

Since (M, gs) admits a free and properly discontinuous isometric action of Fk
with a compact quotient, the discrete spectrum of (M, gs) vanishes and its essential
spectrum is bounded away from 0 (see the discussion in Example 4.1 of [BCD]).
The bottom νs of this essential spectrum depends continuously on s and goes to 0 as
s → 0.

Following [BCD] we fix a number τ > 0 such that ντ < (n − 1)2/4 and a
sequence τi ⊂ (0, τ ) such that τi < τj and ντi < ντj for i < j . We use this sequence
to construct inductively our building block.

There is a natural word norm on the group Fk defined by our choice of generators.
For m ≥ 1 we denote by B(m) the connected submanifold of M which consists of
precisely those copies of our manifold Ns which are labeled by elements of Fk of
word norm at most m. Then B(m) is a smooth submanifold of M with boundary.
Each of its boundary components is totally geodesic with respect to gs . The set B(0)
is just the copy of Ns which corresponds to the unit element in Fk .

In our first step we determine a number m1 > 0 such that there is a function ψ1
on (M, gτ1) which is supported in B(m1 − 1) − B(1) and with Rayleigh quotient
R(ψ1) < ντ2 . Modify the metric of B(m1) near the boundary so that the new metric
coincides with gτ1 on B(m1 − 1) and with gτ2 near the boundary. Glue the resulting
manifold along its boundary to (M, gτ2) − B(m1). We obtain a new manifold M̃1.
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Since the essential spectrum of any Riemannian manifold does not change under a
compactly supported change of the metric, the bottom of the essential spectrum of
M̃1 equals ντ2 . But the Rayleigh quotient of the function ψ1 on B(m1 − 1) ⊂ M̃1 is
smaller than ντ2 and hence M̃1 has an eigenvalue below its essential spectrum.

We can now iterate this construction. In our i-th step we begin with a metric
g̃i on M which coincides with the metric gτi on M − B(mi) for some mi > 0 and
such that there are i functions on (M, g̃i) with pairwise disjoint support contained in
B(mi − 1)− B(1) and with Rayleigh quotients smaller than ντi . There are at least i
distinct eigenvalues below the essential spectrum. Choose a functionψi+1 supported
on B(mi+1 − 1)− B(mi) for some mi+1 > mi with Rayleigh quotient smaller than
ντi+1 . As before we change the metric outsideB(mi+1) to gτi+1 to obtain a new metric
g̃i+1 which admits at least i + 1 distinct eigenvalues below the essential spectrum.

We can repeat this construction infinitely often to obtain a complete manifold X0
with infinitely many eigenvalues below the essential spectrum. The lower bound ν0
of the essential spectrum of X0 is strictly smaller than (n− 1)2/4.

Remove B(0) from X0 and replace it by a manifold with 2k standard cusps. We
claim that the complete Riemannian manifold X which we obtain in this way has
the properties stated in our lemma. To see this recall that the bottom of the essential
spectrum of a standard hyperbolic cusp equals (n− 1)2/4 > ν0. Since the essential
spectrum of a complete Riemannian manifold equals the essential spectrum of its
ends, the bottom of the essential spectrum is ν0. The functions on X0 which we
constructed above are supported outside B(1) and hence can be viewed as functions
onX. This implies that there are infinitely many distinct eigenvalues below the bottom
of the essential spectrum on X.

Using pairs of pants as in [BCD] it is clear that for n = 2 we can choose our
manifold to have constant curvature −1. �

Consider now an arbitrary finite group �. We call � admissible if � can be
generated by elements of order at least 3. A set of generators γ1, . . . , γ2k of � is
called admissible if it consists of elements of order at least 3, contains with each
element also its inverse and is minimal with this property.

LetG be the Cayley graph for � with respect to our generators. ThenG is a finite
connected graph whose vertices correspond to the elements of �. By our choice of
generators the graphG is simple (i.e. no multiple edges and no loops) and 2k-regular
[dH]. Two vertices a, b ∈ � of G are connected by an edge if and only if there is
some i such that b = γia. Right multiplication in � induces an action of � as a group
of automorphisms of G which is transitive on the vertices.

