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The Weinstein conjecture for planar contact structures in dimen-
sion three
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Abstract. In this paper we describe a general strategy for approaching the Weinstein conjecture
in dimension three. We apply this approach to prove the Weinstein conjecture for a new class of
contact manifolds (planar contact manifolds). We also discuss how the present approach reduces
the general Weinstein conjecture in dimension three to a compactness problem for the solution
set of a first order elliptic PDE.
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1. Introduction

The following considerations are part of the program initiated in [9] and extended
in [10] of proving the general Weinstein conjecture in dimension three. The key
observation in [9] was the equivalence between the assertion of the Weinstein conjec-
ture and the existence of a non-constant holomorphic curve for a suitable nonlinear
Cauchy–Riemann type equation. As discussed in [10], this equivalence has its lim-
itations. However, it was suggested that a suitable modification of the holomorphic
curve equation should be the key to a proof of the general Weinstein conjecture in
dimension 3. In the current joint work of the authors, the proof of the general We-
instein conjecture in dimension three has been reduced to a compactness question of
certain moduli spaces for the generalized holomorphic curve equation. As we know
from Giroux’s work, any (co-oriented) contact structure is supported by an open book
decomposition. In our approach, the compactness problems only arise if the pages
of the open book decomposition are non-planar (i.e., of positive genus). If the pages
are planar these difficulties do not arise. In this paper we describe our approach for
this particular case.

1.1. Versions of the Weinstein conjecture. Before we give more details we start by
providing the necessary background. Consider a closed three-manifold M equipped
with a contact structure ξ . In this paper we assume all contact structures to be
cooriented, i.e., ξ = ker(λ) is defined by a contact 1-form λ. We denote the associated
Reeb vector field by Xλ. Recall that the (generalized) three-dimensional Weinstein
conjecture states the following, see [20]:

Conjecture (A. Weinstein, 1978). Every Reeb vector field X on a closed three-
dimensional manifold M admits a periodic orbit.

In fact, Weinstein added the hypothesis that the first cohomology group H 1(M; R)

vanishes, but there is no indication that this additional hypothesis is needed. More-
over, Weinstein made his conjecture for Reeb vector fields on odd-dimensional man-
ifolds of arbitrary dimensions. We point out at there are strong indications that in fact
a stronger form of the Weinstein conjecture is true, which we again formulate in the
three-dimensional case:

Strong version of the Weinstein conjecture. For every Reeb vector field X on a
closed three-dimensional manifold M there exist finitely many periodic orbits (xi, Ti),
i = 1, . . . , n, so that the first homology classes [x1], . . . , [xn] induced by the loops
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xi : R/(TiZ) → M sum up to 0:
n∑

i=1

[xi] = 0.

Here the periods Ti > 0 need not to be the minimal periods.

We will say that the (strong) Weinstein conjecture holds for a contact form λ if
the associated Reeb vector field satisfies the conclusion of the (strong) Weinstein
conjecture.

1.2. Generalized holomorphic curve equations. We write π : T M → ξ for the
projection along Xλ. Fix a complex structure J on ξ such that dλ( ·, J ·) defines
a positive definite metric on ξ . We will call such complex structures compatible
(with dλ). Let us begin with an assertion reducing the Weinstein conjecture to the
study of the following nonlinear first order elliptic system. The solutions of interest
are 5-tuples (S, j, �, ũ, γ ) consisting of a closed Riemann surface (S, j), a finite
subset � ⊂ S, a proper map ũ = (a, u) : Ṡ → R × M , where Ṡ = S \ �, and a
one-form γ on S so that

π � T u � j = J � π � T u on Ṡ,

(u∗λ) � j = da + γ on Ṡ,

dγ = d(γ � j) = 0 on S,

E(ũ) < ∞.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.1)

Here the energy E(ũ) is defined by

E(ũ) = sup
ϕ∈�

∫
Ṡ

ũ∗d(ϕλ),

where � consists of all smooth maps ϕ : R → [0, 1] with ϕ′(s) ≥ 0 for all s ∈ R.
solutions of the system (1.1) energy curves.

The following theorem, which is an easy modification of a result by Hofer [9],
[10], shows that the Weinstein conjecture is equivalent to an existence result for a
generalized holomorphic curve (we restrict ourselves to the case of three dimensions
in the following discussion):

Theorem 1.1. Let (M, λ) be a closed three-dimensional manifold equipped with a
contact form λ. Then the associated Reeb vector field has periodic orbits if and only
if the associated PDE-problem (1.1) has a non-constant solution.

Note, however, that a nontrivial solution need not to have any puncture due to the
harmonic perturbation γ . If the Riemann surface (S, j) occurring in (1.1) is a sphere
it follows immediately that γ = 0, and the generalized equation reduces to the usual
equation for punctured holomorphic curve in symplectizations.
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1.3. Open book decompositions and the main result. An open book decomposi-
tion of a closed 3-manifold M is a pair (L, pr) consisting of a fibered link L ⊂ M

(the binding) and a fibration pr : M \ L → S1 whose fibers pr−1(t) (the pages) are
the interiors of smooth compact embedded surfaces in M bounded by L.

Definition 1.2. Following [7], we say that a contact structure ξ on a closed 3-manifold
M is supported by an open book decomposition (L, pr) if there exists a contact form λ

defining ξ so that:
• The form dλ induces an area form on each leaf F of pr.
• The form λ defines a volume form on L inducing the orientation as boundary of

(F, dλ).

We will call λ a Giroux form associated to (L, pr) and denote such forms by λGiroux.

Remark 1.3. (1) The definition implies that each component of L is a periodic orbit
of the Reeb vector field associated to the Giroux form. We call the components of
L the binding orbits. Note that any Reeb orbit which is not a binding orbit hits any
page in forward and backward time.

(2) A given Giroux form can be modified near the binding L to have additional
properties. For example, we can arrange that each binding orbit has a neighborhood
isomorphic to that of a periodic orbit in the round sphere S3. Alternatively, we can
arrange that the binding orbits are nondegenerate elliptic periodic orbits (see [1]).

(3) Multiplying a Giroux form by some positive number we obtain another Giroux
form.

Giroux’s fundamental result is the following, see [7], [8].

Theorem 1.4. Any (co-orientable) contact structure on a closed 3-manifold M is
supported by an open book decomposition.

Definition 1.5. Let us call an open book decomposition planar if its pages have
genus zero. Call a contact structure planar if it is supported by a planar open book
decomposition.

The main result in this paper is the following:

Theorem 1.6 (Strong Weinstein Conjecture for Planar Contact Structures). Let ξ be
a planar contact structure on an oriented closed three-manifold M . Then the strong
version of the Weinstein conjecture holds for any contact form defining ξ .

In view of this theorem and the results of [9], the Weinstein conjecture is now
established for every contact form defining a contact structure ξ on a closed oriented
3-manifold M if at least one of the following conditions is met:
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(1) The contact structure ξ is overtwisted ([9]).

(2) The second homotopy group of M is nontrivial ([9]).

(3) The contact structure ξ is planar (present paper).

Remark 1.7. (1) Recent progress in the understanding of contact three-manifolds,
most notably an important result by Eliashberg [4], has led to serious advances in the
study of the “planarity question”. Indeed, in a recent paper [5], J. Etnyre shows that
not all contact structures are planar. He also shows that every overtwisted contact
structure is planar, so case (1) above is a consequence of case (3). The Weinstein
conjecture remains open for tight contact forms on closed 3-manifolds with vanishing
second homotopy group for which the underlying contact structure is not planar.

(2) It was pointed out by J. Etnyre that one can modify our proof in the pla-
nar case by putting on top of our construction Eliashberg’s symplectic cobordism [4].
Then one can work with honest spheres rather than punctured spheres. The proof then
has to make use of positivity of intersections, adjunction formula, self-intersection in-
dex, automatic transversality, and the compactness results for punctured holomorphic
curves in [2]. Our arguments may be viewed as relative versions of these concepts.

The use of Eliashberg’s cobordism would somewhat simplify the arguments in the
planar case if one does not like to work with non-compact curves. However, an index
calculation shows that Eliashberg’s construction does not help to prove the Weinstein
conjecture in non-planar cases, whereas our constructions are designed precisely for
this case. The only problem at the moment is the lack of a compactness proof for the
generalized equation (1.1), although we are making progress on this question.

Acknowledgement. The third author would like to thank Richard Siefring for helpful
discussions on intersection questions which simplified some of our arguments.

2. Recollections on finite energy spheres

In this section we collect some facts about solutions of the PDE (1.1). Most of the
results needed are scattered in the literature. Some of them need additional explana-
tions and are further discussed. Throughout, M is a closed oriented 3-manifold, ξ

is a contact structure defined by a contact form λ, J is a compatible complex mul-
tiplication on ξ , and π : T M → ξ is the projection along the Reeb vector field Xλ.
From now on, we will restrict ourselves to planar curves, i.e., the surface S in (1.1) is
diffeomorphic to the sphere. Then the harmonic form γ vanishes and the PDE (1.1)
reduces to

T u � j = J � π � T u,

(u∗λ) � j = da,

E(ũ) < ∞.

⎫⎪⎬
⎪⎭ (2.1)
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A solution (S, j, �, ũ) of equation (2.1) is called a (special) finite energy sphere.
Equation (2.1) can be written in a more concise form as follows. Associate to J the
almost complex structure J̃ on R × M defined by

J̃ |ξ := J : ξ → ξ, J̃
∂

∂r
:= Xλ, J̃Xλ := − ∂

∂r
,

where r denotes the coordinate on R. Note that J̃ is R-invariant and compatible
with the symplectic form d(erλ) in the sense that d(rrλ)( ·, J̃ ·) defines a Riemannian
metric. Then equation (2.1) is equivalent to

T ũ � j = J̃ � T ũ, E(ũ) < ∞.

We also need to consider a generalization of equation (2.1). Let λ+, λ− be two contact
forms defining the same contact structure ξ such that

λ+ = f + · λ−

for a function f + > 1 on M . Pick a positive function f on R × M and a constant
R > 0 such that ∂f

∂r
≥ 0 and

f (r, x) =
{

f +(x) for r ≥ R,

1 for r ≤ −R.

Note that ωf := d(erf λ−) is a symplectic form on R × M . Let J̃ be a compatible
almost complex structure on R×M . This means that ωf (·, J̃ ·) defines a Riemannian
metric. Moreover, we assume that

J̃ =
{

J̃+ on [R, ∞) × M,

J̃− on (−∞, −R] × M,

where J̃± are the R-invariant almost complex structures associated to complex mul-
tiplications J± : ξ → ξ compatible with λ±. We now study smooth maps ũ : Ṡ →
R × M satisfying

T ũ � j = J̃ � T ũ, E(ũ) < ∞. (2.2)

Here the energy E(ũ) is defined by

E(ũ) = sup
ϕ∈�

∫
Ṡ

ũ∗d(ϕf λ−),

with � as before. We call solutions of equation (2.2) generalized finite energy spheres.
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2.1. The Reeb flow near a periodic orbit. Let x be a periodic Reeb orbit on (M, λ)

of period T . Denote by φt : M → M the Reeb flow, thus φT

(
x(0)

) = x(0). The lin-
earized Reeb flow alongx gives rise to a family of linear maps�t : ξx(0) → ξx(t) which
preserve the symplectic form dλ|ξ . We call x nondegenerate if �T : ξx(0) → ξx(0)

does not have 1 in its spectrum. Then two cases can occur. Either both eigenvalues
are real, then we call x hyperbolic, or both are non-real, then x is called elliptic.