Assume that γ2i = γ−1
2i−1 for 1 ≤ i ≤ k. Let X be a manifold as in Lemma 4.1

with 2k standard cusps. We label each of these cusps by one of our generators γi
of �. For a k-tuple a = (s1, . . . , sk) ∈ [0, 1]k we construct a complete Riemannian
manifold M(a) as follows: Choose |�| copies of X and label each of these copies
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with a different element of �. For 1 ≤ i ≤ k replace the standard cusps of X
which are labeled by γ2i−1, γ2i by a compact end with boundary equipped with the
metric gsi . The boundary components of the resulting manifold correspond to our
generators γ1, . . . , γ2k . Glue the boundary component γi of the copy ofX with label
ψ ∈ � to the boundary component γ−1

i of the copy ofXwith label γiψ by the obvious
isometry as before. We obtain a complete Riemannian manifoldM(s1, . . . , sk)which
consists of |�| copies of X glued at their boundaries. It contains a distinguished
collection of totally geodesic embedded hypersurfaces, and its curvature is contained
in [−1, 0]. The essential spectrum of M(s1, . . . , sk) is bounded away from 0 and
there are infinitely many eigenvalues below the essential spectrum. The manifold
M(0) consists of |�| copies of X. We call the manifold M(s1, . . . , sk) a �-graph
manifold, and its metric a (s1, . . . , sk)-graph metric.

Lemma 4.2. For each a ∈ [0, 1]k the group � acts freely and isometrically onM(a).
For every fixed q ≥ 1 the assignment a ∈ [0, 1]k → μq(M(a)) is continuous.

Proof. Every element of � acts on the Cayley graph G by an automorphism which
permutes the edges with a given label. For eacha ∈ [0, 1]k this automorphism induces
an isometry of our manifold M(a) which permutes our copies of X and preserves
each of the k collections of hypersurfaces corresponding to one of our generators or
its inverse. Since the action of � on G is free the same is true for the action of � on
M(a). Continuity of the assignment a ∈ [0, 1]k → μq(M(a)) is immediate from
Corollary 2.6. �

Let again � be an admissible finite group with an admissible set γ1, . . . , γ2k of
generators and corresponding Cayley graphG. By definition, this set of generators is
minimal with the property that it consists of elements of order at least 3 and contains
with each element its inverse. Thus if we fix some i ≤ 2k and if we delete all the edges
inGwhich are either labeled by γi or by γ−1

i then the resulting graph is disconnected.
Recall that for every complete Riemannian manifold which has eigenvalues below

the essential spectrum the multiplicity of the smallest eigenvalue is one. Following
the basic idea of [BC] we use isometric actions of finite groups to construct complete
manifolds of bounded curvature with infinitely many eigenvalues below the essential
spectrum and such that the multiplicity of the second eigenvalue is bigger than 1.

Lemma 4.3. Let � be an admissible group with an admissible set of generators
γ1, . . . , γ2k . Letm ≥ 2 be the minimal dimension of a nontrivial irreducible orthog-
onal representation of �. Then for every a ∈ (0, 1]k which is sufficiently close to 0,
the multiplicity of the second eigenvalue of the �-graph manifoldM(a) is at leastm.

Proof. By our assumption, for each a ∈ [0, 1]k the quotient M(a)/� is a complete
manifold, and the projectionM(a) → M(a)/� is a smooth q-sheeted covering where
q is the cardinality of �.



750 K. Fissmer and U. Hamenstädt CMH

The pair γ2i−1, γ2i of generators of � defines a �-orbit of edges in the Cayley
graphG. If si > 0 then this orbit of edges corresponds to a�-orbit of totally geodesic
embedded closed hypersurfaces in M(a) which projects to a closed totally geodesic
embedded non-separating hypersurface in M(a)/�. As si ↘ 0 this hypersurface in
M(a)/� degenerates to a pair of cusps.