Closely related to the linearized Reeb flow is the asymptotic operator along x

Aη := −J (x)(∇t η − ∇ηXλ) (2.3)

acting on sections η(t) = η(t + T ) of the bundle x∗ξ . Its kernel corresponds to
eigenvectors of �T with eigenvalue 1, so in the nondegenerate case the kernel is
trivial. Moreover, eigenfields of A have no zeroes. Fix a trivialization of the bundle
x∗ξ . In this trivialization each eigenfield of the self-adjoint operator A has a winding
number which depends only on the eigenvalue, see [11] for details. The winding
number increases with the eigenvalue, and each winding number occurs for precisely
two eigenvalues (counted with multiplicities). Denote by α(x) the winding number
corresponding to the largest negative eigenvalue. If x is nondegenerate and elliptic
both eigenvalues with winding number α(x) are negative and the Conley–Zehnder
index of x (in the given trivialization, see [11]) is given by

μ(x) = 2α(x) + 1.

We will also need a weighted version of this relation. For a weight δ < 0 which is
not an eigenvalue define the weighted Conley–Zehnder index by

μw(x) := 2αw(x) + 1,

where αw(x) is the winding number corresponding to the largest eigenvalue < δ.
Note that αw(x) and μw(x) are the winding number corresponding to the largest
negative eigenvalue, respectively Conley–Zehnder index, of the weighted asymptotic
operator Aw := A − δ.

2.2. Asymptotics near a puncture. Next we describe the behavior of solutions
of (2.1) near a positive puncture. The reference for this section is [14]. Let x be a
periodic Reeb orbit of period T > 0. Denote by τ > 0 the minimal period and by
k ∈ N its covering number, so that T = kτ . In suitable local coordinates in a tubular
neighborhood U of x the contact form is given by

λ = f (dϑ + x dy)

where (ϑ, x, y) ∈ S1 × R
2 with S1 = R/Z. Here the periodic orbit x corresponds

to t �→ (kt, 0, 0) ∈ S1 × R
2, and f > 0 is a function satisfying f (ϑ, 0, 0) = τ and

df (ϑ, 0, 0) = 0.
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Let ũ = (a, u) : [0, ∞)×S1 → R×M be a solution of (2.1) such that u(s, ·) → x

and a(s, ·) → +∞ as s → ∞. After replacing [0, ∞) × S1 by [R, ∞) × S1

for a sufficiently large R, we may assume that the image of u is contained in a
neighbourhood U ⊂ S1 × R

2 above. Hence we can write

ũ(s, t) = (a(s, t), ϑ(s, t), z(s, t))

in the coordinates above, with z = (x, y) ∈ R
2. The following asymptotic behaviour

was established in [14].

Theorem 2.1. Suppose that x is nondegenerate of period T and covering number k.
Then there exist constants a0, ϑ0 ∈ R and d > 0 such that∣∣∂β [a(s, t) − T s − a0]

∣∣ ≤ Cβe−ds,∣∣∂β [ϑ(s, t) − kt − ϑ0]
∣∣ ≤ Cβe−ds

for all multi-indices β, with constants Cβ depending on β. Moreover, if the z-part does
not vanish identically we have the asymptotic formula for the transversal approach
to x(t):

z(s, t) = e

∫ s
s0

λ(σ)dσ [e(t) + r(s, t)] ∈ R
2,

where ∂βr(s, t) → 0 as s → ∞, uniformly in t for all derivatives. Hereλ : [s0, ∞) →
R is a smooth function satisfying

λ(s) → λ < 0 as s → +∞,

where λ < 0 is an eigenvalue of the asymptotic operator A along x defined in the
previous section and e(t) = e(t + 1) 
= 0 is an eigenfield to λ.

In particular, this implies that u : Ṡ → M admits a continuous extension ū to the
circle compactification S̄ of its domain Ṡ. The behaviour near a negative puncture (at
which a → −∞) is similar. In the following we will only need positive punctures.
Note that equation 2.2 agrees with equation (2.1) for |r| ≥ R, so Theorem 2.1 also
applies to generalized finite energy spheres.

2.3. Linear Fredholm theory. Following [17], we introduce a special class of linear
Fredholm operators over a punctured Riemann sphere (Ṡ, j). They act on sections of
a trivial complex line bundle V = Ṡ × R

2 with fibrewise complex structure i = i(z),
z ∈ Ṡ. Denote by A0 → Ṡ the bundle of complex antilinear bundle homomorphisms
T Ṡ → V . Let C be a smooth section in the bundle HomR(V , A0) → Ṡ of real
bundle homomorphisms V → A0. We call C admissible if at every puncture the
following holds. (We assume all punctures to be positive, although for this subsection
this makes no difference). Let (s, t) be polar coordinates such that s → ∞ at the
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puncture. Then there exist smooth loops of complex structures i+(t) on R
2 and

2 × 2-matrices C+(t) such that

i(s, t) → i+(t), C(s, t) · ∂

∂s
→ C+(t)

in C∞ as s → ∞. The matrices C+(t) are symmetric with respect to the metrics
ω

(·, i+(t)·), where ω is the standard symplectic form on R
2. Moreover, we require

that the asymptotic operator

A+η := −i+(t)
∂η

∂t
− C+(t)η

acting on smooth functions η : S1 → R
2 has trivial kernel. Thus the equation A+η =

0 defines a path of symplectic 2 × 2-matrices �t such that �0 = Id and �1 does not
have 1 in its spectrum. Denote by μ+ the Conley–Zehnder index of this path.

We associate to an admissible C the operator LC : �0(V ) → �0(A0)

LCv := T v + i � T v � j + Cv

acting on sections of the bundle V → Ṡ. Let #� be the number of (positive) punctures
of Ṡ and

μ(LC) :=
∑
j

μ+
j

the sum of the Conley–Zehnder indices at the punctures. The following result was
proved in [17].

Proposition 2.2. The operator LC associated to an admissible C defines a Fredholm
operator LC : E → F between suitable Sobolev (or Hölder) completions of �0(V )

and �0(A0) of index
ind(LC) = μ(LC) + 2 − #�.

The arguments in [14] show that elements in the kernel of LC have asymptotics
at a puncture analogous to the ξ -component z in Theorem 2.1.

Corollary 2.3. A nontrivial element v in the kernel of LC has the following asymptotic
behaviour in polar coordinates near a puncture:

v(s, t) = e

∫ s
s0

λ(σ)dσ [e(t) + r(s, t)] ∈ R
2,

where ∂βr(s, t) → 0 as s → ∞, uniformly in t for all derivatives. Hereλ : [s0, ∞) →
R is a smooth function satisfying

λ(s) → λ < 0 as s → +∞,

where λ < 0 is an eigenvalue of the asymptotic operator A+ at the puncture and
e(t) = e(t + 1) 
= 0 is an eigenfield to λ.
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Let us discuss the effect of exponential weights. By Corollary 2.3, a nontrivial
element in the kernel of LC approaches zero at the j -th puncture with an exponential
rate given by an eigenvalue λj < 0 of the asymptotic operator A+

j . For weights
λj < δj < 0 that are not eigenvalues, denote by Ew, Fw the weighted Sobolev
spaces of sections converging to zero at the punctures with exponential rates

δj or faster. Thus Ew is the space of sections η in V → Ṡ such that ηw ∈ E,
where ηw is defined by multiplying η by a positive smooth function which agrees
with e−δj s near the j -th puncture, and Fw similarly. Define the weighted Fredholm
index indw(LC) as the index of the linear Fredholm operator LC : Ew → Fw. Note
that η → ηw defines an isomorphism Ew → E (and similarly for F ) which conju-
gates the operator LC : Ew → Fw to the operator LCw : E → F associated to an
admissible Cw. A simple computation shows that the asymptotic operators of Cw are
precisely the weighted asymptotic operators (cf. Section 2.1) at the punctures. Hence
by Proposition 2.2,

indw(LC) = ind(LCw) = μw(LC) + 2 − #�, (2.4)

where μw(LC) is the sum of the weighted Conley–Zehnder indices at the punctures.
Next consider a nontrivial element v in the kernel of LC . By Corollary 2.3, it

converges to zero at the j -th puncture from the direction of some eigenvector ej of
the asymptotic operator A+

j . Denote the winding number of ej by w+
j and define the

winding number of v by
wind(v) :=

∑
w+

j .

The asymptotics of v and the similarity principle imply (cf. [17])

Lemma 2.4. Let v be a nontrivial element in the kernel of LC . Then v has only
finitely many zeroes, each zero has positive multiplicity, and their algebraic sum
equals wind(v).

2.4. Nonlinear Fredholm theory. Next we recall the Fredholm theory for equa-
tion (2.2). The basic references are [17] for the embedded case (which is all we
need), and [3] for the general case. Let ũ = (a, u) : Ṡ → R × M be a generalized
finite energy sphere with asymptotic orbits xj . From now on we assume that all the
punctures are positive (i.e., a → +∞) and all the asymptotic orbits are distinct,
simple and nondegenerate elliptic. Denote by μj and αj their Conley–Zehnder in-
dices, respectively winding numbers of the largest negative eigenvalue, with respect
to trivializations induced by a trivialization of u∗ξ over Ṡ. So we have

μj = 2αj + 1.

Denote by μ(ũ) := ∑
μj the Conley–Zehnder index of ũ and by #� the number of

(positive) punctures of Ṡ.
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Denote by M the moduli space of solutions of equation (2.2) with #� positive
punctures and asymptotic orbits xj .

The space M can be described as the zero set of the nonlinear Cauchy–Riemann
operator defined by (2.2) on a suitable Banach manifold of maps Ṡ → R × M times
the moduli space M0,#� of #� points on the sphere. Its linearization at ũ is a linear
Fredholm operator D : E × T M0,#� → F between Banach spaces. Here E and F

are suitable Sobolev completions of the space of sections, respectively (0, 1)-forms,
in the pullback bundle ũ∗T (R × M). According to [17] for embeddings ũ, and [3] in
general, the Fredholm index of D is given by

ind(ũ) = μ(ũ) − 2 + #�. (2.5)

If ũ is an embedding there is an alternative description developed in [17]. Write
nearby curves as graphs of sections in the complex normal bundleN → Ṡ toC = ũ(Ṡ)

in R×M . Equation (2.2) translates into a Monge–Ampere type equation for sections
of N whose linearization DN at the zero-section is the projection of D onto N . Set
μN(ũ) := ∑

μN
j , where the normal Conley–Zehnder indices

μN
j = 2αN

j + 1

are computed with respect to trivializations induced by a trivialization of the normal
bundle N → Ṡ. Note that in view of the asymptotics (Theorem 2.1) the bundles u∗ξ
and N agree near the punctures. Comparing these bundles over Ṡ yields the following
relation between the Conley–Zehnder index and the normal Conley–Zehnder index,
see [14]:

μ(ũ) = μN(ũ) + 4 − 2��. (2.6)

It allows us to express the index of ũ in terms of the normal Conley–Zehnder
index:

ind(ũ) = μN(ũ) + 2 − #�. (2.7)

On the other hand, the operator DN is an admissible operator of the form consid-
ered in Section 2.3 (see the proof of Lemma 2.5 below), and by Proposition 2.2 its
index is given by the right-hand side of equation (2.7). This must of course be the
case because D and DN both describe nearby solutions of the same equation (2.2).
The following lemma is implicit in [17].

Lemma 2.5. Let ũ be an embedded solution of (2.2) with only positive punctures
asymptotic to elliptic Reeb orbits xj . Let v be a section in the normal bundle N → Ṡ

whose graph describes a solution of (2.2) near ũ. Then v satisfies a linear equation
L

Ĉ
v = 0, where Ĉ is an admissible operator on N in the sense of Section 2.3.