For each a ∈ (0, 1]k the manifoldM(a) is connected. The bottom of the spectrum
ofM(a) is not contained in the essential spectrum and therefore it is an eigenvalue of
multiplicity 1. The isometric action of � onM(a) induces an orthogonal representa-
tion of � on the corresponding eigenspace. Since the dimension of this eigenspace is
1, this representation is trivial and every eigenfunction with respect to this eigenvalue
is�-invariant and projects to an eigenfunction onM(a)/�. In particular, the smallest
eigenvalue of M(a) coincides with the smallest eigenvalue of M(a)/�.

Now let a = (0, s2, . . . , sk) ∈ [0, 1]k where si > 0 for i ≥ 2. By minimality
of our set of generators for �, M(a) consists of at least two isometric components
which are permuted by the action of the group�. Thus the multiplicity of the smallest
eigenvalue ofM(a) (which equals the number of connected components ofM(a)) is
at least 2.

By Theorem A from the introduction, as s↘ 0 the small eigenvalues of Q(s) =
M(s, s2, . . . , sk) converge to the small eigenvalues of M(a). The multiplicity of the
first eigenvalue ofQ(s) is 1 and hence for sufficiently small s the second eigenvalue of
Q(s) is strictly smaller than the second eigenvalue ofM(a)/�. Then an eigenfunction
for this eigenvalue can not be �-invariant. This means that the natural orthogonal
representation of � on the eigenspace of Q(s) with respect to the second eigenvalue
does not contain a trivial component and the dimension of this eigenspace equals
at least the minimal dimension of a nontrivial irreducible orthogonal representation
of �. This finishes the proof of our lemma. �

We can now iterate this construction as follows. Assume that � is a finite group
which contains a nested sequence � > H1 > · · · > Hm of admissible subgroupsHi .

Define a set of generators γ1, . . . , γ2k of � to be (�,H1, . . . , Hm)-admissible if
the following is satisfied.

(1) For every i ≤ m there is some j (i) < k such that γ1, . . . , γ2j (i) is an admissible
set of generators for Hi .

(2) For each i the subgroup of � which is generated by those of our generators
which are not contained in Hi intersects Hi only in the unit element.

We call (�,H1, . . . , Hm) an admissible sequence of groups if it admits a
(�,H1, . . . , Hm)-admissible set of generators and if moreover for every i ≥ 1 the
groupHi+1 is a proper normal subgroup ofHi . We do not require thatH1 is a normal
subgroup of �.

Now let (�,H1, . . . , Hm) be an admissible sequence of groups. For a given
choice of a basic manifoldX with 2k standard cusps as in Lemma 4.1 we constructed
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above from the Cayley graph of an (�,H1, . . . , Hm)-admissible set γ1, . . . , γ2k of
generators a connected smooth manifoldM which admits a natural free action of� by
diffeomorphisms and a natural family of �-invariant metrics. We call our manifold
M a (�,H1, . . . , Hm)-graph manifold.

Corollary 4.4. Let (�,H1, . . . , Hm) be an admissible sequence of groups. Let q ≥ 2
be the minimal dimension of an irreducible orthogonal representation of � whose
restriction to H1 is non-trivial. Then there is a family of (�,H1, . . . , Hm)-graph
manifolds for which the multiplicity of the j -th eigenvalue for j = 2, . . . , m is at
least q.

Proof. Let M be a (�,H1, . . . , Hm)-graph manifold. The group � acts on M freely
as a group of diffeomorphisms and M → M/� = M0 is a |�|-sheeted covering.
Every complete metric on M0 lifts to a �-invariant complete metric on M .

Let γ1, . . . , γ2k be a (�,H1, . . . , Hm)-admissible set of generators for �. Let
� < k be such that the set γ1, . . . , γ2� generates H1. Denote by E the subgroup of �
generated by γ2�+1, . . . , γ2k . Then E is an admissible finite group which intersects
H1 trivially. The Cayley graphG′ of E with respect to the generators γ2�+1, . . . , γ2k
is a connected subgraph of G. If we remove from G all the edges corresponding to
the generators γ1, . . . , γ2� then the resulting graph consists of |H1| disjoint copies
of G′.