Moreover, the asymptotic operators of Ĉ at the punctures agree with the asymptotic
operators at the periodic orbits xj as in (2.3).
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Proof. Let us sketch the proof. Denote coordinates on Ṡ by z and on R
2 by x. Pick

a trivialization N ∼= Ṡ × R
2 as provided by Theorem 4.7 in [17]. Write the almost

complex structure in this trivialization as

J̃ =
(

j �̃

� i

)
: T Ṡ × R

2 → T Ṡ × R
2,

where the components of J̃ depend smoothly on (z, x). Since the zero section Ṡ×{0}
is J̃ -holomorphic, we have

J̃ (z, 0) =
(

j (z) �̃(z)

0 i(z)

)

for complex structures j on Ṡ and i on R
2 and homomorphisms �̃(z) : R

2 → TzṠ.
According to Section 5 in [17], the section C in the bundle HomR(N, A0) → Ṡ

defined by

C(z)h :=
(∂�

∂x
(z, 0)h

)
� j (z, 0), h ∈ R

2,

is admissible and the corresponding operator

w �→ LCw = T w + i � T w � j + Cw

agrees with the normal linearized Cauchy–Riemann operator DN at ũ. In particular,
the asymptotic operators of C at the punctures agree with the asymptotic operators
at the periodic orbits xj .

By hypothesis, the graph gr(v) of v satisfies the equation

T gr(v) + J̃
(
gr(v)

) � T gr(v) � ĵ = 0

for some complex structure ĵ on Ṡ. The Ṡ-component of this equation yields ĵ (z) =
j (z) + �(z, v) � T v; its R

2-component is

T v + i(z, v) � T v � ĵ + �(z, v) � ĵ = 0.

Define the complex structures ı̂(z) := i
(
z, v(z)

)
on R

2 and the section Ĉ in the
bundle HomR(N, A0) → Ṡ by

Ĉ(z)h :=
∫ 1

0

(∂�

∂x

(
z, τv(z)

)
h
)

� ĵ dτ, h ∈ R
2.

Then the equation for v can be viewed as a linear equation as in Section 2.3,

L
Ĉ
v = T v + ı̂ � T v � ĵ + Ĉv = 0.

Note that near a puncture v(s, t) → 0 in C∞ as s → ∞, so Ĉ approaches C at the
punctures. This implies that Ĉ is admissible with the same asymptotic operators as
C and the lemma follows. �
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Finally, let us discuss the effect of exponential weights. By Theorem 2.1, u(s, t)

approaches xj (t) normally with an exponential rate given by an eigenvalue λj < 0
of the asymptotic operator at xj . For weights λj < δj < 0 that are not eigenvalues,
denote by Mw the space of solutions in M which normally approach the xj at the
(positive) punctures with an exponential rate δj or faster. By construction, the solution
ũ belongs to Mw. Define the weighted Fredholm index indw(ũ) as the index of the
linear Fredholm operator D : Ew → Fw between suitable weighted Sobolov spaces
describing nearby solutions in Mw. An argument as in Section 2.3 shows (see [17],
Section 6)

indw(ũ) = ind(Dw) = μw(ũ) − 2 + #�. (2.8)

Similarly, the relations (2.7) and (2.6) carry over to the weighted case.

2.5. Algebraic invariants. In this section we use the algebraic invariants from [12]
to single out a 2-parameter family of solutions by putting suitable exponential weights.
Let ũ = (a, u) : Ṡ → R × M be a (special or generalized) finite energy sphere with
asymptotic orbits xj . As in the previous section, suppose that all the punctures are
positive and all the asymptotic orbits are nondegenerate and elliptic with Conley–
Zehnder indices μj = 2αj + 1. By Theorem 2.1, the solution u approaches xj from
the direction of some eigenvector ej of the asymptotic operator. Denote the winding
number of ej with respect to a trivialization of u∗ξ by wj and define the asymptotic
winding number of ũ by

wind∞(ũ) :=
∑

wj .

Since u approaches xj from the direction of an eigenvector to a negative eigenvalue
at a positive puncture, we have

wj ≤ αj .

Let τ := ∑
(αj − wj) be the difference between the actual winding numbers at

the punctures and the maximal possible ones.
Now assume that ũ is a special finite energy sphere. Then, according to [12],

the section π � T u of the bundle HomC(T Ṡ, u∗ξ) satisfies a linear Cauchy–Riemann
type equation as in Section 2.3 (this is not true for generalized finite energy spheres).
The z-part in Theorem 2.1 cannot vanish identically because if it did then ũ would be
a covering of the cylinder over xj and thus have negative punctures (Theorem 6.11.
in [12]). By the similarity principle, π � T u can only vanish in finitely many points.
The winding number windπ(ũ) is then defined as the sum of the indices of the zeroes
of this section. It is a nonnegative integer which measures how often u is tangent to
the Reeb vector field and is related to the asymptotic winding number by the formula
(see [12])

windπ(ũ) = wind∞(ũ) − 2 + #�. (2.9)
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Combining formulae (2.9) and (2.5), we find

2τ = 2
∑

(αj − wj)

=
∑

(2αj + 1) − #� − 2wind∞(ũ)

= μ(ũ) − #� − 2wind∞(ũ)

= μ(ũ) − 2windπ(ũ) − 4 + #�

= ind(ũ) − 2 − 2windπ(ũ).

Now pick weights δj < 0 just above the larger eigenvalue corresponding to wj .
Denote by αw

j the winding number corresponding to the largest eigenvalue smaller
than δj < 0. Then αw

j = wj and the sum μw(ũ) of the corresponding weighted
Conley–Zehnder indices satisfies

μw(ũ) = 2
∑

αw
j + #�

= 2
∑

wj + #�

= −2τ + 2
∑

αj + #�

= μ(ũ) − 2τ.

The weighted Fredholm index (2.4) becomes

indw(ũ) = μw(ũ) − 2 + #�

= ind(ũ) − 2τ

= 2 + 2windπ(ũ).

In particular, if u is embedded and transverse to the Reeb vector field the winding
number windπ(ũ) vanishes and thus indw(ũ) = 2.