Fix some s0 > 0 and for (s1, . . . , sm) ∈ [0, 1]m letQ(s1, . . . , sm) be the �-graph
manifold M(a) where a = (a1, . . . , ak) is the k-tuple defined as follows: For each
j let i ≤ j be such that the generator γj is contained in the group Hi but not in
the group Hi+1 (where we put H0 = �) and define aj = si . The group H1 acts on
Q(s1, . . . , sm) as a group of isometries. The manifoldQ(0, . . . , 0)/H1 is connected.

Now apply the considerations in the proof of Lemma 4.4 to the graph manifolds
Q(s, 0, . . . , 0). Since the subgroup of � generated by those elements of γ1, . . . , γ2k
which are not contained in H2 intersects H2 trivially, the covering Q(0, . . . , 0)/H2
of Q(0, . . . , 0)/H1 with deck group H1/H2 is disconnected and for s > 0 the
covering Q(s, 0, . . . , 0)/H2 of Q(s, 0, . . . , 0)/H1 with deck group H1/H2 is
connected. By the considerations in the proof of Lemma 4.4, for sufficiently small
s the quotient Q(s, 0, . . . , 0)/H2 is a complete connected manifold with H1/H2-
invariant metric for which the second eigenvalue is strictly smaller than the second
eigenvalue ofQ(s, 0, . . . , 0)/H1. Proceeding inductively we obtain inm− 1 steps a
(�,H1, . . . , Hm)-graph manifold of the formQ(s1, . . . , sm) such that the j -th eigen-
value for 2 ≤ j ≤ m is strictly smaller than the second eigenvalue of the quotient
Q(s1, . . . , sm)/H1. This then implies that the restriction to H1 of the representation
of� on each of the corresponding eigenspaces is nontrivial. This shows the corollary.

�
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It remains to find admissible finite groups� with arbitrarily long nested sequences
of admissible subgroups Hi and for which the smallest dimension of an irreducible
representation which is nontrivial on H1 is arbitrarily large. This is satisfied for the
groups which were already considered by Burger and Colbois [BC].

Namely, let p ≥ 3 be an odd prime and for some n ≥ 1 let Fq be the field with
q = pn elements and multiplicative group F

∗
q = Fq − {0}. For a divisor r of n write

m = (pn − 1)/(pr − 1) and define

Gq,m =
{(
αm β

0 1

) ∣∣∣ α ∈ F
∗
q, β ∈ Fq

}
.

Then Gq,m is the semi-direct product of Fq with the cyclic group Aq,m = {am | a ∈
F

∗
q} of order pr − 1 which acts on Fq by multiplication. Its commutator subgroup
H1 is the cyclic group

H1 =
{(

1 β

0 1

) ∣∣∣ β ∈ Fq

}
of order q which can naturally be identified with the additive group Fq .

Let ξ be a generator of the cyclic group F
∗
q . Then the dimension of Fq as a vector

space over the field Fq [ξm] equals n/r . Choose a basis g1, . . . , gn/r ⊂ Fq for this
vector space. For each i the element gi ∈ Fq generates a cyclic subgroup of Fq ∼ H1
which is invariant under the action of the group Aq,m. The flag of n/r linear subspaces
of Fq determined by this basis defines a nested sequenceHn/r � · · · � H1 of normal
subgroups of H1, and g1, g−1

1 , . . . , gn/q , g−1
n/q , ξm, ξ−m is a (Gq,m,H1, . . . , Hm)-

admissible set of generators for �.
Now since H1 equals the commutator of Gq,m, every character of Gq,m (i.e. a

one-dimensional unitary representation of Gq,m) factors to a character of Gq,m/H1.
On the other hand, it is well known [M] that the dimension of every irreducible
representation of Gq,m which is not a character is at least (q − 1)/m. Thus by
Corollary 4.5 the group Gq,m gives rise to manifolds for which the j -th eigenvalue
for 2 ≤ j ≤ n/r has multiplicity at least (q − 1)/m. Since n/r and (q − 1)/m can
be chosen arbitrarily large our Theorem C from the introduction follows.
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