So we have shown

Lemma 2.6. Let ũ = (a, u) : Ṡ → R × M be a special finite energy sphere having
only positive punctures. Suppose that all the asymptotic orbits are nondegenerate
elliptic and that u is embedded and transverse to the Reeb flow. Then we can intro-
duce exponential weights at the punctures such that ũ belongs to the space Mw of
solutions with these weights, and the Fredholm index of ũ with these weights satisfies
indw(ũ) = 2.

2.6. An implicit function theorem. Now fix a collection of distinct nondegenerate
simple elliptic orbits xj and weights δj < 0. Consider the space Mw of generalized
finite energy spheres with positive punctures asymptotic to the xj with exponential
decay δj or faster. The following result describes the local structure of the set Mw.
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Theorem 2.7. Assume that C = ũ(Ṡ) ∈ Mw is embedded and has weighted Fredholm
index indw(ũ) = 2. Then neighbouring solutions in Mw form a smooth 2-dimensional
family of mutually disjoint embedded curves.

Proof. The argument is similar to that given in the proof of Theorem 2.7 in [18]. As
in Section 2.4, we write neighbouring solutions in Mw as graphs of sections of the
complex normal bundle to C. They satisfy a Monge-Ampere type equation whose
linearization DN : Ew → Fw at the zero section is a Cauchy–Riemann type operator
as in Section 2.3 between suitable Sobolev spaces with weights δj .

Consider a nontrivial element h in the kernel of DN . By Corollary 2.3, h ap-
proaches zero at the j -th puncture exponentially from a direction ej (t), where ej is
an eigenfield of the asymptotic operator at xj . According to Lemma 2.4, h has a
winding number

wind(h) =
∑

wj ,

where wj is the winding number of ej : S1 → R
2 \ {0} with respect to a trivialization

of the normal bundle N . Let

μN
w (xj ) = 2 · αN

w (xj ) + 1

be the weighted normal Conley–Zehnder index at xj , where αN
w (xj ) is the maximal

winding number of an eigenfield of the asymptotic operator Aj associated to an
eigenvalue < δj . Since h belongs to the Sobolev space with weights δj , we have

wj ≤ αN
w (xj ).

With μN
w (ũ) := ∑

μN
w (xj ) and the weighted version of formula (2.7), this implies

2wind(h) =
∑
j

2wj

≤
∑
j

[2αN
w (xj ) + 1] − ��

= μN
w (ũ) − ��

= indw(ũ) − 2

= 0.

This shows that nontrivial elements in the kernel of DN are nowhere vanishing. It
follows that the kernel can be at most two-dimensional, since otherwise we could
construct a nontrivial element in the kernel with a zero. Since indw(ũ) = 2, we
conclude that the operator DN is surjective. Thus Mw is a smooth 2-dimensional
manifold near C.
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It remains to prove that neighbouring elements C′ 
= C in Mw do not intersect C.
As in Section 2.4, describe C′ as the graph of a nonvanishing section v of the normal
bundle to C. By Lemma 2.5, v satisfies a linear Cauchy–Riemann type equation
L

Ĉ
v = 0, where the admissible section Ĉ has the same asymptotics as DN . Hence

the winding number of v satisfies

wind(v) =
∑

wj .

Now the computation above shows wind(v) = 0. Hence v has no zeroes, which
precisely means that its graph does not intersect C. �

Definition 2.8. For C ∈ Mw we denote by a(C) ∈ R the minimum of the R-value
of the projection C → R.

Theorem 2.7 has the following immediate corollary.

Corollary 2.9. For C ∈ Mw as in Theorem 2.7 there exists a C′ ∈ Mw with

a(C′) < a(C).

2.7. Intersections. Consider a connected component M0
w of Mw containing an em-

bedded solution C0 of index 2. By Theorem 2.7 and positivity of intersections
(see [6]), this implies that M0

w is a smooth 2-dimensional manifold and all ele-
ments in M0

w are embedded. Moreover, nearby distinct elements in M0
w are disjoint.

The following result shows that any two (not necessarily nearby) elements are either
identical or disjoint.

Proposition 2.10. Two elements C, C′ in M0
w are either identical or disjoint.

Proof. First note that two distinct C, C′ ∈ M0
w intersect only in finitely many points.

To see this, write C′ near the j -th puncture as the graph of a nontrivial section vj

in the normal bundle to C. By Lemma 2.5 and Lemma 2.4, vj has only finitely
many zeroes. Thus we have a well-defined algebraic intersection number int(C, C′).
Recall from [6] that each intersection point contributes positively to int(C, C′) and
intersection points persist under small perturbations.

Now suppose that C, C′ in M0
w are neither identical nor disjoint, hence

int(C, C′) > 0. Pick a continuous path (Cτ )0≤τ≤1 in M0
w with C0 = C and C1 = C′.

For small τ , we have int(C, Cτ ) = 0 by Theorem 2.7. We define

τ0 := inf{0 ≤ τ ≤ 1 | int(C, Cτ ) > 0} ∈ (0, 1).

Since intersections persist under perturbations, we must have int(C, Cτ0) = 0. Let
Iτ ⊂ C be the (finite) set of intersections between C and Cτ on the surface C. Now
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observe that for every neighborhood U of the set of punctures on C there is an ε > 0
such that

Iτ ⊂ U for all 0 < τ < τ0 + ε.

For otherwise we would find a sequence τn > τ0 with τn → τ0 and intersection
points zn ∈ C ∩ Cτn with zn /∈ U . But then the zn would converge to an intersection
point z ∈ C ∩ Cτ0 , contradicting int(C, Cτ0) = 0.

As above, write Cτ for τ > 0 near the j -th puncture as the graph of a section vτ
j

in the normal bundle to C which approaches zero exponentially from the direction of
an eigenfield eτ

j of the asymptotic operator at xj . Denote by wind(eτ
j ) the winding

number of eτ
j in a trivialization of the normal bundle, and by αj the maximal winding

number of an eigenvalue below the weight δj . Define an integer valued function i(τ )

by

i(τ ) = int(C, Cτ ) −
N∑

j=1

[wind(vτ
j ) − αj ].

If τ is small the Implicit FunctionTheorem 2.7 yields wind(vτ
j ) = αj and int(C, Cτ ) =

0, hence i(τ ) = 0. We will show that i(τ ) = 0 for all τ < τ0 + ε for some ε > 0.
Since

∑
j=1[wind(vτ

j )−αj ] ≤ 0, this then implies int(C, Cτ ) ≤ 0 for all τ < τ0 +ε,
contradicting the choice of τ0.

Fix a sufficiently small neighbourhood U = ∪jUj of the set of punctures on C.
After trivializing the normal bundle of C, the restriction of each vτ

j to Ūj can be

viewed as a complex valued function on [0, ∞) × S1 which satisfies a linear Cauchy
Riemann type equation as in Lemma 2.5. Dividing vτ

j by a suitable smooth positive

function βτ
j and compactifying the infinite half cylinder to [0, 1] × S1, we obtain

functions
wτ

j : [0, 1] × S1 −→ C

with
wind

(
wτ

j (1, ·)) = wind(eτ
j ) .

These functions are continuous in τ on the open half-cylinder [0, 1) × S1. For ε

sufficiently small we have Iτ ⊂ U for all 0 < τ < τ0 + ε, hence wind
(
wτ

j (0, ·))
is well-defined and independent of τ ∈ (0, τ0 + ε). As the zeros of wτ

j correspond
to the intersection points of C and Cτ and their degrees equal the local intersection
number, we have

wind
(
wτ

j (1, ·)) −
∑

{z:wτ
j (z)=0}

deg(z) = wind
(
wτ

j (0, ·)).
We conclude that the left hand side is independent of τ ∈ (0, τ0 + ε), and summing
over j yields i(τ ) = 0 for all τ ∈ (0, τ0 + ε). �
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3. Proof of the main result

In this section we shall prove the main result, Theorem 1.6.

3.1. Finite energy foliations for Giroux forms. We start by explaining a result
by Abbas [1] about turning leaves of an open book decomposition into solutions of
equation (2.1).

Let us call two solutions (S, j, �, ũ) and (S′, j ′, �′, ũ′) of (2.1) equivalent if there
exists a biholomorphic map φ : (S, j) → (S′, j ′) mapping � to �′ (preserving the
enumeration) so that ũ′ �φ = ũ. From now on a solution of our differential equation is
an equivalence class [S, j, �, ũ]. Note that we have a natural R-action on the solution
set by associating to c ∈ R and [S, j, �, ũ] the new solution

c + [S, j, �, ũ] := [S, j, �, (a + c, u)], ũ = (a, u).

Given [S, j, �, ũ], we denote by C the image of ũ. Since all the maps ũ of interest to
us will be somewhere injective one can show that knowing C we can reconstruct the
underlying equivalence class [S, j, �, ũ]. A crucial concept for our discussion is the
notion of a finite energy foliation F .

Definition 3.1. A smooth foliation F of R × M is called a finite energy foliation if
every leaf F is the image of an embedded solution [S, j, �, ũ] of (2.1),

F = ũ(Ṡ),

and with every leaf F ∈ F also c + F ∈ F for every c ∈ R, i.e., the foliation is
R-invariant.

Finite energy foliations are known to be a useful tool in studying the dynamics
of Reeb vector fields as well as topological applications, see [18], [16], [13]. The
following theorem is proved by Abbas in [1].

Theorem 3.2. Assume that M is a closed three-manifold equipped with a planar
contact structure ξ and a Giroux form λGiroux with nondegenerate closed Reeb orbits.
Let J be any compatible complex multiplication on ξ . Then there exist an open book
decomposition (L, pr) for ξ with Giroux form λGiroux and a finite energy foliation F
of R × M with the following properties.

• The cylinders over the binding orbits in L are leaves of F , called the trivial
leaves.

• Every nontrivial leaf is the image of a finite energy sphere with only positive
punctures. These punctures are in 1-1 correspondence with, and asymptotic to,
the binding orbits.
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• The projection to M of any nontrivial leaf can be compactified (by the binding
orbits) to a page of the open book decomposition (L, pr).

Remark 3.3. (1) The open book decomposition (L, pr) in the theorem may differ
from the planar open book decomposition we started with.

(2) Theorem 3.2 can be proved along the following lines, using the compactness
theorem for symplectic field theory [2].

The first step consists of modifying a leaf u0 of the given planar open book
decomposition (L0, pr0) near its punctures so that there is a suitable function a0
such that ũ0 = (a0, u0) solves the differential equation near the punctures. This is
achieved by choosing J : ξ → ξ near the binding L0 and the complex structure j near
the punctures in a very special way so that solutions can be written down explicitly.
We then look for a global solution ũ = (a, u) to the equation u∗λ � j = da of the
form u = φf (u0), where f is a suitable real valued function on the closed surface S

(a sphere in our case) and where φt denotes the flow of the Reeb vector field. This
amounts to solving an inhomogeneous Cauchy Riemann equation for the function
a − a0 + if on the sphere, which is possible because on the sphere ∂ is surjective.
The first part of (2.1) involving π � T u can then be used to define a z–dependent
complex structure J+ on ξ so that

πT u(z) � j = J+(z, u(z)) � πT u(z).

A cobordism argument similar to the one in Section 3 of this paper can then be
used to deform the parameter dependent complex structure J+ into one which does
not depend explicitly on z, say J−. We pick a complex structure J̃ = J̃ (z, a, u),
(z, a, u) ∈ S ×R×M , on R×M such that J̃ ≡ J̃+ for a ≥ 1 and J̃ ≡ J̃− for a ≤ 0,
and we study the corresponding PDE (2.2). There is an implicit function theorem and
the compactness result [2] can be applied. Assume that ũk = (ak, uk) is a sequence
of solutions such that

inf ak → r ∈ R.

Although there is no statement corresponding to Theorem 3.4 in this paper, a solution
where the infimum equals r can still be found (the part in the cobordism of the
broken punctured holomorphic curve in the limit). An argument similar to the one in
Section 3.4 of this paper produces a finite energy solution ũ = (a, u) to the PDE in the
negative part (R × M, J̃−) with only positive punctures such that u is an embedding
transverse to the Reeb vector field. The collection L of positive punctures of u may
differ from the binding L0 of the original open book decomposition. It is then shown
that there is a compact 1–dimensional family of such solutions which form an open
book decomposition with binding L.

We will refer to the nontrivial leaves in Theorem 3.2 as Abbas solutions.
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3.2. A cobordism. Suppose now that ξ is supported by a planar open book decompo-
sition. Let λGiroux be an associated Giroux form with nondegenerate elliptic binding
orbits. We are interested in the Reeb flow of a different contact form λ defining ξ .
Multiplying the Giroux form by some positive constant, we may assume that

λGiroux = f + · λ

for a function f + > 1 on M . Pick R > 0 and J̃ as in the beginning of Section 2 (with
λ+ = λGiroux and λ− = λ) and consider the PDE (2.2) for generalized finite energy
spheres. Observe that any Abbas solution is, after translating it by a sufficiently
large positive constant, a solution of (2.2). Denote by A the collection of all images
of Abbas solutions which are contained in [R, ∞) × M . Of course, any two such
solutions are either disjoint or identical, and the space A is connected.

Let A = ũ(Ṡ) be an Abbas solution. Pick weights δj as in Lemma 2.6 so that A

has weighted Fredholm index indw(A) = 2. Denote by Mw the space of solutions of
equation (2.2) with positive punctures asymptotic to the binding orbits of λGiroux and
with weights δj . Note that since all Abbas solutions have the same winding numbers
at the punctures, we have A ⊂ Mw. Let M0

w be the connected component of Mw
containing A.

3.3. A compactness statement. Assume for the moment that λ is nondegenerate.
Then we have the following compactness result for M0

w.

Theorem 3.4. Assume that λ is nondegenerate. Let Ck = ũk(Ṡ) be a sequence in
M0

w so that a(Ck) → r ∈ R. Then, after passing to a subsequence, there exists an
element C ∈ M0

w so that for suitable parametrizations ũk → ũ in C∞
loc. Moreover,

a(C) = limk→∞ a(Ck).

Proof. We apply the compactness theorem for symplectic field theory [2]. After
passing to a subsequence, the Ck converge to a broken punctured holomorphic curve
of type (k−|k0|k+). This means that the limit curve has k+ ≥ 0 components in
the symplectization (R × M, J̃+) of the positive end, k− ≥ 0 components in the
symplectization (R×M, J̃−) of the negative end, and k0 ∈ {0, 1} components in the
cobordism (R×M, J̃ ). From a(Ck) → r ∈ R we conclude that k− = 0 and k0 = 1,
so the limit curve is of type (0|1|k+). If k+ = 0 the assertion of the proposition follows
from the definition of convergence in [2]. Thus suppose that k+ ≥ 1. Then the top
layer is a (not necessarily connected) curve solving the homogeneous J̃+-problem.
By the stability requirement in [2], this layer contains at least one component Ĉ that
is not a cylinder over a closed Reeb orbit. Let û be a parametrization of Ĉ. Note
that û must be somewhere injective since the positive asymptotic limits are simply-
covered (they are binding orbits of the open book decomposition). Therefore, û is
not a branched covering of a cylinder over a closed Reeb orbit, and hence Ĉ has to
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intersect a nontrivial leaf of the Abbas foliation. On the other hand, Ĉ cannot be
identical to such a leaf since it has at least one negative puncture. From the definition
of convergence and positivity of intersections it follows that there is a sequence of
Abbas solutions Ak ∈ A such that Ck ∩ Ak 
= ∅ and Ck 
= Ak for large k. Since
A ⊂ M0

w, this contradicts Proposition 2.10. �

3.4. Conclusion. The planar Weinstein conjecture is now proved as follows. We
keep assuming that λ is nondegenerate. First note that

inf
C∈M0

w

a(C) = −∞.

Indeed, arguing indirectly, suppose the left-hand side defines a real number r . Take
a sequence Ck ∈ M0

w with a(Ck) → r . By Theorem 3.4, after taking a subsequence,
we find a C ∈ M0

w with

a(C) = lim
k→∞ a(Ck) = inf

C′∈M0
w

a(C′).

By Corollary 2.9, there exists a C′ ∈ M0
w with a(C′) < a(C), giving a contradiction.

The proof is now completed by taking a sequence Ck ∈ M0
w with

a(Ck) → −∞.

We apply again the compactness theorem for symplectic field theory [2]. After passing
to a subsequence, the Ck converge to a broken punctured holomorphic curve of
type (k−|k0|k+). From a(Ck) → −∞ we conclude k− ≥ 1 (and consequently
k0 = 1). By the definition of convergence in [2], the lowest layer of the limit curve
contains a non-constant (special) finite energy sphere Ĉ for (M, λ, J−) having only
positive punctures. At the punctures, Ĉ is asymptotic to periodic Reeb orbits xj of
the contact form λ. By construction, their homology classes [xj ] satisfy

∑[xj ] = 0,
where we sum over all the punctures. This proves Theorem 1.6 in the case that λ is
nondegenerate.

If λ is degenerate we can take a sequence f (k) : M → (0, ∞) of smooth functions
converging in C∞ to the constant function f (x) ≡ 1 so that the contact forms f (k)λ

are nondegenerate. By the result in the nondegenerate case, we find for every k a
finite set of periodic Reeb orbits x

(k)
j for f (k)λ whose homology classes sum up to

zero. By the proof of the compactness theorem in [2], the number of orbits for each
k is bounded by a constant independent of k. So after passing to a subsequence, we
may assume that their number is constant. Then by the Arzela-Ascoli theorem, after
passing to a subsequence, the x

(k)
j converge in C∞ as k → ∞ to periodic Reeb orbits

for the contact form λ. Clearly, the homology classes of the xj sum up to zero. This
concludes the proof of Theorem 1.6.
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